

- Cam Follower Bearings
- Needle Roller Bearings.
- Cylindrical Roller Bearings
- Thrust Roller Bearings
- Mounted Ball Bearings
- Mounted Roller Bearings
- Rod End & Spherical Plain Bearings
- Corrosion Resistant Bearings
- Specialty & Aerospace Bearings

Keep your equipment – and your business – moving forward

The whole world is on the move today. Everything from people and products to ideas and information That means business has to be on the move, as well. Power Transmission Solutions, a business of Emerson Industrial Automation, can help. We keep products – and businesses – moving forward. Whether it's helping to make sure that packages arrive on time, roads are built, energy is produced, food and beverages are processed, or luggage arrives at airport baggage areas, our products and solutions help make the world go.

Time-tested Brand Performance

Power Transmission Solutions is a family of respected product brands that supply a variety of power transmission components designed to increase both uptime and productivity. Each of our brands brings years of time-tested reliability and proven performance results. Together they deliver a product line unparalleled in its breadth.

Founded in 1886, Browning is the world leader in V-belt drives and helical shaft-mounted speed reducers. Browning also offers a broad range of other products, including gearing, mounted ball bearings, mounted roller bearings and sprockets.

Founded in 1958 in Spain, Jaure is a leader in the European marketplace. Jaure provides highly engineered couplings for industries ranging from steel and paper, hoisting to windmills and marine applications.

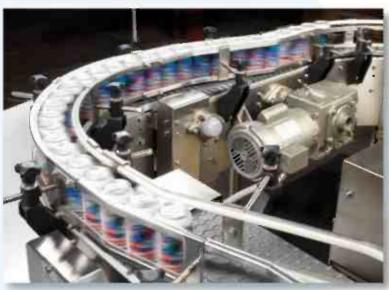
Founded in 1920, Kop-Flex brings over 80 years of design and application experience to a wide range of industries. Kop-Flex products include gear, disc and resilient shaft couplings.

Founded in 1905, McGill patented the CAMROL® cam-follower bearing, which today is offered in more than 1,400 different combinations and configurations. McGill products also include aerospace bearings, needle and spherical bearings.

Founded in 1880, Morse is well known for its performance-proven roller-chain drives, clutches, worm-gear speed reducers and couplings.

Founded in 1908, Rollway provides over 2,000 different types of cylindrical roller bearings, cylindrical and tapered thrust bearings and extra-large roller bearings.

Founded in 1935, Sealmaster is the industry's preferred bearing product, known for its premium-quality mounted ball-bearing line, as well as its mounted roller bearings.



Founded in 1985, System Plast S.p.A. is a global supplier of steel and engineered plastic conveying chains and chain tracks, modular plastic belts, composite housed bearings and Valu Guide® conveyor components and guide rails.

A History of Innovation

Our tradition of innovation goes far beyond our product enhancements. We've been at the forefront in offering acrossthe-board improvements in everything from manufacturing techniques to online tools as well as our Customer Solution and Innovation Centers.

Manufacturing

Our lean-manufacturing capabilities, coupled with our combined engineering expertise and our global facilities, lets us deliver the solutions you need – when and where you need them. In addition, our bearings group continues to advance its assemble-to-order (ATO) capabilities. The result? Fast, accurate production that outpaces industry standards. Meanwhile, our coupling operation's engineered to order (ETO) process offers specific customer application solutions.

Online Tools

Our ePT EDGE® Online industry-leading consultative website (www.emerson-ept.com) offers quick, concise and complete access to a wide range of support services, including:

eCatalog

- Smart interchange
- Product selection
- Product literature
- Engineered solutions
- CAD templates
- EDGE JIT a seamless, web-based program that selects drives at the lowest transactional costs
- eLINK a transaction tool that lets you instantly contact us for messages and updates on:
 - Stock/price checks
- Order entry
- Order status
- Ouote center
- Shipment tracking
- Shopping list (favorites)

Training

ePT University® online training program helps make sure that your personnel receive the training they require. Power Transmission Solutions provides comprehensive, high- quality product training for our customers. Our cutting edge training tools, coupled with our experienced training personnel, deliver unsurpassed product knowledge to customers everywhere. We can tailor training to programs that best fit your needs, including online and instructor-led courses.

Technical Support

For added technical support, we provide:

- Research & design Emerson spends 3.5% of its total revenue on R&D
- Six global technical support centers
- International technical support
- Around-the-clock service availability, via our Application Engineering Department (800-626-2093), e-mail or online chat

Channel Partners

Power Transmission Solutions has distribution channel partners throughout the world offering a wide variety of value-added services. For a full listing of our authorized distributors, technical support centers and online tools, visit www.emerson-ept.com

The Power of People

The real innovation behind our products comes from our people. Our engineers study your unique industry challenges as thoroughly as their own areas of expertise. Meanwhile, our sales force and field-service personnel also work hard to understand the challenges of every customer, in every marketplace and industry. Finally, our customer service representatives are always ready and available to answer any questions, solve problems or deal with any issues.

About This Catalog

Inside this catalog, you will find the common range of unmounted and mounted bearing products offered by Power Transmission Solutions, carrying the globally recognized brands: Browning, McGill, Rollway and Sealmaster.

To help you easily locate the information you are looking for this catalog has been laid out in a consistent format between the various brands and bearing types. The structure of the catalog is as follows:

Bearing Basics

This section includes general engineering information pertaining to bearing types, selection criteria, standard formulas used across the various bearing types such as L10, lubrication methods and types.

Product Sections

The following information typically appears in each product section.

Product Type Overview

A short descriptive narrative of the bearing types found in this section.

Section Table of Contents

A pictorial and descriptive table allowing you to narrow down the bearing type required for specific application or design need.

Exploded Product View

An exploded product view highlighting various critical components of the bearing.

Product Nomenclature

A breakdown of the part nomenclature (description) as a guide to easily understand the part numbers, and shows the standard and common optional features.

Standard Product Features & Benefits

Additional details of the key components highlighted in the exploded view detailing the specific feature and reviewing why it is a benefit to you the user.

Optional Product Features & Benefits

A listing of the common options available to further enhance bearing performance in your application or features tailored to specific applications such as high speed, high temperature, low temperature, etc.

Product Tables

- A 3D Model of the bearing product at the top of the page to clearly identify what the product looks like.
- Basic Product Information to help guide the user in understanding the key product attributes.
- A 2D Line Drawing with dimensional call outs that have been standardized across product types for easy comparisons.
- Table with inch and metric dimensions listing the critical dimensions for design and selection as shown in the 2D line drawing, including the bearing dynamic capacity, and mass in lbs and kgs.
- Special notes or instructions pertaining to the specific product shown.

Engineering Section

Technical information pertaining to the information found in the section. The technical information will vary slightly by product type such as speed limits, lubrication recommendations, series codes, internal and mounting clearances, and mounting instructions.

Table of Contents

idbic (of Contents
A	Bearing Basics
B	Cam Follower Bearings 💗
C	Needle Bearings 🎉
D	Spherical Roller Bearings
E	Radial Roller Bearings 🚳
F	Thrust Bearings 🍑
G	Mounted Ball Bearings 🧼
H	Mounted Spherical Roller Bearings
1	Mounted Tapered Roller Bearings
J	Rod End and Spherical Plain Bearings
K	Corrosion Resistant Bearings
L	Accessories
M	Aerospace and Specialty
N	Legacy Product Substitution Guide
0	Index

7

Bearing Basics

Table of Contents

Bearing Selection	page A-3
Load Rating and Life	page A-11
Lubrication	page A-17
Mounting	page A-24
Internal Clearance	page A-32
Bearing Stiffness	page A-33
Bearing Materials	page A-34
Housing Materials	page A-36
Seal Selection	page A-37
Bearing Retainer	page A-39
Bearing Storage	page A-40
ABMA and ISO	page A-42

MGILL. SEALMASTER. ROLLWAY. Barrier

Bearing Selection

Bearing Selection

Introduction

The following general information will serve the purpose of aiding the machine designer or bearing user when applying the bearings covered in this catalog. Additional data dealing solely with each type of bearing is found in each respective section. Cross references are made whenever necessary. Engineering data should be carefully considered in selecting the proper design and size bearing.

For those applications where unusual or abnormal operating conditions exist, it is advisable to consult Application Engineering for recommendations. Examples of such conditions requiring special consideration are those involving high or low temperatures, misalignment, shaft and housing fits that might cause the bearing to be too tightly fitted internally after mounting, vibration, moisture, contamination, etc.

Application Considerations

The proper selection and application of power transmission products and components, including the related area of product safety, is the responsibility of the customer. Operating and performance requirements and potential associated issues will vary appreciably depending upon the use and application of such products and components. The scope of the technical and application information included in this publication is necessarily limited. Unusual operating environments and conditions, lubrication requirements, loading supports, and other factors can materially affect the application and operating results of the products and components and the customer should carefully review its requirements. Any technical advice or review furnished by Power Transmission Solutions and its divisions with respect to the use of products and components is given in good faith and without charge, and Emerson assumes no obligation or liability for the advice given, or results obtained, all such advice and review being given and accepted at customer's risk.

For a copy of our **Standard Terms and Conditions of Sale, Warranty, Limitation of Liability and Remedy**, please contact Power Transmission Solutions customer service, 1-800-626-2120. These terms and conditions of sale, disclaimers and limitations of liability apply to any person who may buy, acquire or use an Emerson Power Transmission Corporation product referred to herein, including any person who buys from a licensed distributor of these branded products.

Nuclear Applications Goods and/or Services Sold Hereunder are not for use in any Nuclear and Related Applications

Buyer accepts goods and/or services with the foregoing understanding, agrees to communicate the same in writing to any subsequent purchaser or users and to defend, indemnify and hold harmless Seller from any claims, losses, suits, judgments and damages, including incidental and consequential damages, arising from such use, whether the cause of action be based in tort, contract or otherwise, including allegations that the Seller's liability is based on negligence or strict liability.

Bearing Selection Branch ROLLWAY, SEALMASTER, M. GILL.

Bearing Selection Continued

Bearing Selection

Before beginning the bearing selection process for a particular application it is important to have a good idea of where the bearing will be installed, what its purpose will be, what operating conditions will the bearing be expected to function in, and a desired bearing life. Each bearing type has certain characteristics which make it suitable for a certain application(s). Having comprehensive knowledge of these requirements will aid in bearing selection. In most cases there are several factors to consider when choosing a bearing type. Therefore the following information is to be used only as a guide. In the selection process the following factors must be considered:

- 1. Equipment constraints
- 2. Load Magnitude and Direction
 - Magnitude
 - Direction
 - ♦ Radial
 - ♦ Thrust
 - ♦ Combined
- 3. Misalignment
 - Static
 - Dynamic
- 4. Expansion
- 5. Noise
- 6. Vibration and shock loading
- 7. Environment
- 8. Bearing Type

Equipment Constraints

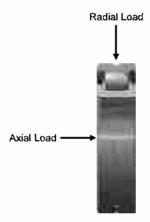
Sometimes, bearing bore diameter and housing type are predetermined by the equipment and shaft diameter with which the bearing will be used. Small diameter shafts typically are used when light loads are transferred and may lead to the choice of a ball bearing. Higher loads typically dictate larger shaft diameters and then taper or spherical roller bearings may be needed. For mounted bearings, equipment constraints can also dictate what type of housing style can be used (i.e. pillow block, 2-bolt flange, 4-bolt flange, etc.).

Load – Magnitude and Direction

Load magnitude typically dictates size of bearing required but it can also affect the type of bearing. Ball bearings work well in light to moderate loads, roller bearings work well for moderate to heavy loads. Bearings with a full complement of rollers are generally better for higher loads than a caged bearing of the same size and full complement bearings are also recommended for applications with oscillatory rotation.

Load direction can be radial, axial, or a combination of these two directions. These directions along with load magnitude are deciding factors in selection of bearing type.

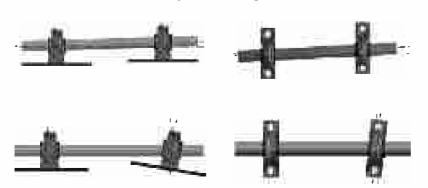
MEGILL. SEALMASTER. ROLLWAY. Brancher


Bearing Selection

Bearing Selection Continued

Radial loading is the most common type of bearing load and is defined as a load perpendicular, or 90 degrees to the shaft centerline. Most ball and roller bearings are designed to accept primarily radial loads.

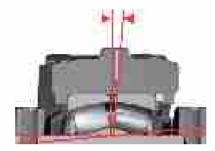
Thrust, or axial, loading is defined as loading in the direction through the shaft centerline. The ability of the bearing to carry a thrust load is dependent on the bearing contact angle geometry. The larger the contact angle the more thrust load that can be carried. Typically, tapered roller and double row spherical roller bearings are better suited for applications with a higher degree of thrust load.


Combination loading consists of both a radial and a thrust load acting simultaneously on the bearing. When combination loads are acting on a bearing it is necessary to determine an equivalent radial load when calculating bearing life.

Misalignment

Bearing misalignment is a result of angular misalignment between the shaft and housing. This misalignment comes in two different forms, static and dynamic. Static misalignment is the outcome of bearings that are mounted on different planes causing an angular shaft displacement and resulting in the bearing operating under a fixed misalignment angle. Mounted ball bearings, certain series mounted roller bearings, and spherical rollers bearings have a design feature that allows them to accommodate a limited degree of fixed misalignment. Dynamic misalignment is an eccentric shaft rotation caused by shafting imperfections and resulting in the bearing operating under a varying misalignment angle. Spherical roller bearings are typically best suited for applications involving dynamic misalignment.

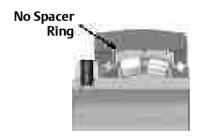
Static System Misalignment


Dynamic System Misalignment

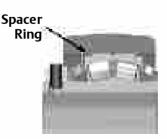
Bearing Selection Branch ROLLWAY SEALMASTER, M.GILL.

Bearing Selection Continued

Each bearing type is capable of accommodating a certain amount of either static, dynamic, or combination misalignment. When application misalignment exceeds the allowable limit for the particular bearing, increased contact stresses between bearing rolling elements and raceways occurs and bearing life is reduced. Individual product sections contain additional information regarding what types and degrees of misalignment each bearing type is capable of handling.


Example of Sealmaster Mounted Spherical Roller Bearing Misalignment

Expansion


For applications in which shaft linear growth must be accommodated, this expansion must be taken into account with either the bearing mounting method or bearing type selection. Typically this expansion is due to the difference in thermal changes in the shaft versus that in the support structure. Therefore change in length can be determined using standard thermal expansion equations. The maximum temperature difference between the shaft and the support structure should be used in the calculation of the shaft growth. Likewise, consideration must be given to the shaft and structure materials, as different materials can have different rates of expansion or contraction.

To allow for shaft expansion, some applications will require the bearing to be of an expansion type. An expansion type bearing is one that has an internal design feature which allows it to accommodate axial expansion. Before installation, make sure proper linear shaft expansion is accounted for. Expansion units should be placed in a location where relative movement between the bearing insert and the housing can be tolerated. For most applications using expansion type units, the fixed unit (non-expansion unit) is placed at the drive end of the shaft. Not providing expansion where necessary may result in undesirable thrust loads, thus reducing bearing operating life.

Example of Sealmaster Mounted Spherical Roller Bearing Expansion and Non-Expansion

Expansion

Non-Expansion

M'GILL. SEALMASTER. ROLLWAY. Branch

Bearing Selection

Bearing Selection Continued

Noise

Noise sensitive applications such as fans require smooth running bearings. These are typically low duty environments which makes ball bearings a good choice. Concentric locking mechanisms are preferred to keep vibration at a minimum, but not required. Power Transmission Solutions offers a special suffix that can be applied to many mounted ball bearing products for air handling applications. This option offers a loose fit between the bearing insert and housing for easy self-aligning, as well as noise testing of all units.

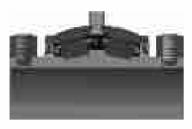
Vibration and Shock Loading

Vibration and shock loading present in vibratory conveyors, shakers, and other heavy industrial applications transfer large forces to bearings and accompanying raceways. These loads create large stresses at the interface between the rolling elements and raceways and can cause considerable damage and a reduction of bearing life. Roller bearings may be a good selection because of their larger supporting contact area with the bearing races. This allows loads to be carried over a larger area thus reducing stress. Special housing fits for mounted bearings can be added from the factory to aid in longer bearing life.

Environment

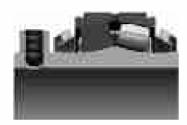
Environmental factors such as solids contamination (particle type, size, quantity), exposure to moisture (water, acid caustic), and thermal conditions are important variables in bearing selection. Bearing components (seals, grease, bearing material, etc.) can be modified in order to better suit a specialized application. Availability of special features may be affected by shaft size, bearing type, and housing type therefore this must be considered in the bearing selection process. Individual product sections contain additional information regarding these specialized features and availability.

Bearing Type



Radial Ball Bearings

Radial ball bearings create a fairly small elliptical contact between the ball-path and rolling element thus distributing loads across a small area. Surface contact is minimized and less friction and heat is generated which allows ball bearings a higher speed range. This small contact area also limits ball bearings to accepting only light to moderate loads. Radial ball bearings have a zero degree free contact angle but can accept light thrust loads (in combination with a radial load) due to the shape geometry of their raceways. Mounted ball bearing units have some degree of external static self-aligning capability (the bearing insert can misalign with respect to the housing). Mounted ball bearings come in a variety of housing styles and features to suit a wide variety of applications.


Bearing Selection Boundary ROLLWAY SEALMASTER MGILL

Bearing Selection Continued

Tapered Radial Roller Bearings

Tapered radial roller bearings create a line contact between the raceway and rolling element distributing loads across a larger area. Also, a double row provides twice as many rolling elements available to carry bearing load which increases bearing load capacity. Because tapered roller bearings are set at an angle, they can accept heavy loads from both the radial (Y) and thrust (X) directions. This makes them ideal for tough applications such as mining, bulk material handling, and off-highway applications. Many mounted tapered roller bearing units are similar to mounted ball units in that they are externally self aligning to accommodate some static misalignment. There are a variety of housing styles and features available.

Spherical radial roller bearings

Spherical radial roller bearings have a barrel shaped profile. This combined with a curved raceway allows relative motion between the rolling elements and raceways (internally self-aligning). This attribute makes them ideal for application where both static and dynamic misalignment is present. Spherical roller bearings create an elliptical shaped contact area that is larger than a ball bearing. Single row design spherical roller bearings should not be used in combined loading applications when the thrust load exceeds 20% of the applied radial load. Mounted spherical roller bearings employ a double row design, which are set at an angle and can accept a limited degree of thrust load in combination with radial load. Due to some sliding that occurs at the bearing and raceway interface, spherical roller bearings are generally not suitable for higher speed applications.

Needle Radial Roller Bearing

A needle radial roller bearing is a cylindrical roller where the length of the roller is significantly larger than the diameter. The rollers make a large line contact with the raceways, allowing them to accept fairly high radial load. Needle roller bearings also do not have a contact angle and are not recommended in applications where thrust loading is present. If high thrust loads are present, provisions should be put in place to allow bearings better suited to handle the thrust loads. Needle bearing assemblies typically consist of an inner race (or sometimes a precision shaft), a needle cage which orients and contains the needle rollers, the needle rollers themselves, and an outer race. The needle cage is sometimes omitted and a full complement of rollers is used instead for oscillatory and high load applications.

M'GILL. SEALMASTER. ROLLWAY. Branch


Bearing Selection

Bearing Selection Continued

Cylindrical Radial Roller Bearings

Cylindrical radial roller bearings are similar in design to needle roller bearing but the dimensions of diameter and roller length are closer in magnitude. The rolling elements create a line contact with the raceways and can handle relatively high radial loads. These bearings typically use cage separated rollers which allows for higher operating speeds. Cylindrical roller bearings can also accept incidental to light thrust loads. Rollway Cylindrical roller bearings are crowned to maximize load carrying potential, reduce edge loading, and tolerate some minor misalignment.

Thrust Cylindrical Roller

Thrust cylindrical roller and thrust spherical roller bearings use rolling elements as described above. However, instead of radial rings for raceways, thrust bearings use plate rings so that these designs can be applied to support pure thrust loads. These designs do not support radial loads. The cylindrical roller type provides a fairly rigid construction capable of supporting fairly heavy thrust loads. The spherical roller type can also support heavy thrust loads, and can also accommodate some misalignment.

Rod ends

Rod ends are designed to provide an efficient smooth transfer of motion in a wide variety of applications and equipment. This motion is usually associated with various types of linkage controls. Commonly referred to as plain or sliding bearings, they are designed primarily to assist and provide motion transfer, support a load, allow for angular motion and angular misalignment.

Rod ends can be joined together or connected with a threaded rod or tube to form linkage assemblies allowing design engineers flexibility in transferring motion between points with long center distances. There are two surface areas in contact rubbing against each other, therefore normal operation of rod ends results in wear of the raceways leading to fatigue or fracture of the outer member. Give consideration to this in the design of the equipment. In general, rod ends are designed to accept radial loads and not intended to carry thrust loads. Applications of rod ends with thrust loading should be reviewed with Application Engineering.

Spherical Plain Bearings

Spherical plain bearings provide a similar function as rod ends and must be supported in a housing. Spherical bearings are typically more capable of supporting higher loads versus an equivalent rod end bore size. This occurs because rod end load capacity is controlled by the head and shank geometry. Spherical bearings have a larger bearing area and generally are less restricted by the housing material or dimensions in which they are mounted. Static thrust rating of plain spherical bearings is 20% of the static radial rating of each unit but proper housing design is needed to support the bearing.

Bearing Selection Browning ROLLWAY, SEALMASTER, M.GILL.

Bearing Selection Guide

The following chart can be used as a reference guide when working through the selection process. More detailed information on each bearing type as well as the available housing and seal options can be found in sections dealing with the individual bearing types.

	Bearing Type	Pure Radial Loading	Pure Axial Loading	Combination Loading	High Speeds	Static Self- Aligning Capability	Dynamic Self-Aligning Capability
	Mounted Ball Bearings	•	•	•	•		0
10.	Mounted Taper Roller Bearings	•			•		0
51	Mounted Spherical Roller Bearings	•	•	•	•	•	•
	Cylindrical Roller Bearings		varied based on design	0	•	0	0
0	Unmounted Needle Bearings	•	0	0	•	0	0
	Rod Ends	•	0	0	0	•	•
0	Plain Spherical Bearings	•	0	0	0	•	•
0	Cylindrical Thrust Bearings	0		0	0	0	0
0	Tapered Thrust Bearings	0	•	0	0	0	0
0	Journal Roller Bearings		0	0	•	0	0

M.GILL. SEALMASTER. ROLLWA出。 Bound Load Ratings and Life

Load Ratings and Life

Introduction

The following general information will serve the purpose of aiding the machine designer or bearing user when applying bearings covered by this catalog. Additional data dealing solely with each type of bearing is found in each respective section. Cross references are made whenever necessary. Engineering data should be carefully considered in selecting the proper design and size bearing.

For those applications where unusual or abnormal operating conditions exist, it is advisable to consult Application Engineering for recommendations. Examples of such conditions requiring special consideration are those involving high or low temperatures, misalignment, shaft and housing fits that might cause the bearing to be too tightly fitted internally after mounting, vibration, moisture, contamination, etc.

Load Ratings

The basic load rating or Basic Dynamic Rating as defined by the American Bearing Manufacturers Association (ABMA) is that calculated, constant radial load which 90% of a group of apparently identical bearings with stationary outer ring can theoretically endure for a Rating Life. For bearing types other than tapered roller, the basic rating life is one million revolutions (33 1/3 RPM for 500 hours). For tapered roller bearings, the basic rating life is ninety million revolutions. The basic load rating is a reference value only, the basic rating life value having been chosen for a means of life calculation.

It is not anticipated that bearing loading equal to the Basic Dynamic Rating would normally be applied while the bearing is rotating. Bearings in this catalog should not normally be subjected to dynamic loads greater than 50 percent of the Basic Dynamic Rating. Consult Application Engineering if such conditions exist.

Bearing Life - L10

Bearings which have been properly sized for the application, solidly mounted, lubricated, and protected will operate with minimal, if any, internal wear until fatigue of the rings or rolling elements takes place. Fatigue is the first evidence of spalling of the rolling contact surfaces of these parts, and occurs because of the repeated stressing of the contacts.

The "life" of an individual bearing is defined as the number of revolutions (or hours at a given constant speed) which the bearing runs before the first evidence of fatigue develops in the material of either ring or of any of the rolling elements. The L10 or "rating life" of a group of apparently identical roller bearings is defined as the number of revolutions (or hours at some given constant speed) that 90% of the group of bearings will complete or exceed before the first evidence of fatigue develops.

Load Ratings and Life Brand ROLLWAY SEALMASTER M. GILL.

Load Ratings and Life

Life Calculations

The L10 (rating) life for any given application and bearing selection can be calculated in terms of millions of revolutions by using the bearing Basic Dynamic Rating (BDR) and applied radial load (or, equivalent radial load in the case of radial bearing applications having combined radial and thrust loads). The L10 life for any given application can be calculated in terms of hours, using the bearing Basic Dynamic Rating, applied load (or equivalent radial load) and suitable speed factors, by the following equation:

$$L_{10} = \left(\frac{C}{P}\right)^{P} x \frac{1,000,000}{60 \times n} = \left(\frac{C}{P}\right)^{P} x \frac{16667}{n}$$

Where: L₁₀ = The # of hours that 90% of identical bearings under ideal conditions will operate at a specific speed and condition before fatigue is expected to occur.

C = Basic Dynamic Rating (lbs) 1,000,000 Revolutions

P = Constant Equivalent Radial Load (lbs)

p = Exponent for life3 for ball bearings10/3 for roller bearings

n = Speed(RPM)

For thrust cylindrical roller and thrust tapered roller bearings the above equations change to:

$$L_{10} = \left(\frac{C}{P}\right)^{10/3} x \frac{1,000,000}{60 x n} = \left(\frac{C}{P}\right)^{10/3} x \frac{16667}{n}$$

Where: L_{10} = The # of hours that 90% of identical bearings under ideal conditions will operate at a specific speed and condition before fatigue is expected to occur.

C = Basic Dynamic Thrust Rating (lbs) 1.000.000 Revolutions

P = Constant Equivalent Thrust Load (lbs)

p = 10/3

n = Speed(RPM)

The BDR for tapered roller bearings is based on 90 million revolutions instead of one million for other types of bearings. Therefore there is a specific equation used to calculate their L10 life.

$$L_{10} = \left(\frac{C90}{P}\right)^{10/3} x \frac{90,000,000}{60 \times n} = \left(\frac{C90}{P}\right)^{10/3} x \frac{1,500,000}{n}$$

Where:

Where: L_{10} = The # of hours that 90% of identical bearings under ideal conditions will operate at a specific speed and condition before fatigue is expected to occur.

C90= 2-Row Basic Dynamic Rating (lbs) 90.000.000 Revolutions

P = Constant Equivalent Radial Load (lbs)

n = Speed(RPM)

Note: L10 life does not apply to rod ends and plain spherical bearings due to the sliding motion between components versus a rolling motion. Normal operation of these types of bearings results in wear of the raceways or fatigue or fracture of the outer member. Give consideration to this in the design of the equipment.

^{*} For speeds less than 50 RPM, use 50 RPM when doing L10 calculations.

Load Ratings and Life Continued

Additionally, the ABMA provides application factors for all types of bearings which need to be considered to determine an adjusted Rated Life (Lna). L10 life rating is based on laboratory conditions yet other factors are encountered in actual bearing application that will reduce bearing life. Lna life rating takes into account reliability factors, material type, and operating conditions.

$$L_{na} = a_1 \times a_2 \times a_3 \times L_{10}$$

Where:

 L_{na} = Adjusted Rated Life.

a₁ = Reliability Factor. Adjustment factor applied where estimated fatigue life is based on reliability other than 90% (See Table No 1).

Reliability %	L _{na}	a ₁
90	L10	1
95	L5	0.62
96	L4	0.53
97	L3	0.44
98	L2	0.33
99	L1	0.21
50	L50	5

Table No. 1 Life Adjustment Factor for Reliability

- **a**₂ = Material Factor. Life adjustment for bearing race material. Power Transmission Solutions bearing races are manufactured from bearing quality steel. Therefore the a₂ factor is 1.0.
- **a**₃ = Life Adjustment Factor for Operating Conditions. This factor should take into account the adequacy of lubricant, presence of foreign matter, conditions causing changes in material properties, and unusual loading or mounting conditions. Assuming a properly selected and mounted bearing having adequate seals and lubricant operating below 250°F and tight fitted to the shaft, the a₃ factor should be 1.0.

Mounted bearings are typically "slip fitted" to the shaft and rely on design features such as the inner race length and locking device for support. ABMA recommends an a_3 factor of .456 for "slip fit" ball bearings.

Vibration and shock loading can act as an additional loading to the steady expected applied load. When shock or vibration is present, an a_3 Life Adjustment Factor can be applied. Shock loading has many variables which often are not easily determined. Typically, it is best to rely on one's experience with the particular application. Consult Application Engineering for assistance with applications involving shock or vibration loading.

The a_3 factor takes into account a wide range of application and mounting conditions as well as bearing features and design. Accurate determination of this factor is normally achieved through testing and in-field experience. Power Transmission Solutions offers a wide range of options which can maximize bearing performance. Consult Application Engineering for more information. Example calculations can be found in the individual engineering sections at the end of the various product sections.

Load Ratings and Life Continued

Variable Load Formula

Root mean load (RML) is to be used when a number of varying loads are applied to a bearing for varying time limits. Maximum loading still must be considered for bearing size selection.

$$RML^* = \sqrt[p]{\frac{(L_1^P N_1) + (L_2^P N_2) + (L_3^P N_3)}{100}}$$

Where:

p = Exponent for life 3 for ball bearings 10/3 for roller bearings

 L_1 , L_2 , etc. = Load in pounds

 N_1 , N_2 , etc. = Percent of total time operated at loads L_1 , L_2 , etc.

Mean Speed Formula

The following formula is to be used when operating speed varies over time.

Mean Speed =
$$\frac{S_1 N_1 + S_2 N_2 + S_3 N_3}{100}$$

 S_1S_2 , etc = Speeds in RPM

N₁N₂, etc = Percentage of total time operated at speeds S₁S₂, etc

Bearing Life In Oscillating Applications

The equivalent rotative speed (ERS) is used in life calculations when the bearing does not make complete revolutions during operation. The ERS is then used as the bearing operating speed in the calculation of the L10 (Rating) Life. The formula is based on sufficient angular rotation to have roller paths overlap.

ERS = Equivalent Rotative Speed

N = Total number of degrees per minute through

which the bearing will rotate.

 $ERS = \frac{N}{360}$

In the above formula, allowance is made for the total number of stress applications on the weakest race per unit time, which, in turn, determines fatigue life and the speed factors. When the oscillation angle is very small, fretting corrosion can take place. The theory behind fretting corrosion is best explained by the fact that the rolling elements in small angles of oscillation retrace a path over an unchanging area of the inner or outer races where the lubricant is prevented by inertia from flowing in behind the roller as the bearing oscillates in one direction. Upon reversal, this small area of rolling contact is traversed by the same roller in the dry state. The friction of the two unlubricated surfaces causes fretting corrosion and produces failures which are unpredictable from a normal life standpoint. For applications with small angles of oscillation, it is recommended that it be reviewed with Application Engineering to select a bearing type that will help minimize potential fretting corrosion.

^{*} Apply RML to rating at mean speed to determine resultant life.

MGILL. SEALMASTER. ROLLWAY. Browning Load Ratings and Life

Load Ratings and Life Continued

With a given bearing selected for an oscillating application, the best lubrication means is a light mineral oil under positive flow conditions. With a light oil, there is a tendency for all areas in the bearing load zone to be immersed in lubricant at all times. The full flow lubrication dictates that any oxidized material which may form is immediately carried away by the lubricant, and since these oxides are abrasive, further wear tends to be avoided. If grease lubrication must be used, it is best to consult with either the bearing manufacturer or the lubricant manufacturer to determine the best possible type of lubricant. Greases have been compounded to resist the detrimental effect of fretting corrosion for such applications.

Static Load Rating

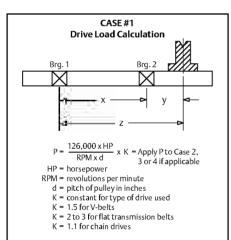
The "static load rating" for rolling element bearings is that uniformly distributed static radial load acting on a non-rotating bearing, which produces a contact stress of 580,000 psi for roller bearings and 609,000 psi for ball bearings, at the center of the most heavily loaded rolling element. At this stress level, plastic deformation begins to be significant. Experience has shown that the plastic deformation at this stress level can be tolerated in most bearing applications without impairment of subsequent bearing operation. In certain applications where subsequent rotation of the bearing is slow and where smoothness and friction requirements are not too exacting, a higher static load limit can be tolerated. Where extreme smoothness is required or friction requirements are critical, a lower static load limit may be necessary.

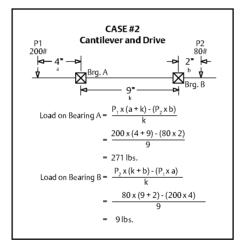
Minimum Bearing Load

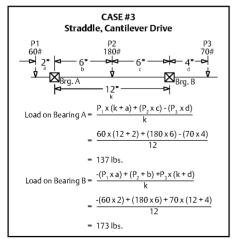
Skidding, or sliding, of the rolling elements on the raceway instead of a true rolling motion can cause excessive wear. Applications with high speeds and light loading are particularly prone to skidding. As a general guideline, rolling element bearings should be radially loaded at least 2% of Basic Dynamic Rating for roller bearings and 1% of Basic Dynamic Rating for ball bearings. For applications where load is light relative to the bearings dynamic load rating, consult Application Engineering for assistance.

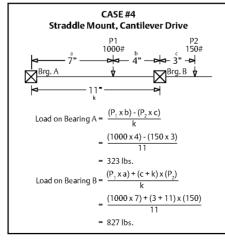
Load Ratings and Life Continued

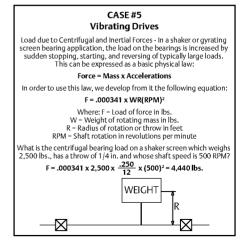
Computing Bearing Loads


In the computation of bearing loads in any application of an Power Transmission Solutions unit, the principal factor determining the selection of the unit is the equivalent radial load to which the bearing will be subjected. These radial loads result from any one or any combination of the following sources:


- 1. Weights of machine parts supported by bearings.
- 2. Tension due to belt or chain pull.
- 3. Centrifugal force from out of balance, eccentric or cam action.


The resulting load from any one, or any combination of the above sources is further determined by knowing:


- 1. The magnitude of the load.
- 2. Direction of the load.
- 3. The point of load application.
- 4. The distance between bearing centers.


Bearing loads are the result of force acting on the shaft. Direction, magnitude, and location with respect to the bearings must be considered when calculating bearing loads. The following cases are typical examples of loads encountered and methods of calculating bearing loads.

Lubrication

Proper lubrication is essential to achieving desired bearing life. Each bearing application creates individually different requirements for adequate lubrication. To assist in selecting the lubricant and lubrication method, the following information is furnished as a general guide. Generally, the assistance of a gualified engineering representative from a lubricant company should be enlisted. If specific recommendations are required for a particular application, consult Application Engineering.

Lubricants are used to:

- a. Reduce friction and wear
- b. Reduce adhesion
- c. Provide a barrier to contamination
- d. Cool the moving elements
- e. Protect against corrosion

Adequate lubrication is necessary in the rolling-contact areas, on contacts between rolling element and retainer, on contacts between a roller end and flange and on other areas where sliding takes place. Lubrication is required to reduce galling, adhesion, wear, corrosion, scuffing, welding and pitting. Of primary importance is adequate lubrication of the rolling element (Hertzian) contacts to avoid reduction of bearing fatigue life. These heavily loaded areas between the rolling elements and raceways impose the most critical requirement on the lubricant and its properties.

Lubricants of too low an initial viscosity or those too sensitive to temperature changes may induce shallow spalls under conditions of high slip (as in misalignment) or may induce plastic flow of the contacting surfaces.

Lubricants are often limited by their ability to:

- a. Replenish themselves
- b. Dissipate frictional heat
- c. Resist high environmental temperatures
- d. Remain stable under operating conditions

One important purpose of a lubricant is to prevent corrosion of the bearing surfaces engaged in rolling (Hertzian) contact. Many applications involve environments which allow water to accumulate in the bearing cavity. Whether from direct intake or condensation, moisture is detrimental and a lubricant must be selected to disperse the water or to prevent its attack on the metal since corrosion drastically reduces bearing life. Applications involving heavy loads and high operating temperatures also require careful approaches. Here extreme pressure (EP) lubricants should be used. High shaft speeds generally dictate lubricant selection based on the need for cooling, the suppression of churning or aeration of conventional lubricant and, most important of all, the inherent speed limitations of certain bearing types.

Elastohydrodynamic (EHL) lubrication is the model that explains the lubrication of anti-friction bearings. EHL takes into account the deformation of the rolling elements and raceways as well as the increased viscosity of the lubricant in the load zone.

In a rotating rolling element bearing there is one of three types of lubrication conditions present; 1) boundary, 2) thin film, 3) thick film. Bearing operating speed is an important element in determining the lubrication condition. Boundary lubrication occurs when there is metal on metal contact between rolling elements and races. This may be due to low speed and/or oil viscosity that is too low to separate the surfaces. Boundary lubrication is the most severe condition for antifriction bearings and distress of the rolling elements and races will occur. In the thin film condition, partial separation of the surfaces of the rolling elements and races occur with some asperities in contact. This condition may be due to low speed and/or oil viscosity too low to separate the surfaces completely. Some distress of the bearing surfaces will take place in thin film lubrication. Thick film lubrication is the preferred condition for optimum bearing performance. The speed of the bearing and/or the lubricant viscosity is sufficient to separate the rolling elements and raceways. Higher viscosity oils (or higher operating speeds) can help to attain the thick film lubrication condition, but excessively high oil viscosities may lead to higher operating temperatures from churning of the oil or skidding of the rolling elements. Lower viscosity oils sufficient to attain a thick film lubrication condition at the operating speed are selected in high speed applications as they have less tendency to churn or cause skidding.

Grease Lubrication

Greases are applied where fluid lubricants cannot be used because of the difficulty of retention, relubrication, or because of the danger of churning. Rolling contact bearings are often grease lubricated because grease is easier to retain in the housing over a longer period than oil and grease acts, to some extent, as a seal against the entry of dirt and other contaminates into the bearing. Greases are usually made by using soap or other inorganic compounds to thicken petroleum or synthetic oils. The thickener is used to immobilize the oil, acting as a reservoir to release the oil at a slow rate. Though the thickener may have lubrication properties itself, the oil bleeding from the bulk of the grease is felt to be the determining factor. When the oil has depleted to approximately 50% of the total weight of the grease, the lubricating ability of the grease becomes doubtful.

Greases are divided into grades by the NLGI (National Lubricating Grease Institute), ranging from 0, the softest, up through 6, the stiffest. The grade is determined by testing a penetrometer, measuring the depth of penetration of a specific weighted cone. Most greases have thixotropic properties (they soften with working) and, as such, must be considered for their worked properties rather than in the "as-received" condition. Conversely, many greases are found to stiffen when exposed to high shear rates in automatic grease dispensing equipment.

To limit shock loads and settling, grease-lubricated bearing housings should have dividers or seals to keep the bulk of the grease in place. Grease lubrication depends on a relatively small amount of mobile lubricant (the oil bled out of the bulk) to replenish that thrown out of the bearing during operation. If the space between the bulk of the grease and the bearing is too large, then a long delay (determined by the grease bleed rate and its temperature) will be encountered before lubricant in the bearing is resupplied. This delay may affect bearing life.

Grease is normally applied with the material in the cavity contacting the bearing in the lower quadrant for bearings mounted on horizontal shafts. The initial action of the bearing when rotated is to purge itself of excess grease and to clear a path for bleed oil to enter the bearing. Therefore, greases selected are often of an NLGI grade 2 or 3 consistency, referred to as the "channeling" variety.

Grease usually consists of three primary components: oil, thickener, and additives.

Oil is the primary lubricating component in grease and consists of two types: petroleum and synthetic. Petroleum oils are the primary oils used today. Synthetic hydrocarbons can be thought of as synthetic petroleum oils. Other synthetics include esters, silicones, fluorinated hydrocarbons, etc.

Oil is a fluid and can be obtained in varying viscosities. Viscosity refers to the "thickness" of the oil and is usually directly related to an oils' shear strength or its ability to resist loading. Selection of oil viscosity for rolling element bearing applications is normally dependent on bearing size, speed, load and operating temperature. Method of lubrication may also affect the selected oil viscosity. With these factors known, selection of proper oil viscosity can be made on the basis of elastohydrodynamic analysis, which can be provided by Application Engineering.

The thickeners primary purposes are to retain the oil so that it remains in the bearing, release the oil as needed, and reabsorb the oil as needed. The thickener can also provide additional sealing and protection from contamination and heat dissipation. There are many types of grease thickeners including lithium, calcium, sodium, aluminum, polyurea, etc.

Lithium Soap Grease

For grease lubrication, lithium soap base greases are most common. They are preferred for needle bearings in general because of their ability to stand up under churning action of rollers in a confined space. These greases are not channeling types, therefore provide constant lubrication for roller contact surfaces. They are also insoluble in water. Typical operating temperature range is approximately -30°F to +250°F (-35°C to +120°C).

Sodium Soap Grease

Sodium soap greases are suitable for many applications since they do have a relatively broad useful operating temperature range. However, they are generally restricted to the lower operating speeds because they are typically fibrous and more adhesive than other grease types. Because of this, they resist throw-off, but the fibrous texture causes higher operating temperatures than lithium or calcium soap greases. Very small amounts of water can be absorbed by sodium soap greases, which may be an advantage in some applications; however, this type grease will be washed away if excessive water is present. Typical operating temperature range is approximately -5°F to +200°F (-20°C to +93°C).

Calcium Soap Grease

Calcium soap greases are typically used because they are water resistant. They are smooth textured and have good mechanical stability, but are limited to lower operating temperatures than lithium or sodium soap greases. Typical operating temperature range is approximately -5°F to +150°F (-20°C to +65°C).

Polyurea Thickened Grease

Polyurea thickened greases are smooth textured with good mechanical stability. They exhibit very good oxidation and water resistance properties. Oxidation resistance makes this grease type suitable for higher operating temperatures. Typical operating temperature range is approximately -30° F to $+350^{\circ}$ F (-35° C).

Bentonite or Clay Thickened Grease

These smooth textured greases have very good heat resistance, as the thickener will not melt. They are limited by the base oil temperature properties. Operating temperatures up to $+350^{\circ}F$ ($+175^{\circ}C$) are typical, with intermittent operation up to $+450^{\circ}F$ ($+230^{\circ}C$) sometimes possible. Low temperature properties are satisfactory. However, this type is often formulated with a high oil viscosity for high temperature. Such formulations may not be suitable for low temperature applications.

Greases also can also contain additives. These additives may increase load capacity, resist corrosion, resist temperature extremes, resist oxidation, affect oil viscosity, thickener consistency characteristics, as well as many other characteristics.

Consult Application Engineering when using EP additives or other solid additives such as molybdenum disulfide, graphite, brass, nickel, etc.

Food Grade Grease

"Food Grade" grease may be desirable in applications that are within close proximity to food production. "Food Grade" grease is an option in most Power Transmission Solutions bearing products. Please consult Application Engineering for current specifications.

Reduced Maintenance

Some bearings offered by Power Transmission Solutions have features which can help extend bearing operating life and therefore are not provided with provisions for relubrication. This type of bearing may have an operating life limited by the life of the original grease fill and the ability of the seals to protect the bearing from contamination. Power Transmission Solutions has many seal and grease options for reduced maintenance bearings. Further information for these offerings can be found in the respective bearing type Engineering sections.

High Temperature Grease

High temperature grease options are available for most Power Transmission Solutions bearings. Consult Application Engineering for a suggested lubricant for your application. Higher operating temperatures can also affect required lubrication interval. Refer to the lubrication interval information in the respective bearing type Engineering section.

Grease Compatibility

Combinations of greases with different thickeners can result in a mixture having poorer performance or physical properties than the individual components. Incompatibility can also result from other than different thickeners. Because grease is a combination of thickener, oil and additives, it is also possible that any of these components may be incompatible with those of the other grease. Therefore caution should be used when relubricating with or combining different greases. Contact Application Engineering for current grease specifications. Contact your grease manufacturer for grease compatibility.

Petroleum oils and synthetic hydrocarbons are, generally speaking, compatible. Other synthetic oils are, more often than not, incompatible with other oils.

Additives may cause compatibility problems in some cases. Caution should be used when relubricating with or combining different greases. Contact Application Engineering for current grease specifications and your grease manufacturer to verify grease compatibility.

Oil Lubrication

Oil lubrication is normally used when speeds and temperatures are high or when it is desired to have a central oil supply for the machine as a whole. Cooled oil is sometimes circulated through the bearing to carry off excess heat resulting from high speeds heavy loads. Oil for anti-friction bearing lubrication should be well refined with high film strength, good resistance to oxidation and good corrosion protection. Anti-oxidation additives are generally acceptable but are of significance only at higher operating temperatures (over 185 °F). Anti-corrosion additives are always desirable.

Since oils are considerably more uniform in their characteristics than greases, their selection is much easier. The primary requirement, following viscosity, is a high grade mineral oil — not animal or vegetable oils which have a tendency to deteriorate. The oil must be resistant to oxidation, gumming and evaporation so that viscosity assumes the important role. For extremely low starting temperatures, an oil must be selected which has a sufficiently low pour point so the bearing will not be locked by stiff oil. The oil level should normally be maintained at the center of the lower-most rolling element when the bearing is stationary. An over supply of lubricant causes excessive churning action and can lead to heat generation. Oils of varying viscosity may be selected, depending on application conditions. Selection of oil viscosity for rolling element bearing applications is normally dependent on bearing size, speed, load and operating temperature. Method of lubrication may also affect the selected oil viscosity. With these factors known, selection of proper oil viscosity can be made on the basis of elastohydrodynamic analysis, which can be provided by Application Engineering. A general rule is to maintain the following lubricating oil viscosities for the respective bearing types at the bearing operating temperature.

Product	Viscosity at Operating Temperature
Ball	70 SUS (13 cSt)
Needle and Spherical Roller	100-150 SUS (30 cSt)
Cylindrical Roller	110 SUS (23 cSt)
Cylindrical Thrust	125 SUS (26 cSt)
Tapered and Tandem Thrust	160 SUS (34 cSt)

Oil Lubrication Systems

This method of lubrication is generally applicable to unmounted bearing products. The lubrication system must provide each roller bearing with a uniform, continuous supply of clean oil and must satisfy the cooling requirement of the bearing. Oil lubrication systems are also designed to meet the following needs:

- a. Adaptability to function over the range of variables encountered in the operating regime
- b. Reliability in a given operating environment and over the length of the normal maintenance periods
- c. Maintainability
- d. Overall ability to meet the requirements of the system application
- e. Relative cost when compared to the cost of machine or application

The table below provides a list of commonly used lubrication systems and shows some of the significant features that must be considered in their design and selection for roller bearing applications.

Lubrication System	Initial Cost	Required Maintenance	Oil Flow	Cooling	Reliability	Sensitivity to Environmental Changes	Sealing Requirements
Manual	Low	High	Variable and dependent on worker for continuity	Minimal and variable	Poor	Highly adaptable	Not Significant
Drip Feed	Low	Contingent upon type of service and location of lubrication points	May vary with time	Low	Average	May be affected by temperature variations	Not Significant
Splash	Dependent on Design	Negligible	Dependent upon maintenance of oil level in housing	Fair	High	Sensitive to low temperature. may accumulate moisture due to condensation	Generally critical
Wick Feed	Low to Medium	Medium	Uniform, filtered, continuous	Negligible	High, if wick is maintained	Sensitive to low temperature	Not Significant
Pressure Circulating System	High	Medium	Controlled and continuous. Adding filtration ensures clean oil supply	Excellent, can include heat exchanger	High	May accumulate moisture due to condensation	Important
Air-Oil Mist	High	Medium	Positive, automatic delivery of regulat- ed oil quantity, free of contamination	Excellent	High	Sensitive to low temperature	Important

MEGILL. SEAL MASTER. ROLLWAY. Bubication

Lubrication Continued

Lubrication Frequency

Lubrication frequency is dependent on application speed, temperature, and level of contamination. Relubrication schedules are only general recommendations. Experience and testing may be required for specific applications. Check individual product sections for more information on specific Power Transmission Solutions product lubrication guidelines.

Solid Lubricants

Oil saturated polymers (OSP) are generally a porous plastic that retains oil and are used in place of grease. This option may be used in inaccessible areas where relubrication is difficult. Oil is released during bearing operation and excess oil is reabsorbed when operation stops. Since the polymer material fills the bearing cavity, it also helps to keep out contaminant. This product is generally limited to slower operating speeds and generally to temperatures below $+200^{\circ}F$ ($+93^{\circ}C$).

Graphite is another form of solid lubrication. A semi-solid graphite mixture is inserted into the bearing and then baked to cure the material. Lubrication comes in the form of a thin layer of solid graphite that is deposited on all friction surfaces. This type of lubrication works well in extreme temperature (high or low), high contamination, or even when the bearing is submerged (lubricant does not have anti-corrosion properties).

Dry Film

Dry film lubricants such as molybdenum disulfide or graphite are well suited for specialized applications such as: high temperature, oscillatory rotation, maintenance free operation, or locations where bearings cannot be reached for easy maintenance. The lubricant is applied as a thin film and is permanently bonded to the bearing surfaces. The interaction of the rolling elements with this solid lubricant works to compact the lubricant into the surface imperfections of the bearing elements and reduces metal-to-metal contact.

Mounting

Mounting the bearing has important effects on performance, durability and reliability. Proper tools, fixtures and techniques are a must for any bearing application, and it is the responsibility of the design engineer to provide for this in his design, advisory notes, mounting instructions and service manuals. Nicks, dents, scores, scratches, corrosion staining and dirt must be avoided if reliability, long life and smooth running are to be expected. This section is provided as a reference only, additional data dealing solely with each type of bearing is found in each respective section.

Fit selections given in the various sections will serve as a guide for the majority of applications where the bearings are subjected to normal or heavy loads and other normal operating conditions. When bearings are subjected to very heavy or vibratory loads it may be necessary to employ shaft and housing fits tighter than standard. The same applies if shafts or housings of soft metal or those not having smoothly ground bearing seats (i.e., the smoothness ordinarily associated with ground or reamed bores) are used. Furthermore, if speeds are abnormally high, it may be necessary to maintain shaft and housing fits other than those shown in tables. Consult Application Engineering for recommendations for these abnormal conditions.

Shaft Fit – Mounted Product

Most mounted bearings are used to provide rotational support by inserting a shaft through them, typically with a slip fit. The shafts tolerance and finish is of utmost importance for proper bearing function and useful life. Ground shaft finishes are normally suggested for most applications; however, in some cases, a ground finish is not practical. In these situations, a machined finish may be acceptable; consult Application Engineering for recommendations. Additional shaft requirements dealing solely with each type of bearing are found in each respective section.

High Load Applications – Mounted Product

Applications where the loading approaches the load listed in the respective mounted product's rating table at 5000 hours life and 150/250 rpm should be reviewed and given special consideration. Modifications to consider include:

- Shaft size should be closely controlled for a line to line to a light press fit.
- Skwezloc[®] Locking Collar or double lock is the preferred lock system.
- Lubricants with "EP" extreme pressure additives may be required.
- Care in housing selection, load direction, and mounting techniques should be exercised. Refer to respective mounted product's installation instructions.

High Speed Applications – Mounted Product

Applications where the speed is in the range of 80% to 100% of the maximum speed listed in the respective mounted product's rating table should be reviewed and given special consideration. Modifications to consider include:

- Shaft size should be controlled to specifications listed in the installation section.
- Skwezloc Locking Collar or double lock is the preferred lock system.
- High quality lubricants should be used.
- Grease should be added more frequently and in small amounts. Refer to respective mounted product's relubrication schedule.
- Care in mounting techniques should be exercised. Refer to respective mounted product's installation instructions.

MGILL. SEALMASTER. ROLLWAY. Bounting

Mounting Continued

Shaft Fit – Unmounted Product

The slipping or creeping of a bearing race on a rotating shaft, or in a rotating housing, occurs when the fit is loose. Such slipping or creeping action can result in rapid wear of both the shaft and bearing races when the surfaces are dry and heavily loaded. To help prevent this, the bearing is customarily mounted with a press fit on the rotating race and a push fit on the stationary race with the tightness or looseness dependent upon the service intended. Bearings should be mounted squarely when press fitted, either in housings or on shafts, and installation pressure should be applied to the press fitted member only, or should be evenly distributed over both members. Where shock or vibratory loads are to be encountered, fits should be made tighter than for ordinary service. When heavier shaft fits are encountered, the assembly of a bearing on a shaft is best done by expanding the inner race by heating. Heat should not be applied directly to the bearing, but should be conducted to the bearing by some fluid medium. It is recommended that such heating be accomplished in clean mineral oil or in a temperature-controlled furnace at a temperature of between 200°F and 250°F as overheating will reduce the hardness of the races. Sealed bearings should not be mounted by this method as the grease with which the bearings are prelubricated may be affected.

Housing Fit – Mounted Product

For mounted bearing product (pillow blocks, flange blocks...) proper housing fit is dependent on bearing application variables: amount of shock/vibration, high speed fan applications, and need for low torque self-aligning capabilities. Applications with high shock and vibration require tighter fits between the bearing insert and the housing. Shock and vibration work to loosen the fit over time so it is best to start with tight fits. Fan applications require a loose fit to allow for easy self-aligning capabilities to adjust for variations in mounting surfaces that are typically found in air handling mounting structures.

Housing Fit – Unmounted Product

These types of bearings will be mounted into the customer's housing and therefore is application dependent. In the case of unmounted roller bearings or ER style bearings, housing fit is dependent on whether the outer ring is stationary or rotating. In general, a rotating outer ring requires a tighter fit than if the outer ring is stationary. In applications where bearing housings are made of soft materials (aluminum, magnesium, light sheet metal, etc.) or those which lose their fit because of different thermal expansion, outer race mounting must be approached cautiously. First, determine the possible consequences of race loosening and turning. The type of loading must also be considered to determine its effect on race loosening. The force exerted by the rotating elements on the outer race can initiate a precession which will aggravate the race loosening problem through wear, pounding, and abrasion. Since the pressing force is usually greater than the friction forces in effect between the outer race and housing, no foolproof method can be recommended for securing outer races in housings which deform significantly under load or after appreciable service wear. The surest solution is to press the race into a housing of sufficient stiffness with the heaviest fit consistent with the bearing operating clearances. Often, inserts or liners of cast iron or steel are used to maintain the desired fit and increase useful life of both bearing and housing. When stationary outer rings are required to float (move axially in the housing bore to compensate for expansion), a housing bore surface finish of 65 micro inches Ra maximum is recommended.

Mounting Continued

Housing Fit - Cam Follower

Proper mounting of stud type cam follower and track roller bearings requires a close fit between the bearing stud and the housing hole. The endplate must be backed up by the housing member face. Likewise the face of the housing adjacent to the bearing endplate face should be square to the housing bore.

Endplate support is also critical when mounting yoke-type series cam followers and track rollers. If the endplates are not properly backed up, they can partially or completely work off the inner ring. The preferred mounting method is by use of a separate bushing at one side to permit complete axial clamping of the endplates. If the endplates can not be clamped end-wise, it is essential to have a close fit axially in the yoke in which the bearing is mounted to prevent the bearing endplates displacing axially. Refer to the Camrol engineering section for more detailed information regarding cam follower mounting.

Mounting for Precision and Quiet Running Applications - Radial Cylindrical Roller Bearings

In applications of roller bearings where smoothness of operation is important, special precautions must be taken to eliminate those conditions which serve to initiate radial and axial motions. Accompanying these motions are forces that can excite bearing system excursions in resonance with shaft or housing components over a range of frequencies from well below shaft speed to as much as 100 times above it. The more sensitive the configuration, the greater the need for precision in the bearing and mounting. Among the important elements to be controlled are shaft, race, and housing roundness, squareness of faces, diameters, and shoulders. Though not readily appreciated, grinding chatter, lobular out-of-roundness, waviness and any localized deviation from an average or mean diameter (even as a consequence of flat spots as small as .0005 in.) can cause significant operating roughness. To detect the aforementioned deficiencies and ensure the selection of good components, three-point electronic indicator inspection must be made. For ultra precise or quiet applications, components are often checked on a continuous recording instrument capable of measuring to within a few millionths of an inch. Though this may seem extreme, it has been found that shaft deformities will be reflected through the bearings' inner races. Similarly, tight-fit outer races pick up significant deviations in housings. Special attention is required both in housing design and in assembly of the bearing to shaft and housing. Housing response to axial excursions forced by bearing wobble resulting from out-ofsquare mounting has been found to be a major source of noise and howl in rotating equipment. Stiffer housings and careful alignment of bearing races make significant improvements in applications where noise or vibrations have been found to be objectionable.

Squareness and Alignment - Radial Cylindrical Roller Bearings

In addition to the limits for roundness, squareness of end faces and shoulders must be closely controlled. Tolerances of .0001 in. full indicator reading per inch of diameter are normally required for shoulders, in addition to appropriately selected limits for fillet eccentricities. The latter must also fall within specified limits for radii tolerances to prevent interference with bearing race fillets, which results in cocking of the race. Reference should be made to the individual bearing dimension tables, which list the corner radius for each bearing. Shoulders must also be of sufficient height to ensure proper support for the races.

MEGILL. SEALMASTER. ROLLWAY. Bounting

Mounting Continued

Rollway Cylindrical Roller and McGill Spherical Roller Bearings – Shaft and Housing Seat Diameters

The tolerances, specified in the following charts for shaft and housing bearing seat fits, may be followed for specific application conditions that are encountered, as indicated. For special applications not covered by the following, Application Engineering should be consulted for additional assistance. The proper shaft and housing seat tolerances are designated by a letter and number. For shafts, a lower case letter is used, and for housings, a capital letter, both indicating the location of the tolerance range in relation to the nominal bearing dimension. The numbers indicate the grade of accuracy.

Housing Seat Fits

Housing Construction	Operati	Fit Symbol*			
		Heavy loads on bearing in thin wall housing		P7	
	Housing rotating relative to load direction	Normal and heavy loads		N7	
Housing not split radially		Light loads		M7	
		Heavy shock loads		1917	
	The direction of the load indeterminate	Heavy and normal loads axial displacement of outer ring not required		K7	
		Normal and light loads axial displacement of outer ring desirable		J7	
		Shock loads, temporary complete unloading			
Housing split or not split radially	Housing stationary rela- tive to load direction	All loads	Housing not split radially	H7	
			Housing split radially	Н8	
		Heat supplied through the shaft		G7	

^{*} For cast iron or steel housing.

For housings of light metal, tolerances are generally selected that give slightly tighter fits than those shown.

Mounting Continued

Shaft Seat Fits

		Spheri	cal Roller Bearings		Cylindr	ical Roller Bearing	5
Operating	Condition	Nominal	Shaft Dia.	Fit	Nominal	Shaft Dia.	Fit
		мм	Inch	Symbol	мм	Inch	Symbol
Stationary inner ring relative	Inner ring easily displaced	All diameters	All diameters	g6	All diameters	All diameters	g6
to load direction, all loads	Inner ring not easily displaced	All diameters	All diameters	h6	All diameters	All diameters	h6
	Radial load ≤ .08 BDR*	≤ 40 Over 40 to 100 Over 100 to 200	≤ 1.57 Over 1.57 to 3.94 Over 3.94 to 7.88	j6 k6 m6	≤ 40 Over 40 to 140 Over 140 to 320	≤ 1.57 Over 1.57 to 5.51 Over 5.51 to 12.6	j6 k6 m6
Inner ring rotating relative to load direction, or load direction indeterminate	Radial load > .08 BDR* ≤ .18 BDR*	≤ 40 Over 40 to 65 Over 65 to 100 Over 100 to 140 Over 140 to 280	≤ 1.57 Over 1.57 to 2.56 Over 2.56 to 3.94 Over 3.94 to 5.52 Over 5.52 to 11.10	k5 m5 m6 n6 p6	≤ 40 Over 40 to 100 Over 100 to 140 Over 140 to 320 Over 320 to 500	≤ 1.57 Over 1.57 to 3.94 Over 3.94 to 5.51 Over 5.51 to 12.6 Over 12.6 to 19.7	k5 m5 m6 n6 p6
mueterminate	Radial load > .18 BDR	≤ 40 Over 40 to 65 Over 65 to 100 Over 100 to 140 Over 140 to 200 Over 200 to 500	≤ 1.57 Over 1.57 to 2.56 Over 2.56 to 3.94 Over 3.94 to 5.52 Over 5.52 to 7.88 Over 7.88 to 19.69	m5 m6 n6 p6 r6 r7	≤ 40 Over 40 to 65 Over 65 to 140 Over 140 to 200 Over 200 to 500 Over 500	≤ 1.57 Over 1.57 to 2.56 Over 2.56 to 5.51 Over 5.51 to 7.87 Over 7.87 to 19.7 Over 19.7	m5 m6 n6 p6 r6 r7

^{*} BDR - Bearing Basic Dynamic Rating

MIGILL. SEALMASTER. ROLLWAY. Branch Mounting

Mounting Continued

Standard Shaft Fits

Dimensions in 0.0001 inches

Bore	e mm	g6	h6	j5	j6	k5	k6	m5	m6	n6	p6	r6
2		-2	0	+1	+2	+2	-	+4	-	-	-	-
3	6	-5	-3	-1	-1	0	-	+2	-	-	-	-
7	40	-2	0	+2	+3	+3	-	+5	-	-	-	-
7	10	-6	-4	-1	-1	0	-	+2	-	-	-	-
44	40	-2	0	+2	+3	+4	-	+6	-	-	-	-
11	18	-7	-4	-1	-1	0	-	+3	-	-	-	-
40	20	-3	0	+2	+4	+4	-	+7	-	-	-	-
19	30	-8	-5	-2	-2	+1	-	+3	-	-	-	-
31	50	-4	0	+2	+4	+5	+7	+8	+10	-	-	-
31	50	-10	-6	-2	-2	+1	+1	+4	+4	-	-	-
E4	00	-4	0	+2	+5	+6	+8	+9	+12	+15	-	-
51	80	-11	-7	-3	-3	+1	+1	+4	+4	+8	-	-
04	120	-5	0	+2	+5	+7	+10	+11	+14	+18	+23	-
81	120	-13	-9	-4	-4	+1	+1	+5	+5	+9	+15	-
404	400	-6	0	+3	+6	+8	+11	+13	+16	+20	+27	+35
121	180	-15	-10	-4	-4	+1	+1	+6	+6	+11	+17	+26
404	200	-6	0	+3	+6	+9	-	+15	+18	+24	+31	+42
181	200	-17	-11	-5	-5	+2	-	+7	+7	+12	+20	+30
204	201 225	-6	0	+3	+6	+9	-	+15	+18	+24	+31	+43
201	225	-17	-11	-5	-5	+2	-	+7	+7	+12	+20	+31
226	250	-6	0	+3	+6	+9	-	+15	+18	+24	+31	+44
226	250	-17	-11	-5	-5	+2	-	+7	+7	+12	+20	+33
251	280	-7	0	+3	+6	+11	-	+17	+20	+26	+35	+50
231	200	-19	-13	-6	-6	+2	-	+8	+8	+13	+22	+37
281	315	-7	0	+3	+6	+11	-	+17	+20	+26	+35	+51
201	313	-19	-13	-6	-6	+2	-	+8	+8	+13	+22	+39
316	355	-7	0	+3	+7	+11	-	+18	+22	+29	+39	+57
310	333	-21	-14	-7	-7	+2	-	+8	+8	+15	+24	+43
356	400	-7	0	+3	+7	+11	-	+18	-	+29	+39	+59
330	400	-21	-14	-8	-7	+2	-	+8	-	+15	+24	+45
401	450	-8	0	+3	+8	+13	-	+20	-	+31	+43	+65
401	430	-24	-16	-8	-8	+2	-	+9	-	+16	+27	+50
451	500	-8	0	+3	+8	+13	-	+20	-	+31	+43	+68
401	300	-24	-16	-8	-8	+2	-	+9	-	+16	+27	+52
501	560	-9	0	+3	+9	+12	-	+22	-	-	+48	+76
JU I	360	-26	-17	-9	-9	0	-	+10	-	-	+31	+59
561	630	-9	0	+3	+9	+12	-	+22	-	-	+48	+78
J01		-26	-17	-9	-9	0	-	+10	-	-	+31	+61
631	710	-9	0	+4	+10	+14	-	+26	-	-	+54	+89
υSI	110	-29	-20	-10	-10	0	-	+12	-	-	+35	+69

Mounting Continued

Standard Shaft Fits

Dimensions in 0.0001 inches

Bore	e mm	g6	h6	j5	j6	k5	k6	m5	m6	n6	p6	r6
3	6	-2	0	+1	+2	+2	-	+4	-	-	-	-
S	"	-5	-3	-1	-1	0	-	+2	-	-	-	-
7	10	-2	0	+2	+3	+3	-	+5	-	-	-	-
7	10	-6	-4	-1	-1	0	-	+2	-	-	-	-
44	40	-2	0	+2	+3	+4	-	+6	-	-	-	-
11	18	-7	-4	-1	-1	0	-	+3	-	-	-	-
40	20	-3	0	+2	+4	+4	-	+7	-	-	-	-
19	30	-8	-5	-2	-2	+1	-	+3	-	-	-	-
24	FO	-4	0	+2	+4	+5	+7	+8	+10	-	-	-
31	50	-10	-6	-2	-2	+1	+1	+4	+4	-	-	-
E4	00	-4	0	+2	+5	+6	+8	+9	+12	+15	-	-
51	80	-11	-7	-3	-3	+1	+1	+4	+4	+8	-	-
01	100	-5	0	+2	+5	+7	+10	+11	+14	+18	+23	-
81	120	-13	-9	-4	-4	+1	+1	+5	+5	+9	+15	-
404	400	-6	0	+3	+6	+8	+11	+13	+16	+20	+27	+35
121	180	-15	-10	-4	-4	+1	+1	+6	+6	+11	+17	+26
404	200	-6	0	+3	+6	+9	-	+15	+18	+24	+31	+42
181	200	-17	-11	-5	-5	+2	-	+7	+7	+12	+20	+30
204 225	-6	0	+3	+6	+9	-	+15	+18	+24	+31	+43	
201	225	-17	-11	-5	-5	+2	-	+7	+7	+12	+20	+31
200	252	-6	0	+3	+6	+9	-	+15	+18	+24	+31	+44
226	250	-17	-11	-5	-5	+2	-	+7	+7	+12	+20	+33
054	200	-7	0	+3	+6	+11	-	+17	+20	+26	+35	+50
251	280	-19	-13	-6	-6	+2	-	+8	+8	+13	+22	+37
004	0.45	-7	0	+3	+6	+11	-	+17	+20	+26	+35	+51
281	315	-19	-13	-6	-6	+2	-	+8	+8	+13	+22	+39
040	255	-7	0	+3	+7	+11	-	+18	+22	+29	+39	+57
316	355	-21	-14	-7	-7	+2	-	+8	+8	+15	+24	+43
250	400	-7	0	+3	+7	+11	-	+18	-	+29	+39	+59
356	400	-21	-14	-8	-7	+2	-	+8	-	+15	+24	+45
404	450	-8	0	+3	+8	+13	-	+20	-	+31	+43	+65
401	450	-24	-16	-8	-8	+2	-	+9	-	+16	+27	+50
454	500	-8	0	+3	+8	+13	-	+20	-	+31	+43	+68
451	500	-24	-16	-8	-8	+2	-	+9	-	+16	+27	+52
F0.4	500	-9	0	+3	+9	+12	-	+22	-	-	+48	+76
501	560	-26	-17	-9	-9	0	-	+10	-	-	+31	+59
F0.1	000	-9	0	+3	+9	+12	-	+22	-	-	+48	+78
561	630	-26	-17	-9	-9	0	-	+10	-	-	+31	+61
00.	7.0	-9	0	+4	+10	+14	-	+26	-	-	+54	+89
631	710		 	-10	-10	0	—	+12				+69

MIGILL SEALMASTER ROLLWAY Branching

Mounting Continued

Standard Housing Fits

Dimensions in 0.0001 inches

OD	mm	G7	Н8	H7	H6	J6	J7	K6	K 7	M6	М7	N6	N7	P6	P7
40	40	+2	0	0	0	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11
10	18	+9	+11	+7	+4	+2	+4	+1	+2	-2	0	4	-2	-6	-4
40	20	+3	0	0	0	-2	-4	-4	-6	-7	-8	-9	-11	-12	-14
19	30	+11	+13	+8	+5	+3	+5	+1	+2	-2	0	-4	-3	-7	-6
31	50	+4	0	0	0	-2	-4	-5	-7	-8	-10	-11	-13	-15	-17
31	30	+13	+15	+10	+6	+4	+6	+1	+3	-2	0	-5	-3	-8	-7
51	80	+4	0	0	0	-2	-5	-6	-8	-9	-12	-13	-15	-18	-20
31	00	+16	+18	+12	+7	+5	+7	+2	+4	-2	0	-6	-4	-10	-8
81	120	+5	0	0	0	-2	-5	-7	-10	-11	-14	-15	-18	-20	-23
01	120	+19	+21	+14	+9	+6	+9	+2	+4	-2	0	-6	-4	-12	-9
121	150	+6	0	0	0	-3	-6	-8	-11	-13	-16	-18	-20	-24	-27
121	150	+21	+25	+16	+10	+7	+10	+2	+5	-3	0	-8	-5	-14	-11
151	180	+6	0	0	0	-3	-6	-8	-11	-13	-16	-18	-20	-24	-27
151	160	+21	+25	+16	+10	+7	+10	+2	+5	-3	0	-8	-5	-14	-11
181	250	+6	0	0	0	-3	-6	-9	-13	-15	-18	-20	-24	-28	-31
101	250	+24	+28	+18	+11	+9	+12	+2	+5	-3	0	-9	-6	-16	-13
251	315	+7	0	0	0	-3	-6	-11	-14	-16	-20	-22	-26	-31	-35
251	313	+27	+32	+20	+13	+10	+14	+2	+6	-4	0	-10	-6	-19	-14
316	400	+7	0	0	0	-3	-7	-11	-16	-18	-22	-24	-29	-34	-39
316	400	+30	+35	+22	+14	+11	+15	+3	+7	-4	0	-10	-6	-20	-16
401	500	+8	0	0	0	-3	-8	-13	-18	-20	-25	-26	-31	-37	-43
401	300	+33	+38	+25	+16	+13	+17	+3	+7	-4	0	-11	-7	-22	-18
501	630	+9	0	0	0	-3	-9	-17	-28	-28	-38	-35	-45	-48	-58
301	030	+36	+43	+28	+17	+15	+19	0	0	-10	-10	-17	-17	-31	-31
631	800	+9	0	0	0	-4	-9	-20	-31	-31	-43	-39	-51	-54	-66
031	600	+41	+49	+31	+20	+16	+22	0	0	-12	-12	-20	-20	-35	-35
801	1000	+10	0	0	0	-4	-10	-22	-35	-35	-49	-44	-57	-61	-75
001	1000	+46	+55	+35	+22	+18	+25	0	0	-13	-13	-22	-22	-39	-39

Internal Clearance

Radial and Axial Internal Clearance

Anti-friction bearings are manufactured with specific radial clearances between the raceways and rolling elements. The clearances are designed for normal operating temperatures and application conditions. Certain bearing products, such as spherical roller bearings, are available with industry standard radial clearance ranges. Other bearing products will incorporate radial clearance as determined by the manufacturer. For high temperature and high speed applications, increased radial clearance options may be available to allow for thermal expansion. For mounted bearings exposed to high shock load and vibration, reduced internal clearance may be an option to distribute load over more rolling elements and reduce the stress per rolling element. Oscillatory applications may also benefit from reduced internal clearance. Load is carried over more rolling elements thus putting less stress on bearing raceways and potentially reducing wear.

Axial clearance between rolling elements and raceways also allows an inherent axial movement within the bearing, this is known as end play. End play, is the maximum relative displacement of the bearing rings relative to one another, in a direction parallel to the axis of rotation. The amount of endplay in a given bearing product is based on the design experience of the manufacturer and partly controlled by manufacturing tolerances.

MGILL. SEALMASTER. ROLLWAY. Barrier

Bearing Stiffness

Bearing Stiffness

Bearing stiffness is the relationship between bearing load and bearing deflection due to that load. Bearing stiffness is dependent on several variables: rolling element type, contact angle, applied load, and bearing preload.

Rolling element type comes into play due to the different contact patterns that the rolling elements make with the raceways. Therefore roller bearings, with their large line contact, will be stiffer than the point type contact produced by ball bearings. Additionally, the greater the number of rolling elements within the bearing the stiffer it will be.

Contact angle affects whether a bearing has better radial or axial stiffness. A small contact angle will produce a bearing with higher radial stiffness while a large contact angle will create higher axial stiffness.

Preload increases stiffness by removing internal clearance which in turn puts more rolling elements in contact with the raceway. As a negative affect, preload can increase operational temperatures and internal friction which can lead to reduced bearing life.

For specific information concerning stiffness data related to Power Transmission Solutions bearings, please contact Application Engineering.

Bearing Materials Bearing Be

Bearing Materials

A portion of bearing life and reliability of a rolling element bearing is based upon the material that the bearing components are made from. L10 bearing life equations are based upon the fatigue limit of the metal surfaces, both raceways and rolling elements. Therefore the proper and highest quality materials must be used.

Through-hardened Steels

52100 is the most common type of through-hardened steel used for bearing components as it is widely recognized as a superior bearing steel. It is resistant to shock loading and carries high metal fatigue life ratings. In addition, Power Transmission Solutions specifies all steel to be vacuum degassed (VDG). This is an extra manufacturing operation to filter impurities and remove inclusions that often appear during steelmaking. The result is a cleaner and more pure material that is better able to withstand subsurface cracking and subsequent premature metal fatigue failures.

Some bearing product produced using 52100 utilizes a zone hardening process in which only the raceway and immediate area is hardened. This creates a hardened surface for rolling elements but ductile in other areas for improved durability and shock load resistance.

Case-hardened Steels

Case hardening is used for certain applications when a through hardened part is undesirable. The surface can be hardened to an acceptable level yet the core of the part remains soft to resistant vibration and impact loads.

8620, 4118 and 9310 are examples of case hardening steel used by Power Transmission Solutions for bearing components. These low carbon alloy steels have good hardenability characteristics and toughness when properly carburized and hardened.

Corrosion Resistant Steels

A variety of corrosion resistant steels are used across the Power Transmission Solutions bearing line. The type of steel used depends on the component, cost effectiveness, and level of corrosion resistance needed.

The most common steel used for corrosion resistant bearing products is 400 series stainless steel. Its corrosion resistance is less than austenitic grades but it can be heat treated to obtain acceptable hardness value needed for anti-friction bearings.

300 series stainless steel is the most common type of stainless steel used for consumer products. It has excellent corrosion resistance when compared to 440C or coatings. However it cannot be hardened to acceptable levels for use in bearings. Therefore it can only be used in certain areas of bearing design that do not see a direct load from rolling elements. This includes components such as housings, seal stampings, setscrews, grease fittings, etc.

Standard bearing steels can also be coated or plated with various substances to provide good corrosion resistance as well as good harness values.

Bearing Materials

Bearing Materials

High Temperature Steels

As temperature rises, bearing rating is reduced, depending upon the bearing material and the operating temperature. Various types of tool steel, stainless steel and some of the more exotic materials are being used in order to meet the need for bearings to operate at elevated temperatures.

Bearing applications involving elevated temperatures preclude the use of standard bearing materials if full capacity is to be realized. In general, the temperature range is divided as follows:

- 250°F to 400° F
- 400°F to 800°F
- Over 800°F

Applications in range (a) can be generally handled by standard alloy steels, such as SAE 52100 or carburized SAE 8620, suitably hardened and stabilized for the range of operating temperature. Little or no reduction in basic capacity should be expected. For range (b), high alloy tool steels (M-50) may be used. For range (c), materials such as ceramics are generally required. Design options in this range are generally limited.

Composites – Bushings

Replacing rollers, a non-metallic bushing provides load support and a sliding motion that eliminates or reduces need for bearing lubrication. Recommended for use where relubrication is not convenient or where the possibility of grease contamination of the product being processed is not acceptable. Application limitations are lighter loads and lower speeds when compared to a rolling element bearing.


McGill bushing type CAMROL® bearings have a maximum allowable continuous operating temperature of 200°F (120°). The bushings are intended to be used in the self-lubricated mode. However, continuous feed oil lubrication can be used to provide reduced wear rates. Grease lubrication should not be used.

Housing Material

A variety of housing materials are offered within the Power Transmission Solutions mounted bearing product line. Selection of proper materials is application dependent and based upon variables such as type of loading, cost, and environmental conditions.

Gray iron, or cast iron, is the most common housing material type and has adequate strength for most applications. However, certain application conditions must be considered. Cast iron can be a brittle material when higher tensile (pulling) forces are applied; therefore it is not recommended in applications where shock loads are present.

Ductile iron or cast steel is preferred in applications with heavy loads, shock, and vibration since these materials have higher tensile strength and ductility. The chart below shows a comparison of housing materials and their tensile strengths. There is a slightly higher cost associated with ductile iron and cast steel housings and availability may be limited depending on product line.

In applications where there is significant humidity, moisture or chemicals present there is a likelihood that corrosion may occur over time. A coating or alternative material maybe required to meet material performance or customer aesthetic requirements. For each product line, Power Transmission Solutions can offer an alternate coating or material to improve corrosion resistance. Refer to each product section or the Corrosion Resistant Engineered Solutions (CRES) section K for more details on available options.

MGILL. SEALMASTER. ROLLWAY. Browning

Seal Selection

Seal Selection

The purpose of seals on a bearing is to help keep contamination from entering the bearing and to help retain lubricant inside the bearing cavity. Proper seal selection is dependent on a number of application variables: operational speed, level of contamination, type of contamination, operational temperature, and type of lubricant used.

Seal Type

Non-contacting/ Labyrinth Seals

Recommended for use in dry, low contamination environments. Constructed from multiple metal stampings, typically with one element that rotates with the shaft, creating a centrifugal force to help keep out contamination. Excess grease purges from the seal to help remove contaminates caught in the lubricant and prevent seal damage from over lubrication. These types of non-contact seals save energy by reducing drag and normally cannot be blown by over greasing.

Contacting Seals

Contacting seals can be used in a variety of applications depending on type of seal and material used. These factors affect the type and severity of contamination that the seal can withstand.

Felt Seal

The design incorporates a series of passageways with a highly effective filtering media that together block the ingress of contaminants and allow for the purging of oxidized grease during re-lubrication. Protective metal flingers are primary factors in seal performance. The inner flinger is pressed into the outer race and is a stationary foundation for the sealing system. The outer flinger, the first barrier to contaminant entry, is attached to the inner race and therefore rotates with the shaft. The rotation of the outer flinger offers two significant benefits. The first is the creation of a centrifugal force that repels debris by "slinging" it away from the seal area. The second is an extension of the flinger internally into the bearing chamber that initiates a vortex that churns the lubricant back toward the ball path. The design operates with less drag and less heat generation than rubber contact seals.

Recommend for use in dry applications with light to moderate contamination. Standard felt seals can operate in temperatures up to 200°F (93°C). Nomex felt can be used for temperatures 200°F to 400°F (93°C to 204°C).

Rubber Lip

Positive contact molded rubber lip seal with or without an auxiliary flinger. This type of seal functions well in wet and dirty environments up to 250°F (120°C). High temperature versions are available for conditions up to 450°F (232°C). Multiple lip seals are also available for severe applications. Rubber lip seals come in a variety of materials: Buna N Nitrile, FKM, and silicone.

Seal Selection Brown ROLLWAY SEALMASTER MGILL.

Seal Selection Continued

Spring Loaded

This V-shaped rubber seal is molded into a metal stamping. A spring is retained in the body of the "V" to maintain constant pressure against the inner race over the life of the seal. Seal lip can be oriented inward for increased lubricant retention. For better exclusion of contaminates the lip is oriented outward. High temperature versions available.

V-Ring

The rubber contact face seal is designed to retain lubricant and help exclude contaminants. The seal is designed with a long flexible face that seals axially against the counterface. The contact seal is self purging. It retains low torque characteristics and rotates with the shaft to help reduce contaminate build-up on the seal. Its low friction reduces heat generation and wear.

M'GILL. SEALMASTER. ROLLWAY. Branch

Bearing Retainer

Bearing Retainers

The function of a bearing retainer (cage) is to separate the rolling elements at evenly space intervals and reduce internal friction which allows for increased speeds. In roller bearing product the retainer also provides stability to the rolling elements, keeping them from skewing as they rotate. Retainers are sometimes omitted and a full complement of rolling elements is used instead. Additional rolling elements help to add rigidity and increase static capacity.

In some cases use of retainers can also help in aiding longer bearing life. A retained bearing has a larger grease reservoir than a similar bearing that is a full complement.

Mounted Ball

Land Riding

A land riding is design used in Sealmaster mounted ball product. This design minimizes friction and provides maximum grease circulation. Retainer is designed to "float" on the ground extension (or lands) of the outer ring while spacing the balls precisely for more even load distribution. This minimizes wear on both balls and retainer, while maximizing stability, especially important in applications involving vibration, shock loading or high operating speeds. For applications involving high temperatures, +220°F, land riding brass retainers are available.

Ball Riding

Ball riding retainers are designed to retain the balls within the cage pockets, which improves manufacturability, but can wipe oil away from the rolling elements removing it from these critical components. Sealmaster Material Handling Bearings and Browning Mounted Ball Bearing utilize a one piece ball riding nylon retainer molded from nylon 6/6. Nylon retainers a low cost alternative to brass retainers that have many good characteristics: low friction, natural lubricity, and resistant to many chemicals. Nylon retainers are capable of continues use up to 250°F, but many other components in the bearing may prevent. Some manufactures utilize a steel riveted ball riding retainer.

Mounted Roller

Stamped Steel

A one-piece, low carbon steel stamping. This type of retainer provides roller guidance as well as retaining rolling elements with the inner ring.

Bearing Retainers Continued

Unmounted Roller – McGill

Stamped Steel Retainer – SPHERE-ROL

One-piece, low carbon steel stamping. Land riding design only provides roller spacing and helps provide greater speed capability.

Stamped Steel Retainer – CAGEROL

One-piece, low carbon steel stamping. Retains and spaces the rollers. Provides roller guidance to prevent skewing. Allows for an increased lubricant reservoir. Minimizes radial play of rollers to ease assembly. Helps provide higher speed capability.

Stamped Steel Retainer – Metric CAMROL

One-piece, low carbon steel stamping. Retainers are heat treated to allow for roller guidance. The retainers are designed with two rollers per pocket (except 13, 16, and 19mm OD's) to help maximize static and dynamic load ratings, yet still offer the advantages of a caged construction.

Note: Inch CAMROL is a full complement bearing design that does not utilize a retainer.

Stamped Steel Retainer

A one-piece, low carbon steel stamping. Supplied on some bearings with snap ring retention. (TRU-ROL numbering suffix of "B") Recommended for low speed operations.

M'GILL. SEALMASTER. ROLLWAY. Branding

Bearing Retainer

Bearing Retainers Continued

Segmented Steel Retainer

A built-up type of retainer utilizing low carbon steel segments rigidly held between stamped, low carbon steel end plates. This is the standard retainer supplied with commercial bearings identified with the TRU-ROL numbering system. Recommended for moderate speed applications.

Two-Piece Retainer

This type of retainer is fabricated from brass. This is the standard retainer supplied with Rollway bearings identified with the MAX numbering system, ISO numbering system, TRU-ROL numbering system when the "MR" suffix is used, and any bearing with bore size over 180mm. Recommended for moderate to high speed applications.

One-Piece Retainer

This land piloting retainer is fabricated from brass or steel with radial retention of the rollers provided by closing the roller "pocket" with small projections formed by mechanically upsetting the retainer material. This retainer design is typically made to order for high speed applications, though it is applicable for other applications.

Cylindrical Thrust - Machined Brass

Thrust bearing retainers are machined from centrifugally cast brass. The retainers for all cylindrical roller thrust bearings are designed to be roller riding. The contoured roller pockets are accurately machined at right angles to the thrust force, which will be applied to the bearing. The rollers are retained in the assembly by a steel ring pinned to the outside diameter of the retainer.

Tapered Thrust – Machined Brass

Taper thrust bearing retainers are machined from a single piece of centrifugally cast brass. The retainer is designed to pilot on the thrust plates' flanges. The roller pockets are accurately machined at right angles to the thrust force which will be applied to the bearing. The T-Flat retainers are "pin through" style (pins extend through the center of the roller). The retainer consists of two steel rings through which the hardened steel pins are secured. An alternate design is a retainer machined from a single piece of centrifugally cast brass with the rollers retained by two pins.

Bearing Storage

Cleanliness and accuracy are stressed in all phases of bearing manufacture to help provide a clean and precise mechanical instrument. It is therefore essential the same care be taken in subsequent shipping, storage, and handling, as well as in mounting to make sure of the ultimate in bearing performance.

After completion, each bearing is thoroughly cleaned, preserved and packaged in a shipping carton with proper identification.

Lint-free commercial packing such as polystyrene foam packaging materials, crumpled newspaper or batting material may be used to cushion cartons of bearings in shipping containers. Materials having fine particulate, such as saw dust, are not recommended as such material may contaminate the bearings. The wrappings should never be removed from bearings until they are ready to be mounted. For those bearings preserved with a protective neutral compound, it is generally unnecessary to remove this coating as it will normally mix with any type lubricant.

When necessary to keep bearings in storage, they should be placed in a dry, cool location, and provision should be made to utilize the old stock before using new stock. Avoid dropping or other large impacts to the bearing as these forces will create damage to the bearing components and result in less than ideal bearing life.

ABMA and ISO

ABMA

These letters refer to American Bearing Manufacturers' Association - an organization comprised of the leading bearing and bearing-related manufacturers in the United States. The main purpose of the ABMA is to bring about standardization within the industry and to pass these benefits on to the bearing users.

ISO

ISO is the name for the International Organization for Standards. ISO is a worldwide federation of national standards bodies. The mission of ISO is to promote the development of standardization and related activities in the world. ISO's work results in international agreements which are published as International Standards.

Cam Followers

Unmounted bearing assembly consisting of hardened precision ground inner and outer raceways with either full complement or separated (cage) needle, ball, tapered or cylindrical rolling elements constructed with an integral stud or precision ground bore. Cam follower bearings provide an antifriction solution for translating rotation to linear motion or supporting either pure radial or combination thrust loads depending on the rolling elements types.

Bearing Configurations

Cylindrical, Crowned, V-Groove Or Flanged

Mounting Styles

Eccentric Or Concentric Stud Or Yoke

Outer Roller Diameter Range

1/2" To 10" And 13 mm To 90 mm

Materials

Bearing Quality Steel, Stainless

MGILL® Inch Cam Follower Bearings

Cam Follower Selection Guide

		i ba		Size	RANGE
		Product Series	Material / Finish	Inch	Metric
	•	CF		1/2 - 10	
		CYR		3/4 - 10	
		CFH		1/2 - 7	
		BCF		1/2 - 4	
CAMROL	6	BCYR	Black Oxide Finish Bearing Steel	3/4 - 4	
	6	MCF			16 - 90
	6	MCFR			13 - 90
		MCYR			5 - 50
		MCYRR			5 - 50
		CFD		1 1/4 - 6	
Heavy-Duty	6	CYRD	Black Oxide Finish	1 1/4 - 6	
- Houry Buy	6	MCFD	Bearing Steel		35 - 80
	•	MCYRD			15 - 50

CRES CAMROL bearings are dimensionally interchangeable with standard CAMROL® bearings and easily identifiable with "CR" designation.

components for improved resistance to both external and internal corrosion.

^{*} For estimating purpose only, individually sizes may vary and are subject to change without notification McGill CAMROL Cam Followers are available in 400 series stainless steel

	Design (CHARACT	TERISTIC	S			F	EATURES	5			
Radial Load	Thrust Load	Precision	High Speed	Relative Base Cost	Crowned OD	Eccentric Stud	Lubrication Holes	Seal	Hex Hole	Slotted Face	Jam Nuts	Page No.
•	0	•	0	\$	0	0	S	0	0	S	-	B-15
•	0	•	0	\$	0	-	S	0	-	-	-	B-39
•	0	•	0	\$\$	0	-	S	0	0	S	-	B-15
0	0	O	0	\$	0	0	S	0	0	S	-	B-45
0	0	<u>•</u>	0	\$	0	-	S	0	-	-	-	B-57
•	0	•	0	\$	S	0	S	0	0	S	S	B-69
0	0	•	•	\$	S	0	S	0	0	S	S	B-69
	0	•	0	\$	S	-	S	0	0	-	S	B-91
•	0	•	0	\$	S	-	S	0	-	-	S	B-91
•	0	•	0	\$\$	0	0	0	S	S	-	-	B-103
•	0	•	0	\$\$	0	-	0	Ø	-	-	-	B-107
•	0	•	0	\$\$	S	0	S	-	0	S	S	B-111
•	0	•	0	\$\$	S	-	S	1	-	-	-	B-115
	Load Shariı Relubricati	ack / Misalig ng / Adjustm on To Help F ation Barrier	nent To Trac Promote Bea									

O = Optional
S = Standard
○ = Not Recommended
○ ○ ○ ○ ○ ○
Poor ◆ Best

Allows The Use Of A Lube Fitting When Lubrication From The Flange Side Of Bearing

Blind Hole Mounting

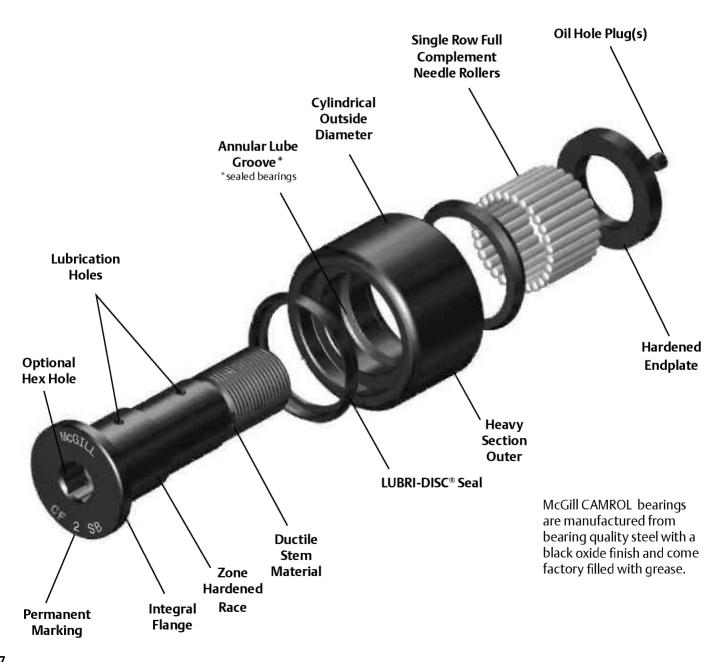
Accessories Included

MGILL® Inch Cam Follower Bearings

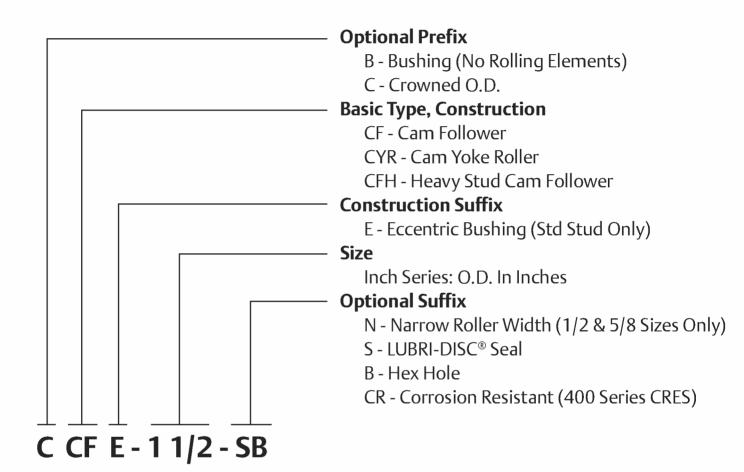
Cam Follower Selection Guide

				Size I	RANGE
		Product Series	Material / Finish	Inch	Metric
Special Duty	6	SDCF	Black Oxide Finish	1 - 4	
Эресіаі Биіу	5	SDMCF	Bearing Steel		25 - 100
	6	PCF		1 1/2 - 9	
	(2)	PCYR		3 - 6	
TRAKROL	6	FCF	Black Oxide Finish	1 1/2 - 9	
TRAKROL		FCYR	Bearing Steel	3 - 6	
	0	VCF		2 1/2 - 8 1/2	
	•	VCYR		3 1/2 - 7 1/2	

	Design (Charact	TERISTIC	S			F	EATURES	8			
Radial Loss	Thrust Load	Precision	High Speed	Patricy Date Cast	Crowned QB	Necestric Store	Lutrication riois	Sed	Hex Hote	Gilgitjed Fision	Jam Nu ts	ੋage No.
0	0	•	•	\$\$\$	0	0	-	S	S	-	s	B-123
•	0	•	•	\$\$\$	0	0	-	S	S	-	s	B-125
•	•	•	0	\$\$	0	0	-	S	-	1	0	B-131
-	•	-	0	\$\$	0	-	1	S	S	-	-	B-133
•	•	•	0	\$\$\$	-	0	-	S	S	-	0	B-135
•	•	•	0	\$\$	-	-	,	S	-	,	-	B-137
•	•	•	0	\$\$	-	0	,	S	S	1	0	B-139
•	•	•	0	\$\$	-	-	,	S	-	1	-	B-141
	Circular Track / Misalignment Load Sharing / Adjustment To Track Relubrication And Promote Bearing Life Contamination Barrier Blind Hole Mounting Allows The Use Of A Lube Fitting When Lubrication From The Flange Side Of Bearing Accessories Included											


O = Optional
S = Standard
○ = Not Recommended
○ ○ ○ ○ ○ ●
Poor ◆ Best

^{*} For estimating purpose only, individual costs may vary and are subject to change without notification


MGILL Inch Cam Follower Bearings

McGill Inch Cam Followers

McGill CAMROL bearings are full complement needle bearings feature black oxide treated bearing steel, available in two basic mounting styles for use in mechanical automation or linear motion applications. Our basic features each contribute to improved performance, while the LUBRI-DISC® seal option helps prevent metal to metal contact within the bearing while providing a barrier for contaminant entry and allow venting of excess or old grease during relubrication. In addition to the seal option these bearings are available with several dimensional choices and combinations to provide a specific solution for the application. Within the following section you can learn more about these features and how they can be applied to your application.

Cam Follower Inch Nomenclature

MGILL. Inch Cam Follower Bearings

Features and Benefits

Single Row Full Complement Needle Rollers

The needle roller diameter, length, and number have been optimized to provide a high dynamic and static load rating, contained within industry standard bearing envelope dimensions.

Heavy Section Outer

The heavy section outer helps support radial loading and provide proper rolling element support.

Cylindrical Outside Diameter (OD)

The cylindrical OD can improve performance in certain applications such as improved track capacity by maximizing the contact area with the track.

Zone Hardened Raceways

Heat treatment used to precisely harden working surfaces of the raceway and flange. The hardened surfaces provide support for the rolling element contact stresses, while keeping the core of the inner ductile to help absorb shock loads.

Features and Benefits continued

Hardened Endplate

Similar to the flange, the endplate must provide a seal surface for the LUBRI-DISC seal and resist wear from incidental contact with the outer or rollers. The hardened and ground endplate provides a sealing surface with LUBRI-DISC® seal option.

Factory Grease Fill

The cam follower and cam yoke roller bearings are factory lubricated with a medium temperature grease. Contact Application Engineering when application conditions require special lubricants.

Lubrication Holes

Depending on mounting option, McGill stud type CAMROL bearings may include a lubrication hole to accept a standard drive fitting or an included oil hole plug. The oil hole plug is recommended for closing unused holes to help protect against bearing contamination or lubrication loss.

Yoke Roller Lubrication Hole with Annular groove

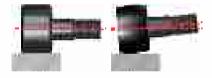
McGill CAMROL Yoke roller bearings include a lubrication hole to provide a passage for lubrication to the rolling elements from the yoke roller bore. The customer supplied shaft must provide axial lubrication path to supply bearing. An annular groove in the inner ring bore helps direct lubricant to the hole, making alignment of the shaft and the inner ring holes less critical.

Oil Hole Plug (s)

All McGill stud type Cam followers include 1-2 (depending on # of holes) oil hole plugs to help provide proper lubrication path to the rolling elements and prevent contamination from entering the bearing through an unused oil hole.

MSGILL Inch Cam Follower Bearings

Options


Black Oxide Finish

Bearings have a black oxide finish on all external surfaces.

LUBRI-DISC® Seal

The CAMROL standard for seals, the LUBRI-DISC seal helps keep contaminants out and lubrication in the bearing, with an integral back plate to separate the metal to metal contact between the outer ring and endplate(s) or flange. The back plate feature reduces friction resulting in lower operating temperatures which can extend grease life and allowing for higher operating speeds. The seal also includes vents to help prevent seal blowout during relubrication, while the outer raceway is machined with a reservoir for additional lubricant capacity. The LUBRI-DISC seal option has a good balance of sealing, lubricant capacity, and low drag operation essential to a precision cam follower suited for most industrial applications.

Crowned Outside Diameter (OD)

A crown on the OD of a cam follower bearing can increase bearing life versus a standard cylindrical cam follower. The crown achieves this performance by helping to distribute the stress on the outer ring and rolling elements resulting from misalignment due to mounting inaccuracy or stud deflection. The crown also helps reduce outer skidding in turntable or rotary applications. Not all applications may see the benefit of a crowned OD, consult Application Engineering for guidance for your application.

Heavy Stud Diameter

The increase stem diameter of heavy stud cam followers increases static load capacity of the bearing due to the larger stud diameter. The increase in diameter reduces the amount of deflection that can occur when cam followers are radial loaded. The resultant increase allows a maximum recommended loading of 50% BDR.

*On Heavy-Stud Type Bearings, CFH inch series only

Options continued

Hex Hole (Broached)

The hex hole can aide in the installation and removal of stud type cam followers by increasing the holding power over a standard screw driver slot. The hex feature is identified with a "B" since it is produced using a broach process. Bearing relubrication from flange end must be considered for sizes under 3".

Eccentric Stud

Eccentric stud option provides a means of adjusting the radial position of the bearing which can improve the load sharing of inline bearing combinations. Cam follower load sharing helps reduce operation costs by reducing premature failures due to overloaded bearings, the need of precise mounting hole location tolerances and providing ability to realign bearing due to track wear. Eccentric bushing is press fit on stud and unhardened to permit dowel or setscrew for permanent locking.

Bushing Type

Non-Metallic bushing provides load support with a sliding motion that reduces the need for bearing lubrication for non-food applications where relubrication is not convenient or grease contamination in the process is not acceptable. Max allowable continuous operating temperature up to 200°F. Bushing CAMROL bearings are intended to be used in the self lubricated mode. However, continuous feed oil lubrication can be used to provide reduced wear rates. Grease lubrication should not be used.

Corrosion Resistance

McGill CAMROL Cam Followers are available in 400 series corrosion resistant components for improved resistance to both external and internal corrosion. CRES CAMROL bearings are dimensionally interchangeable with standard CAMROL® bearings and easily identifiable with "CR" designation. Please see page K-3 for more information and availability.

MGILL® Inch Cam Follower Bearings

Additional Options

BHTHex hole at threaded end of cam follower stud.

THTThreaded axial lubrication hole at threaded end of cam follower stud.

THFThreaded axial lubrication hole at flanged end of cam follower stud. Available with all screw driver slot cam followers or broached cam followers over 3".

THBThreaded axial oil hole on both ends of cam follower stud. Available with all screw driver slot cam followers or broached cam followers over 3".

ALGAnnular lubrication groove at cam follower stud radial lubrication hole.

Custom Capabilities

- Customer specified factory grease fill
- Grease fitting installed
- Stud or thread length modifications
- Roller diameter variations or tolerances
- Cam followers grouped or matched diameter tolerance / run out sets
- Custom engineered to order designs

MGILL. Inch Cam Follower Bearings

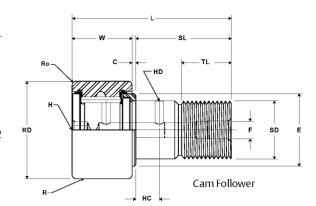
Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Full Complement Needle **Rolling Elements:**

Roller

Bearing Material: Bearing Quality Steel


> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

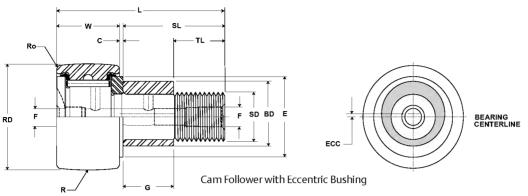
Concentric / Eccentric / **System Configuration:**

Heavy Stud

Mounting Feature: Slot / Hex Hole

CF, CFE, CFH

Pai	rt No.		RD		W		SD	51	C	TI.	i i	Ri.	EGC	0	80	Sand Saller	Truck Killing
		Roller	Diameter	Rolle	er Width	Stud E	iameter	Stud Length	Endplate Extension	Min Thread	Length Overall	Crown Prefix		Eccentric		11.11#	m.
WEDNI	LINEAR DESC	i	nch		nch	ir	ıch	Longan		Length	ch	CCF-XX inch		CFE-XX inch	· ·		
		Non.	nch nm	None	nch mm	Non	Tol	(Ref)	inch mm		m (Wat)	mm Radius (Ref)	(Ref)	mm +0/=.019	2.001	lb	/N
CF 1/2	CF 1/2 S																
CF 1/2 B	CF 1/2 SB	.500	+0/001	.375	+0 /005	.190	+.001/-0	.63	.031	.25	1.03	Cylindrical				680	790
CCF 1/2	CCF 1/2 S	12.70	+0/03	9.53	+0 /13	4.83	+.03/-0	15.9	.8	6.4	26.2	7	N/A	N/A	N/A	3,025	3,514
CCF 1/2 B	CCF 1/2 SB											178					
CFE 1/2	CFE 1/2 S											0.1:					
CFE 1/2 B	CFE 1/2 SB	.500	+0/001	.375	+0 /005	.190	+.001/-0	.63	.031	.25	1.03	Cylindrical	.010	.375	.250	680	790
CCFE 1/2	CCFE 1/2 S	12.70	+0/03	9.53	+0 /13	4.83	+.03/-0	15.9	.8	6.4	26.2	7	.25	9.53	6.35	3,025	3,514
CCFE 1/2 B	CCFE 1/2 SB											178					
CFH 1/2	CFH 1/2 S											Cylindrical					
CFH 1/2 B	CFH 1/2 SB	.500	+0/001	.375	+0 /005	.190	+.001/-0	.63	.031	.25	1.03	Cylindrical	N/A	N/A	N/A	680	1,580
CCFH 1/2	CCFH 1/2 S	12.70	+0/03	9.53	+0 /13	4.83	+.03/-0	15.9	.8	6.4	26.2	7	IN/A	IN/A	IN/A	3,025	7,028
CCFH 1/2 B	CCFH 1/2 SB											178					
CF 1/2 N	CF 1/2 N S											Cylindrical					
CF 1/2 N B	CF 1/2 N SB	.500	+0/001	.344	+0 /005	.190	+.001/-0	.50	.031	.25	.88	Cymranican	N/A	N/A	N/A	620	720
CCF 1/2 N	CCF 1/2 N S	12.70	+0/03	8.74	+0 /13	4.83	+.03/-0	12.7	.8	6.4	22.2	6	19/75	IWA	1975	2,758	3,203
CCF 1/2 N B	CCF 1/2 N SB											152					
CFE 1/2 N	CFE 1/2 N S											Cylindrical					
CFE 1/2 N B	CFE 1/2 N SB	.500	+0/001		+0 /005	.190	+.001/-0	.50	.031	.25	.88	- ,	.010	.250	.250	620	720
CCFE 1/2 N	CCFE 1/2 N S	12.70	+0/03	8.74	+0 /13	4.83	+.03/-0	12.7	.8	6.4	22.2	6	.25	6.35	6.35	2,758	3,203
CCFE 1/2 N B	CCFE 1/2 N SB											152					
CF 9/16	CF 9/16 S											Cylindrical					
CF 9/16 B	CF 9/16 SB	.5625 14.29	+0/- 001 +0/- 03	.375 9.53	+0 /005 +0 /13	190 4.83	+.001/-0 +.03/-0	.63 15.9	.031 .8	.25 6.4	1.03 26.2	_	N/A	N/A	N/A		
CCF 9/16	CCF 9/16 S	14.25	+0/03	9.55	+0713	4.00	1.03/-0	15.9	.0	0.4	20.2	7 178					
CCF 9/16 B	CCF 9/16 SB											170				680 3,025	790 3,514
CFE 9/16	CFE 9/16 S											Cylindrical				5,520	0,014
CFE 9/16 B	CFE 9/16 SB	.5625 14.29	+0/001 +0/03	.375 9.53	+0 /005 +0 /13	.190 4.83	+.001/-0 +.03/-0	.63 15.9	.031 .8	.25 6.4	1.03 26.2		.010 .25	.375 9.53	.250 6.35		
CCFE 9/16	CCFE 9/16 S	20	J	0.00	00							7 178			0.00		
CCFE 9/16 B	CCFE 9/16 SB																
CFH 9/16	CFH 9/16 S											Cylindrical					
CFH 9/16 B	CFH 9/16 SB	.5625 14.29	+0/001 +0/03	.375 9.53	+0 /005 +0 /13	.250 6.35	+.001/-0 +.03/-0	.63 15.9	.031 .8	.25 6.4	1.03 26.2		N/A	N/A	N/A	680 3,025	1,580 7,028
CCFH 9/16	CCFH 9/16 S											7 178					
CCFH 9/16 B	CCFH 9/16 SB																


Metric dimensions for reference only.

Hex wrench size for "Broached" version is located in the wrench size chart on page 8-156.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

CF, CFE, CFH

Pa	rt No.	140	HO	P.	E	Ro		HBD		-	11-111-	WT
CONTRACTOR CO.	With	Hole Genter	Radial Hole Diameter	Axial Hole Din or Fitting	Min Boss Dumeter	Outer Corner		sing Bore ameter	Thread Type	1	Special Special (Notate)	Met -t
W/O Seals	With LUBRI-DISC Heals		inch mm		in m	ch im		inch mm	.,,,,,	W.#	- 116	dip.
		oRuti	(Ref)	(Ref)	Hill	(Rife)	Mona	(400)		WH.		k
CF 1/2	CF 1/2 S					.016						
CF 1/2 B	CF 1/2 SB	_	_	.125	.410	.40	.1903	+.0002/0003	10-32	15 2	11,500	.04 .02
CCF 1/2	CCF 1/2 S			3.175	10.41	N/A	4.834	+.0005/0008		2	,	.02
CCF 1/2 B	CCF 1/2 SB											
CFE 1/2	CFE 1/2 S					.016 .40						
CFE 1/2 B	CFE 1/2 SB	-	-	.125 3.175	.410 10.41	.40	.253 6.42	+.001/001 +.025/025	10-32	15 2	11,500	.04 .02
CCFE 1/2	CCFE 1/2 S			0.110	10.41	N/A	0.42	1.020/ .020		-		.02
CCFE 1/2 B	CCFE 1/2 SB											
CFH 1/2 CFH 1/2 B	CFH 1/2 S CFH 1/2 SB					.016 .40						
CCFH 1/2 B	CCFH 1/2 SB	-	-	.125 3.175	.410 10.41		.2503 6.358	+.0002/0003 +.0005/0008	1/4-28	35 4	11,500	.04 .02
CCFH 1/2 B	CCFH 1/2 SB					N/A						
CF 1/2 N	CF 1/2 N S					040						
CF 1/2 N B	CF 1/2 N SB			105	.410	.016 .40	.1903	+.0002/0003		15		04
CCF 1/2 N	CCF 1/2 N S	-	-	.125 3.175	10.41		4.834	+.0002/0003	10-32	15 2	11,500	.04 .02
CCF 1/2 N B	CCF 1/2 N SB					N/A						
CFE 1/2 N	CFE 1/2 N S					.016						
CFE 1/2 N B	CFE 1/2 N SB			.125	.410	.40	.253	+.001/001	10-32	15	11,500	.04
CCFE 1/2 N	CCFE 1/2 N S	- -	-	3.175	10.41	N/A	6.42	+.025/025	10-32	2	11,500	.02
CCFE 1/2 N E	CCFE 1/2 N SB					14//						
CF 9/16	CF 9/16 S					.016 .40						
CF 9/16 B	CF 9/16 SB	-	-	.125 3.175		.40	.1903 4.834	+.0002/0003 +.0005/0008				
CCF 9/16	CCF 9/16 S			5.175		N/A	4.004	1.0000/0000				
CCF 9/16 B	CCF 9/16 SB				.410 10.41				10-32	15 2	10,000	.04 .02
CFE 9/16 CFE 9/16 B	CFE 9/16 S					.016 .40						
CFE 9/16 B	CFE 9/16 SB CCFE 9/16 S	-	-	.125 3.175			.253 6.42	+.001/001 +.025/025				
CCFE 9/16 B	CCFE 9/16 SB					N/A						
CFH 9/16	CFH 9/16 S					040						
CFH 9/16 B	CFH 9/16 SB			.125	.410	.016 .40	.2503	+.0002/0003		35		04
CCFH 9/16	CCFH 9/16 S	-	-	3.175	10.41		6.358	+.0002/0003	1/4-28	4	10,000	.04 .02
CCFH 9/16 B	CCFH 9/16 SB					N/A						

For positive clamping, use housing thickness equal to G dimension = 010". Clamping torque is based on dry threads. If threads are lubricated, use half of value shown. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Bearing Selection Page B-3

MGILL. Inch Cam Follower Bearings

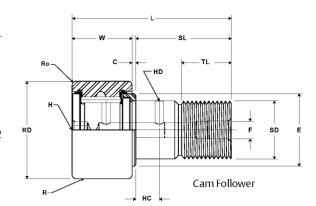
Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement Needle

Roller

Bearing Material: Bearing Quality Steel

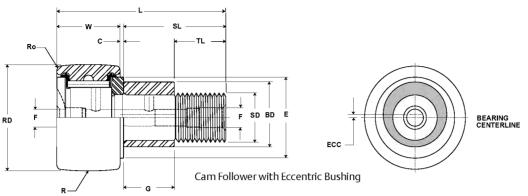

> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

Concentric / Eccentric / **System Configuration:**

Heavy Stud

Mounting Feature: Slot / Hex Hole


CF, CFE, CFH

Pa	rt No.		RD		W	;	SD	88	C	TIL.	4	R.	ecc	0	BD	P. 3.3.5.	
-	With	Roller	Diameter	Rolle	er Width	Stud E	Diameter	Stud Length	Endplate Extension	Min Thread Length	Length Overall	Crown Prefix CCF-XX	Ва	Eccentric		11.11#	m.
ALC: CHILL	t named as		nch mm		nch mm	ir n	nch nm		inch mm	in n	ch im	inch mm		inch mm		lb	'N
		None.	766	Hon.	100	Non	Tol	(Ref)	(Ren	(Ret)	(Ref)	Radius (Ref)	(Ref)	+0/=0 10	1.001	10)	
CF 5/8	CF 5/8 S											Cylindrical					
CF 5/8 B	CF 5/8 SB	.625	+0/001	.438	+0 /005	.250	+.001/-0	.75	.031	.31	1.22	- Cymranican	N/A	N/A	N/A		
CCF 5/8	CCF 5/8 S	15.88	+0/03	11.11	+0 /13	6.35	+.03/-0	19.1	.8	7.9	31.0	8	19/75	IN/A	IVA		
CCF 5/8 B	CCF 5/8 SB											203				955	1,215
CFE 5/8	CFE 5/8 S											Cylindrical				4,248	5,404
CFE 5/8 B	CFE 5/8 SB	.625	+0/001	.438	+0 /005	.250	+.001/-0	.75	.031	.31	1.22	Cylliulical	.015	.437	.375		
CCFE 5/8	CCFE 5/8 S	15.88	+0/03	11.11	+0 /13	6.35	+.03/-0	19.1	.8	7.9	31.0	8	.38	11.10	9.53		
CCFE 5/8 B	CCFE 5/8 SB											203					
CFH 5/8	CFH 5/8 S																
CFH 5/8 B	CFH 5/8 SB	.625	+0/001	.438	+0 /005	.3125	+.001/-0	.75	.031	.31	1.22	Cylindrical				955	2.480
CCFH 5/8	CCFH 5/8 S	15.88	+0/03	11.11	+0 /13	7.94	+.03/-0	19.1	.8	7.9	31.0	8	N/A	N/A	N/A	4,248	11,031
CCFH 5/8 B	CCFH 5/8 SB											203					
CF 5/8 N	CF 5/8 N S																
CF 5/8 N B	CF 5/8 N SB											Cylindrical					
CCF 5/8 N	CCF 5/8 N S	.625 15.88	+0/001 +0/03	.406 10.31	+0 /005 +0 /13	.250 6.35	+.001/-0 +.03/-0	.63 15.9	.031 .8	.31 7.9	1.06 27.0		N/A	N/A	N/A	930 4,137	1,085 4,826
CCF 5/8 N B	CCF 5/8 N SB	10.00	10,100	10.01	.0710	0.00	1.00/-0	10.5	.0	7.5	27.0	7 178				4,107	4,020
CCFE 5/8 N												170	.015 .38	.437 11.10	.375 9.53		
CF 11/16	CF 11/16 S												.50	11.10	9.00		
CF 11/16 B	CF 11/16 SB	.688	+0/001	.438	+0 /005	.250	+.001/-0	.75	.031	.31	4.00	Cylindrical					
CCF 11/16	CCF 11/16 S	17.46	+0/03	11.11	+0 /13	6.35	+.03/-0	19.1	.8	7.9	1.22 31.0	8	N/A	N/A	N/A		
CCF 11/16 B	CCF 11/16 SB											203				955	4 045
CFE 11/16	CFE 11/16 S															4,248	1,215 5,404
CFE 11/16 B	CFE 11/16 SB		.0/.004	400	.0 (005	050	. 004/0	7.5	004	04	4.00	Cylindrical	045	407	075		
CCFE 11/16	CCFE 11/16 S	.688 17.46	+0/001 +0/03	.438 11.11	+0 /005 +0 /13	.250 6.35	+.001/-0 +.03/-0	.75 19.1	.031 .8	.31 7.9	1.22 31.0	0	.015 .38	.437 11.10	.375 9.53		
CCFE 11/16 B	CCFE 11/16 SB											8 203					
CFH 11/16	CFH 11/16 S																
CFH 11/16 B	CFH 11/16 SB	205	.04.05:	405		0.40-			004		4.00	Cylindrical				055	0.400
CCFH 11/16	CCFH 11/16 S	.688 17.46	+0/001 +0/03	.438 11.11	+0 /005 +0 /13	.3125 7.94	+.001/-0 +.03/-0	.75 19.1	.031 .8	.31 7.9	1.22 31.0		N/A	N/A	N/A	955 4,248	2,480 11,031
	CCFH 11/16 SB											8 203					

Metric dimensions for reference only. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120. For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

CF, CFE, CFE

Pa	rt No.	+40	149	F.	Ē	Ro		HBD			Limited	92
and the second	With LUBRI-DISC	Hale Center	Radial Hole Diameter	Axial Hole Dis or Fitting	Min Boss Dumeter	Outer Corner	Hou: Di	sing Bore ameter	Thread Type	1	Spend Spend (Notate)	Descript Market
W/O Sealo	healt		inch mm		in n	ich im		inch mm	-71	man	10000	m.
		cRuti	(Ref)	(Ref)	(Rinh)	(Rint)	Moni	ful		10.00	_ 1986	fig.
CF 5/8	CF 5/8 S					.016						
CF 5/8 B	CF 5/8 SB			.125		.40	.2503	+.0002/0003				
CCF 5/8	CCF 5/8 S	-	-	3.175		N/A	6.358	+.0005/0008				
CCF 5/8 B	CCF 5/8 SB				.462	IV/A			1/4-28	35	9.200	.05
CFE 5/8	CFE 5/8 S				11.73	.016			174-20	4	3,200	.02
CFE 5/8 B	CFE 5/8 SB	_	_	.125		.40	.378	+.001/001				
CCFE 5/8	CCFE 5/8 S	-	_	3.175		N/A	9.60	+.025/025				
CCFE 5/8 B	CCFE 5/8 SB					IVA						
CFH 5/8	CFH 5/8 S					.016						
CFH 5/8 B	CFH 5/8 SB	_	_	.125	.462	.40	.3128	+.0002/0003	5/16-24	90 10	9.200	.05
CCFH 5/8	CCFH 5/8 S			3.175	11.73	N/A	7.945	+.0005/0008	57.15 2.1	10	0,200	.02
CCFH 5/8 B	CCFH 5/8 SB					1,,,,						
CF 5/8 N	CF 5/8 N S					.016						
CF 5/8 N B	CF 5/8 N SB			105	400	.40	0500	. 0000/ 0000		0.5		0.5
CCF 5/8 N	CCF 5/8 N S	=	-	.125 3.175	.462 11.73		.2503 6.358	+.0002/0003 +.0005/0008	1/4-28	35 4	9,200	.05 .02
CCF 5/8 N B	CCF 5/8 N SB					N/A						
CCFE 5/8 N												
CF 11/16	CF 11/16 S					.016						
CF 11/16 B	CF 11/16 SB	_	_	.125 3.175		.40	.2503	+.0002/0003 +.0005/0008				
CCF 11/16	CCF 11/16 S			3.175		N/A	6.358	+.0005/0006				
CCF 11/16 B	CCF 11/16 SB				.462				1/4-28	35 4	8,300	.06 .03
CFE 11/16	CFE 11/16 S				11.73	.016 .40				4	,	.03
CFE 11/16 B	CFE 11/16 SB	-	-	.125		.40	.378 9.60	+.001/001 +.025/025				
CCFE 11/16	CCFE 11/16 S			3.175		N/A	9.60	+,020/-,025				
CCFE 11/16 B												
CFH 11/16	CFH 11/16 S					.016 .40						
CFH 11/16 B	CFH 11/16 SB	-	-	.125 3.175	.462 11.73	.40	.3128 7.945	+.0002/0003 +.0005/0008	5/16-24	90 10	8,300	.06 .03
CCFH 11/16	CCFH 11/16 S			3.173	11.73	N/A	1.540	1,00007-,0000		10		.03
CCFH 11/16 E	CCFH 11/16 SB											

For positive clamping, use housing thickness equal to G dimension = .010". Clamping torque is based on dry threads. If threads are lubricated, use half of value shown. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

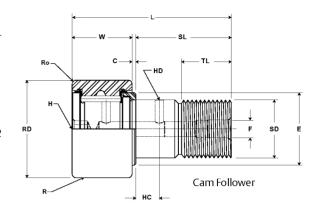
MGILL. Inch Cam Follower Bearings

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Full Complement Needle **Rolling Elements:**

Bearing Material: Bearing Quality Steel

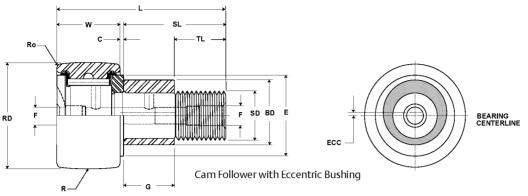

> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

Concentric / Eccentric / **System Configuration:**

Heavy Stud

Mounting Feature: Slot / Hex Hole



CF, CFE, CFH

Part No.		RD		W		SD		84	c	TIE.		R.	ECC	0	80	P. 2000		
		Roller	Diameter	Rolle	er Width	Stud E)iameter	Stud	Endplate	Min Thread	Length	Crown	Eccentric		1111	ment of		
WEERIN	LINERAL TOWNS			inch		inch		Length	Extension	Length	Overall	Prefix CCF-XX inch	Base Modifier CFE-XX				4	
	Staule.	None	nch mm	28 W 10 C 10 C	mm	I Million	nm Tol	(Ref)	mm (R)0		ch im	mm	(Ren)	inch mm	4.001	lb	/N	
CF 3/4	CF 3/4 S	FACURE.	100.	Hum	100	reom	101	(Ref)	THOU	pren	(MARI)	(Ref)	(Met)	+0/0	2,001	_		F
CF 3/4 B	CF 3/4 SB			.500 12.70		.375 9.53	+.001/-0 +.03/-0	.88 22.2	.031 .8	.38 9.5	1.41 35.7	Cylindrical			N/A			
CCF 3/4	CCF 3/4 S	.750 19.05	+0/001 +0/03										N/A	N/A				
CCF 3/4 B	CCF 3/4 SB											10 254						
CFE 3/4	CFE 3/4 S															1,660 7,384	2,065 9,185	
CFE 3/4 B	CFE 3/4 SB		+0/- 001	.500	+0 / 00E	275	+.001/-0 +.03/-0	.88 22.2	.031 .8	.38 9.5	1.41	Cylindrical	.015 .	.500	.500			
CCFE 3/4	CCFE 3/4 S		+0/03	12.70		.375 9.53					35.7	10		12.70	12.70			
CCFE 3/4 B	CCFE 3/4 SB											254						
CFH 3/4	CFH 3/4 S																	1
CFH 3/4 B	CFH 3/4 SB		+0/001 +0/03	.500 12.70		.4375 11.11	+.001/-0 +.03/-0	.88 22.2	.031 .8	.38 9.5	1.41 35.7	Cylindrical	N/A	N/A	N/A	1,660 7,384	4,130 18,370	
CCFH 3/4	CCFH 3/4 S											10						
CCFH 3/4 B	CCFH 3/4 SB											254						
CF 7/8	CF 7/8 S			.500 12.70			+.001/-0 +.03/-0	.88 22.2	.031 .8	.38 9.5	1.41 35.7	Cylindrical		N/A				l
CF 7/8 B	CF 7/8 SB	.875	+0/- 001			.375 9.53						Cylliancai	N/A		N/A			ı
CCF 7/8	CCF 7/8 S	22.23	+0/03									10	19/7		1907			ı
CCF 7/8 B	CCF 7/8 SB											254				1,660	2,065	ı
CFE 7/8	CFE 7/8 S						+.001/-0 +.03/-0	.88 22.2				Cylindrical				7,384	9,185	ı
CFE 7/8 B	CFE 7/8 SB	.875 +0/- 22.23 +0/-	+0/- 001 +0/- 03	.500	.500 +0 /005 12.70 +0 /13	.375			.031 .8	.38	1.41 35.7	,	.015	.500	.500			ı
CCFE 7/8	CCFE 7/8 S		+0/∴.03	12.70		9.53				9.5	33.7	10 254	.38	12.70	12.70			ı
CCFE 7/8 B	CCFE 7/8 SB											254						1
CFH 7/8	CFH 7/8 S											Cylindrical						ı
CFH 7/8 B	CFH 7/8 SB	.875 22.23	+0/001 +0/03	.500 12.70	+0 /005 +0 /13	.4375 11.11	+.001/-0 +.03/-0	.88 22.2	.031 .8	.38 9.5	1.41 35.7		N/A	N/A	N/A	1,660 7.384	4,130 18.370	
CCFH 7/8	CCFH 7/8 S		101-,00	12.70	.0710	11.11	1.00/-0	22.2	.0	3.0	55.7	10 254				7,004	10,570	
CCFH 7/8 B	CCFH 7/8 SB											204						1

Metric dimensions for reference only. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

CF, CFE, CFH

-	Part No.		Ha	HP	E.	E	Ro	HBD Housing Bore Diameter			-	15-151-	'0xT	
Was e	W/O Seals	With LUBRI-DISC	Hale Centar	Radial Hole Dis or Fitting		Min Boss Dumeter	Outer Corner			Thread Type		Special Special Street	Bearing alcoys	
	W/U beats	leafs		inch mm			ch im	inch mm			100	100	jj.	
			Others	(Ref)	IR+6	(Fight)	(Rin)	Mona	(m)		1000		Fig.	
	CF 3/4	CF 3/4 S	.25 6	.0938		.609 15.48	.016		+.0002/0003 +.0005/0008	- 3/8-24				
	CF 3/4 B	CF 3/4 SB			.1875 5		.40	.3753						
	CCF 3/4	CCF 3/4 S		2			N/A	9.533						
	CCF 3/4 B	CCF 3/4 SB					1,77				95 11	6,400	.07	
	CFE 3/4	CFE 3/4 S	.25 6		.1875 5		.016	.503 12.77	+.001/001 +.025/025				.03	
	CFE 3/4 B	CFE 3/4 SB		.0938			.40							
	CCFE 3/4	CCFE 3/4 S		2			N/A							
	CCFE 3/4 B	CCFE 3/4 SB												
	CFH 3/4	CFH 3/4 S		.0938 2	.1875 5	.609 15.48	.016		+.0002/0003 +.0005/0008	7/16-20	250 28	6,400		
	CFH 3/4 B	CFH 3/4 SB	.25 6				.40	.4378 11.120					.08 .04	
	CCFH 3/4	CCFH 3/4 S	٥				N/A						.04	
	CCFH 3/4 B	CCFH 3/4 SB												
	CF 7/8	CF 7/8 S		.0938 2	.1875 5		.016 .40				95 11	5,400		
	CF 7/8 B	CF 7/8 SB	.25 6				.40	.3753 9.533	+.0002/0003 +.0005/0008					
	CCF 7/8	CCF 7/8 S	Ů				N/A	9.000						
	CCF 7/8 B	CCF 7/8 SB				.609 15.48				3/8-24			.09 .04	
	CFE 7/8	CFE 7/8 S			.1875 5	15.46	.016 .40						.04	
	CFE 7/8 B	CFE 7/8 SB	.25 6	.0938 2				.503 12.77	+.001/001 +.025/025					
	CCFE 7/8	CCFE 7/8 S					N/A		1.020/020					
	CCFE 7/8 B	CCFE 7/8 SB												
	CFH 7/8	CFH 7/8 S					.016 .40			7/16-20	250 28	5,400		
	CFH 7/8 B	CFH 7/8 SB	.25 6	.0938 2	.1875 5	.609 15.48		.4378 11.120	+.0002/0003 +.0005/0008				.11 .05	
	CCFH 7/8 CCFH 7/8 B	CCFH 7/8 S CCFH 7/8 SB	Ŭ		ŭ	10.40	N/A						.00	
	CCFH //8 B	CCFH //6 SB												

For positive clamping, use housing thickness equal to G dimension = .010". Clamping torque is based on dry threads. If threads are lubricated, use half of value shown. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

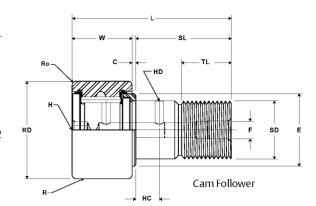
MGILL. Inch Cam Follower Bearings

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement Needle

Bearing Material: Bearing Quality Steel

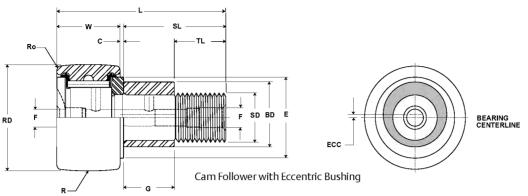

> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

Concentric / Eccentric / **System Configuration:**

Heavy Stud

Mounting Feature: Slot / Hex Hole



CF, CFE, CFH

Part No.		RD		W		SD		84	e e	116		R.	ECC	0	BD	P. D. D. II.					
		Roller	Diameter	Rolle	er Width	Stud E)iameter	Stud Length	Endplate	Min Thread	Length	Crown		Eccentric		1111	III.				
WEERIN	LINERAL TOWNS		inch		inch		inch			Length	Overall	Prefix CCF-XX	Base Modifier CFE-XX			100000					
	TOUR.	44900	nm	28 W 27 C 27	mm	n	nm	A SANSONAL	inch mm	n	ch im	inch mm Radius	JANGARI	inch mm	Laboration 1	lb	/N				
CF 1	CF 1 S	Non.	Tol.	Nun.	100	Nom.	Tol	(Ref)	(Reb	(Ret)	(Rhf)	(Ref)	(Ref)	#0/±!0 10	1.001			H			
CF 1 B	CF 1 SB											Cylindrical									
CCF 1	CCF 1 S	1.000 25.40	+0/001 +0/03	.625 15.88	+0 /005 +0 /13	.4375 11.11	+.001/-0 +.03/-0	1.00 25.4	.031 .8	.50 12.7	1.66 42.1		N/A	N/A	N/A						
CCF 1 B	CCF 1 SB	İ										12 305									
CFE 1	CFE 1 S															2,225 9,897	3,060 13,611				
CFE 1 B	CFE 1 SB					.4375 11.11		1.00 25.4	.031 .8	.50 12.7	4.00	Cylindrical	.030 .76	.500 12.70							
CCFE 1	CCFE 1 S		+0/001 +0/03	.625 15.88							1.66 42.1	40			.625 15.88						
CCFE 1 B	CCFE 1 SB											12 305									
CFH 1	CFH 1 S																	İ			
CFH 1 B	CFH 1 SB	1.000 +0/- (25.40 +0/-	+0/- 001	.625 15.88		.625 15.88	+.001/-0 +.03/-0	1.00 25.4	.031 .8	.50 12.7	1.66 42.1	Cylindrical	N/A	N/A	N/A	2,225 9,897	6,120 27,222				
CCFH 1	CCFH 1 S		+0/03									12									
CCFH 1 B	CCFH 1 SB											305									
CF 1 1/8	CF 1 1/8 S											Cylindrical				2,225		I			
CF 1 1/8 B	CF 1 1/8 SB		+0/- 001	.625				1.00 25.4	.031 .8	.50 12.7	.031 .8	Cylinarical	N/A	N/A	N/A			ı			
CCF 1 1/8	CCF 1 1/8 S	28.58	+0/03	15.88	+0 /13	11.11						12			1973			ı			
CCF 1 1/8 B	CCF 1 1/8 SB											305					3,060				
CFE 1 1/8	CFE 1 1/8 S						+.001/-0 +.03/-0	1.00 25.4				Cylindrical		.500 12.70		9,897	13,611				
CFE 1 1/8 B	CFE 1 1/8 SB	1.125 +0/- 00 28.58 +0/0	+0/- 001		.625 +0 /005 15.88 +0 /13				.031	.50 12.7	1.66 42.1	,	.030 .76		.625 15.88						
CCFE 1 1/8	CCFE 1 1/8 S		+0/∴.03	15.00		11.11			.8	12.7	42.1	12 305		12.70	15.00						
CCFE 1 1/8 B	CCFE 1 1/8 SB											305									
CFH 1 1/8	CFH 1 1/8 S						+.001/-0 +.03/-0	1.00		.50 12.7		Cylindrical					6,120 27,222				
CFH 1 1/8 B	CFH 1 1/8 SB		+0/- 001 +0/- 03	.625 15.88	+0 /005 +0 /13	.625 15.88			.031 .8		1.66 42.1		N/A	N/A	N/A	2,225					
CCFH 1 1/8	CCFH 1 1/8 S		20.00	20.00	20.00	20.00	1.01.03	15.66	FU / 13	10.00	+.03/-0	25.4	.0	12.7	72.1	12 305		(9,897	27,222
CCFH 1 1/8 B	CCFH 1 1/8 SB											000						L			

Metric dimensions for reference only. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Pa	rt No.	140	HP	Ti.	É	Ro		HBD		-	11-111-	'01T
W/O Septe	With LUGRI-DISC	Hole Gentar	Radial Hole Diameter	Axial Hole Dis or Fitting	Min Boss Dumeter	Outer Corner	Hous Di	sing Bore ameter	Thread Type		Spring Spring (Note Se)	Backing and the same of the sa
W/C bears	healt		inch mm			ch im		inch mm		i.	3	100
		(Rut)	(Ref)	IR+ti	Title	(Rin)	Nema	(Fig.)		ž		To the
CF 1	CF1S					.031						
CF 1 B	CF 1 SB	.25	.0938	.1875		.79	.4378	+.0002/0003				
CCF 1	CCF 1 S	6	2	5		N/A	11.120	+.0005/0008				
CCF 1 B	CCF 1 SB				.781				7/16-20	250 28	4.800	.17
CFE 1	CFE 1 S				19.84	.031 .79				28	.,	.08
CFE 1 B	CFE 1 SB	.25	.0938	.1875		.79	.628	+.001/001 +.025/025				
CCFE 1	CCFE 1 S	6	2	5		N/A	15.95	+.025/025				
CCFE 1 B	CCFE 1 SB											
CFH 1	CFH 1 S					.031 .79						
CFH 1 B	CFH 1 SB	.25 6	.0938 2	.1875 5	.781 19.84	.19	.6253 15.883	+.0002/0003 +.0005/0008	5/8-18	650 73	4,800	.20 .09
CCFH 1	CCFH 1 S	v		Ü	13.04	N/A	10.000	1.0000/0000		, 0		.03
CCFH 1 B	CCFH 1 SB											
CF 1 1/8	CF 1 1/8 S					.031 .79						
CF 1 1/8 B	CF 1 1/8 SB	.25 6	.0938 2	.1875 5			.4378 11.120	+.0002/0003 +.0005/0008				
CCF 1 1/8	CCF 1 1/8 S					N/A						
CCF 1 1/8 B	CCF 1 1/8 SB CFE 1 1/8 S				.781 19.84				7/16-20	250 28	3,400	.19 .09
CFE 1 1/8 B	CFE 1 1/8 SB					.031 .79						
CCFE 1 1/8	CCFE 1 1/8 S	.25 6	.0938 2	.1875 5			.628 15.95	+.001/001 +.025/025				
CCFE 1 1/8 B						N/A						
CFH 1 1/8	CFH 1 1/8 S					004						
CFH 1 1/8 B	CFH 1 1/8 SB	25	0000	4075	704	.031 .79	6050	. 0000/ 0000		050		24
CCFH 1 1/8	CCFH 1 1/8 S	.25 6	.0938 2	.1875 5	.781 19.84		.6253 15.883	+.0002/0003 +.0005/0008	5/8-18	650 73	3,400	.24 .11
CCFH 1 1/8 E	CCFH 1 1/8 SB					N/A						

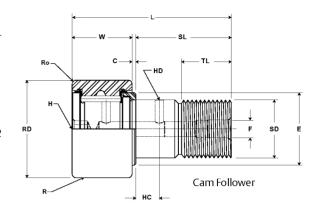
For positive clamping, use housing thickness equal to G dimension = .010". Clamping torque is based on dry threads. If threads are lubricated, use half of value shown. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement Needle

Bearing Material: Bearing Quality Steel

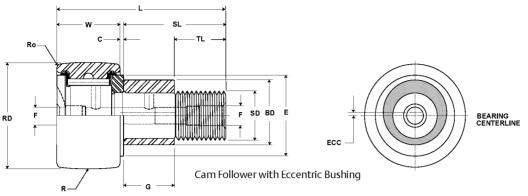

> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

Concentric / Eccentric / **System Configuration:**

Heavy Stud

Mounting Feature: Slot / Hex Hole


CF, CFE, CFH

Pai	rt No.		RD		W	,	SD	84	c	TE	- 1	R.	ECC	0	80	E2-2-11	
	Vicin Linguispesso	Roller	Diameter	Rolle	er Width	Stud E	iameter	Stud Length	Endplate Extension	Min Thread Length	Length Overall	Crown Prefix CCF-XX	В	Eccentric		1111	m.
WEERIN	Totals	ii r	nch nm		nch mm	ir n	nch nm		inch mm	in m	ch m	inch mm		inch mm			/N.I
		Nun	701.	Non.	700	Non	Tol	(Ref)	(Ret)	(Ret)	(Ref)	Radius (Ref)	(Ref)	+0/-10 10	1.001	ID	/N
CF 1 1/4	CF 1 1/4 S											Cylindrical					
CF 1 1/4 B	CF 1 1/4 SB	1.250		.750		.500	+.001/-0	1.25	.031	.63	2.03	Cylinarical	N/A	N/A	N/A		
CCF 1 1/4	CCF 1 1/4 S	31.75	+0/03	19.05	+0 /13	12.70	+.03/-0	31.8	.8	15.9	51.6	14	IN/A	IN/A	IN/A		
CCF 1 1/4 B	CCF 1 1/4 SB											356				3,930	4,250
CFE 1 1/4	CFE 1 1/4 S											Cylindrical				17,481	18,904
CFE 1 1/4 B	CFE 1 1/4 SB	1.250	+0/001		+0 /005	.500	+.001/-0	1.25	.031	.63	2.03	Cylinarical	.030	.625	.687		
CCFE 1 1/4	CCFE 1 1/4 S	31.75	+0/03	19.05	+0 /13	12.70	+.03/-0	31.8	.8	15.9	51.6	14	.76	15.88	17.45		
CCFE 1 1/4 B	CCFE 1 1/4 SB											356					
CFH 1 1/4	CFH 1 1/4 S											Cylindrical					
CFH 1 1/4 B	CFH 1 1/4 SB	1.250	+0/- 001		+0 /005	.750	+.001/-0		.031	.63	2.03	Cymranical	N/A	N/A	N/A	3,930	8,500
CCFH 1 1/4	CCFH 1 1/4 S	31.75	+0/03	19.05	+0 /13	19.05	+.03/-0	31.8	.8	15.9	51.6	14	1071	1477	1071	17,481	37,808
CCFH 1 1/4 B	CCFH 1 1/4 SB											356					
CF 1 3/8	CF 1 3/8 S											Cylindrical					
CF 1 3/8 B	CF 1 3/8 SB		+0/- 001		+0 /005	.500	+.001/-0	1.25	.031	.63	2.03		N/A	N/A	N/A		
CCF 1 3/8	CCF 1 3/8 S	34.93	+0/03	19.05	+0 /13	12.70	+.03/-0	31.8	.8	15.9	51.6	14	1477	14// (14//		
CCF 1 3/8 B	CCF 1 3/8 SB											356				3,930	4,250
CFE 1 3/8	CFE 1 3/8 S											Cylindrical				17,481	18,904
CFE 1 3/8 B	CFE 1 3/8 SB	1.375	+0/- 001		+0 /005	.500	+.001/-0	1.25	.031	.63	2.03		.030	.625	.687		
CCFE 1 3/8	CCFE 1 3/8 S	34.93	+0/03	19.05	+0 /13	12.70	+.03/-0	31.8	.8	15.9	51.6	14	.76	15.88	17.45		
CCFE 1 3/8 B	CCFE 1 3/8 SB											356					
CFH 1 3/8	CFH 1 3/8 S											Cylindrical					
CFH 1 3/8 B	CFH 1 3/8 SB		+0/- 001		+0 /005	.750	+.001/-0	1.25	.031	.63	2.03	- ya	N/A	N/A	N/A	3,930	8,500
CCFH 1 3/8	CCFH 1 3/8 S	34.93	+0/03	19.05	+0 /13	19.05	+.03/-0	31.8	.8	15.9	51.6	14	1477	1477	1 107	17,481	37,808
CCFH 1 3/8 B	CCFH 1 3/8 SB											356					

Metric dimensions for reference only.

Hex wrench size for "Broached" version is located in the wrench size chart on page 8-156.

	Par	t No.	140	HP	E.	E	Ro		HBD		-	E	103
	W/O Seals	With LUBRI-DISC	Hole Gentav	Radial Hole Diameter	Axial Hole Din or Fitting	Min Boss Diameter	Outer Corner	Hous Dia	ing Bore ameter	Thread Type		Special Special Street	Bassing alcohol
	MIC DESIGN	licula		inch mm			ch im	İ	inch mm		Ę	1100	JB
			okuti	(Ref)	(Ref)	(Fint)	(Rico	Mont	ful		10/16		To the
	CF 1 1/4	CF 1 1/4 S					.031						
	CF 1 1/4 B	CF 1 1/4 SB	.3125	.0938	.1875		.79	.5003	+.0002/0003				
	CCF 1 1/4	CCF 1 1/4 S	8	2	5		N/A	12.708	+.0005/0008				
	CCF 1 1/4 B	CCF 1 1/4 SB				.984	1974			1/2-20	350	3.100	.30
	CFE 1 1/4	CFE 1 1/4 S				25.00	.031			1,2-20	40	0,100	.14
	CFE 1 1/4 B	CFE 1 1/4 SB	.3125	.0938	.1875		.79	.690	+.001/001 +.025/025				
	CCFE 1 1/4	CCFE 1 1/4 S	8	2	5		N/A	17.52	+.025/025				
	CCFE 1 1/4 B	CCFE 1 1/4 SB					1477						
	CFH 1 1/4	CFH 1 1/4 S					.031						
	CFH 1 1/4 B	CFH 1 1/4 SB	.3125	.0938	.1875	.984	.79	.7503	+.0002/0003 +.0005/0008	3/4-16	1,250	3,100	.38 .17
	CCFH 1 1/4	CCFH 1 1/4 S	8	2	5	25.00	N/A	19.058	+.0005/0008	5, 1, 15	141	5,155	.1/
	CCFH 1 1/4 B	CCFH 1 1/4 SB					1,77						
	CF 1 3/8	CF 1 3/8 S					.047						
	CF 1 3/8 B	CF 1 3/8 SB	.3125	.0938	.1875		1.19	.5003	+.0002/0003 +.0005/0008				
	CCF 1 3/8	CCF 1 3/8 S	8	2	5		N/A	12.708	+.0005/0008				
ļ	CCF 1 3/8 B	CCF 1 3/8 SB				.984				1/2-20	350 40	2.800	.35 .16
	CFE 1 3/8	CFE 1 3/8 S				25.00	.047				40	2,555	.16
	CFE 1 3/8 B	CFE 1 3/8 SB	.3125	.0938	.1875		1.19	.690	+.001/001 +.025/025				
	CCFE 1 3/8	CCFE 1 3/8 S	8	2	5		N/A	17.52	+.025/025				
ļ	CCFE 1 3/8 B	CCFE 1 3/8 SB											
	CFH 1 3/8	CFH 1 3/8 S					.047						
	CFH 1 3/8 B	CFH 1 3/8 SB	.3125	.0938	.1875	.984	1.19	.7503	+.0002/0003 +.0005/0008	3/4-16	1,250	2.800	.44 .19
	CCFH 1 3/8	CCFH 1 3/8 S	8	2	5	25.00	N/A	19.058	+.0005/0008		141	_,	.19
	CCFH 1 3/8 B	CCFH 1 3/8 SB											

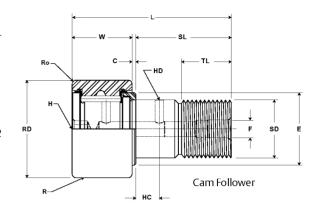
For positive clamping, use housing thickness equal to G dimension = .010". Clamping torque is based on dry threads. If threads are lubricated, use half of value shown. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement Needle

Bearing Material: Bearing Quality Steel

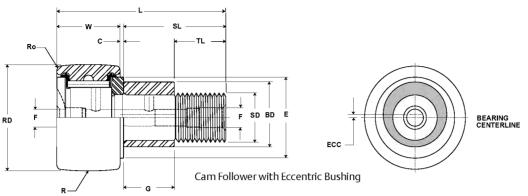

> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

Concentric / Eccentric / **System Configuration:**

Heavy Stud

Mounting Feature: Slot / Hex Hole



CF, CFE, CFH

Pai	rt No.		RD		W	8	SD	8£	C C	115		R.	ECC	G	80	r - com-	D 441-
		Deller	Diameter	Dalle	er Width	Church D	iameter	Stud	Endplate	Min Thread	Length	Crown		Eccentric			iller
WSDIN	Vion Lineari Desid	Kollei	Diameter	Kolik	er vviutii	Stud D	nameter	Length	Extension	Length	Overall	Prefix CCF-XX	В	selvodifi CFE-XX	er		
	Tital 1		nch mm		nch mm		ich im		inch mm		ch im	inch mm		inch mm		lb	/NI
_		Num	700	Nun.	700	Non	Tol	Refi	(Rot)	(Ref)	(Ref)	Radius (Ref)	(Ref)	+0/=019	2.001		
CF 1 1/2	CF 1 1/2 S											Cylindrical					
CF 1 1/2 B	CF 1 1/2 SB	1.500	+0/001	.875	+0 /005	.625	+.001/-0	1.50	.031	.75	2.41	Cylindrical	N/A	N/A	N/A		
CCF 1 1/2	CCF 1 1/2 S	38.10	+0/03	22.23	+0 /13	15.88	+.03/-0	38.1	.8	19.1	61.1	20	IN/A	IN/A	INA		
CCF 1 1/2 B	CCF 1 1/2 SB											508				4,840	5,640
CFE 1 1/2	CFE 1 1/2 S											Cylindrical				21,528	25,087
CFE 1 1/2 B	CFE 1 1/2 SB	1.500	+0/001	.875	+0 /005	.625	+.001/-0	1.50	.031	.75	2.41	Cyllilarical	.030	.750	875		
CCFE 1 1/2	CCFE 1 1/2 S	38.10	+0/03	22.23	+0 /13	15.88	+.03/-0	38.1	.8	19.1	61.1	20	.76	19.05	22.23		
CCFE 1 1/2 B	CCFE 1 1/2 SB											508					
CFH 1 1/2	CFH 1 1/2 S											Cylindrical					
CFH 1 1/2 B	CFH 1 1/2 SB	1.500	+0/001	.875	+0 /005	.875	+.001/-0	1.50	.031	.75	2.41	Cylindrical	N/A	N/A	N/A	4,840	11,280
CCFH 1 1/2	CCFH 1 1/2 S	38.10	+0/03	22.23	+0 /13	22.23	+.03/-0	38.1	.8	19.1	61.1	20	IN/A	IN/A	IN/A	21,528	50,173
CCFH 1 1/2 B	CCFH 1 1/2 SB											508					
CF 1 5/8	CF 1 5/8 S											Cylindrical					
CF 1 5/8 B	CF 1 5/8 SB	1.625	+0/001	.875	+0 /005	.625	+.001/-0	1.50	.031	.75	2.41	Cymranical	N/A	N/A	N/A		
CCF 1 5/8	CCF 1 5/8 S	41.28	+0/03	22.23	+0 /13	15.88	+.03/-0	38.1	.8	19.1	61.1	20	11//	IV/A	19/7		
CCF 1 5/8 B	CCF 1 5/8 SB											508				4,840	5,640
CFE 1 5/8	CFE 1 5/8 S											Cylindrical				21,528	25,087
CFE 1 5/8 B	CFE 1 5/8 SB	1.625	+0/001	.875	+0 /005	.625	+.001/-0	1.50	.031	.75	2.41	Cymranican	.030	.750	.875		
CCFE 1 5/8	CCFE 1 5/8 S	41.28	+0/03	22.23	+0 /13	15.88	+.03/-0	38.1	.8	19.1	61.1	20	.76	19.05	22.23		
CCFE 1 5/8 B	CCFE 1 5/8 SB											508					
CFH 1 5/8	CFH 1 5/8 S											Cylindrical					
CFH 1 5/8 B	CFH 1 5/8 SB	1.625	+0/001	.875	+0 /005	.875	+.001/-0	1.50	.031	.75	2.41	Cymidical	N/A	N/A	N/A	4,840	11,280
CCFH 1 5/8	CCFH 1 5/8 S	41.28	+0/03	22.23	+0 /13	22.23	+.03/-0	38.1	.8	19.1	61.1	20	14/74	IN/A	IVA	21,528	50,173
CCFH 1 5/8 B	CCFH 1 5/8 SB											508					

Metric dimensions for reference only. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Pa	rt No.	HC	HD	E	E	Ro		HBD		-	11-111-	Dell'
and the second second	With LUBRI DISC	Hale Center	Radial Hole Diameter	Axial Hole Dis or Fitting	Min Boss Diameter	Outer Corner	Hous Di	sing Bore ameter	Thread Type	11-11-11-1	Spread (Note to	Part of the last
W/O Sealo	heats		inch mm		in n	ich im		inch mm	7.	30 dB	1 mm	86
		oturs	(Ref)	(Ref)	(Rinh)	(Rin)	Moni	- fol		11.11		
CF 1 1/2	CF 1 1/2 S					.063						
CF 1 1/2 B	CF 1 1/2 SB	.375	.0938	.1875		1.59	.6253	+.0002/0003				
CCF 1 1/2	CCF 1 1/2 S	10	2	5		N/A	15.883	+.0005/0008				
CCF 1 1/2 B	CCF 1 1/2 SB				1.094 27.78	IV/A			5/8-18	650 73	2,500	.53 .24
CFE 1 1/2	CFE 1 1/2 S				27.78	.063			0,0-10	73	2,000	.24
CFE 1 1/2 B	CFE 1 1/2 SB	.375	.0938	.1875		1.59	.878	+.001/001				
CCFE 1 1/2	CCFE 1 1/2 S	10	2	5		N/A	22.30	+.025/025				
CCFE 1 1/2 B	CCFE 1 1/2 SB											
CFH 1 1/2	CFH 1 1/2 S					.063 1.59						
CFH 1 1/2 B	CFH 1 1/2 SB	.375 10	.0938	.1875 5	1.094 27.78	1.09	.8753 22.233	+.0002/0003 +.0005/0008	7/8-14	1,500 170	2,500	.69 .31
CCFH 1 1/2	CCFH 1 1/2 S	10	2		21.10	N/A	22.233	+.0003/0008		170		.31
CCFH 1 1/2 B												
CF 1 5/8	CF 1 5/8 S					.063 1.59						
CF 1 5/8 B	CF 1 5/8 SB	.375 10	.0938 2	.1875 5		1.00	.6253 15.883	+.0002/0003 +.0005/0008				
CCF 1 5/8	CCF 1 5/8 S	10	_			N/A	10.000	1.00007.0000				
CCF 1 5/8 B	CCF 1 5/8 SB				1.094 27.78				5/8-18	650 73	2,350	.60 .27
CFE 1 5/8	CFE 1 5/8 S				21.10	.063 1.59						
CFE 1 5/8 B	CFE 1 5/8 SB	.375 10	.0938	.1875 5			.878 22.30	+.001/001 +.025/025				
CCFE 1 5/8 CCFE 1 5/8 B	CCFE 1 5/8 S CCFE 1 5/8 SB					N/A						
CFH 1 5/8 B												
CFH 1 5/8 CFH 1 5/8 B	CFH 1 5/8 S CFH 1 5/8 SB					.063 1.59						
CCFH 1 5/8 B	CCFH 1 5/8 SB	.375 10	.0938 2	.1875 5	1.094 27.78		.8753 22.233	+.0002/0003 +.0005/0008	7/8-14	1,500 170	2,350	.75 .34
	CCFH 1 5/8 SB					N/A						
CCLU 1 3/8 B	COLU 1 2/0 2B											

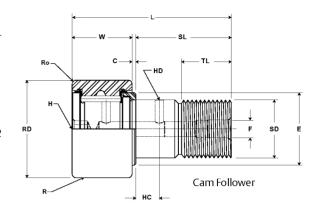
For positive clamping, use housing thickness equal to G dimension = .010". Clamping torque is based on dry threads. If threads are lubricated, use half of value shown. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Full Complement Needle **Rolling Elements:**

Bearing Material: Bearing Quality Steel

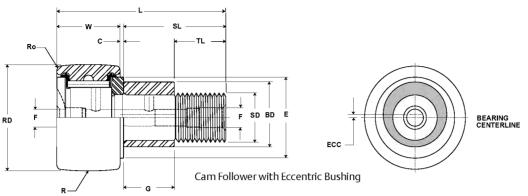

> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

Concentric / Eccentric / **System Configuration:**

Heavy Stud

Mounting Feature: Slot / Hex Hole



CF, CFE, CFH

Pai	rt No.		RD		W	8	SD	8£	C C	115		R.	ECC	0	80	r - com-	D 400
		Deller	Diameter	Dalla	er Width	Church D	iameter	Stud	Endplate	Min Thread	Length	Crown		Eccentric			iller
WSDIN	Vion Lineari Desid	Kollei	Diameter	Kolle	er vviutii	Stud D	nameter	Length	Extension	Length	Overall	Prefix CCF-XX	В	selwodifi CFE-XX	er		
	Tital		nch mm		nch mm		ich im		inch mm		ch im	inch mm		inch mm		lb	/NI
		Num	766	Num.	700	Non	Tol	Refi	(Rot)	(Ref)	(Ref)	Radius (Ref)	(Ref)	00/40 10	1.001		
CF 1 3/4	CF 1 3/4 S											Cylindrical					
CF 1 3/4 B	CF 1 3/4 SB	1.750	+0/001		+0 /005	.750	+.001/-0	1.75	.031	.88	2.78	Cylindrical	N/A	N/A	N/A		
CCF 1 3/4	CCF 1 3/4 S	44.45	+0/03	25.40	+0 /13	19.05	+.03/-0	44.5	.8	22.2	70.6	20	IN/A	IN/A	IVA		
CCF 1 3/4 B	CCF 1 3/4 SB											508				6,385	7,920
CFE 1 3/4	CFE 1 3/4 S											Cylindrical				28,400	35,228
CFE 1 3/4 B	CFE 1 3/4 SB	1.750	+0/001	1.000	+0 /005	.750	+.001/-0	1.75	.031	.88	2.78	Cyllilarical	.030	.875	1.000		
CCFE 1 3/4	CCFE 1 3/4 S	44.45	+0/03	25.40	+0 /13	19.05	+.03/-0	44.5	.8	22.2	70.6	20	.76	22.23	25.40		
CCFE 1 3/4 B	CCFE 1 3/4 SB											508					
CFH 1 3/4	CFH 1 3/4 S											Cylindrical					
CFH 1 3/4 B	CFH 1 3/4 SB	1.750	+0/- 001		+0 /005	1.000	+.001/-0	1.75	.031	.88	2.78	Cylindrical	N/A	N/A	N/A	6,385	15,840
CCFH 1 3/4	CCFH 1 3/4 S	44.45	+0/03	25.40	+0 /13	25.40	+.03/-0	44.5	.8	22.2	70.6	20	IN/A	IN/A	IVA	28,400	70,456
CCFH 1 3/4 B	CCFH 1 3/4 SB											508					
CF 1 7/8	CF 1 7/8 S											Cylindrical					
CF 1 7/8 B	CF 1 7/8 SB	1.875	+0/- 001		+0 /005	.750	+.001/-0	1.75	.031	.88	2.78	Cylinarical	N/A	N/A	N/A		
CCF 1 7/8	CCF 1 7/8 S	47.63	+0/03	25.40	+0 /13	19.05	+.03/-0	44.5	.8	22.2	70.6	20	IN/A	IN/A	IV/A		
CCF 1 7/8 B	CCF 1 7/8 SB											508				6,385	7,920
CFE 1 7/8	CFE 1 7/8 S											Cylindrical				28,400	35,228
CFE 1 7/8 B	CFE 1 7/8 SB	1.875	+0/- 001		+0 /005	.750	+.001/-0	1.75	.031	.88	2.78	Cymranical	.030	.875	1.000		
CCFE 1 7/8	CCFE 1 7/8 S	47.63	+0/=.03	25.40	+0 /13	19.05	+.03/-0	44.5	.8	22.2	70.6	20	.76	22.24	25.40		
CCFE 1 7/8 B	CCFE 1 7/8 SB											508					
CFH 1 7/8	CFH 1 7/8 S											Cylindrical					
CFH 1 7/8 B	CFH 1 7/8 SB	1.875	+0/- 001		+0 /005	1.000	+.001/-0	1.75	.031	.88	2.78	Symidilical	N/A	N/A	N/A	6,385	15,840
CCFH 1 7/8	CCFH 1 7/8 S	47.63	+0/03	25.40	+0 /13	25.40	+.03/-0	44.5	.8	22.2	70.6	20	14/74	IN/A	IN/A	28,400	70,456
CCFH 1 7/8 B	CCFH 1 7/8 SB											508					

Metric dimensions for reference only. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Pa	rt No.	-140	HD	Ē.	Ē	Ro		HBD		-	I led Bloo	91
W/O Sealo	With LUGRI DISC	Hale Centar	Radial Hole Diameter	Axial Hole Din or Fitting	Min Boss Diameter	Outer Corner		sing Bore ameter	Thread Type		P CONTRACT THE P THE Barriero Marijal	
W/C/Death	healt		inch mm		in n	ch im		inch mm		1	1200	10
		Others	(Ref)	(Ref)	Hill	(Rivo	Mona	(Fig.)				ż
CF 1 3/4	CF 1 3/4 S					.063						
CF 1 3/4 B	CF 1 3/4 SB	.4375	.125	.1875		1.59	.7503	+.0002/0003				
CCF 1 3/4	CCF 1 3/4 S	11	3	5		N/A	19.058	+.0005/0008				
CCF 1 3/4 B	CCF 1 3/4 SB				1.250	IN/A			3/4-16	1,250	2.200	.84 .38
CFE 1 3/4	CFE 1 3/4 S				31.75	.063			5/4-10	141	2,200	.38
CFE 1 3/4 B	CFE 1 3/4 SB	.4375	.125	.1875		1.59	1.003	+.001/001				
CCFE 1 3/4	CCFE 1 3/4 S	11	3	5		N/A	25.47	+.025/025				
CCFE 1 3/4 B	CCFE 1 3/4 SB					1,77.						
CFH 1 3/4	CFH 1 3/4 S					.063 1.59						
CFH 1 3/4 B	CFH 1 3/4 SB	.4375	.125	.1875	1.250	1.59	1.0003	+.0002/0003	1-14	2,250	2.200	1.00
CCFH 1 3/4	CCFH 1 3/4 S	11	3	5	31.75	N/A	25.408	+.0005/0008		254	2,200	.45
CCFH 1 3/4 E	CCFH 1 3/4 SB					, .						
CF 1 7/8	CF 1 7/8 S					.063						
CF 1 7/8 B	CF 1 7/8 SB	.4375	.125	.1875		1.59	.7503	+.0002/0003				
CCF 1 7/8	CCF 1 7/8 S	11	3	5		N/A	19.058	+.0005/0008				
CCF 1 7/8 B	CCF 1 7/8 SB				1.250 31.75				3/4-16	1,250	2,000	.95 .43
CFE 1 7/8	CFE 1 7/8 S				31.75	.063 1.59				141	,	.43
CFE 1 7/8 B	CFE 1 7/8 SB	.4375 11	.125 3	.1875 5		1.59	1.003 25.47	+.001/001 +.025/025				
CCFE 1 7/8	CCFE 1 7/8 S	"	3	5		N/A	25.47	+.025/025				
CCFE 1 7/8 B	CCFE 1 7/8 SB											
CFH 1 7/8	CFH 1 7/8 S					.063 1.59						
CFH 1 7/8 B	CFH 1 7/8 SB	.4375 11	.125 3	.1875 5	1.250 31.75	1.09	1.0003 25.408	+.0002/0003 +.0005/0008	1-14	2,250 254	2,000	1.15 .52
CCFH 1 7/8	CCFH 1 7/8 S		3	5	31.70	N/A	20.400	1.000070000		204		.02
CCFH 1 7/8 E	CCFH 1 7/8 SB		3									

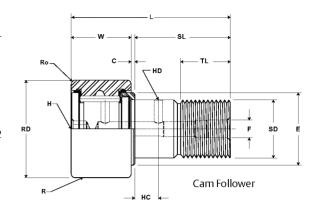
For positive clamping, use housing thickness equal to G dimension = .010". Clamping torque is based on dry threads. If threads are lubricated, use half of value shown. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement Needle

Bearing Material: Bearing Quality Steel

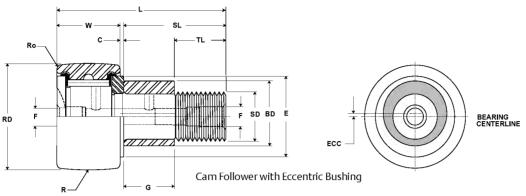

> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

Concentric / Eccentric / **System Configuration:**

Heavy Stud

Mounting Feature: Slot / Hex Hole



CF, CFE, CFH

Pai	rt No.		RD		W		SD	50	C	TE	- 1	R.	ECC	0	80	D	
		Roller	Diameter	Rolle	er Width	Stud D	iameter	Stud	Endplate	Min Thread	Length	Crown		Eccentric		1111	iii.
WEERIN	With Lineari Gest							Length		Length	Overall	Prefix CCF-XX	Ва	CFE-XX	ier	National Property of the Parket	
	Shalls.	10000	nch nm	- A 1/ / / / / / /	nch mm	n	ich im	1114441	inch mm	m	ch im	inch mm Radius	1475-010	inch mm		Ib	/N
		Num.	Tol.	Hum.	Total	Non	Tol	(Ref)	(Ret)	(Ref)	(Ref)	(Ref)	(Ref)	+0/=.0 10	1.001		
CF 2	CF 2 S											Cylindrical					
CF 2 B	CF 2 SB	2.000 50.80	+0/001 +0/03	1.250 31.75	+0 /005 +0 /13	.875 22.23	+.001/-0 +.03/-0	2.00 50.8	.031 .8	1.00 25.4	3.28 83.3		N/A	N/A	N/A		
CCF 2	CCF 2 S	50.60	+0/03	31.75	+0713	22.23	+.03/-0	50.6	.0	25.4	03.3	24 610					
CCF 2 B	CCF 2 SB											610				8,090	10,570
CFE 2	CFE 2 S											Cylindrical				35,984	47,015
CFE 2 B	CFE 2 SB	2.000	+0/- 001		+0 /005	.875	+.001/-0	2.00	.031	1.00	3.28		.030	1.000	1.187		
CCFE 2	CCFE 2 S	50.80	+0/03	31.75	+0 /13	22.23	+.03/-0	50.8	.8	25.4	83.3	24	.76	25.40	30.15		
CCFE 2 B	CCFE 2 SB											610					
CFH 2	CFH 2 S											Cylindrical					
CFH 2 B	CFH 2 SB	2.000			+0 /005		+.001/-0	2.00	.031	1.00	3.28	Cylindrical	N/A	N/A	N/A	8,090	21,140
CCFH 2	CCFH 2 S	50.80	+0/03	31.75	+0 /13	28.58	+.03/-0	50.8	.8	25.4	83.3	24	IN/A	IN/A	INVA	35,984	94,031
CCFH 2 B	CCFH 2 SB											610					
CF 2 1/4	CF 21/4 S											Cylindrical					
CF 2 1/4 B	CF 21/4 SB	2.250	+0/- 001	1.250	+0 /005	.875	+.001/-0	2.00	.031	1.00	3.28	Cylindrical	N/A	N/A	N/A		
CCF 2 1/4	CCF 2 1/4 S	57.15	+0/03	31.75	+0 /13	22.23	+.03/-0	50.8	.8	25.4	83.3	24	IN/A	IN/A	IN/A		
CCF 2 1/4 B	CCF 2 1/4 SB											610				8.090	10,570
CFE 2 1/4	CFE 2 1/4 S											Culindrian				35,984	47,015
CFE 2 1/4 B	CFE 2 1/4 SB	2.250	+0/- 001	1.250	+0 /005	.875	+.001/-0	2.00	.031	1.00	3.28	Cylindrical	.030	1.000	1.187		
CCFE 2 1/4	CCFE 2 1/4 S	57.15	+0/ .03	31.75	+0 /13	22.23	+.03/-0	50.8	.8	25.4	83.3	24	.76	25.40	30.15		
CCFE 2 1/4 B	CCFE 2 1/4 SB											610					
CFH 2 1/4	CFH 2 1/4 S											0 1: 1: 1					
CFH 2 1/4 B	CFH 2 1/4 SB	2.250	+0/- 001	1.250	+0 /005	1.125	+.001/-0	2.00	.031	1.00	3.28	Cylindrical				8,090	21,140
CCFH 2 1/4	CCFH 2 1/4 S	57.15	+0/03	31.75	+0 /13	28.58	+.03/-0	50.8	.8	25.4	83.3	24	N/A	N/A	N/A	35,984	94,031
CCFH 2 1/4 B	CCFH 2 1/4 SB											610					

Metric dimensions for reference only. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Pa	rt No.	на	HP	E.	É	Ro		HBD		-	15-111-	'bit
W/O Seale	With LUBRI-DISC	Hale Gentar	Radial Hole Diameter	Axial Hole Discor Fitting	Mili Boss Diameter	Outer Corner	Hous Di	sing Bore ameter	Thread Type		Special Special (Morale)	Bearing Malayet
W/C/Death	licula		inch mm		in m	ch im		inch mm		10.00	1200	104
		Otors	(Ref)	(Ref)	(Fint)	(Rich	Monte	ful		1988		To the
CF 2	CF 2 S					.094						
CF 2 B	CF 2 SB	.50 13	.125	.1875		2.38	.8753	+.0002/0003 +.0005/0008				
CCF 2	CCF 2 S	13	3	5		N/A	22.233	+.0005/0008				
CCF 2 B	CCF 2 SB				1.406	1,77			7/8-14	1,500 170	1,400	1.36
CFE 2	CFE 2 S				35.72	.094			170 11	170	1,100	.62
CFE 2 B	CFE 2 SB	.50 13	.125	.1875		2.38	1.190	+.001/001				
CCFE 2	CCFE 2 S	13	3	5		N/A	30.22	+.025/025				
CCFE 2 B	CCFE 2 SB											
CFH 2	CFH 2 S					.094 2.38						
CFH 2 B	CFH 2 SB	.50 13	.125 3	.1875 5	1.406 35.72	2.30	1.1253 28.583	+.0002/0003 +.0005/0008	1 1/8-12	2,800 316	1,400	1.56 .71
CCFH 2	CCFH 2 S	13	3	5	35.72	N/A	20.003	+.0005/0006		310	·	.71
CCFH 2 B	CCFH 2 SB											
CF 2 1/4	CF 2 1/4 S					.094 2.38						
CF 2 1/4 B	CF 2 1/4 SB	.50 13	.125 3	.1875 5		2.30	.8753 22.233	+.0002/0003 +.0005/0008				
CCF 2 1/4	CCF 2 1/4 S	13	3	5		N/A	22.233	+.0005/0006				
CCF 2 1/4 B	CCF 2 1/4 SB				1.406 35.72				7/8-14	1,500 170	1,300	1.65 .75
CFE 2 1/4	CFE 2 1/4 S				33.72	.094 2.38				170		.73
CFE 2 1/4 B	CFE 2 1/4 SB	.50 13	.125 3	.1875 5		2.30	1.190 30.22	+.001/001 +.025/025				
CCFE 2 1/4	CCFE 2 1/4 S	13	J	J		N/A	30.22	1.020/020				
CCFE 2 1/4 B	CCFE 2 1/4 SB											
CFH 2 1/4	CFH 2 1/4 S					.094 2.38						
CFH 2 1/4 B	CFH 2 1/4 SB	.50 13	.125 3	.1875 5	1.406 35.72	2.00	1.1253 28.583	+.0002/0003 +.0005/0008	1 1/8-12	2,800 316	1,300	1.88 .85
CCFH 2 1/4	CCFH 2 1/4 S	10	J	3	00.72	N/A	20.000	0000,0000		010		.00
CCFH 2 1/4 B	CCFH 2 1/4 SB											

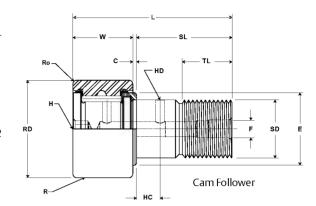
For positive clamping, use housing thickness equal to G dimension = .010". Clamping torque is based on dry threads. If threads are lubricated, use half of value shown. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Full Complement Needle **Rolling Elements:**

Bearing Material: Bearing Quality Steel

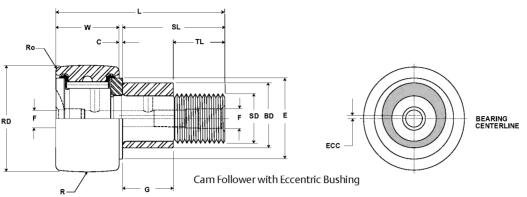

> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

Concentric / Eccentric / **System Configuration:**

Heavy Stud

Mounting Feature: Slot / Hex Hole


CF, CFE, CFH

Pai	rt No.		RD		w		SD	81	C	TIE-	. 1	R	ECC	0	80	F		
		Roller	Diameter	Rolle	er Width	Stud D	iameter	Stud	Endplate	Min Thread	Length	Crown		Eccentric		1111		
WEEDIN	LOSSIGNATIONS							Length	Extension	Length	Overall	Prefix CCF-XX	Ва	Selw.pdif CFE-XX	ier	100000		
	Tipudh.		nch nm		nch mm		ich im		inch mm		ch im	inch mm		inch mm		lb	/N	
		Non	Tol.	Nun.	700	Non	Tol	(Ref)	(Ret)	(Ref)	(RM)	Radius (Ref)	(Ref)	+0/=010	1.001			
CF 2 1/2	CF 21/2 S											Cylindrical						l
CF 2 1/2 B	CF 21/2 SB	2.500	+0/001		+0 /005	1.000	+.001/-0	2.25	.031	1.125	3.78	- Junianioan	N/A	N/A	N/A			l
CCF 2 1/2	CCF 2 1/2 S	63.50	+0/03	38.10	+0 /13	25.40	+.03/-0	57.2	.8	28.57	96.0	30	1071	1971	1071			l
CCF 2 1/2 B	CCF 2 1/2 SB											762				11,720	16,450	l
CFE 2 1/2	CFE 2 1/2 S											Cylindrical				52,131	73,170	l
CFE 2 1/2 B	CFE 2 1/2 SB	2.500	+0/001		+0 /005		+.001/-0	2.25	.031	1.125	3.78	Cylindrical	.030	1.125	1.375			l
CCFE 2 1/2	CCFE 2 1/2 S	63.50	+0/03	38.10	+0 /13	25.40	+.03/-0	57.2	.8	28.57	96.0	30	.76	28.58	34.93			l
CCFE 2 1/2 B	CCFE 2 1/2 SB											762						
CFH 2 1/2	CFH 2 1/2 S											Cylindrical						Ī
CFH 2 1/2 B	CFH 2 1/2 SB	2.500	+0/- 001	1.500	+0 /005	1.250	+.001/-0	2.25	.031	1.125	3.78	Cylindrical	N/A	N/A	N/A	11,720	32,900	
CCFH 2 1/2	CCFH 2 1/2 S	63.50	+0/03	38.10	+0 /13	31.75	+.03/-0	57.2	.8	28.57	96.0	30	IN/A	IN/A	IN/A	52,131	146,339	l
CCFH 2 1/2 B	CCFH 2 1/2 SB											762						l
CF 2 3/4	CF 2 3/4 S											Cylindrical						l
CF 2 3/4 B	CF 2 3/4 SB	2.750	+0/- 001	1.500	+0 /005	1.000	+.001/-0	2.25	.031	1.125	3.78	Cylindrical	NI/A	N1/A	NI/A			l
CCF 2 3/4	CCF 2 3/4 S	69.85	+0/03	38.10	+0 /13	25.40	+.03/-0	57.2	.8	28.57	96.0	30	N/A	N/A	N/A			l
CCF 2 3/4 B	CCF 2 3/4 SB											762				11,720	16,450	l
CFE 2 3/4	CFE 2 3/4 S											Culindrian				52,131	73,170	l
CFE 2 3/4 B	CFE 2 3/4 SB	2.750	+0/- 001	1.500	+0 /005	1.000	+.001/-0	2.25	.031	1.125	3.78	Cylindrical	.030	1.125	1.375			l
CCFE 2 3/4	CCFE 2 3/4 S	69.85	+0/03	38.10	+0 /13	25.40	+.03/-0	57.2	.8	28.57	96.0	30	.76	28.58	34.93			l
CCFE 2 3/4 B	CCFE 2 3/4 SB											762						l
CFH 2 3/4	CFH 2 3/4 S											Cultin dai and						l
CFH 2 3/4 B	CFH 2 3/4 SB	2.750	+0/- 001	1.500	+0 /005	1.250	+.001/-0	2.25	.031	1.125	3.78	Cylindrical	NI/A	11/A	.	11,720	32,900	l
CCFH 2 3/4	CCFH 2 3/4 S		+0/03		+0 /13	31.75	+.03/-0	57.2	.8	28.57	96.0	30	N/A	N/A	N/A	52,131	146,339	ı
CCFH 2 3/4 B	CCFH 2 3/4 SB											762						ı

Metric dimensions for reference only.

Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Par	t No.	100	HP	fi.	F	Ro		HBD				.00
W/O Seals	With LUBRI-DISC	Hole Gentar	Radial Hole Diameter	Axial Hole Din or Fitting	Min Boss Dumeter	Outer Corner	Hous Dia	ing Bore ameter	Thread Type		Spinor Spinor (Koteke)	Bearing Melyne
W/U DEBID	licula:		inch mm		in m	ch im		inch mm		70.00	100	86
		(Ruti	(Ref)	(Reti	(First)	(Rin)	Monte	Tol 1		Ħ		2
CF 2 1/2	CF 2 1/2 S					.094						
CF 2 1/2 B	CF 2 1/2 SB	.5625	.125 3	.1875		2.38	1.0003	+.0002/0003				
CCF 2 1/2	CCF 2 1/2 S	14	3	5		N/A	25.408	+.0005/0008				
CCF 2 1/2 B	CCF 2 1/2 SB				1.688	IV/A			1-14	2,250 254	1,100	2.50
CFE 2 1/2	CFE 21/2 S				42.86	.094			1-14	254	1,100	1.13
CFE 2 1/2 B	CFE 2 1/2 SB	.5625	.125	.1875		2.38	1.378	+.001/001 +.025/025				
CCFE 2 1/2	CCFE 2 1/2 S	14	3	5		N/A	35.00	+.025/025				
CCFE 2 1/2 B	CCFE 2 1/2 SB					1477						
CFH 2 1/2	CFH 2 1/2 S					.094						
CFH 2 1/2 B	CFH 2 1/2 SB	.5625	.125	.1875	1.688	2.38	1.2503 31.758	+.0002/0003 +.0005/0008	1 1/4-12	3,450	1.100	2.75 1.25
CCFH 2 1/2	CCFH 2 1/2 S	14	3	5	42.86	N/A	31.758	+.0005/0008		390	1,100	1.25
CCFH 2 1/2 B	CCFH 2 1/2 SB											
CF 2 3/4	CF 2 3/4 S					.094						
CF 2 3/4 B	CF 2 3/4 SB	.5625 14	.125 3	.1875 5		2.38	1.0003 25.408	+.0002/0003 +.0005/0008				
CCF 2 3/4	CCF 2 3/4 S	14	3	5		N/A	25.406	+.0005/0006				
CCF 2 3/4 B	CCF 2 3/4 SB				1.688 42.86				1-14	2,250 254	1,050	2.93 1.33
CFE 2 3/4	CFE 2 3/4 S				42.00	.094 2.38				254	,	1.33
CFE 2 3/4 B	CFE 2 3/4 SB	.5625 14	.125	.1875 5		2.30	1.378 35.00	+.001/001 +.025/025				
CCFE 2 3/4	CCFE 2 3/4 S	14	3	5		N/A	35.00	+.025/025				
CCFE 2 3/4 B	CCFE 2 3/4 SB											
CFH 2 3/4	CFH 2 3/4 S					.094 2.38						
CFH 2 3/4 B	CFH 2 3/4 SB	.5625 14	.125 3	.1875 5	1.688 42.86	2.30	1.2503 31.758	+.0002/0003 +.0005/0008	1 1/4-12	3,450 390	1,050	3.19 1.47
CCFH 2 3/4	CCFH 2 3/4 S	14	3	5	42.00	N/A	31.700	1.000070008		390		1.47
CCFH 2 3/4 B	CCFH 2 3/4 SB											

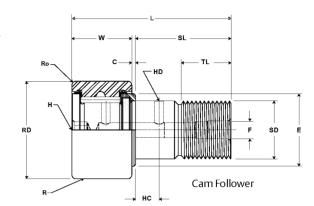
For positive clamping, use housing thickness equal to G dimension = .010". Clamping torque is based on dry threads. If threads are lubricated, use half of value shown. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement Needle

Bearing Material: Bearing Quality Steel

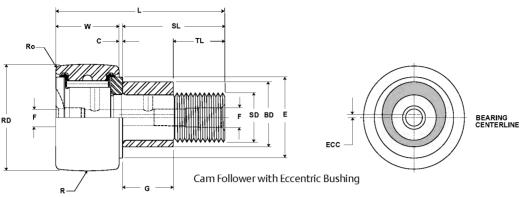

> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

Concentric / Eccentric / **System Configuration:**

Heavy Stud

Mounting Feature: Slot / Hex Hole



CF, CFE, CFH

Pai	rt No.		RD		W	5	D	88	c	75	- 6	R.	EGC	0	80	E. 8.2.8.	
	_	Roller	Diameter	Rolle	er Width	Stud D	iameter	Stud	Endplate	Min Thread	Length	Crown		Eccentric		1111	Times Maria
WESTIN	Vion Lineari Gesc							Length	Extension	Length	Overall	Prefix CCF-XX	Ва	Set Ddif CFE-XX	ier	100000	
	Sikalin.	Acres on	nch mm		nch mm	in m	ch im		inch mm	m	ch im	inch mm Radius	1475 111	inch mm		lb	/N
		Non.	Title	Nun.	400	Non	Tol	(Ref)	(Ret)	(Ret)	(Ref)	(Ref)	(Ref)	+0/=10 1 0	1.001	_	
CF 3	CF3S											Cylindrical					
CF 3 B	CF 3 SB	3.000	+0/001		+0 /005		+.001/-0	2.50	.031	1.25	4.28	,	N/A	N/A	N/A		
CCF 3	CCF 3 S	76.20	+0/03	44.45	+0 /13	31.75	+.03/-0	63.5	.8	31.75	108.7	30					
CCF 3 B	CCF 3 SB											762				15,720	24,910 110,800
CFE 3	CFE 3 S											Cylindrical				69,923	24,910 110,800
CFE 3 B	CFE 3 SB	3.000	+0/- 001		+0 /005	1.250	+.001/-0	2.50	.031	1.25	4.28	- Jillianoai	.060	1.250	1.750		
CCFE 3	CCFE 3 S	76.20	+0/=.03	44.45	+0 /13	31.75	+.03/-0	63.5	.8	31.75	108.7	30	.52	31.75	44.45		
CCFE 3 B	CCFE 3 SB											762					
CFH 3	CFH 3 S											Cylindrical					
CFH 3 B	CFH 3 SB	3.000	+0/- 001		+0 /005	1.500	+.001/-0	2.50	.031	1.25	4.28	Cylindrical	N/A	N/A	N/A	15,720	49,820
CCFH 3	CCFH 3 S	76.20	+0/03	44.45	+0 /13	38.10	+.03/-0	63.5	.8	31.75	108.7	30	INVA	IN/A	IN/A	69,923	221,599
CCFH 3 B	CCFH 3 SB											762					
CF 3 1/4	CF 3 1/4 S											Cylindrical					
CF 3 1/4 B	CF 3 1/4 SB	3.250	+0/- 001		+0 /005		+.001/-0	2.50	.031	1.25	4.28	Cyllilatical	N/A	N/A	N/A		
CCF 3 1/4	CCF 3 1/4 S	82.55	+0/03	44.45	+0 /13	31.75	+.03/-0	63.5	.8	31.75	108.7	30	IN/A	IN/A	IN/A		
CCF 3 1/4 B	CCF 3 1/4 SB											762				15,720	24,910
CFE 3 1/4	CFE 3 1/4 S											Cylindrical				69,923	110,800
CFE 3 1/4 B	CFE 3 1/4 SB	3.250	+0/- 001	1.750	+0 /005	1.250	+.001/-0	2.50	.031	1.25	4.28	Cylindrical	.060	1.250	1.750		
CCFE 3 1/4	CCFE 3 1/4 S	82.55	+0/03	44.45	+0 /13	31.75	+.03/-0	63.5	.8	31.75	108.7	30	.52	31.75	44.45		
CCFE 3 1/4 B	CCFE 3 1/4 SB											762					
CFH 3 1/4	CFH 3 1/4 S											Culindric					
CFH 3 1/4 B	CFH 3 1/4 SB	3.250	+0/- 001	1.750	+0 /005	1.500	+.001/-0	2.50	.031	1.25	4.28	Cylindrical	NI/A	N1/A	NIZA	15,720	49,820
CCFH 3 1/4	CCFH 3 1/4 S	82.55	+0/03	44.45	+0 /13	38.10	+.03/-0	63.5	.8	31.75	108.7	30	N/A	N/A	N/A	69,923	221,599
CCFH 3 1/4 B	CCFH 3 1/4 SB											762					

Metric dimensions for reference only. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Par	rt No.	140	HP	E.	E	Ro		HBD		-	E	'0xT
W/O Seals	With LUBRI-DISC	Hole Gentav	Radial Hole Diameter	Axial Hole Din or Fitting	Min Boss Dumeter	Outer Corner	Hous Dia	ing Bore ameter	Thread Type		Special Special Street	Bearing alcoyet
M/U beail	licula		inch mm		in m	ch im	İ	inch mm		Ę	1100	99
		okuti	(Ref)	(R+f)	(Fint)	IRin	Monte	ful		1986		100
CF 3	CF3S					.125 3.18						
CF 3 B	CF 3 SB	.625	.125 3	.25 * 6		3.18	1.2503 31.758	+.0002/0003 +.0005/0008				
CCF 3	CCF 3 S	16	3	6		N/A	31.758	+.0005/0008				
CCF 3 B	CCF 3 SB				2.125	11// (1 1/4-12	3,450 390	950	4.20
CFE 3	CFE 3 S				53.98	.125				390	000	1.91
CFE 3 B	CFE 3 SB	.625	.125	.25 *		3.18	1.753 44.52	+.001/001 +.025/025				
CCFE 3	CCFE 3 S	16	3	6		N/A	44.52	+.025/025				
CCFE 3 B	CCFE 3 SB											
CFH 3	CFH 3 S					.125 3.18						
CFH 3 B	CFH 3 SB	.625 16	.125 3	.25 * 6	2.125 53.98	3.10	1.5003 38.108	+.0002/0003 +.0005/0008	1 1/2-12	5,000 565	950	4.56 2.07
CCFH 3	CCFH 3 S	10	3	O	55.96	N/A	36.106	+.0003/0008		303		2.07
CCFH 3 B	CCFH 3 SB											
CF 3 1/4	CF 3 1/4 S					.125 3.18						
CF 3 1/4 B	CF 3 1/4 SB	.625 16	.125 3	.25 * 6		3.10	1.2503 31.758	+.0002/0003 +.0005/0008				
CCF 3 1/4	CCF 3 1/4 S	10	3	Ü		N/A	31.730	1.0000/0000				
CCF 3 1/4 B	CCF 3 1/4 SB				2.125 53.98				1 1/4-12	3,450 390	880	4.81 2.18
CFE 3 1/4	CFE 3 1/4 S				00.00	.125 3.18				030		2.10
CFE 3 1/4 B	CFE 3 1/4 SB	.625 16	.125 3	.25 * 6		5.10	1.753 44.52	+.001/001 +.025/025				
CCFE 3 1/4	CCFE 3 1/4 S					N/A						
CCFE 3 1/4 B	CCFE 3 1/4 SB											
CFH 3 1/4	CFH 3 1/4 S					.125 3.18						
CFH 3 1/4 B	CFH 3 1/4 SB	.625 16	.125 3	.25 * 6	2.125 53.98		1.5003 38.108	+.0002/0003 +.0005/0008	1 1/2-12	5,000 565	880	5.19 2.35
CCFH 3 1/4 CCFH 3 1/4 B	CCFH 3 1/4 S CCFH 3 1/4 SB					N/A						
CCFH 3 1/4 B	CCFH 3 1/4 SB											

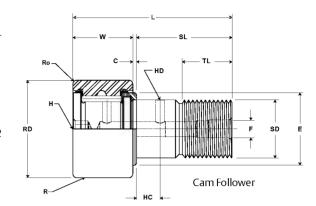
^{*} Lubrication hole (F) at bottom of hex hole and 1/4 inch straight drive fitting will ball check supplied but not installed. For positive clamping, use housing thickness equal to G dimension = .010". Clamping torque is based on dry threads, if threads are lubricated, use half of value shown. Hex wrench size for "Broached" version is located in the wrench size chart on page 8-156.

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement Needle

Bearing Material: Bearing Quality Steel

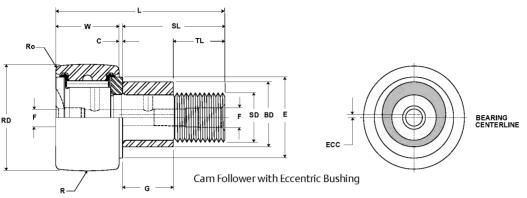

> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

Concentric / Eccentric / **System Configuration:**

Heavy Stud

Mounting Feature: Slot / Hex Hole



CF, CFE, CFH

Pai	rt No.		RD		W	5	SD .	88	c	TIE.		R.	ecc	0	80	e. som.	
	-	Roller	Diameter	Rolle	er Width	Stud D	iameter	Stud	Endplate	Min Thread	Length	Crown		Eccentric		1111	Times Maria
WESTHIN	Vion Lineari Gesc							Length	Extension	Length	Overall	Prefix CCF-XX	Ва	Sewodif CFE-XX	ier	· ·	
	TGrain.	i	nch mm		nch mm	in n	ich im		inch mm	in m	ch im	inch mm		inch mm		Ib	/N
_		None	Titl.	None.	700	Non	Tol	(Ref)	(Ret)	(Ret)	(Ref)	Radius (Ref)	(Ref)	+0/=(0.10)	±.001		
CF 3 1/2	CF 3 1/2 S											Cylindrical					
CF 3 1/2 B	CF 3 1/2 SB	3.500	+0/001		+0 /005		+.001/-0	2.75	.031	1.375	4.78		N/A	N/A	N/A		
CCF 3 1/2	CCF 3 1/2 S	88.90	+0/03	50.80	+0 /13	34.93	+.03/-0	69.9	.8	34.93	121.4	30					
CCF 3 1/2 B	CCF 3 1/2 SB											762				22,800	31,625
CFE 3 1/2	CFE 3 1/2 S											Cylindrical				101,414	140,668
CFE 3 1/2 B	CFE 3 1/2 SB	3.500	+0/- 001		+0 /005		+.001/-0	2.75	.031	1.375	4.78		.060	1.375	1.812		
CCFE 3 1/2	CCFE 3 1/2 S	88.90	+0/=.03	50.80	+0 /13	34.93	+.03/-0	69.9	.8	34.93	121.4	30	.52	34.93	46.02		
CCFE 3 1/2 B	CCFE 3 1/2 SB											762					
CFH 3 1/2	CFH 3 1/2 S											Cylindrical					
CFH 3 1/2 B	CFH 3 1/2 SB	3.500	+0/- 001		+0 /005	1.750	+.001/-0	2.75	.031	1.375	4.78	- Juniori	N/A	N/A	N/A	22,800	63,250
CCFH 3 1/2	CCFH 3 1/2 S	88.90	+0/=.03	50.80	+0 /13	44.45	+.03/-0	69.9	.8	34.93	121.4	30	1071	14071	1071	101,414	281,336
CCFH 3 1/2 B	CCFH 3 1/2 SB											762					
CF 4	CF 4 S											Cylindrical					
CF 4 B	CF 4 SB		+0/001		+0 /005		+.001/-0	3.50	.031	1.50	5.78	Cymranical	N/A	N/A	N/A		
CCF 4	CCF 4 S	101.60	+0/03	57.15	+0 /13	38.10	+.03/-0	88.9	.8	38.1	146.8	30	19/75	19/75	IN/A		
CCF 4 B	CCF 4 SB											762				22,800	44,770
CFE 4	CFE 4 S											Cylindrical				101,414	199,137
CFE 4 B	CFE 4 SB		+0/001		+0 /005	1.500	+.001/-0	3.50	.031	1.50	5.78	Cymranical	.060	2.000	2.000		
CCFE 4	CCFE 4 S	101.60	+0/03	57.15	+0 /13	38.10	+.03/-0	88.9	.8	38.1	146.8	30	.52	50.80	50.80		
CCFE 4 B	CCFE 4 SB											762					
CFH 4	CFH 4 S											Cylindrical					
CFH 4 B	CFH 4 SB		+0/- 001		+0 /005		+.001/-0	3.50	.031	1.50	5.78	Cylindrical	N/A	N/A	N/A	29,985	89,540
CCFH 4	CCFH 4 S	101.60	+0/03	57.15	+0 /13	50.80	+.03/-0	88.9	.8	38.1	146.8	30	IV/A	IWA	IV/A	133,373	398,274
CCFH 4 B	CCFH 4 SB											762					

Metric dimensions for reference only. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

	Par	t No.	100	HP	fi.	F	Ro		HBD .			11-111-	· m
	W/O Seals	With LUBRIDISC:	Hole Gentar	Radial Hole Diameter	Axial Hole Din or Fitting	Min Boss Dumeter	Outer Corner	Hous Dia	ing Bore ameter	Thread Type		Spinor Spinor (Koteke)	Beating alcohol
	W/U DEBID	licula:		inch mm		in m	ch im		inch mm		70.00	100	10-
			(Ruti	(Ref)	(Reti	(First)	(Rin)	Monte	full		Ħ		10
	CF 3 1/2	CF 3 1/2 S					.125						
	CF 3 1/2 B	CF 3 1/2 SB	.6875	.125	.25 *		3.18	1.3753	+.0002/0003				
	CCF 3 1/2	CCF 3 1/2 S	17	3	6		N/A	34.933	+.0005/0008				
	CCF 3 1/2 B	CCF 3 1/2 SB				2.438	I WA			1 3/8-12	4,200 475	820	6.42
	CFE 3 1/2	CFE 3 1/2 S				61.91	.125			1 0/0-12	475	020	2.91
	CFE 3 1/2 B	CFE 3 1/2 SB	.6875	.125	.25 *		3.18	1.815	+.001/001 +.025/025				
	CCFE 3 1/2	CCFE 3 1/2 S	17	3	6		N/A	46.10	+.025/025				
	CCFE 3 1/2 B	CCFE 3 1/2 SB					1,77.1						
	CFH 3 1/2	CFH 3 1/2 S					.125 3.18						
	CFH 3 1/2 B	CFH 3 1/2 SB	.6875	.125	.25 *	2.438	3.18	1.7503 44.458	+.0002/0003 +.0005/0008	1 3/4-12	5,000 565	820	7.01 3.18
	CCFH 3 1/2	CCFH 3 1/2 S	17	3	6	61.91	N/A	44.458	+.0005/0008		565		3.18
	CCFH 3 1/2 B	CCFH 3 1/2 SB											
	CF 4	CF 4 S					.125 3.18						
	CF 4 B	CF 4 SB	.75 19	.125 3	.25 * 6		3.10	1.5003 38.108	+.0002/0003 +.0005/0008				
	CCF 4	CCF 4 S	19	3	O		N/A	36.106	+.0005/0006				
	CCF 4 B	CCF 4 SB				2.797 71.04				1 1/2-12	5,000 565	700	9.46 4.29
	CFE 4	CFE 4 S				71.04	.125 3.18				303		4.29
	CFE 4 B	CFE 4 SB	.75 19	.125 3	.25 * 6		3.10	2.002 50.85	+.001/001 +.025/025				
	CCFE 4	CCFE 4 S	13	Ü	Ü		N/A	00.00	1.020/020				
-	CCFE 4 B	CCFE 4 SB											
	CFH 4	CFH 4 S					.125 3.18						
	CFH 4 B	CFH 4 SB	.75 19	.125 3	.25 * 6	2.797 71.04	5.10	2.0003 50.808	+.0002/0003 +.0005/0008	2-12	5,000 565	700	10.83 4.91
	CCFH 4	CCFH 4 S			J		N/A		.5555, .5566				
	CCFH 4 B	CCFH 4 SB											

^{*} Lubrication hole (F) at bottom of hex hole and 1/4 inch straight drive fitting will ball check supplied but not installed. For positive clamping, use housing thickness equal to G dimension = .010*. Clamping torque is based on dry threads. If threads are lubricated, use half of value shown. Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

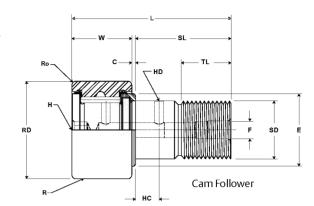
Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement Needle

Roller

Bearing Material: Bearing Quality Steel

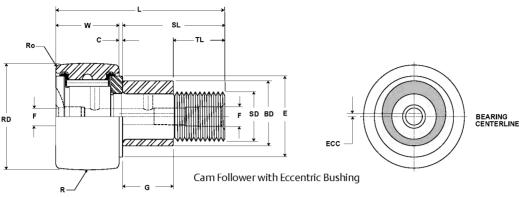

> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric /

Heavy Stud

Mounting Feature: Slot / Hex Hole



CF, CFE, CFH

Pa	rt No.	RD	W	-	s	D	88	C	TIE:	. 4	Ri.	ECC	0	80	F-2200-	Transit Assess
WEENIN	Vion Linguistics	Roller Diamete	r Roller Wid	th	Stud D	iameter	Stud Length	Endplate Extension	Min Thread Length	Length Overall	Crown Prefix GGF-XX		Eccentric se⊯.bdif CFE-XX		理:	ille i
	fords	inch mm	inch mm			ch im		inch mm		ch Im	inch mm		inch mm		lb	'N
t		Non. Tol.	Non- 1	0	Non	Tol	(Ref)	(Ren	(Ref)	(Ref)	Radius (Ref)	(Ref)	+0/=010	1.001	10	
	CF 5 SB	5.000 +0/00 127.00 +0/03			2.000 50.80	+.001/-0 +.03/-0	5.06 128.6	.062 1.57	2.563 65.1	7.88 200.0	Cylindrical	N/A	N/A	N/A	46,575 207,166	67,950 302,242
-	CFH 5 SB	5.000 +0/00				+.001/-0	5.06	.062	2.563	7.88	1,219 Cylindrical	N/A	N/A	N/A	46,575	135,900
	CCFH 5 SB	127.00 +0/03	69.85 +0/	13	63.50	+.03/-0	128.6	1.57	65.1	200.0	48 1,219				207,166	604,483
	CF 6 SB	6.000 +0/00			2.500	+.001/-0	6.00	.062	3.00	9.31	Cylindrical	N/A	N/A	N/A	60,000	80,450
	CCF 6 SB	152.40 +0/0	82.55 +0/	13	63.50	+.03/-0	152.4	1.57	76.2	236.5	56 1,422	IN/A	IN/A	IN/A	266,880	357,842
-	CFH 6 SB	6.000 +0/00				+.001/-0	6.00	.062	3.00	9.31	Cylindrical	N/A	N/A	N/A	60,000	160,900
	CCFH 6 SB	152.40 +0/03	82.55 +0/	13	63.50	+.03/-0	152.4	1.57	76.2	236.5	56 1,422	IN/A	IN/A	IN/A	266,880	715,683
	CF 7 SB	7.000 +0/00			3.000	+.001/-0	7.69	.062	4.125	11.50	Cylindrical	N/A	N/A	N/A	75,380	106,930
	CCF 7 SB	177.80 +0/0	3 95.25 +0/	13	76.20	+.03/-0	195.3	1.57	104.77	292.1	60 1,524				335,290	475,625
	CFH 7 SB	7.000 +0/00				+.001/-0	7.69	.062	4.125	11.50	Cylindrical	N/A	N/A	N/A	75,380	213,860
	CCFH 7 SB	177.80 +0/0	3 95.25 +0/	13	76.20	+.03/-0	195.3	1.57	104.77	292.1	60 1,524				335,290	951,249
_	CF 8 SB	8.000 *	4.250		3.250	+.001/-0	8.50	.125	4.25	12.81	Cylindrical	N/A	N/A	N/A	92,200	144,100
	CCF 8 SB	203.20	107.95		82.55	+.03/-0	215.9	3.175	107.95	325.4	40 1,016				410,106	640,957
_	CF 9 SB	9.000 *	4.750,		3.750	+.001/-0	9.50	.125	4.75	14.31	Cylindrical	N/A	N/A	N/A	113,260	183,430
_	CCF 9 SB	228.60	120.65		95.25	+.03/-0	241.3	3.175	120.65	363.5	40 1,016	1477			503,780	815,897
_	CF 10 SB	10.000 *	5.250		4.250	+.001/-0	10.00	.125	4.75	15.31	Cylindrical	N/A	N/A	N/A	131,545	215,565
	CCF 10 SB	254.00	133.35		107.95	+.03/-0	254.0	3.175	120.65	388.9	40 1,016	1377	, ,,,,	, ,,,,	585,112	958,833

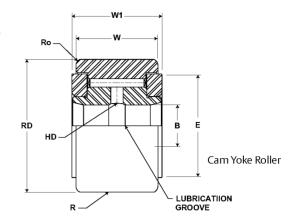
Metric dimensions for reference only.
"Standard tolerances do not apply. Consult Application Engineering.
Hex wrench size for "Broached" version is located in the wrench size chart on page B-156.

Pai	t No.	HC	HD	F.	Ē	Ro		HBD .			- Constitute	WT
MARKETON !	With	Hale Centur	Radial Hole Diameter	Axial Hole Din or Fitting	Min Boss Dumeter	Outer Corner	Hous Dia	ing Bore ameter	Thread Type	Clamping Torque	Limiting Speed (Grease)	Bearing Weight
W/O Seals	With LUBRI-DISC leads		inch mm		in m	ch m	İ	inch mm	71	in the	RPM	(16)
		Office	(Ref)	(Ref)	Hill	(Rin	Monta	(Tell)		up-Mb Nem		ho
	CF 5 S	.875 22	.1875 5	1/4" NPT	3.563 90.49	.125 3.18	2.0003 50.808	+.0002/0003 +.0005/0008	2-12	5,000 565	575	19.60 8.89
-	CFH 5 S	.875 22	.1875 5	1/4" NPT	3.563 90.49	.125 3.18	2.5030 63.576	+.0002/0003 +.0005/0008	2 1/2-12	5,000 565	575	22.10 10.02
	CF6S	1.00 25	.1875 5	1/4" NPT	4.469 113.51	.125 3.18	2.5030 63.576	+.0002/0003 +.0005/0008	2 1/2-12	5,000 565	475	32.73 14.85
-	CFH 6 S	1.00 25	.1875 5	1/4" NPT	4.469 113.51	.125 3.18	3.0003 76.208	+.0002/0003 +.0005/0008	3-12	5,000 565	475	36.41 16.52
	CF7S	1.25 32	.1875 5	1/4" NPT	5.188 131.76	.125 3.18	3.0003 76.208	+.0002/0003 +.0005/0008	3-12	5,000 565	400	54.73 24.83
	CFH 7 S	1.25 32	.1875 5	1/4" NPT	5.188 131.76	.125 3.18	3.5003 88.908	+.0002/0003 +.0005/0008	3 1/2-4	5,000 565	400	68.03 30.86
-	CF8S	1	-	1/4" NPT	4.375 111.13	.219 5.56	3.2503 82.558	+.0002/0003 +.0005/0008	3 1/4-4	5,000 565	350	79.80 36.19
-	CF9S CCF9S	-	-	1/4" NPT	5.063 128.59	.250 6.35	3.7503 95.258	+.0002/0003 +.0005/0008	3 1/2-4	5,000 565	300	111.60 50.62
-	CF 10 S	-	-	1/4" NPT	5.469 138.91	.281 7.14	4.2503 107.958	+.0002/0003 +.0005/0008	3 1/2-4	5,000 565	275	148.20 67.22

For positive clamping, use housing thickness equal to G dimension = "010". Clamping torque based on dry threads. For wet (lubricated) threads, use half of value shown. Hex wrench size for "Broached" version is located in the wrench size chart on page 8-156.

Basic Construction Type: Yoke Type Crowned/

Cylindrical Outside Diameter


Rolling Elements: Full Complement/Needle

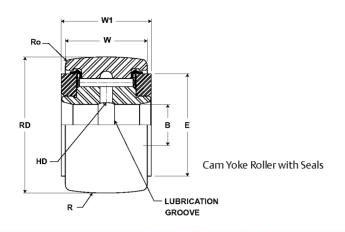
Roller

Bearing Material: Bearing Quality Steel

Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2

CYR


Pai	rt No.		RD	,	w		В		W1	B	Tower Rolling	Teach Dollar
	With	Rolle	r Diameter	Rolle	r Width	Bore	Diameter		verall Vidth	Crown Prefix CCYR-XX	Track Roller Oynamic Rating	Track Roller Static Sating
W/O Seals	LUBRI DISC		inch mm	ir	nch nm		inch mm		inch mm	inch	198.000	MARKE.
t.		Non	Total	Home	=fol	Non.	fol	Nom	Total	Radius	16/14	IBN)
CYR 3/4	CYR 3/4 S	.750	+0/001	.500	+0/005	.250	+.0002/0004	.5625	+.005/01	Cylindrical	1,660	4,130
	CCYR 3/4 S	19.05	+0/03	12.70	+0/13	6.35	+.0005/0010	14.28	+0.13/-0.25	10 254	7,384	18,370
CYR 7/8	CYR 7/8 S	.875	+0/001	.500	+0/005	.250 6.35	+.0002/0004	.5625	+.005/01	Cylindrical	1,660	4,130
	CCYR 7/8 S	22.23	+0/03	12.70	+0/13	6.35	+.0005/0010	14.28	+0.13/-0.25	10 254	7,384	18,370
CYR 1	CYR 1 S	1.000	+0/001	.625	+0/005	.3125	+.0002/0004	.6875	+.005/01	Cylindrical	2,225	6,120
	CCYR 1 S	25.40	+0/03	15.88	+0/13	7.94	+.0005/0010	17.46	+0.13/-0.25	12 305	9,897	27,222
CYR 1 1/8	CYR 1 1/8 S	1.125	+0/001	.625	+0/005	.3125	+.0002/0004	.6875	+.005/01	Cylindrical	2,225	6,120
	CCYR 1 1/8 S	28.58	+0/03	15.88	+0/13	7.94	+.0005/0010	17.46	+0.13/-0.25	12 305	9,897	27,222
CYR 1 1/4	CYR 1 1/4 S	1.250	+0/001	.750	+0/005	.375	+.0002/0004	.8125	+.005/01	Cylindrical	3,930	8,500
	CCYR 1 1/4 S	31.75	+0/03	19.05	+0/13	9.53	+.0005/0010	20.64	+0.13/-0.25	14 356	17,481	37,808
CYR 1 3/8	CYR 1 3/8 S	1.375 34.93	+0/001	.750	+0/005	.375 9.53	+.0002/0004	.8125	+.005/01	Cylindrical	3,930 17,481	8,500
	CCYR 1 3/8 S	34.93	+0/03	19.05	+0/13	9.53	+.0005/0010	20.64	+0.13/-0.25	14 356	17,481	37,808
CYR 1 1/2	CYR 1 1/2 S	1.500	+0/001	.875	+0/005	.4375	+.0002/0004	.9375	+.005/01	Cylindrical	4,840	11,280
	CCYR 1 1/2 S	38.10	+0/03	22.23	+0/13	11.11	+.0005/0010	23.81	+0.13/-0.25	20 508	21,528	50,173
CYR 1 5/8	CYR 1 5/8 S	1.625	+0/001	.875	+0/005	.4375	+.0002/0004	.9375	+.005/01	Cylindrical	4,840	11,280
	CCYR 1 5/8 S	41.28	+0/03	22.23	+0/13	11.11	+.0005/0010	23.81	+0.13/-0.25	20 508	21,528	50,173
CYR 1 3/4	CYR 1 3/4 S	1.750	+0/001	1.000	+0/005	.500	+.0002/0004	1.0625	+.005/01	Cylindrical	6,385	115,840
	CCYR 1 3/4 S	44.45	+0/03	25.40	+0/13	12.70	+.0005/0010	26.98	+0.13/-0.25	20 508	28,400	515,256

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

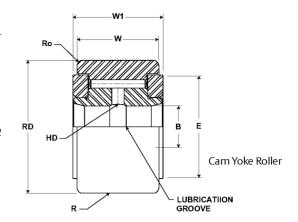
 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

CYR

	Part No.	im.	· · · · · · · · · · · · · · · · · · ·	Ro			Recommended	Shaft Diamete	rs		Transmitted.	WT
	- MARK	Hole Diameter	Min Clamping Diameter	Outer Corner	Due	h Fit		e Fit		ss Fit	Limiting Speed	Bearing Weight
W/O Seal	LUBRI DISC	250 - 100 H	inch mm		ir	ich im		ch	in	ich im		*
		iReb	(Rin)	(Ret)	Nom	site i	Non	-Tol	Nom	Foi	RPM	NO
CYR 3/4	CYR 3/4 S	.09	.61	.02 .4	.2495	±.0002	.2501	±.0002	.2503	±.0002	6,400	.06
	CCYR 3/4 S	2.4	15.5	N/A	6.337	±.005	6.353	±.005	6.357	±.005	0,400	.03
CYR 7/8	CYR 7/8 S	.09 2.4	.61_	.02 .4	.2495	±.0002	.2501	±.0002	.2503	±.0002	5,400	.08
	CCYR 7/8 S	2.4	15.5	N/A	6.337	±.005	6.353	±.005	6.357	±.005	3,400	.04
CYR 1	CYR 1 S	.09	.78	.03 .8	.3120	±.0002	.3126	±.0002	.3128	±.0002	4.800	.15 .07
	CCYR 1 S	2.4	19.8	N/A	7.925	±.005	7.940	±.005	7.945	±.005	4,000	.07
CYR 1 1/8	CYR 1 1/8 S	.09 2.4	.78	.03 .8	.3120	±.0002	.3126	±.0002	.3128	±.0002	3,400	.17
	CCYR 1 1/8 S	2.4	19.8	N/A	7.925	±.005	7.940	±.005	7.945	±.005	0,400	.08
CYR 1 1/4	CYR 1 1/4 S	.09	.98	.03 .8	.3745	±.0002	.3751	±.0002	.3753	±.0002	3,100	.24
	CCYR 1 1/4 S	2.4	25.0	N/A	9.512	±.005	9.527	±.005	9.532	±.005	0,100	.11
CYR 1 3/8	CYR 1 3/8 S	.09	.98	.05 1.2	.3745	±.0002	.3751	±.0002	.3753	±.0002	2,800	.30
	CCYR 1 3/8 S	2.4	25.0	N/A	9.512	±.005	9.527	±.005	9.532	±.005	2,000	.14
CYR 1 1/2	CYR 1 1/2 S	.09	1.09	.06 1.6	.4370	±.0002	.4376	±.0002	.4378	±.0002	2,500	.41
	CCYR 1 1/2 S	2.4	27.8	N/A	11.100	±.005	11.115	±.005	11.120	±.005	2,000	.19
CYR 1 5/8	CYR 1 5/8 S	.09	1.09	.06 1.6	.4370	±.0002	.4376	±.0002	.4378	±.0002	2,350	.50 .23
	CCYR 1 5/8 S	2.4	27.8	N/A	11.100	±.005	11.115	±.005	11.120	±.005	2,000	.23
CYR 1 3/4	CYR 1 3/4 S	.09	1.25	.06 1.6	.4995	±.0002	.5001	±.0002	.5005	±.0002	2,200	.64
	CCYR 1 3/4 S	2.4	31.8	N/A	12.687	±.005	12.703	±.005	12.713	±.005	2,200	.29

Basic Construction Type: Yoke Type Crowned/

Cylindrical Outside Diameter

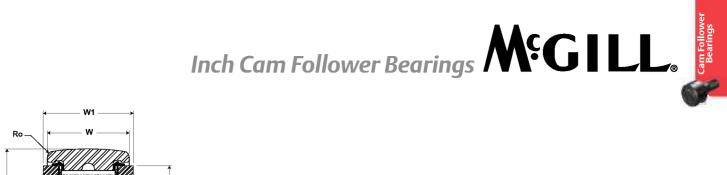

Rolling Elements: Full Complement/Needle

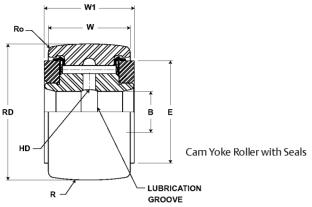
Roller

Bearing Material: Bearing Quality Steel

Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2


CYR


Pa	rt No.		RD	1	w		В		W1	B	Town Bullion	Teach Daller
	With LUBRI-DISC	Roller	Diameter	Rolle	r Width	Bore	Diameter		verall /idth	Crown Prefix CCYR-XX	Track Roller Oynamic Rating	Track Roller Static Stating
WO Seals	LUBRI DISC	iı	nch mm	ir	nch nm		inch mm		nch mm	inch nm	190.000	PARTY.
		Non	Teli	House	=fel	Mont.	1760	None	Tot.	Radios	1b/N	HE/N
CYR 1 7/8	CYR 1 7/8 S	1.875	+0/001	1.000	+0/005	.500	+.0001/0005	1.0625	+.005/01	Cylindrical	6,385	115,840 515,256
	CCYR 1 7/8 S	47.63	+0/03	25.40	+0/13	12.70	+.0003/0013	26.98	+0.13/-0.25	20 508	28,400	515,256
CYR 2	CYR 2 S	2.000	+0/001	1.250	+0/005	.625	+.0001/0005	1.3125	+.005/01	Cylindrical	8,090	21,140
	CCYR 2 S	50.80	+0/03	31.75	+0/13	15.88	+.0003/0013	33.34	+0.13/-0.25	24 610	35,984	94,031
CYR 2 1/4	CYR 2 1/4 S	2.250	+0/001	1.250	+0/005	.625	+.0001/0005	1.3125	+.005/01	Cylindrical	8,090	21,140
	CCYR 2 1/4 S	57.15	+0/03	31.75	+0/13	15.88	+.0003/0013	33.34	+0.13/-0.25	24 610	35,984	94,031
CYR 2 1/2	CYR 2 1/2 S	2.500	+0/001	1.500	+0/005	.750	+.0001/0005	1.5625	+.005/01	Cylindrical	11,720	32,900
	CCYR 2 1/2 S	63.50	+0/03	38.10	+0/13	19.05	+.0003/0013	39.69	+0.13/-0.25	30 762	52,131	146,339
CYR 2 3/4	CYR 2 3/4 S	2.750	+0/001	1.500	+0/005	.750	+.0001/0005	1.5625	+.005/01	Cylindrical	11,720	32,900
	CCYR 2 3/4 S	69.85	+0/03	38.10	+0/13	19.05	+.0003/0013	39.69	+0.13/-0.25	30 762	52,131	146,339
CYR 3	CYR 3 S	3.000	+0/001	1.750	+0/005	1.000	+.0001/0005	1.8125	+.005/01	Cylindrical	15,720	49,820
	CCYR 3 S	76.20	+0/03	44.45	+0/13	25.40	+.0003/0013	46.04	+0.13/-0.25	30 762	15,720 69,923	221,599
CYR 3 1/4	CYR 3 1/4 S	3.250	+0/001	1.750	+0/005	1.000	+.0001/0005	1.8125	+.005/01	Cylindrical	15,720	49,820
	CCYR 3 1/4 S	82.55	+0/03	44.45	+0/13	25.40	+.0003/0013	46.04	+0.13/-0.25	30 762	69,923	221,599
CYR 3 1/2	CYR 3 1/2 S	3.500	+0/001	2.000	+0/005	1.125	+.0001/0005	2.0625	+.005/01	Cylindrical	22,800	63,250
	CCYR 3 1/2 S	88.90	+0/03	50.80	+0/13	28.58	+.0003/0013	52.39	+0.13/-0.25	30 762	101,414	281,336
CYR 4	CYR 4 S	4.000	+0/001	2.250	+0/005	1.250	+.0001/0005	2.3125	+.005/01	Cylindrical	29,985	89,540
	CCYR 4 S	101.60	+0/03	57.15	+0/13	31.75	+.0003/0013	58.74	+0.13/-0.25	30 762	133,373	398,274

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

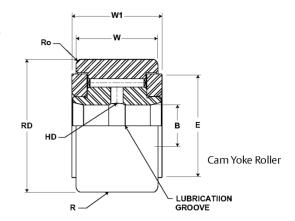
 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

CYR

Pai	t No.	HD	Ħ	Ro			acommondo	d Shaft Diameter	_			WT
	- OATHE	Hole. Diameter	Min. Clamping Diameter	Outer Corner	Pii	sh Fit		u Shart Diameter		ess Fit	Limiting Speed	Bearing Weight
W/O Seals	LUBRI DISC	- Commontin	inch mm			nch	i	nch		nch	1000	1463
		-(Ret)	mm (Min)	(Ret)	Non	mm stee	Non	mm =fai	Mont	mm —tel	RPM	NO.
CYR 1 7/8	CYR 1 7/8 S	.09	1.25	.06 1.6	.4995	±.0002	.5001	±.0002	.5005	±.0002	0.000	.80
	CCYR 1 7/8 S	2.4	31.8	N/A	12.687	±.005	12.703	±.005	12.713	±.005	2,000	.36
CYR 2	CYR 2 S	.13 3.2	1.41	.09 2.4	.6245	±.0002	.6245	±.0002	.6245	±.0002	1,400	1.05
	CCYR 2 S	3.2	35.7	N/A	15.862	±.005	15.862	±.005	15.862	±.005	1,400	.48
CYR 2 1/4	CYR 2 1/4 S	.13 3.2	1.41	.09 2.4	.6245	±.0002	.6251	±.0002	.6255	±.0002	1,300	1.32
	CCYR 2 1/4 S	3.2	35.7	N/A	15.862	±.005	15.877	±.005	15.887	±.005	1,000	.59
CYR 2 1/2	CYR 2 1/2 S	.13 3.2	1.69	.09 2.4	.7495	±.0002	.7501	±.0002	.75015	±.0002	1,100	1.80
	CCYR 2 1/2 S	3.2	42.9	N/A	19.037	±.005	19.053	±.005	19.063	±.005	1,100	.82
CYR 2 3/4	CYR 2 3/4 S	.13 3.2	1.69	.09 2.4	.7495	±.0002	.7501	±.0002	.75015	±.0002	1,050	2.25
	CCYR 2 3/4 S	3.2	42.9	N/A	19.037	±.005	19.053	±.005	19.063	±.005	1,000	1.02
CYR 3	CYR 3 S	.13 3.2	2.13	.13 3.2	.9994	+.0002/0003	1.0002	+.0002/0003	1.0006	+.0002/0003	950	3.10
	CCYR 3 S	3.2	54.0	N/A	25.385	+.005/008	25.405	+.005/008	25.415	+.005/008		1.41
CYR 3 1/4	CYR 3 1/4 S	.13 3.2	2.13	.13 3.2	.9994	+.0002/0003	1.0002	+.0002/0003	1.0006	+.0002/0003	880	3.62
	CCYR 3 1/4 S	3.2	54.0	N/A	25.385	+.005/008	25.405	+.005/008	25.415	+.005/008		1.64
CYR 3 1/2	CYR 3 1/2 S	.13 3.2	2.44	.13 3.2	1.1244	+.0002/0003	1.1252	+.0002/0003	1.1256	+.0002/0003	820	4.95
	CCYR 3 1/2 S	3.2	61.9	N/A	28.560	+.005/008	28.580	+.005/008	28.590	+.005/008		2.25
CYR 4	CYR 4 S	.13	2.80	.13 3.2	1.2494	+.0002/0003	1.2502	+.0002/0003	1.2506	+.0002/0003	700	7.05
	CCYR 4 S	3.2	71.0	N/A	31.735	+.005/008	31.755	+.005/008	31.765	+.005/008	. 30	3.19

Basic Construction Type: Yoke Type Crowned/

Cylindrical Outside Diameter


Rolling Elements: Full Complement/Needle

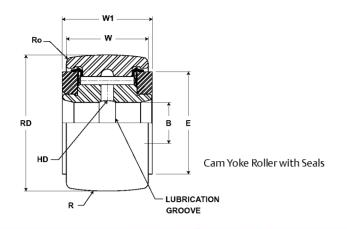
Roller

Bearing Material: Bearing Quality Steel

Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2

CYR


Par	t No.		RD	,	W		В		W1	(8)	Toron Bullion	Teach Deller	
WO Seals	With LUBRI-DISC	Roller	Diameter	Rolle	r Width	Bore	Diameter	O [,] W	verall /idth	Crown Prefix CCYR-XX	Track Roller Oynamic Rating	Track Roller Statio Hating	
WILL SEAR	Easts Disc		nch mm	ir n	ich im		inch mm		nch mm	inch	35/14	SEAN!	
		Non	Tel	Month	=rél	Mon.	fot.	Nam	Total	Radius	10/74		
	CYR 5 S	5.000	+0/001	2.750	+0/005	1.750	+.0001/0005	2.875	+.005/01	Cylindrical	46,575	135,900	
_	CCYR 5 S	127.00	+0/03	69.85	+0/13	44.45	+.0003/0013	73.03	+0.13/-0.25	48 1,219	207,166	604,483	
	CYR 6 S	6.000	+0/001	3.250	+0/005	2.250	+.0001/0005	3.375	+.005/01	Cylindrical	60,000	160,900	
_	CCYR 6 S	152.40	+0/03	82.55	+0/13	57.15	+.0003/0013	85.725	+0.13/-0.25	56 1,422	266,880	715,683	
	CYR 7 S	7.000	+0/001	3.750 95.25	+0/005	2.750 69.85	+.0001/0005	3.875	+.005/01	Cylindrical	75,380	213,860	
	CCYR7S	177.80	+0/03	95.25	+0/13	69.85	+.0003/0013	98.43	+0.13/-0.25	60 1,524	335,290	951,249	
	CYR 8 S	8.000	*	4.250	*	3.255	+.001/-0	4.50	+.005/01	Cylindrical	92,200	288,200	
	CCYR 8 S	203.20		107.95		82.68	+.025/-0	114.3	+0.13/-0.25	40 1,016	410,106	1,281,914	
_	CYR 9 S	9.000	*	4.750	*	3.755	+.001/-0	5.00	+.005/01	Cylindrical	113,260	366,850	
	CCYR 9 S	228.60		120.65		95.38	+.025/-0	127.0	+0.13/-0.25	40 1,016	503,780	1,631,749	
	CYR 10 S	10.000	*	5.250	*	4.255 108.08	+.001/-0	5.50	+.005/01	Cylindrical	131,545	431,130	
	CCYR 10 S	254.00		133.35		108.08	+.025/-0	139.7	+0.13/-0.25	40 1,016	585,112	1,917,666	

Metric dimensions for reference only

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

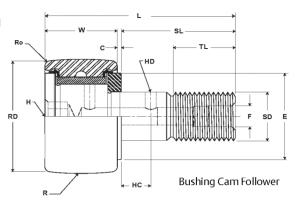
CYR

Par	t No.	160	#	Ro		ь	ecommende	d Shaft Diameter	·e		110000000000	WT
	With	Hole Diameter	Min Clamping Diameter	Outer Corner	Pι	ısh Fit		ive Fit		ess Fit	Limiting Speed	Bearing Wright
W/O Seniu	LUBRI DISC		inch mm			inch mm		inch mm		nch mm	CREEM	(8)
		(R. t)	(Rivit)	(Ret)	Nom	:TeF	Non	-Tol	Nom	Foi	HEM	NO
	CYR 5 S	.19 4.8	3.56	.13 3.2	1.7494	+.0002/0003	1.7502	+.0002/0003	1.7506	+.0002/0003	575	14.34
_	CCYR 5 S	4.8	90.5	N/A	44.435	+.005/008	44.455	+.005/008	44.465	+.005/008	5	6.59
	CYR 6 S	.19 4.8	4.47	.13 3.2	2.2494	+.0002/0003	2.2502	+.0002/0003	2.2506	+.0002/0003	475	20.16
	CCYR 6 S	4.8	113.5	N/A	57.135	+.005/008	57.155	+.005/008	57.165	+.005/008	ř	9.14
_	CYR 7 S	.19 4.8	5.19	.13 3.2	2.7494	+.0002/0003	2.7502	+.0002/0003	2.7506	+.0002/0003	400	32.43
_	CYR7S - CCYR7S	4.8	131.8	N/A	69.835	+.005/008	69.855	+.005/008	69.865	+.005/008	400	14.71
	CYR 8 S	.25 6.4	4.38	.22 5.6	3.2545	±.0005	3.2560	±.0005	3.2565	±.0005	350	47.30
	CCYR 8 S	6.4	111.1	N/A	82.664	±.0013	82.702	±.0013	82.715	±.0013		21.45
_	CYR 9 S	.31 7.9	5.06	.25 6.4	3.7545	±.0005	3.7560	±.0005	3.7565	±.0005	300	65.70
- CCYR 9 S	7.9	128.6	N/A	95.364	±.0013	95.402	±.0013	95.415	±.0013		29.80	
CYR 10 S	.38 9.5	5.47	.28 7.1	4.2545	±.0005	4.2560	±.0005	4.2565	±.0005	275	89.20	
	CCYR 10 S	9.5	138.9	N/A	108.064	±.0013	108.102	±.0013	108.115	±.0013	2.0	40.46

Basic Construction Type: Stud Type Crowned / Cylindrical

Outside Diameter

Rolling Elements: Non-Metallic Bushing


Bearing Material: Bearing Quality Steel

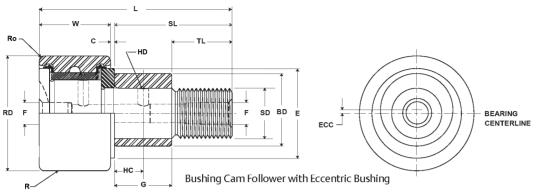
Seal Type: LUBRI-DISC®

Lubrication: None - Self Lubricating Bushing

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

BCF, BCFE


Part No.	F	RD	3	W	- 1	SD	-5t	C	TI	1	18	ECC	0	BID .	Track Retter	Track Roller
	Roller I	Diameter	Rolle	r Width	Dia	meter	Stud Length	Endplate Extension	Minimum Thread	Length Overall	Crown	В	Eccentric	er	Dynamic Rating	Studic Fration
With LUBRI-DISC Seals	ir	ich	i	nch		nch		ich nm	Length incl		Prefix BC-CT-XX such		BCFE-XX inch	-		
	Nom	nm Tot	None	nm :min	Nom.	nm Tel	(Ref)	nm (Ref)	mn (ital)	(Flats	mich nim Radius	Oten	mm =0/- 0:0 1	± 901	Wille	N/I6
BCF 1/2 S									1.01-10-2			-	(Maintag)	(E-Ma)		
BCF 1/2 SB	.500	+0/001	.375	+0 /005	.190	+.001/-0	.625	.03	.25	1.03	Cylindrical					
BCCF 1/2 S	12.70	+0/03	9.53	+0 /13	4.83	+.03/-0	15.9	.8	6.4	26.2	7	N/A	N/A	N/A	See Load-S	peed Chart
BCCF 1/2 SB											178					
BCFE 1/2 S											Cylindrical					
BCFE 1/2 SB	.500	+0/001	.375	+0/005	.190	+.001/-0	.625	.03	.25	1.03	Cylindrical	.010	.38 9.5	.25	See Load-S	peed Chart
BCCFE 1/2 S	12.70	+0/03	9.53	+0 /13	4.83	+.03/-0	15.9	.8	6.4	26.2	7	.25	9.5	6.4	Coo Load C	pood Ondit
BCCFE 1/2 SB											178					
BCF 9/16 S											Cylindrical					
BCF 9/16 SB	.5625 14.29	+0/001 +0/03	.375 9.53	+0 /005 +0 /13	.190 4.83	+.001/-0 +.03/-0	.625 15.9	.03	.25 6.4	1.03 26.2		N/A	N/A	N/A	See Load-S	peed Chart
BCCF 9/16 S	14.23	10/03	9.00	10713	4.00	1.03/-0	10.9	.0	0.4	20.2	7 178					
BCCF 9/16 SB											170					
BCFE 9/16 S											Cylindrical					
BCFE 9/16 SB	.5625 14.29	+0/001 +0/03	.375 9.53	+0 /005 +0 /13	.190 4.83	+.001/-0 +.03/-0	.625 15.9	.03 .8	.25 6.4	1.03 26.2		.010 .25	.38 9.5	.25 6.4	See Load-S	peed Chart
BCCFE 9/16 S BCCFE 9/16 SB											7 178					
BCF 5/8 S																
BCF 5/8 SB			4075								Cylindrical					
BCCF 5/8 S	.625 15.88	+0/001 +0/03	.4375 11.11	+0 /005 +0 /13	.250 6.35	+.001/-0 +.03/-0	.75 19.1	.03 .8	.31 7.9	1.22 31.0		N/A	N/A	N/A	See Load-S	peed Chart
BCCF 5/8 SB											8 203					
BCFE 5/8 S											0 5 1 1					
BCFE 5/8 SB	.625	+0/001	.4375	+0 /005	.250	+.001/-0	.75	.03	.31 7.9	1.22	Cylindrical	.015	.44	.38 9.5	6146	d Chant
BCCFE 5/8 S	15.88	+0/03	11.11	+0 /13	6.35	+.03/-0	19.1	.8	7.9	31.0	8	.38	11.1	9.5	See Load-S	peed Chart
BCCFE 5/8 SB											203					
BCF 11/16 S											Cylindrical					
BCF 11/16 SB	.6875	+0/001	.4375	+0 /005	.250	+.001/-0	.75	.03	.31 7.9	1.22		N/A	N/A	N/A	See Load-S	peed Chart
BCCF 11/16 S	17.46	+0/03	11.11	+0 /13	6.35	+.03/-0	19.1	.8	7.9	31.0	8					,
BCCF 11/16 SB											203					
BCFE 11/16 S											Cylindrical					
BCFE 11/16 SB	.6875 17.46	+0/001 +0/03	.4375 11.11	+0 /005 +0 /13	.250 6.35	+.001/-0 +.03/-0	.75 19.1	.03	.31 7.9	1.22 31.0		.015 .38	.44 11.1	.38 9.5	See Load-S	peed Chart
BCCFE 11/16 S	17.40	ruiu3	11.11	.07 13	0.55	+.03/-0	19.1	.0	1.9	31.0	8 203	.50	11.1	9.0		
BCCFE 11/16 SB											200					

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

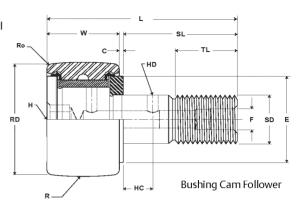
BCF, BCFE

Part No.		HC	THE	2	ä	E	Se				7176011601171	10.00000000	WT
With LUBRI-DIS	sc	There is a second	Rinkat Hole Discreter	Hole	10±300	We flow Executes	Storer Constr Relation	Hou D	sing Bore iameter	Thread Type	Clamping Torque	Limiting Speed	Bearing Weight
Seals		in in	ch ım		ch m	ine m	ch m		inch mm	-21-	inet*	RPW	160
		iReti	(Ref)	(Ret	(Ruth	(Ref)	Otati	(Nom.	5100 N		Nm Nm	- RIPAN	HU
BCF 1/2 S							.02						
BCF 1/2 SB		_	_	.125	.125	.41	.4	.1903	+.0002/0003	10-32	15 2	See Load-	.04
BCCF 1/2 S				3.17	3.17	10.4	N/A	4.834	+.0005/0008		2	Speed Chart	.02
BCCF 1/2 SB													
BCFE 1/2 S							.02 .4						
BCFE 1/2 SB		-	-	.125 3.17	.125 3.17	.41 10.4	.4	.253 6.426	+.001/001 +.025/025	10-32	15 2	See Load- Speed Chart	.04 .02
BCCFE 1/2 S				0.11	0.11	10.4	N/A	0.420	1.020/ .020		-	opood onart	.02
BCCFE 1/2 SB BCF 9/16 S													
BCF 9/16 S BCF 9/16 SB							.02 .4						
BCCF 9/16 S		-	-	.125 3.17	.125 3.17	.41 10.4		.1903 4.834		10-32	15 2	See Load- Speed Chart	.04 .02
BCCF 9/16 SB							N/A		03 +.0002/0003 34 +.0005/0008				
BCFE 9/16 S							00		34 +.0005/0008				
BCFE 9/16 SB				.125	405	.41	.02 .4	.253	53 +.001/001		45	See Load-	.04
BCCFE 9/16 S		-	-	3.17	.125 3.17	10.4		6.426	+.025/025	10-32	15 2	Speed Chart	.02
BCCFE 9/16 SB							N/A						
BCF 5/8 S							.02						
BCF 5/8 SB				.125 3.17	.125 3.17	.46	.4	.2503	+.0002/0003 +.0005/0008	1/4-28	35 4	See Load-	.05
BCCF 5/8 S		-	-	3.17	3.17	11.7	N/A	6.358	+.0005/0008	1/4-20	4	Speed Chart	.02
BCCF 5/8 SB							IN/A						
BCFE 5/8 S							.02						
BCFE 5/8 SB		_	_	.125 3.17	.125 3.17	.46 11.7	.4	.378 9.60	+.001/001 +.025/025	1/4-28	35 4	See Load- Speed Chart	.05 .02
BCCFE 5/8 S				3.17	3.17	11.7	N/A	9.60	+.025/025		4	Speed Chart	.02
BCCFE 5/8 SB													
BCF 11/16 S							.02 .4						
BCF 11/16 SB		-	-	.125 3.17	.125 3.17	.46 11.7		.2503 6.358	+.0002/0003 +.0005/0008	1/4-28	35 4	See Load- Speed Chart	.06 .03
BCCF 11/16 S BCCF 11/16 SB							N/A						
BCFF 11/16 SB													
BCFE 11/16 S							.02 .4						
BCCFE 11/16 S		-	-	.125 3.17	.125 3.17	.46 11.7		.378 9.60	+.001/001 +.025/025	1/4-28	35 4	See Load- Speed Chart	.06 .03
BCCFE 11/16 SB							N/A						

Basic Construction Type: Stud Type Crowned / Cylindrical

Outside Diameter

Rolling Elements: Non-Metallic Bushing


Bearing Material: Bearing Quality Steel

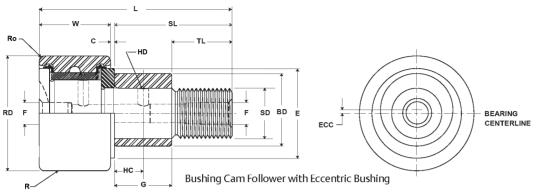
Seal Type: LUBRI-DISC®

Lubrication: None - Self Lubricating Bushing

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

BCF, BCFE


Part No.	F	RD	1	W	:	SD	-50	C	TI		18	ECC	0	BID .	Track Retler	Track Roller
	Roller I	Diameter	Rolle	r Width		tud meter	Stud Length	Endplate Extension	Minimum Thread	Length Overall	Crown	B	Eccentric	ar	Dynamic Rating	Studic Frating
With LUBRI-DISC Seals	ir	ich	ir	nch		nch		ich	Length incl		Prefix BC-CT-XX such		BCFE-XX inch	-		
	Nom	im Tal	None	Tat	100000	Tel	dketi	-okati	mn	THE	mich nim Radius	Reti	mm =0/-001	±:001	HATE	N/I6
BCF 3/4 S								-	1.01-10-2	-		-	(Maintag)	(E-Ma)		
BCF 3/4 SB	.750	+0/001	.500	+0 /005	.375	+.001/-0	.875	.03	38	1.41	Cylindrical					
BCCF 3/4 S	19.05	+0/03	12.70	+0 /13	9.53	+.03/-0	22.2	.8	.38 9.5	35.7	10	N/A	N/A	N/A	See Load-S	peed Chart
BCCF 3/4 SB											254					
BCFE 3/4 S											Cylindrical					
BCFE 3/4 SB	.750	+0/001	.500	+0/005	.375	+.001/-0	.875	.03	.38 9.5	1.41	Cylindrical	.015	.50	.50	See Load-S	peed Chart
BCCFE 3/4 S	19.05	+0/03	12.70	+0 /13	9.53	+.03/-0	22.2	.8	9.5	35.7	10	.38	12.7	12.7	000 2000 0	pood Ondit
BCCFE 3/4 SB											254					
BCF 7/8 S											Cylindrical					
BCF 7/8 SB	.875 22.23	+0/001 +0/03	.500 12.70	+0 /005 +0 /13	.375 9.53	+.001/-0 +.03/-0	.875 22.2	.03 .8	.38 9.5	1.41 35.7		N/A	N/A	N/A	See Load-S	peed Chart
BCCF 7/8 S	22.25	10/03	12.70	10713	9.55	1.00/-0	22.2	.0	9.5	33.7	10 254					
BCCF 7/8 SB											204					
BCFE 7/8 S											Cylindrical					
BCFE 7/8 SB BCCFE 7/8 S	.875 22.23	+0/001 +0/03	.500 12.70	+0 /005 +0 /13	.375 9.53	+.001/-0 +.03/-0	.875 22.2	.03 .8	.38 9.5	1.41 35.7		.015 .38	.50 12.7	.50 12.7	See Load-S	peed Chart
BCCFE 7/8 SB											10 254					
BCF 1 S																
BCF 1 SB	4 000	.0/.004	605	+0 /005	4075	. 004 (0	4.00	00	F0.	1.00	Cylindrical					
BCCF 1 S	1.000 25.40	+0/001 +0/03	.625 15.88	+0 /13	.4375 11.11	+.001/-0 +.03/-0	1.00 25.4	.03 .8	.50 12.7	1.66 42.1	12	N/A	N/A	N/A	See Load-S	peed Chart
BCCF 1 SB											305					
BCFE 1 S											Cylindrical					
BCFE 1 SB	1.000	+0/001	.625	+0/005	.4375	+.001/-0	1.00	.03	.50_	1.66	- Cymrunour	.030	.50_	.63	See Load-S	peed Chart
BCCFE 1 S	25.40	+0/03	15.88	+0 /13	11.11	+.03/-0	25.4	.8	12.7	42.1	12 305	.76	12.7	15.9	200 2000 2	pood ondit
BCCFE 1 SB											305					
BCF 1 1/8 S											Cylindrical					
BCF 1 1/8 SB	1.125 28.58	+0/001 +0/03	.625 15.88	+0 /005 +0 /13	.4375 11.11	+.001/-0 +.03/-0	1.00 25.4	.03 .8	.50 12.7	1.66 42.1		N/A	N/A	N/A	See Load-S	peed Chart
BCCF 1 1/8 S	20.00	107.00	10.00	107 110		1.00/ 0	20.4		12.1	12	12 305					
BCCF 1 1/8 SB																
BCFE 1 1/8 S BCFE 1 1/8 SB											Cylindrical					
BCFE 1 1/8 SB BCCFE 1 1/8 S	1.125 28.58	+0/001 +0/03	.625 15.88	+0 /005 +0 /13	.4375 11.11	+.001/-0 +.03/-0	1.00 25.4	.03 .8	.50 12.7	1.66 42.1		.030 .76	.50 12.7	.63 15.9	See Load-S	peed Chart
BCCFE 1 1/8 SB											12 305					
DOOFE 1 1/0 3B																

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

BCF, BCFE

Part No.	C	THE	100	H	E	Sa				************	III. PERMANEN	WT
With LUBRI-DISC	Their Cartes	Registration Discussor	Name in the Dist ov. Estima	30=3100	Sign House Brancher	100	Hou D	sing Bore iameter	Thread Type	Clamping Torque	Limiting Speed	Bearing Weight
Seals	ir	ich im	in m	ch m	in m	ch m		inch mm	-21-	ine	RPW	160
	(Ref)	(Ref)	Ret	(First)	(Ref)	ORacti	100	5000		n-Nin	- RIPAN	HBC.
BCF 3/4 S BCF 3/4 SB						.02 .4						
BCCF 3/4 S	.25 6.4	.09 2.4	.1875 4.76	.1875 4.76	.61 15.5		.3753 9.533	+.0002/0003 +.0005/0008	3/8-24	95 11	See Load- Speed Chart	.07 .03
BCCF 3/4 SB						N/A						
BCFE 3/4 S						.02						
BCFE 3/4 SB	.25	.09	.1875	.1875	.61	.4	.503	+.001/001	0/0.04	95	See Load-	.07
BCCFE 3/4 S	6.4	2.4	4.76	4.76	15.5	N/A	12.77	+.025/025	3/8-24	11	Speed Chart	.03
BCCFE 3/4 SB						IN/A						
BCF 7/8 S						.02 .4						
BCF 7/8 SB	.25 6.4	.09 2.4	.1875 4.76	.1875 4.76	.61 15.5	.4	.3753 9.533	+.0002/0003	3/8-24	95 11	See Load- Speed Chart	.09 .04
BCCF 7/8 S	0.4	2.4	4.70	4.70	15.5	N/A	9.555	+.0005/0008		"	opeed Chart	.04
BCCF 7/8 SB BCFE 7/8 S												
BCFE 7/8 SB						.02 .4						
BCCFE 7/8 S	.25 6.4	.09 2.4	.1875 4.76	.1875 4.76	.61 15.5		.503 12.77	+.001/001 +.025/025	3/8-24	95 11	See Load- Speed Chart	.09 .04
BCCFE 7/8 SB						N/A						
BCF 1 S						.03						
BCF 1 SB	.25	.09	.1875	.25	.78	.8	.4378	+.0002/0003	7/16-20	250	See Load-	.17
BCCF 1 S	6.4	2.4	4.76	6.4	19.8	N/A	11.120	+.0005/0008	7710-20	28	Speed Chart	.08
BCCF 1 SB						1071						
BCFE1S						.03 .8						
BCFE 1 SB	.25 6.4	.09 2.4	.1875 4.76	.25 6.4	.78 19.8	.0	.628 15.95	+.001/001 +.025/025	7/16-20	250 28	See Load- Speed Chart	.17 .08
BCCFE 1 SB	5. .					N/A		1020/ 1020			opour onarr	
BCF 1 1/8 S												
BCF 1 1/8 SB	25	00	4075	25	70	.03 .8	4070	. 0000/ 0000		250	011	40
BCCF 1 1/8 S	.25 6.4	.09 2.4	.1875 4.76	.25 6.4	.78 19.8		.4378 11.120	+.0002/0003 +.0005/0008	7/16-20	250 28	See Load- Speed Chart	.19 .09
BCCF 1 1/8 SB						N/A						
BCFE 1 1/8 S						.03						
BCFE 1 1/8 SB	.25	.09	.1875	.25	.78	.8	.628	+.001/001	7/16-20	250	See Load-	.19
BCCFE 1 1/8 S	6.4	2.4	4.76	6.4	19.8	N/A	15.95	+.025/025	7710-20	28	Speed Chart	.09
BCCFE 1 1/8 SB						,						

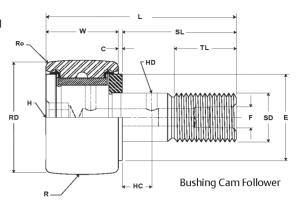
Metric dimensions for reference only.

Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

Basic Construction Type: Stud Type Crowned / Cylindrical

Outside Diameter

Rolling Elements: Non-Metallic Bushing


Bearing Material: Bearing Quality Steel

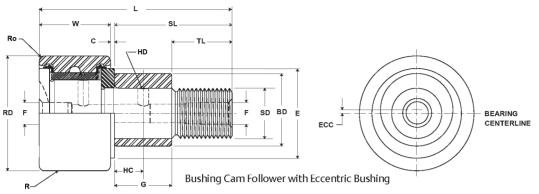
Seal Type: LUBRI-DISC®

Lubrication: None - Self Lubricating Bushing

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

BCF, BCFE


Part No.		RD		W	;	SD	- 50	C	TI.		18	ECC	0.1	8	San State	Toronto Commission
With LUBRI-DISC	Roller	Diameter	Rolle	r Width		tud meter	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Crown Prefix BCCF-XX	В	Eccentric ase Modifi BCFE-XX	er	Track Reller Dynamic Rating	Track Roller Static Rating
Seals	ii	nch nm	ii	nch nm	ij	nch nm	ir	nch nm	inc	h n	min		inch mm	10000	Terres.	100000
	Nom	Tat	Num	100	(Niiii)	Tel	dketi	dten	distri	(Ret)	Radios	dken	+0/- 001 (+0/-03)	± 901	HUTE	N/I6
BCF 1 1/4 S											Culindrian					
BCF 1 1/4 SB	1.250	+0/001	.750	+0 /005	.500	+.001/-0	1.25	.03	.63	2.03	Cylindrical	N/A	N/A	N/A	Sool and S	speed Chart
BCCF 1 1/4 S	31.75	+0/03	19.05	+0 /13	12.70	+.03/-0	31.8	.8	15.9	51.6	14	IN/A	IN/A	IN/A	See Loau-c	peed Chart
BCCF 1 1/4 SB											356					
BCFE 1 1/4 S											Cylindrical					
BCFE 1 1/4 SB	1.250	+0/001	.750	+0 /005	.500	+.001/-0	1.25	.03	.63	2.03	Cylinarical	.030	.63	.69	Soo Load S	speed Chart
BCCFE 1 1/4 S	31.75	31.75 +0/03	19.05	+0 /13	12.70	+.03/-0	31.8	.8	15.9	51.6	14	.76	15.9	17.4	See Loau-C	peed Chart
BCCFE 1 1/4 SB											356					
BCF 1 3/8 S											Cylindrical					
BCF 1 3/8 SB	1.375	1.375 +0/001 34.93 +0/03	.750	+0 /005	.500	+.001/-0	1.25	.03	.63	2.03	Oyimanaa	N/A	N/A	N/A	See Load-S	speed Chart
BCCF 1 3/8 S	34.93		19.05	+0 /13	12.70	+.03/-0	31.8	.8	15.9	51.6	14	I WA	19/75	IWA	OCC LOSG-C	poed Onart
BCCF 1 3/8 SB											356					
BCFE 1 3/8 S											Cylindrical					
BCFE 1 3/8 SB	1.375	+0/001	.750	+0 /005	.500	+.001/-0	1.25	.03	.63	2.03	Oyimanaa	.030	.63	.69	See Load-S	speed Chart
BCCFE 1 3/8 S	34.93	+0/03	19.05	+0 /13	12.70	+.03/-0	31.8	.8	15.9	51.6	14	.76	15.9	17.4	200 2000 2	pood onan
BCCFE 1 3/8 SB											356					
BCF 1 1/2 S											Cylindrical					
BCF 1 1/2 SB	1.500	+0/001	.875	+0 /005	.625	+.001/-0	1.50	.03	.75	2.41	-,	N/A	N/A	N/A	See Load-S	speed Chart
BCCF 1 1/2 S	38.10	+0/03	22.23	+0 /13	15.88	+.03/-0	38.1	.8	19.1	61.1	20 508					
BCCF 1 1/2 SB											506					
BCFE 1 1/2 S											Cylindrical					
BCFE 1 1/2 SB	1.500 38.10	+0/001 +0/03	.875 22.23	+0 /005 +0 /13	.625 15.88	+.001/-0 +.03/-0	1.50 38.1	.03	.75 19.1	2.41 61.1		.030 .76	.75 19.1	.88 22.2	See Load-S	speed Chart
BCCFE 1 1/2 S	36.10	+0/03	22.23	+0713	15.66	+.03/-0	30.1		19.1	01.1	20 508	.,,	19.1	22.2		
BCCFE 1 1/2 SB											300					
BCF 1 5/8 S											Cylindrical					
BCF 1 5/8 SB	1.625 41.28	+0/001 +0/03	.875 22.23	+0 /005 +0 /13	.625 15.88	+.001/-0 +.03/-0	1.50 38.1	.03	.75 19.1	2.41 61.1		N/A	N/A	N/A	See Load-S	peed Chart
BCCF 1 5/8 S	41.20	10/03	22.20	10713	15.00	1.00/-0	30.1	.0	19.1	01.1	20 508					
BCCF 1 5/8 SB											000					
BCFE 1 5/8 S											Cylindrical					
BCFE 1 5/8 SB	1.625 41.28	+0/001 +0/03	.875 22.23	+0 /005 +0 /13	.625 15.88	+.001/-0 +.03/-0	1.50 38.1	.03	.75 19.1	2.41 61.1		.030 .76	.75 19.1	.88 22.2	See Load-S	peed Chart
BCCFE 1 5/8 S	41.20	10/-,03	22.23	.0713	10.00	1.00/-0	30.1		13.1	01.1	20 508	.,,	13.1	LL.L		
BCCFE 1 5/8 SB											500					

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

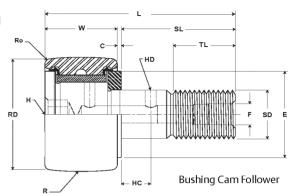
BCF, BCFE

With LURN-DISC No.		Part No.	C	THE	Sia.	38	E	Sea				717000000000000	The state of the s	WT
Scale Nich	Wi	ith LUBRI-DISC	White Control	Registration Discourses	Dia	30±3000	We flow Executes	Stores Cocker Self-	Hou Di	sing Bore ameter	Thread Type	Torque	Speed 5	Bearing Weight
BCF1 1/4 S BCF			in in	ich im	in m	ch im	ine m	ch m		inch mm	-21-	inet*	THEMAN	
BCF 11/4 SB			iRefi	(Ref)	Ret	High	(Ref)	(Ref)	(Month)	SHILL		Mino	- RIPM	THO:
SCCF 11/4 SB 31	BCF	1 1/4 S						.03						
BCCF 11/4 SB BCFE			.31	.09		.25	.98	.8		+.0002/0003	1/2-20	350		.30
BCFE 11/4 S B			7.9	2.4	4.70	0.4	25.0	N/A	12.708	+.0003/0008		40	Speed Chart	.14
BCFE 11/4 SB 31 09 1875 25 98 69 + 001/- 001 1/2-20 350 See Load- 30 Speed Chart 1.14 SCFE 11/4 SB SCFE 11/4 SB SCFE 11/4 SB SCFE 13/8 SCFE 13/8 SCFE 13/8 SCFE 13/8 SCFE 13/8 SCFE 13/8 SCFE 13/8 SCFE 13/8 SCFE 13/8 SCFE 13/8 SCFE 13/8 SCFE 13/8 SCFE 13/8 SCFE 13/8 SCFE 13/8 SCF	-													
BCCFE 1 1/4 S								.03 .8						
BCCFE 1 1/4 SB BCF 1 3/8 SB BCF 1 1/2 SB			.31 7.9	.09 2.4		.25 6.4	.98 25.0				1/2-20	350 40		
BCF 1 3/8 SB								N/A						
BCF 1 3/8 SB 31 0.9 1875 25 98 25.0 N/A BCF 1 3/8 SB 31 0.9 1875 25 96 25.0 N/A BCF 1 3/8 SB 31 0.9 1875 25 96 1.2 .680 +0005/-0008 1/2-20 35.0 See Load-Speed Chart 1.6 BCF 1 3/8 SB 31 0.9 1875 25 96 1.2 .680 +001/-001 1/2-20 35.0 See Load-Speed Chart 1.6 BCF 1 1/2 S 8 38 0.9 1875 31 1.09 27.8 BCF 1 1/2 SB 8 38 0.9 1875 31 1.09 27.8 BCF 1 1/2 SB 8 38 0.9 1875 31 1.09 27.8 BCF 1 1/2 SB 8 38 0.9 1875 31 1.09 27.8 BCF 1 1/2 SB 8 38 0.9 1875 31 1.09 27.8 BCF 1 1/2 SB 8 38 0.9 1875 31 1.09 27.8 BCF 1 1/2 SB 9.5 2.4 4.76 7.9 27.8 BCF 1 1/2 SB 8 38 0.9 1875 31 1.09 27.8 BCF 1 1/2 SB 8 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	-							05		13 +.0002/0003 08 +.0005/0008				
BCCF 1 3/8 S BCFE 1 5/8 S BCFE	BCF	1 3/8 SB	31	09	1875	25	98	1.2	5003	03 +.0002/0003 08 +.0005/0008		350	See Load-	35
BCFE 1 3/8 SB BCFE 1 1/2 SB BCFE 1 5/8 SB BC	всс	CF 1 3/8 S	7.9	2.4		6.4	25.0	NIZA		03 +.0002/0003 708 +.0005/0008	1/2-20	40		
BCFE 1 3/8 SB 31 09 1875 25 98 12.2 690 + 001/-001 17.52 + 025/-025 17.52	всс	CF 1 3/8 SB						N/A		03 +.0002/0003 '08 +.0005/0008				
BCFE 1 3/8 SB 31 0.99 1.875 2.5 9.8	BCF	E 1 3/8 S						.05		708 +.0005/0008 90 +.001/001				
BCCFE 1 3/8 SB BCF 1 1/2 S BCF 1 1/2 SB BCF 1 5/8 SB BCF			.31	.09	.1875	.25	.98	1.2	.690	90 +.001/001 52 +.025/025	1/2-20	350	See Load-	.35
BCF 1 1/2 S B CF 1 1/2 S B S CF 1 1/2 S B S CF 1 1/2 S B S CF 1 1/2 S B S CF 1 1/2 S B S CF 1 1/2 S B S CF 1 1/2 S B S CF 1 1/2 S B S CF 1 1/2 S B S CF 1 1/2 S B S CF 1 1/2 S C			7.9	2.4	4.76	6.4	25.0	N/A	17.52	+.025/025		40	Speed Chart	. 10
BCF 1 1/2 SB	-													
BCCF 1 1/2 S BCF 1 1/2 S BCF 1 1/2 S BCCF 1														
BCFF 1 1/2 SB BCFE 1 1/2 SB BCFE 1 1/2 SB BCFE 1 1/2 SB BCFE 1 1/2 SB BCFE 1 1/2 SB BCFF 1 1/2 SB BCFF 1 1/2 SB BCFF 1 1/2 SB BCFF 1 5/8 S BCFF 1 5/8 SB BCF			.38 9.5	.09 2.4	.1875 4.76	.31 7.9	1.09 27.8			+.0002/0003 +.0005/0008	5/8-18	650 73		.53 .24
BCFE 1 1/2 SB								N/A						
BCFE 1 1/2 SB	BCF	E 1 1/2 S						06						
BCCFE 1 1/2 SB BCF 1 5/8 S BCF 1 5/8 SB BCCF 1 5	BCF	E 1 1/2 SB	.38	.09	.1875	.31	1.09	1.6	.878	+.001/001	5/0.40	650	See Load-	.53
BCFE 1 1/2 SB BCF 1 5/8 S BCF 1 5/8 SB BCCF 1 5/	всс	CFE 1 1/2 S	9.5	2.4	4.76	7.9	27.8	N/A	22.30	+.025/025	5/8-18	73	Speed Chart	.24
BCF 1 5/8 SB	всс	CFE 1 1/2 SB						IN/A						
BCF 1 5/8 SB														
BCCF 1 5/8 SB BCFE 1			.38	.09		.31		1.0		+.0002/0003	5/8-18	650 73		
BCFE 1 5/8 S BCFE 1 5/8 SB .38 .09 .1875 .31 1.09 BCCFE 1 5/8 S 9.5 2.4 4.76 7.9 27.8 N/A Speed Chart .27			9.0	2.4	4.70	1.5	27.0	N/A	15.003	.,0000/-,0000		73	opeed Chart	.21
BCFE 1 5/8 SB 38 .09 .1875 .31 1.09 27.8 .878 +.001/001 22.30 +.025/025 5/8-18 650 See Load-Speed Chart .27														
BCCFE 1 5/8 S 9.5 2.4 4.76 7.9 27.8 N/A 1.09 5/8-18 73 Speed Chart27												_		
			.38 9.5	.09 2.4		.31 7.9				+.001/001 +.025/025	5/8-18			.60 .27
								N/A						

Basic Construction Type: Stud Type Crowned / Cylindrical

Outside Diameter

Rolling Elements: Non-Metallic Bushing


Bearing Material: Bearing Quality Steel

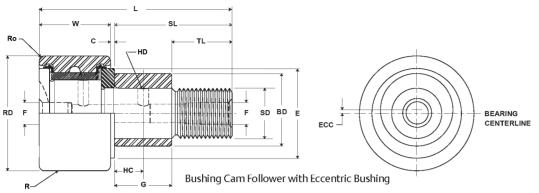
Seal Type: LUBRI-DISC®

Lubrication: None - Self Lubricating Bushing

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

BCF, BCFE


Part No.	F	RD	, (W	÷	SD	-91	c	TI.		18	ECC	0	RD.	Track Roller	Track Coffee
	Roller I	Diameter	Rolle	r Width		tud meter	Stud Length	Endplate Extension	Minimum Thread	Length Overall	Crown	B	Eccentric ase Modifi	or	Dynamic Sating	Track Roller Studic Fratiog
With LUBRI-DISC Seals	in	ıch	ir	ich		ıch		nch	Length incl		BC-CF-XX		BCFE-XX inch	-		
	Nom	nim Tal	None	nm ::Taik	1000000	m	dieti	-dketin	mn (iiiiii)	STANS	min min Radius	dien	mm -0/-001	± 901	HUTE	N/B1
BCF 1 3/4 S		100		- 1			- Daniel		1000				(+60,03)	(#.03)		-
BCF 1 3/4 SB	1.750	+0/001	1.000	0 /005	.750	+.001/-0	1.75	.03	.88	2.78	Cylindrical					
BCCF 1 3/4 S	44.45	+0/03	25.40	+0 /13	19.05	+.03/-0	44.5	.8	22.2	70.6	20	N/A	N/A	N/A	See Load-S	Speed Chart
BCCF 1 3/4 SB											508					
BCFE 1 3/4 S											Cylindrical					
BCFE 1 3/4 SB	1.750	+0/001	1.000	0 /005	.750	+.001/-0	1.75	.03	.88	2.78	Cylindrical	.030	.88 22.2	.00	See Load-9	Speed Chart
BCCFE 1 3/4 S	44.45	+0/03	25.40	+0 /13	19.05	+.03/-0	44.5	.8	22.2	70.6	20	.76	22.2	25.4	See Load-C	peed Chart
BCCFE 1 3/4 SB											508					
BCF 1 7/8 S											Cylindrical					
BCF 1 7/8 SB	1.875 47.63	+0/001 +0/03	1.000 25.40	0 /005 +0 /13	.750 19.05	+.001/-0 +.03/-0	1.75 44.5	.03	.88 22.2	2.78 70.6	,	N/A	N/A	N/A	See Load-S	Speed Chart
BCCF 1 7/8 S	47.03	10/03	20.40	10713	19.00	1.00/-0	44.0	.0	22.2	70.0	20 508					
BCCF 1 7/8 SB																
BCFE 1 7/8 S BCFE 1 7/8 SB											Cylindrical					
BCCFE 1 7/8 S	1.875 47.63	+0/001 +0/03	1.000 25.40	0 /005 +0 /13	.750 19.05	+.001/-0 +.03/-0	1.75 44.5	.03 .8	.88 22.2	2.78 70.6		.030 .76	.88 22.2	.00 25.4	See Load-S	Speed Chart
BCCFE 1 7/8 SB											20 508					
BCF 2 S																
BCF 2 SB	2.000	+0/001	1.250	0 /005	.875	+.001/-0	2.00	.03	2.00	3.28	Cylindrical					
BCCF 2 S	50.80	+0/03	31.75	+0 /13	22.23	+.03/-0	50.8	.8	50.8	83.3	24	N/A	N/A	N/A	See Load-S	Speed Chart
BCCF 2 SB											610					
BCFE 2 S											Cylindrical					
BCFE 2 SB	2.000	+0/001	1.250	0 /005	.875	+.001/-0	2.00	.03	2.00	3.28	- Cymrunour	.030	.00	.19	See Load-S	Speed Chart
BCCFE 2 S	50.80	+0/03	31.75	+0 /13	22.23	+.03/-0	50.8	.8	50.8	83.3	24 610	.76	25.4	30.1		
BCCFE 2 SB											010					
BCF 21/4 S											Cylindrical					
BCF 2 1/4 SB	2.250 57.15	+0/001 +0/03	1.250 31.75	0 /005 +0 /13	.875 22.23	+.001/-0 +.03/-0	2.00 50.8	.03 .8	2.00 50.8	3.28 83.3		N/A	N/A	N/A	See Load-S	Speed Chart
BCCF 2 1/4 S BCCF 2 1/4 SB											24 610					
BCFE 2 1/4 S																
BCFE 2 1/4 SB	0.050	.04.054	4.050	0 / 00=	075	. 004/ 5	0.00	00	0.00	0.00	Cylindrical	000	00	10		
BCCFE 2 1/4 S	2.250 57.15	+0/001 +0/03	1.250 31.75	0 /005 +0 /13	.875 22.23	+.001/-0 +.03/-0	2.00 50.8	.03 .8	2.00 50.8	3.28 83.3	24	.030 .76	.00 25.4	.19 30.1	See Load-S	Speed Chart
BCCFE 2 1/4 SB											24 610					

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

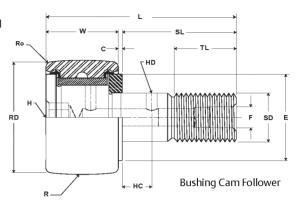
BCF, BCFE

	Part No.	940	THE	Sia.	38	E	ä				7170011001101	10.20000000	WT
	With LUBRI-DISC	White services	Registration Discourses	National Holla Dia w. Celling	30±3000	We flow Executes	100	Hous Di	sing Bore ameter	Thread Type	Clamping Torque	Limiting Speed	Bearing Weight
	Seals	in n	ich im	in m	ch im	ine m	ch m		inch mm	-21-	ine	RPM	
		(Ref)	(Ref)	Ret	High	(Ref)	Ret	(Nom	ENN		In-F	- HJ-MI	HO.
	BCF 1 3/4 S BCF 1 3/4 SB	.44	.125	.1875	24	1.25	.06 1.6	.7503	+.0002/0003		1,250	See Load-	.84
- 1	BCCF 1 3/4 S	11.1	3	4.76	.31 7.9	31.8	N/A	19.058	+.0002/0003	3/4-16	1,250	Speed Chart	.38
⊢	BCCF 1 3/4 SB BCFE 1 3/4 S						.06						
- 1	BCFE 1 3/4 SB BCCFE 1 3/4 S	.44 11.1	.125 3	.1875 4.76	.31 7.9	1.25 31.8	1.6	1.003 25.47	+.001/001 +.025/025	3/4-16	1,250 141	See Load- Speed Chart	.84 .38
	BCCFE 1 3/4 SB						N/A						
	BCF 1 7/8 S BCF 1 7/8 SB	.44	.125	.1875	.31	1.25	.06 1.6	.7503			1,250	See Load-	.95
	BCCF 1 7/8 S BCCF 1 7/8 SB	11.1	3	4.76	7.9	31.8	N/A	19.058	058 +.0005/0008	3/4-16	141	Speed Chart	.43
-	BCFE 1 7/8 S						.06		058 +.0005/0008				
	BCFE 1 7/8 SB BCCFE 1 7/8 S	.44 11.1	.125 3	.1875 4.76	.31 7.9	1.25 31.8	1.6	1.003 25.47	003 +.001/001 47 +.025/025	3/4-16	1,250 141	See Load- Speed Chart	.95 .43
+	BCCFE 1 7/8 SB						N/A						
	BCF 2 S BCF 2 SB	.50	.125	.1875	.44	1,41	.09 2.4	.8753	+ 0002/- 0003		1 500	See Load-	1.36
- 1	BCCF 2 S BCCF 2 SB	12.7	3	4.76	11.1	35.7	N/A	22.233	+.0002/0003 +.0005/0008	7/8-14	1,500 170	Speed Chart	.62
T	BCFE 2 S						.09						
- 1	BCFE 2 SB BCCFE 2 S	.50 12.7	.125 3	.1875 4.76	.44 11.1	1.41 35.7		1.190 30.22	+.001/001 +.025/025	7/8-14	1,500 170	See Load- Speed Chart	1.36 .62
⊢	BCCFE 2 SB						N/A						
	BCF 2 1/4 S BCF 2 1/4 SB	.50 12.7	.125	.1875	.44	1.41	.09 2.4	.8753	+.0002/0003	7/8-14	1,500	See Load-	1.65
	BCCF 2 1/4 S BCCF 2 1/4 SB	12.7	3	4.76	11.1	35.7	N/A	22.233	+.0005/0008	7/0-14	170	Speed Chart	.75
	BCFE 2 1/4 S						.09						
	BCFE 2 1/4 SB BCCFE 2 1/4 S	.50 12.7	.125 3	.1875 4.76	.44 11.1	1.41 35.7	2.4	.8753 22.233	+.001/001 +.025/025	7/8-14	1,500 170	See Load- Speed Chart	1.65 .75
	BCCFE 2 1/4 SB						N/A						

Basic Construction Type: Stud Type Crowned / Cylindrical

Outside Diameter

Rolling Elements: Non-Metallic Bushing


Bearing Material: Bearing Quality Steel

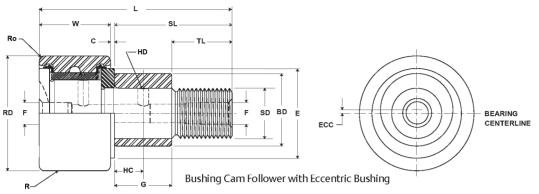
Seal Type: LUBRI-DISC®

Lubrication: None - Self Lubricating Bushing

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

BCF, BCFE


Part No.	F	RD.	1	W	;	SD	-90	c	TI	1	B	ECC	0	BID .	Track Retler	Track Roller
	Roller I	Diameter	Rolle	r Width		tud meter	Stud Length	Endplate Extension	Minimum Thread	Length Overall	Crown	В	Eccentric	er	Dynamic Rating	Studic Fration
With LUBRI-DISC Seals	in	ich	ir	nch		nch		nch	Length incl		Prefix BC-CF-XX such		BCFE-XX inch	-		
	Nom	m	None	Tat	100000	nm Tel	dketi	nm —(Ref)	mn	STARS	mich nim Radius	Reti	mm =0/-001	±:001	HATE	N/I6
BCF 2 1/2 S									1.01-10-2			-	(Maintag)	(E-Ma)		
BCF 2 1/2 SB	2.500	+0/001	1.500	+0 /005	1.000	+.001/-0	2.25	.03	2.25	3.78	Cylindrical	N1/A	N 1/A	N1/A	0116	
BCCF 2 1/2 S	63.50	+0/03	38.10	+0 /13	25.40	+.03/-0	57.2	.8	57.2	96.0	30	N/A	N/A	N/A	See Load-S	peed Chart
BCCF 2 1/2 SB											762					
BCFE 2 1/2 S											Cylindrical					
BCFE 2 1/2 SB	2.500	+0/001	1.500	+0 /005	1.000	+.001/-0	2.25	.03	2.25 57.2	3.78	Oymnunoui	.030	.13	.38 34.9	See Load-S	peed Chart
BCCFE 2 1/2 S	63.50	+0/03	38.10	+0 /13	25.40	+.03/-0	57.2	.8	57.2	96.0	30 762	.76	28.6	34.9	200 2000 2	pood onair
BCCFE 2 1/2 SB											762					
BCF 2 3/4 S											Cylindrical					
BCF 2 3/4 SB	2.750 69.85	+0/001 +0/03	1.500 38.10	+0 /005 +0 /13	1.000 25.40	+.001/-0 +.03/-0	2.25 57.2	.03 .8	2.25 57.2	3.78 96.0		N/A	N/A	N/A	See Load-S	peed Chart
BCCF 2 3/4 S	03.00	. 0,00	00.10	10710	20.40	1.00/-0	07.2	.0	07. <u>2</u>	30.0	30 762					
BCCF 2 3/4 SB											102					
BCFE 2 3/4 S											Cylindrical					
BCFE 2 3/4 SB BCCFE 2 3/4 S	2.750 69.85	+0/001 +0/03	1.500 38.10	+0 /005 +0 /13	1.000 25.40	+.001/-0 +.03/-0	2.25 57.2	.03 .8	2.25 57.2	3.78 96.0		.030 .76	.13 28.6	.38 34.9	See Load-S	peed Chart
BCCFE 2 3/4 SB											30 762					
BCF 3 S																
BCF 3 SB	2 000	.0/.004	4.750	.0.(005	4 050	. 004 (0	0.50	00	2.50	4.00	Cylindrical					
BCCF 3 S	3.000 76.20	+0/001 +0/03	1.750 44.45	+0 /005 +0 /13	1.250 31.75	+.001/-0 +.03/-0	2.50 63.5	.03 .8	2.50 63.5	4.28 108.7	20	N/A	N/A	N/A	See Load-S	peed Chart
BCCF 3 SB											30 762					
BCFE 3 S											Cylindrical					
BCFE 3 SB	3.000	+0/001	1.750 44.45	+0 /005 +0 /13	1.250	+.001/-0	2.50 63.5	.03	2.50 63.5	4.28	- ,	.060	.25 31.8	.75 44.5	See Load-S	peed Chart
BCCFE 3 S	76.20	+0/03	44.45	+0713	31.75	+.03/-0	63.5	.8	63.5	108.7	30 762	.52	31.8	44.5		'
BCCFE 3 SB											702					
BCF 3 1/4 S											Cylindrical					
BCF 3 1/4 SB	3.250 82.55	+0/001 +0/03	1.750 44.45	+0 /005 +0 /13	1.250 31.75	+.001/-0 +.03/-0	2.50 63.5	.03 .8	2.50 63.5	4.28 108.7		N/A	N/A	N/A	See Load-S	peed Chart
BCCF 3 1/4 S BCCF 3 1/4 SB											30 762					
BCFE 3 1/4 S																
BCFE 3 1/4 SB											Cylindrical					
BCCFE 3 1/4 S	3.250 82.55	+0/001 +0/03	1.750 44.45	+0 /005 +0 /13	1.250 31.75	+.001/-0 +.03/-0	2.50 63.5	.03 .8	2.50 63.5	4.28 108.7	00	.060 .52	.25 31.8	.75 44.5	See Load-S	peed Chart
BCCFE 3 1/4 SB											30 762					

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information \ on \ bearing \ capabilities \ outside \ of \ our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

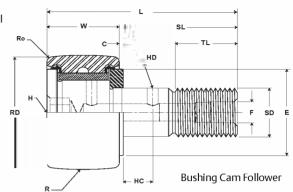
BCF, BCFE

	Part No.	900	THE	lin.	38	E	â				110001007171	10.22200000	WT
	With LUBRI-DISC	3000c	Registration Discourses	Januari Ingla Dia waZelbiigi	10+3166	Wo floor Translet	State Cocode Edit	Hou: Di	sing Bore ameter	Thread Type	Clamping Torque	Limiting Speed	Bearing Weight
	Seals	in n	ich im	in m	ch m	ine m	ch m		inch mm		in-Re	TRPM	160
		(Ref)	(Ref)	Ret	Hill	(Ref)	Reti	(Month	ENGL		Mino	- RIPM	THO:
	BCF 2 1/2 S BCF 2 1/2 SB						.09 2.4						
	BCCF 2 1/2 S	.56 14.3	.125 3	.1875 4.76	.50 12.7	1.69 42.9		1.0003 25.408	+.0002/0003 +.0005/0008	1-14	2,250 254	See Load- Speed Chart	2.50 1.13
	BCCF 2 1/2 SB						N/A						
Ī	BCFE 2 1/2 S						.09						
	BCFE 2 1/2 SB	.56 14.3	.125 3	.1875 4.76	.50 12.7	1.69 42.9	2.4	1.378 35.00	+.001/001 +.025/025	1-14	2,250 254	See Load- Speed Chart	2.50 1.13
	BCCFE 2 1/2 S BCCFE 2 1/2 SB	14.3	3	4.76	12.7	42.9	N/A	35.00	+.025/025		254	Speed Chart	1.13
H	BCF 2 3/4 S						.09						
	BCF 2 3/4 SB	.56	.125	.1875	.50	1.69	2.4	1.0003	103 +.0002/0003 108 +.0005/0008		2,250	See Load-	2.93
	BCCF 2 3/4 S	14.3	3	4.76	12.7	42.9	N/A	25.408)03 +.0002/0003 108 +.0005/0008	1-14	254	Speed Chart	1.33
L	BCCF 2 3/4 SB						INA		+.0005/0008				
	BCFE 2 3/4 S						.09 2.4		408 +.0005/0008 378 +.001/001				
	BCFE 2 3/4 SB BCCFE 2 3/4 S	.56 14.3	.125 3	.1875 4.76	.50 12.7	1.69 42.9		1.378 35.00	.78 +.001/001 00 +.025/025	1-14	2,250 254	See Load- Speed Chart	2.93 1.33
	BCCFE 2 3/4 SB						N/A						
t	BCF 3 S						.13 3.2						
	BCF 3 SB	.63	.125	.25 6.4	.75 19.1	2.13 54.0	3.2	1.2503	+.0002/0003 +.0005/0008	1 1/4-12	3,450	See Load-	4.20
	BCCF 3 S	15.9	3	6.4	19.1	54.0	N/A	31.758	+.0005/0008		390	Speed Chart	1.91
ŀ	BCCF 3 SB BCFE 3 S												
	BCFE 3 SB	.63	.125	.25	.75	2.13	.13 3.2	1.753	+.001/001		3,450	See Load-	4.20
	BCCFE 3 S	15.9	3	6.4	19.1	54.0	NI/A	44.52	+.025/025	1 1/4-12	390	Speed Chart	1.91
	BCCFE 3 SB						N/A						
	BCF 3 1/4 S						.13 3.2						
	BCF 3 1/4 SB BCCF 3 1/4 S	.63 15.9	.125 3	.25 6.4	.75 19.1	2.13 54.0	5.2	1.2503 31.758	+.0002/0003 +.0005/0008	1 1/4-12	3,450 390	See Load- Speed Chart	4.81 2.18
	BCCF 3 1/4 S BCCF 3 1/4 SB						N/A						
t	BCFE 3 1/4 S						13						
	BCFE 3 1/4 SB	.63	.125	.25	.75	2.13 54.0	.13 3.2	1.753	+.001/001	1 1/4-12	3,450	See Load-	4.81
	BCCFE 3 1/4 S	15.9	3	6.4	19.1	54.0	N/A	44.52	+.025/025	1 1/4-12	390	Speed Chart	2.18
	BCCFE 3 1/4 SB												

M[©]GILL_® Inch Cam Follower Bearings

Basic Construction Type: Stud Type Crowned / Cylindrical

Outside Diameter


Rolling Elements: Non-Metallic Bushing
Bearing Material: Bearing Quality Steel

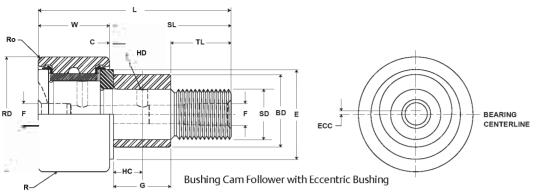
Seal Type: LUBRI-DISC®

Lubrication: None - Self Lubricating Bushing

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

BCF, BCFE


- Harris		do. Mersie	(64)	er Maria		50	1777	37 1982 A	n.	2,504	STORT .	ece.	C Hilanak Tanah	11.0	Neda Folial Laboration	""编""
WHI DESCRIBE	F1000).55 William	111	100	24)	11.111	100	7/1 7/1 7/10/00		VIII VIII	NAME OF	(tell			
BCF 3 1/2 S			- Nation				1000		111111				TO DESCRIPTION OF	11 D 12		
BCF 3 1/2 SB	3 500	+0/- 001	2 000	+0 / - 005	1 375	+ 001/-0	2 75	03	2.75	4 78	Cylindrical					
BCCF 3 1/2 S	88 90	+0/- 03	50.80	+0/-13	34 93	+ 03/-0	69 9	03 8	2 75 69 9	121 4	30	N/A	N/A	N/A	See Load-S	peed Chart
BCCF 3 1/2 SB											762					
BCFE 3 1/2 S											Cylindrical					
BCFE 3 1/2 SB	3 500	+0/- 001	2 000	+0 / - 005	1 375	+ 001/-0	2 75 69 9	03 8	2.75 69.9	4 78	Cylindrical	060 52	38 34 9	81 46 0	See Load-S	and Chart
BCCFE 3 1/2 S	88 90	+0/-03	50 80	+0 / - 13	34 93	+ 03/-0	69 9	8	69 9	121 4	30	52	34 9	46 0	See Load-S	Deed Chart
BCCFE 3 1/2 SB											762					
***											100 miles					1
#15 A 1981)	E 1007	deside)		77.70%	3:4)	1,006	192	ds.	16,060	14t -	THE STATE OF	100	9233	100	Was In Land 18	2 July 10
er Gertier I	125	3.7	300	1100	78. 4	15354	24.3	## F	100	400	.60 150		1E00	5000	3.500000	(1000)
necessor:											(25E)					
H-14-13											2956240					
MOTELLIA	166	Noticed.	224	9.766	(33)	Attendi	1168	AR.	1606	With .		(*) (%)	1(6)	3000	STATE A	Marie .
M:=:I	3000	1507	98779	1000	38.18	EE3WH	LAMP.	AS T	3.00	25.5	70	(0)	100	1995		7/1
BCCTE / BB											750					

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

BCF, BCFE

	A STOCKET ST	- 100 m	H811191	Accept these	OMOTORIAL	#:##	Deter Goern Radia	TW	en er	in the	190001001 2000	190000	Taket .
	Was Unepublish		4.6	i		11/2			W		162	of firm	A
l			projektini.			,	111111111111111111111111111111111111111	31300		= 1	Threat.	BHARA	(1997)
	BCF 3 1/2 S BCF 3 1/2 SB BCCF 3 1/2 S BCCF 3 1/2 SB	69 17 5	125 3	25 6 4	75 19 1	2 44 61 9	13 3 2 N/A	1 3753 34 933	+ 0002/- 0003 + 0005/- 0008	1 3/8-12	4 200 475	See Load Speed Chart	6 42 2 91
	BCFE 3 1/2 S BCFE 3 1/2 SB BCCFE 3 1/2 S BCCFE 3 1/2 SB	69 17 5	125 3	25 6 4	75 19 1	2 44 61 9	13 3 2 N/A	1 815 46 10	+ 001/- 001 + 025/- 025	1 3/8-12	4 200 475	See Load Speed Chart	6 42 2 91
	# # 4- # # 148 # 14-19 #*****	Ø.	.159	P	36 191	770	\$5.	125 7. %	METAR	T who	subject of the subjec	Bio Halli (Lanville)	15
	1600°C= 36	iñ.	tis).	26 17	36	280 110	S	193	in h	47-07	WAS .	86)m h hinchi	107

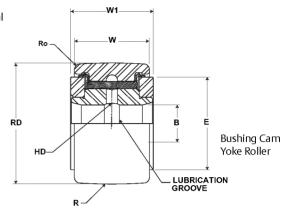
Basic Construction Type: Yoke Type Crowned / Cylindrical

Outside Diameter

Bearing Quality Steel

Rolling Elements: Non-Metallic Bushing

Seal Type: LUBRI-DISC®


Bearing Material:

Lubrication: None - Self Lubricating Bushing

System Configuration: Concentric / Eccentric / Heavy

Stud

Mounting Feature: Slot / Hex Hole

BCYR

Part No.		RD		w		В	207	Œ	Track Roller	Track Roller	
	Roller	Diameter	Rolle	r Width	Bore	Diameter	Espinas	Limin Pefo	Dynamic Rating	Static Rating	
With LUBRI-DISC Seals	i	nch	i	nch		inch	in	P ef			1
	Nom	nm S politi	Momi	nm E feli	Nom	mm Total	(Math)	-Radios	lb/N	lb/N	
BCYR 3/4 S	.750	+0/001	.500	+0/001	.250	+.0002/0004	.56	Cylindrical	San Load S	Speed Chart	
BCCYR 3/4 S	19.05	+0/03	12.70	+0/03	6.35	+.0005/0010	14.3	10 254	See Load-3	орееч Спап	
BCYR 7/8 S	.875 22.23	+0/001	.500	+0/001	.250 6.35	+.0002/0004	.56 14.3	Cylindrical	Soo Load S	Speed Chart	
BCCYR 7/8 S	22.23	+0/03	12.70	+0/03	6.35	+.0005/0010	14.3	10 254	Gee Load-C	speed Chart	
BCYR 1 S	1.000	+0/001	.625	+0/001	.313	+.0002/0004	.69	Cylindrical	See Load-S	Speed Chart	
BCCYR 1 S	25.40	+0/03	15.88	+0/03	7.94	+.0005/0010	17.5	12 305	Gee Load-C	speed Chart	
BCYR 1 1/8 S	1.125	+0/001	.625	+0/001	.313 7.94	+.0002/0004	.69	Cylindrical	See Load-S	Speed Chart	
BCCYR 1 1/8 S	28.58	+0/03	15.88	+0/03	7.94	+.0005/0010	17.5	12 305	occ Load-c	peca onari	
BCYR 1 1/4 S	1.250	+0/001	.750	+0/001	.375 9.53	+.0002/0004	.81 20.6	Cylindrical	See Load-S	Speed Chart	
BCCYR 1 1/4 S	31.75	+0/03	19.05	+0/03	9.53	+.0005/0010	20.6	14 356	Gee Load-C	speed Chart	
BCYR 1 3/8 S	1.375	+0/001	.750	+0/001	.375	+.0002/0004	.81	Cylindrical	See Load-S	Speed Chart	
BCCYR 1 3/8 S	34.93	+0/03	19.05	+0/03	9.53	+.0005/0010	20.6	14 356	occ Load-C	speed onart	
BCYR 1 1/2 S	1.500	+0/001	.875	+0/001	.438	+.0002/0004	.94	Cylindrical	See Load-S	Speed Chart	
BCCYR 1 1/2 S	38.10	+0/03	22.23	+0/03	11.11	+.0005/0010	23.8	20 508	Oee Load-C	speed Chart	
BCYR 1 5/8 S	1.625	+0/001	.875	+0/001	.438	+.0002/0004	.94	Cylindrical	See Load S	Speed Chart	
BCCYR 1 5/8 S	41.28	+0/03	22.23	+0/03	11.11	+.0005/0010	23.8	20 508	Gee Load-e	poca Griari	
BCYR 1 3/4 S	1.750	+0/001	1.000	+0/001	.500	+.0002/0004	1.06	Cylindrical	San Local S	Speed Chart	
BCCYR 1 3/4 S	44.45	+0/03	25.40	+0/03	12.70	+.0005/0010	27.0	20 508	See Load-8	pecu Chall	

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

BCYR

Part No.	HC	F	Ro	PF	PET	PF	PAT	PF	RET		WT
	Hole	Min Boss	Outer	_	F	Recommended	Shaft Diameter	s		Limiting Speed	Bearing
With LUBRI-DISC	State Center	Min Boss Discussor	Outer Comer		h Fit		ve Fit		s Fit	223007	Variety.
Seals	ir n	ich nm	trach mm	in m	ch ım	ir n	nch nm	in n	ch im	RPM	- #
	(Herr)	IReti	Oten	Moon	160	None	100	More	400		/ Mit
BCYR 3/4 S	.25	.61	.02 .4	.2495	±.0002	.2495	±.0002	.2495	±.0002	See Load-Speed	.06
BCCYR 3/4 S	6.4	15.5	N/A	6.337	±.005	6.337	±.005	6.337	±.005	Chart	.03
BCYR 7/8 S	.25	.61	.02 .4	.2495	±.0002	.2495	±.0002	.2495	±.0002	See Load-Speed	.08
BCCYR 7/8 S	6.4	15.5	N/A	6.337	±.005	6.337	±.005	6.337	±.005	Chart	.04
BCYR 1 S	.25	.78	.03 .8	.3120	±.0002	.3120	±.0002	.3120	±.0002	See Load-Speed	.15
BCCYR 1 S	6.4	19.8	N/A	7.925	±.005	7.925	±.005	7.925	±.005	Chart	.07
BCYR 1 1/8 S	.25	.78	.03 .8	.3120	±.0002	.3120	±.0002	.3120	±.0002	See Load-Speed	.17
BCCYR 1 1/8 S	6.4	19.8	N/A	7.925	±.005	7.925	±.005	7.925	±.005	Chart	.08
BCYR 1 1/4 S	.31 7.9	.98	.03 .8	.3745	±.0002	.3745	±.0002	.3745	±.0002	See Load-Speed	.24
BCCYR 1 1/4 S	7.9	25.0	N/A	9.512	±.005	9.512	±.005	9.512	±.005	Chart	.11
BCYR 1 3/8 S	.31 7.9	.98	.05 1.2	.3745	±.0002	.3745	±.0002	.3745	±.0002	See Load-Speed	.30
BCCYR 1 3/8 S	7.9	25.0	N/A	9.512	±.005	9.512	±.005	9.512	±.005	Chart	.14
BCYR 1 1/2 S	.38 9.5	1.09	.06 1.6	.4370	±.0002	.4370	±.0002	.4370	±.0002	See Load-Speed	.41
BCCYR 1 1/2 S	9.5	27.8	N/A	11.100	±.005	11.100	±.005	11.100	±.005	Chart	.19
BCYR 1 5/8 S	.38 9.5	1.09	.06 1.6	.4370	±.0002	.4370	±.0002	.4370	±.0002	See Load-Speed	.50 .23
BCCYR 1 5/8 S	9.5	27.8	N/A	11.100	±.005	11.100	±.005	11.100	±.005	Chart	.23
BCYR 1 3/4 S	.44	1.25	.06 1.6	.4995	±.0002	.4995	±.0002	.4995	±.0002	See Load-Speed	.64
BCCYR 1 3/4 S	11.1	31.8	N/A	12.687	±.005	12.687	±.005	12.687	±.005	Chart	.29

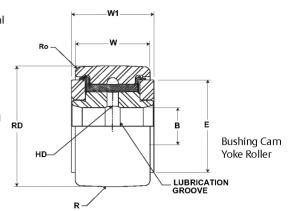
MGILL. Inch Cam Follower Bearings

Basic Construction Type: Yoke Type Crowned / Cylindrical

Outside Diameter

Rolling Elements: Non-Metallic Bushing

Bearing Material: Bearing Quality Steel


Seal Type: LUBRI-DISC®

Lubrication: None - Self Lubricating Bushing

System Configuration: Concentric / Eccentric / Heavy

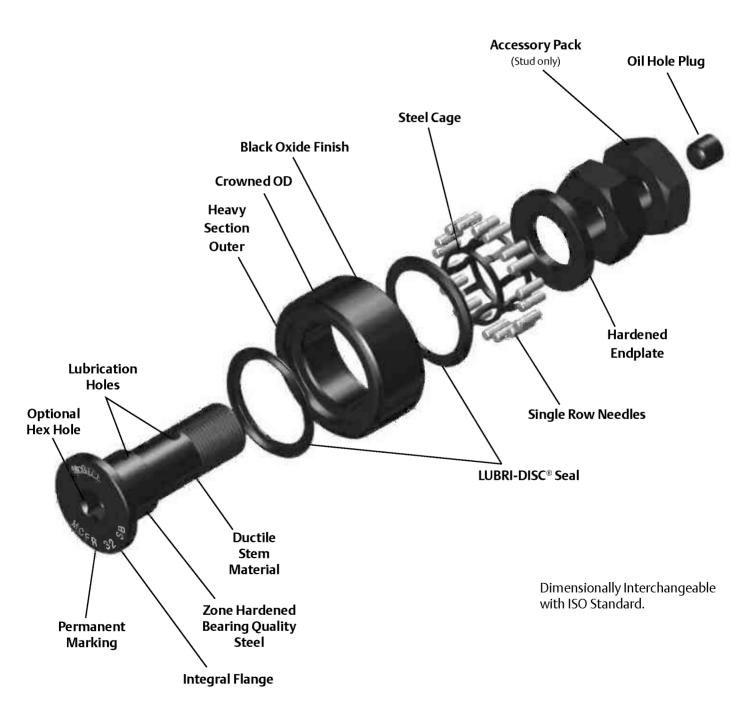
Stud

Mounting Feature: Slot / Hex Hole

BCYR

Part No.	F	RD		w		В	80	II.	Track Roller	Track Roller	
	Roller I	Diameter	Rolle	r Width	Bore	Diameter	Fadjusto	P efo	Dynamic Rating	Static Rating	
With LUBRI-DISC Seals	in	nch nm	ir	nch nm		inch mm		P ef			
	Nem	rati	Moni	1017	Nom	100	Ulters	History	lb/N	lb/N	
BCYR 1 7/8 S	1.875	+0/001	1.000	+0/001	.500	+.0002/0004	1.06	Cylindrical	0116	0 d Ob d	Γ
BCCYR 1 7/8 S	47.63	+0/03	25.40	+0/03	12.70	+.0005/0010	27.0	20 508	See Load-S	peed Chart	
BCYR 2 S	2.000	+0/001	1.250	+0/001	.625	+.0002/0004	1.31	Cylindrical	San Load S	bood Chart	
BCCYR 2 S	50.80	+0/03	31.75	+0/03	15.88	+.0005/0010	33.3	24 610	See Load-S	speed Chart	
BCYR 2 1/4 S	2.250	+0/001	1.250	+0/001	.625	+.0002/0004	1.31	Cylindrical	See Load-S	'nood Chart	
BCCYR 2 1/4 S	57.15	+0/03	31.75	+0/03	15.88	+.0005/0010	33.3	24 610	See Load-3	speed Chart	
BCYR 2 1/2 S	2.500	+0/001	1.500	+0/001	.750	+.0002/0004	1.56	Cylindrical	Can Land 6	speed Chart	
BCCYR 2 1/2 S	63.50	+0/03	38.10	+0/03	19.05	+.0005/0010	39.7	30 762	See Load-3	speed Chart	
BCYR 2 3/4 S	2.750	+0/001	1.500	+0/001	.750	+.0002/0004	1.56 39.7	Cylindrical	Can Land 6	and Chart	
BCCYR 2 3/4 S	69.85	+0/03	38.10	+0/03	.750 19.05	+.0002/0004 +.0005/0010	39.7	30 762	See Load-S	speed Chart	
BCYR 3 S	3.000	+0/001	1.750	+0/001	1.000	+.0001/0005	1.81	Cylindrical	See Load-S	inood Chart	
BCCYR 3 S	76.20	+0/03	44.45	+0/03	25.40	+.0003/0013	46.0	30 762	Gee Load-C	peed Chait	
BCYR 3 1/4 S	3.250	+0/001	1.750	+0/001	1.000	+.0001/0005	1.81	Cylindrical	See Load-S	ineed Chart	
BCCYR 3 1/4 S	82.55	+0/03	44.45	+0/03	25.40	+.0003/0013	46.0	30 762	Gee Load-C	peed Chait	
BCYR 3 1/2 S	3.500	+0/001	2.000	+0/001	1.125	+.0001/0005	2.06	Cylindrical	See Load-S	ineed Chart	
BCCYR 3 1/2 S	88.90	+0/03	50.80	+0/03	28.58	+.0003/0013	52.4	30 762	Gee Load-s	peed Chaft	
BCYR 4 S	4.000	+0/001	2.250	+0/001	1.250	+.0001/0005	2.06	Cylindrical	See Load-S	ineed Chart	
BCCYR 4 S	101.60	+0/03	57.15	+0/03	31.75	+.0003/0013	52.4	30 762	See Load-3	peed Chart	

Metric dimensions for reference only.


Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

BCYR

							7.0	_	-		DCII
Part No.	HC	F	Re	PF	PET	1700	PHI	PF	RET	Limiting	Wife
	Hole Center	Min Boss Diameter	Outer Conver				Shaft Diameter		- 51	Speed	Bearing Weight
With LUBRI-DISC Seals	COMMUNIC.	neh	inch		h Fit ch im		ve Fit		s Fit ch		III
	(Ren	nm (Ret)	mm (Ref)	Moin	Tot	9000001	nm — nii	- Main	:F0E	RPM	, No.
BCYR 1 7/8 S	10,100		.06 1.6							2 1 2 2	
BCCYR 1 7/8 S	.44 11.1	1.25 31.8	N/A	.4995 12.687	±.0002 ±.005	.4995 12.687	±.0002 ±.005	.4995 12.687	±.0002 ±.005	See Load-Speed Chart	.80 .36
BCYR 2 S	.50	1.41	.09 2.4	.6245	±.0002	.6245	±.0002	.6245	±.0002	See Load-Speed	1.05
BCCYR 2 S	12.7	35.7	N/A	15.862	±.005	15.862	±.005	15.862	±.005	Chart	.48
BCYR 2 1/4 S	.50	1.41	.09 2.4	.6245	±.0002	.6245	±.0002	.6245	±.0002	See Load-Speed	1.32
BCCYR 2 1/4 S	12.7	35.7	N/A	15.862	±.005	15.862	±.005	15.862	±.005	Chart	.59
BCYR 2 1/2 S	.56	1.69	.09 2.4	.7495	±.0002	.7495	±.0002	.7495	±.0002	See Load-Speed	1.80
BCCYR 2 1/2 S	14.3	42.9	N/A	19.037	±.005	19.037	±.005	19.037	±.005	Chart	.82
BCYR 2 3/4 S	.56	1.69	.09 2.4	.7495	±.0002	.7495	±.0002	.7495	±.0002	See Load-Speed	2.25
BCCYR 2 3/4 S	14.3	42.9	N/A	19.037	±.005	19.037	±.005	19.037	±.005	Chart	1.02
BCYR 3 S	.63 15.9	2.13 54.0	.13 3.2	.9994 25.385	±.0002	.9994	±.0002	.9994	±.0002 ±.005	See Load-Speed	3.10
BCCYR 3 S	15.9	54.0	N/A	25.365	±.005	25.385	±.005	25.385	±.005	Chart	1.41
BCYR 3 1/4 S	.63 15.9	2.13 54.0	.13 3.2	.9994 25.385	±.0002 ±.005	.9994 25.385	±.0002 ±.005	.9994 25.385	±.0002 ±.005	See Load-Speed Chart	3.62 1.64
BCCYR 3 1/4 S	10.9	54.0	N/A	20,300	1.005	20.300	1.005	20,300	±.005	Gliart	1.04
BCYR 3 1/2 S	.69 17.5	2.44 61.9	.13 3.2	1.1244 28.560	±.0002 ±.005	1.1244 28.560	±.0002 ±.005	1.1244 28.560	±.0002 ±.005	See Load-Speed Chart	4.95 2.25
BCCYR 3 1/2 S	17.5	01.9	N/A	20.000	1.000	20.000	1.000	20.000	1.000	Gilait	2.20
BCYR 4 S	.75 19.1	2.80 71.0	.13 3.2	1.2494 31.735	±.0002 ±.005	1.2494 31.735	±.0002 ±.005	1.2494 31.735	±.0002 ±.005	See Load-Speed Chart	7.05 3.19
BCCYR 4 S	10.1	7 1.0	N/A	31.700	1.000	01.750	1.000	01.700	1.000	Onart	0.10

McGill Metric Cam Followers

McGill Metric CAMROL bearings are available with either a full complement, or caged (retainer type) set of needles featuring black oxide treated bearing steel while conforming to ISO standard envelope dimensions for use mechanical automation or linear motion applications. Our basic features each contribute to improved performance, while the LUBRI-DISC® seal option helps prevent metal to metal contact within the bearing while providing a barrier for contaminant entry and allow venting of excess or old grease during lubrication. In addition to the seal option these bearings are available with several dimensional choices and combinations to provide a solution specific for the application. Within the following section you can learn more about these features and how they can be applied to your application.

Cam Follower Metric Nomenclature

Features and Benefits

Single Row Full Complement Needle Rollers

The needle roller diameter, length, and number have been optimized to provide a high dynamic and static load rating, contained within industry standard bearing envelope dimensions.

Heavy Section Outer

The heavy section outer helps support radial loading and provide proper rolling element support.

Cylindrical Outside Diameter (OD)

The cylindrical OD can improve performance in certain applications such as improved track capacity by maximizing the contact area with the track.

Zone Hardened Raceways

Heat treatment used to precisely harden working surfaces of the raceway and flange. The hardened surfaces provide support for the rolling element contact stresses, while keeping the core of the inner ductile to help absorb shock loads.

Features and Benefits continued

Integral Flange - Stud Type

The integral flange helps maintain bearing integrity throughout the bearing life. Zone hardened to provide wear resistance from incidental contact with the outer or rollers, and provides a sealing surface with LUBRI-DISC® seal option.

Hardened Endplate

The endplate provides a locating shoulder when mounting the stud or yoke style cam follower. Also, similar to the flange, the endplate must resist wear from incidental contact with the outer or rollers. The hardened and ground endplate provides a sealing surface with LUBRI-DISC® seal option.

Roll Formed Threads - Stud Type

Roll forming is the process used to produce threads. By moving the material into shape instead of cutting the threads, the threads are produced to meet class 6G tolerances and are work hardened resulting in improved holding power. Available in both Asian (with "A" suffix) or European Metric as standard.

The cam follower and cam yoke roller bearings are factory lubricated with a medium temperature grease. Contact Application Engineering when application conditions require special lubricants.

Lubrication Holes

Most sizes of McGill CAMROL bearings include lubrication hole(s) to accept a standard drive fitting or an included plug. The oil hole plug is recommended for closing unused lubrication hole to help protect against bearing contamination or lubrication loss.

McGill CAMROL Yoke roller bearings include a lubrication hole to provide a passage for lubrication to the rolling elements from the yoke roller bore. The customer supplied shaft must provide an axial lubrication path to supply bearing.

M^cGILL_® Metric CAMROL Bearings

Features and Benefits continued

Black Oxide FinishBearings have a black oxide finish on all external surfaces.

Permanent Marking

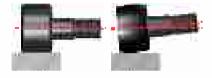
Part number permanently marked on bearing face, helps bearing identification after years of service.

Installation Accessory Pack

All McGill Metric Cam followers include (2) jam nuts to ensure proper thread type (Asian / European), Fitting and plug to help provide proper lubrication path to the rolling elements and prevent contamination from entering the bearing through a unused hole.

Options

Retainer Type


The retainer (cage) option provides heat-treated steel cage for improved durability and wear resistance. The needle separation produces larger lubrication reservoir and helps achieve higher bearing speeds.. The cages are designed with two rollers per pockets (except 13, 16 and 19mm OD's) to help improve static and dynamic load ratings.

Options

LUBRI-DISC® Seal

The CAMROL standard for seals, the LUBRI-DISC seal not only helps keep contaminants out and lubrication in the bearing, but with an integral back plate to separate the metal to metal contact between the outer ring and endplate(s) or flange. The back plate feature reduce friction resulting in lower operating temperatures which can extend grease life and allowing for higher operating speeds. Our seal also includes vents to help prevent seal blowout during relubrication. The LUBRI-DISC seal option has a good balance of sealing and low drag operation essential to a precision cam follower suited for most industrial applications.

Crowned Outside Diameter (OD)

A crown on the OD of a cam follower bearing can help increase bearing life versus a standard cylindrical cam follower. The crown achieves this performance by helping to distribute the stress on the outer ring and rolling elements resulting from misalignment due to mounting inaccuracy or stud deflection. The crown may also help reduce outer skidding in turntable or rotary applications. Not all applications may see the benefit of a crowned OD, consult Application Engineering for quidance for your application.

Hex Hole (Broached)

The hex hole can aide in the installation and removal of stud type cam followers by a more positive hold on the cam follower stud versus a standard screw driver slot. The hex feature is identified with a "B" since it is produced using a broach process. Bearing relubrication from flange end must be considered for sizes under 3".

Eccentric Stud

Eccentric stud option provides a means of adjusting the radial position of the bearing, which can improve the load sharing of inline bearing combinations. Cam follower load sharing helps reduce operation costs by reducing premature failures due to overloaded bearings, the need of precise mounting hole location tolerances and providing ability to realign bearing due to track wear. Eccentric bushing is press fit on stud and unhardened to permit dowel or setscrew for permanent locking.

Additional Options

BHTBroached (Hex) hole at threaded end of cam follower stud.

THTThreaded axial lubrication hole at threaded end of cam follower stud.

THFThreaded axial lubrication hole at flanged end of cam follower stud. Available with all screw driver slot cam followers or broached cam followers over 3".

THBThreaded axial oil hole on both ends of cam follower stud. Available with all screw driver slot cam followers or broached cam followers over 3".

ALG Annular lubrication groove at cam follower stem radial lubrication hole.

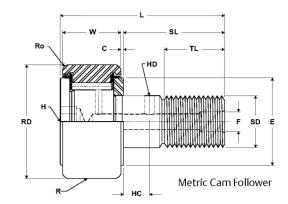
Custom Capabilities

- Customer specified factory grease fill
- Grease fitting installed
- Stud or thread length modifications
- Roller diameter variations or tolerances
- Cam followers grouped or matched diameter tolerance / run out sets
- Custom engineered to order designs

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement / Retained (Caged) Needle Roller


Bearing Quality Steel

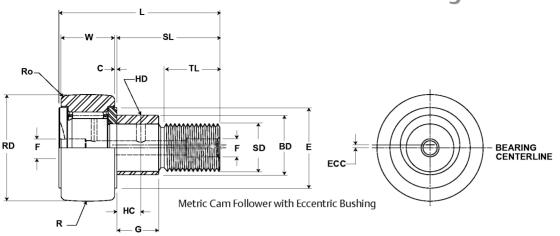
Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

MCF, MCFE


Pa	rt No.	1	RD		W		44	91	C	π	1		B00	6	80	D	Co. Administra
W/O Sanis	With LUBRI⊧DISC	Roller	Diameter	Rolle	r Width	Books	Comment	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Cylindrical Suffix MCF-xx-X	E	Eccentric Base Wow he MCFE-xx	er	Detta 10	
W.O. SESIS	Seal	Nom.	nm nch	Minni	nm nch	Hom	Tol	(Ret)	mm inch	mr inc	n h (Hief)	mm inch	(Ret)	mm inch 0 15 ±.002/006	TRUE	MIN.	N/Ib
MCFR 13 MCFR 13 B MCFR 13 X MCFR 13 BX	MCFR 13 S MCFR 13 SB MCFR 13 SX MCFR 13 SBX	13.000 .5118	+0/050 +0/002 +0/008 +0/0003	9.000 .3543	0/-0.12 +0/-0.005		+0/012 +0/0005	13 .5	.60 .024	7.5 .30	23 .9	500 19.7 Cylindrical	N/A	N/A	N/A	2,060 463	1,650 371
MCF 16 MCF 16 B MCF 16 X MCF 16 BX	MCF 16 S MCF 16 SB MCF 16 SX MCF 16 SBX	16.000 .6299	+0/050 +0/002 +0/008 +0/0003		0/-0.12 +0/-0.005		+0/012 +0/0005	16 .6	.60 .024	9.0 .35	28 1.1	500 19.7 Cylindrical	N/A	N/A	N/A	5,790	2,350
MCFE 16	MCFE 16 S MCFE 16 SB MCFE 16 SX MCFE 16 SBX	16.000 .6299	+0/050 +0/002 +0/008 +0/0003		0/-0.12 +0/-0.005		+0/012 +0/0005	16 .6	.60 .024	9.0 .35	28 1.1	500 19.7 Cylindrical	0.5 .02	7 0.27	9 .35	1,302	528
MCFR 16 B MCFR 16 X MCFR 16 BX	MCFR 16 S MCFR 16 SB MCFR 16 SX MCFR 16 SBX	16.000 .6299	+0/050 +0/002 +0/008 +0/0003		0/-0.12 +0/-0.005		+0/012 +0/0005	16 .6	.60 .024	9.0 .35	28 1.1	500 19.7 Cylindrical	N/A	N/A	N/A	3,430	2,350
MCFRE 16	MCFRE 16 S MCFRE 16 SB MCFRE 16 SX MCFRE 16 SBX	16.000 .6299	+0/050 +0/002 +0/008 +0/0003		0/-0.12 +0/-0.005		+0/012 +0/0005	16 .6	.60 .024	9.0 .35	28 1.1	500 19.7 Cylindrical	0.5 .02	7 0.27	9 .35	771	528
MCF 19 MCF 19 B MCF 19 X MCF 19 BX	MCF 19 S MCF 19 SB MCF 19 SX MCF 19 SBX	19.000 .7480	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005		+0/015 +0/0006	20 .8	.60 .024	11.0 .43	32 1.3	500 19.7 Cylindrical	N/A	N/A	N/A	6,670	5,100
MCFE 19	MCFE 19 SB MCFE 19 SX MCFE 19 SBX	19.000 .7480	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005		+0/015 +0/0006	20 .8	.60 .024	11.0 .43	32 1.3	500 19.7 Cylindrical	0.5 .02	9 0.35	11 .43	1,500	1,147
MCFR 19 MCFR 19 B MCFR 19 X MCFR 19 BX	MCFR 19 S MCFR 19 SB MCFR 19 SX MCFR 19 SBX	19.000 .7480	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005		+0/015 +0/0006	20 .8	.60 .024	11.0 .43	32 1.3	500 19.7 Cylindrical	N/A	N/A	N/A	3,730	4.140
MCFRE 19	MCFRE 19 S MCFRE 19 SB MCFRE 19 SX MCFRE 19 SBX	19.000 .7480	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005		+0/015 +0/0006	20 .8	.60 .024	11.0 .43	32 1.3	500 19.7 Cylindrical	0.5 .02	9 0.35	11 .43	839	931

- $1. Standard\ bearing\ has\ a\ crowned\ roller\ outside\ diameter.\ For\ straight\ cylindrical\ outside\ roller\ diameter,\ add\ suffix\ "X".\ Example\ -\ MCFR-35-X\ or\ MCF-35-SX.$
- 2. Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.
- $3. \, Static \, load \, rating \, is \, based \, on \, stud \, strength \, or \, on \, internal \, rolling \, element \, load \, distribution \, stresses.$

Inch dimensions for reference only.

B-69

MCF, MCFE

Р	art No.	HC	HD	F	E	Fo	E.					A Contraction	WT
	With	Fmi: Cante	H le	Este Shale: Disk	S ff	Duties Contract	Min Eliteratura Eliteratura	Hous Dia	ing Bore imeter	Thread Type	Clamping Torque	Limiting Spend (Grease)	Bearing Weight
W/O Seals	LUBRI⊧DISC Seals	n.	nm nch	m	ım ch	m	ım ch		mm nch	3111	A)	Market I	160
		(600	(800)	(Rhift)	(600)	(800)	10000	None	stor		No.	RPM	100
MCFR 13	MCFR 13 S			3.1 .12	N/A								
MCFR 13 B	MCFR 13 SB			-	3.1 .12	.3	9	5.000	+.012/-0		2.2		.01
MCFR 13 X	MCFR 13 SX	-	-	3.1 .12	N/A	.01	.4	.1969	+.0005/- 0	M5x0.8	19	20,000	.02
MCFR 13 BX	MCFR 13 SBX			-	3.1 .12								
MCF 16	MCF 16 S			.16	N/A								
MCF 16 B	MCF 16 SB			-	.16	.3	11	6.000	+.012/-0		3	40.000	.02
MCF 16 X	MCF 16 SX	-	-	.16	N/A	.01	.4	.2362	+.0005/- 0	M6x1	3 27	13,000	.04
MCF 16 BX	MCF 16 SBX			-	.16								
MCFE 16	MCFE 16 S			.16	N/A								
	MCFE 16 SB			-	.16	.3	11	11.050	+0.025/-0	N/O 4	3	10.000	.02
	MCFE 16 SX	-	-	.16	N/A	.01	.4	.4350	+0.0009/- 0	M6x1	27	13,000	.04
	MCFE 16 SBX			-	.16								
MCFR 16	MCFR 16 S			.16	N/A								
MCFR 16 B	MCFR 16 SB			-	.16	.3	11	6.000	+.012/-0	DAC4	3 27	40 500	.02
MCFR 16 X	MCFR 16 SX	-	-	.16	N/A	.01	.4	.2362	+.0005/-0	M6x1	27	19,500	.04
MCFR 16 BX	MCFR 16 SBX			-	.16								
MCFRE 16	MCFRE 16 S			.16	N/A								
	MCFRE 16 SB			-	.16	.3	11	11.050	+.012/-0	M6x1	3	19,500	.02
	MCFRE 16 SX	-	_	.16	N/A	.01	.4	.4350	+.0005/- 0	IVIOXI	27	19,500	.04
	MCFRE 16 SBX			-	.16								
MCF 19	MCF 19 S			.16	N/A								
MCF 19 B	MCF 19 SB			-	.16	.3	13	8.000	+.015/-0	M8x1.25	8	10,500	.03
MCF 19 X	MCF 19 SX	-	· ·	.16	N/A	.01	.5	.3150	+.0006/- 0	IVIOX 1.25	71	10,500	.07
MCF 19 BX	MCF 19 SBX			-	.16								
MCFE 19	MCFE 19 S			.16	N/A								
	MCFE 19 SB	_		-	.16	.3	13	13.050	+0.025/-0	M8x1.25	8	10,500	.03
	MCFE 19 SX	-	-	.16	N/A	.01	.5	.5138	+0.0009/- 0	IVIOX 1.25	71	10,500	.07
	MCFE 19 SBX			-	.16								
MCFR 19	MCFR 19 S			.16	N/A								
MCFR 19 B	MCFR 19 SB	_		-	.16	.3	13	8.000	+.015/-0	M8x1.25	8	15,500	.03
MCFR 19 X	MCFR 19 SX	-	-	.16	N/A	.01	.5	.3150	+.0006/- 0	WIOX1.20	71	15,500	.07
MCFR 19 BX	MCFR 19 SBX			-	.16								
MCFRE 19	MCFRE 19 S			.16	N/A								
	MCFRE 19 SB	_	_	-	.16	.3	13	13.050	+.015/-0	M8x1.25	8	15,500	.03
	MCFRE 19 SX	_		.16	N/A	.01	.5	.5138	+.0006/- 0	IVIOAT.ZU	71	15,500	.07
	MCFRE 19 SBX			-	.16								

^{4.} Dynamic load should not exceed 50% of Dynamic Rating as a track roller.

 * Sizes 13 - 19 have no lube holes in the threaded end of the stud.

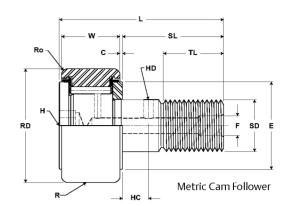
Bearing Selection Page B-3

^{5.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement / Retained (Caged) Needle Roller


Bearing Material: Bearing Quality Steel

Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

MCF, MCFE

Pai	rt No.	1	RD	0	N	95		61	C	TL	1	R	ecc	6	80	m de es	e leter	
W/O Sanis	With LUBRI⊧DISC	Roller	Diameter	Roller	Width	But Ow	68 Bett ²	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Cylindrical Suffix MCF-xx-X	е	Eccentric ase Monthe MCFE-xx	r	Dette 10	Sulli Sulli Silli Silli	
Wice State	S∉al	Table 1	nm nch	m Min	m ch	Heit Main	Tol	(Ret)	mm inch	IR off	n h	mm inch	But	mm inch 0 15	(Red	N/lb	N/Ib	
MCF 22 MCF 22 B MCF 22 X MCF 22 BX	MCF 22 S MCF 22 SB MCF 22 SX MCF 22 SBX	22.000 .8661	+0/050 +0/002 +0/009 +0/0004	12.000	+0/12 +0/005	10.000 +0/- .3937 +0/-	/015	23 .9	.60 .024	12.0 .47	36 1.4	500 19.7 Cylindrical	N/A	+:.002/006 N/A	N/A		10.400	
MCFE 22	MCFE 22 S MCFE 22 SB MCFE 22 SX MCFE 22 SBX	22.000 .8661	+0/050 +0/002 +0/009 +0/0004	.4724	+0/12 +0/005	10.000 +0/- .3937 +0/-		23 .9	.60 .024	12.0 .47	36 1.4	500 19.7 Cylindrical	0.5 .02	10 0.39	13 .51	7,850 1,765	10,400 2,338	
MCFR 22 MCFR 22 B MCFR 22 X MCFR 22 BX	MCFR 22 S MCFR 22 SB MCFR 22 SX MCFR 22 SBX	22.000 .8661	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	10.000 +0/- .3937 +0/-		23 .9	.60 .024	12.0 .47	36 1.4	500 19.7 Cylindrical	N/A	N/A	N/A	5,200	6,050	
MCFRE 22	MCFRE 22 S MCFRE 22 SB MCFRE 22 SX MCFRE 22 SBX	22.000 .8661	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	10.000 +0/- .3937 +0/-		23 .9	.60 .024	12.0 .47	36 1.4	500 19.7 Cylindrical	0.5 .02	10 0.39	13 .51	1,169	1,360	
MCF 22A MCF 22A B MCF 22A X MCF 22A BX	MCF 22A S MCF 22A SB MCF 22A SX MCF 22A SBX	22.000 .8661	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	10.000 +0/- .3937 +0/-		23 .9	.60 .024	13.0 .51	36 1.4	500 19.7 Cylindrical	N/A	N/A	N/A	7.850	10.400	
MCFE 22A	MCFE 22A S MCFE 22A SB MCFE 22A SX MCFE 22A SBX	22.000 .8661	+0/050 +0/002 +0/009 +0/0004	.4724	+0/12 +0/005	10.000 +0/- .3937 +0/-		23 .9	.60 .024	13.0 .51	36 1.4	500 19.7 Cylindrical	0.5 .02	10 0.39	13 .51	1,765	2,338	
MCFR 22A MCFR 22A B MCFR 22A X MCFR 22A BX	MCFR 22A S MCFR 22A SB MCFR 22A SX MCFR 22A SBX	22.000 .8661	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	10.000 +0/- .3937 +0/-		23 .9	.60 .024	13.0 .51	36 1.4	500 19.7 Cylindrical	N/A	N/A	N/A	5,200	6,050	
MCFRE 22A	MCFRE 22A S MCFRE 22A SB MCFRE 22A SX MCFRE 22A SBX	22.000 .8661	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	10.000 +0/- .3937 +0/-		23 .9	.60 .024	13.0 .51	36 1.4	500 19.7 Cylindrical	0.5 .02	10 0.39	13 .51	1,169	1,360	

 $^{1.} Standard bearing \ has \ a \ crowned \ roller \ outside \ diameter. For \ straight \ cylindrical \ outside \ roller \ diameter, \ add \ suffix \ ^x?. \ Example - MCFR-35-X \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ o$

Inch dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Bearing Selection	Nomenclature Aid	Features & Benefits
Page B-3	Page B-62	Page B-63

Product Options

Page B-66

^{2.} Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

 $^{3. \,} Static \, load \, rating \, is \, based \, on \, stud \, strength \, or \, on \, internal \, rolling \, element \, load \, distribution \, stresses.$

^{4.} Dynamic load should not exceed 50% of Dynamic Rating as a track roller.

^{5.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

Metric CAMROL Bearings MGILL Metric CAMROL Bearing MGILL Metric CAMROL Bear

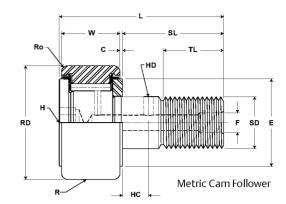
	Part	No.	HTC:	MTI	F	- E	Fo	ď					To the same	Uwr.
W/O Se	eals	With LUBRI⊧DISC	Vivi- Canto	findfalltai. 100 Colombii	Este White Disc	S. ff.x W. i. a.v. B	Darket Courses	Min Chinada Turana	Housi Dia	ing Bore meter	Thread Type	Clamping Torque	Limiting Spent (Grease)	Bearing Weight
10	Juli3	Seals	m	m ch	m	m ch	m in	m ch	l l	nm nch		Min m-th	RRM	166
			(Ret)	(Rot)	(Ref)	(Ret)	(Ref)	(Ref)	Nem	(Total		10-100		10)
MCF 22		MCF 22 S			.16	N/A								
MCF 22 B	3	MCF 22 SB	_		-	.16	.5	15	10.000	+.015/-0	M10x1	15	9,000	.04
MCF 22 X	(MCF 22 SX	-	_	.16	N/A	.02	.6	.3937	+.0006/- 0	WITOXT	133	3,000	.09
MCF 22 B	ВX	MCF 22 SBX			-	.16								
MCFE 22		MCFE 22 S			.16	N/A								
		MCFE 22 SB			-	.16	.5	15	13.050	+0.025/-0	M10x1	15	9,000	.04
		MCFE 22 SX	-	_	.16	N/A	.02	.6	.5138	+0.0009/- 0	IVITOXT	133	9,000	.09
		MCFE 22 SBX			-	.16								
MCFR 22		MCFR 22 S			.16	N/A								
MCFR 22	В	MCFR 22 SB			-	.16	.5	15	10.000	+.015/-0	M10x1	15	13,500	.04
MCFR 22	Χ	MCFR 22 SX	-	_	.16	N/A	.02	.6	.3937	+.0006/- 0	IVITOXT	133	13,300	.09
MCFR 22	ВХ	MCFR 22 SBX			-	.16								
MCFRE 2	2	MCFRE 22 S			.16	N/A								
		MCFRE 22 SB			-	.16	.5	15 .6	13.050	+0.025/-0	M10x1	15 133	13,500	.04 .09
		MCFRE 22 SX	-	-	.16	N/A	.02	.6	.5138	+0.0009/- 0	IVITOXT	133	13,300	.09
		MCFRE 22 SBX			-	.16								
MCF 22A		MCF 22A S			.16	N/A								
MCF 22A	В	MCF 22A SB			-	5 .2	.5	15	10.000	+.015/-0	M10x1.25	15	9.000	.04
MCF 22A	Х	MCF 22A SX	-	-	.16	N/A	.02	.6	.3937	+.0006/- 0	W110X1.25	133	9,000	.09
MCF 22A	BX	MCF 22A SBX			-	52								
MCFE 224	Α	MCFE 22A S			.16	N/A								
		MCFE 22A SB			-	52	.5	15	13.050	+0.025/-0	M10x1.25	15	9,000	.04
		MCFE 22A SX		_	.16	N/A	.02	.6	.5138	+0.0009/- 0	WITOXT.25	133	3,000	.09
		MCFE 22A SBX			-	.2								
MCFR 22	Α	MCFR 22A S			.16	N/A								
MCFR 22	ΑВ	MCFR 22A SB			-	5 .2	.5	15	10.000	+.015/-0	M10x1.25	15	13,500	.04
MCFR 22/	ΑX	MCFR 22A SX			.2 .2	N/A	.02	.6	.3937	+.0006/- 0	WITOXT.25	133	10,000	.09
MCFR 22	A BX	MCFR 22A SBX			-	.2 .2								
MCFRE 22	2A	MCFRE 22A S			.16	N/A								
		MCFRE 22A SB			-	5.2	.5	15	13.050	+0.025/-0	M10x1.25	15	13,500	.04
		MCFRE 22A SX	-		.16	N/A	.02	.6	.5138	+0.0009/- 0	WITOX1.25	133	13,300	.09
		MCFRE 22A SBX			-	.2								

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement / Retained (Caged) Needle Roller

Bearing Quality Steel


Bearing Material: Bearing Qualit

Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

MCF, MCFE

Pai	rt No.	1	RD	- (W	PE	61	C	TI.	L		ECC	6	80	D	San balletin	
W/O Sasks	With LUBRI-DISC	Roller	Diameter	Rolle	r Width	Bud flowerer	Stud Length	Endplate Extension		Length Overall	Cylindrical Suffix MCF-xx-X		Eccentric Base Worke MCFE-xx	er	Dette 113	Statu Statu Sililiy	
111000000	S⊕al	Tables.	nm nch	in Ministra	nm ich	Hom. Tol	(Ret)	mm inch	inc inc	m :h	mm inch	Main	mm inch	(Red)	N/Ib	N/Ib	
MCF 26 MCF 26 B MCF 26 X MCF 26 BX	MCF 26 S MCF 26 SB MCF 26 SX MCF 26 SBX	26.000 1.0236	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	10.000 +0/015 .3937 +0/0006	23 .9	.60 .024	12.0 .47	36 1.4	500 19.7 Cylindrical	N/A	+:.002/-:.006 N/A	N/A	7.050	10,400	
MCFE 26	MCFE 26 S MCFE 26 SB MCFE 26 SX MCFE 26 SBX	26.000 1.0236	+0/050 +0/002 +0/009 +0/0004	.4724	+0/12 +0/005	10.000 +0/015 .3937 +0/0006	23 .9	.60 .024	12.0 .47	36 1.4	500 19.7 Cylindrical	0.5 .02	10 0.39	13 .51	7,850 1,765	2,338	
MCFR 26 MCFR 26 B MCFR 26 X MCFR 26 BX	MCFR 26 S MCFR 26 SB MCFR 26 SX MCFR 26 SBX	26.000 1.0236	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	10.000 +0/015 .3937 +0/0006	23 .9	.60 .024	12.0 .47	36 1.4	500 19.7 Cylindrical	N/A	N/A	N/A	5,200	6,050	
MCFRE 26	MCFRE 26 S MCFRE 26 SB MCFRE 26 SX MCFRE 26 SBX	26.000 1.0236	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	10.000 +0/015 .3937 +0/0006	23 .9	.60 .024	12.0 .47	36 1.4	500 19.7 Cylindrical	0.5 .02	10 0.39	13 .51	1,169	1,360	
MCF 26A MCF 26A B MCF 26A X MCF 26A BX	MCF 26A S MCF 26A SB MCF 26A SX MCF 26A SBX	26.000 1.0236	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	10.000 +0/015 .3937 +0/0006	23 .9	.60 .024	13.0 .51	36 1.4	500 19.7 Cylindrical	N/A	N/A	N/A	7.850	10,400	
MCFE 26A	MCFE 26A S MCFE 26A SB MCFE 26A SX MCFE 26A SBX	26.000 1.0236	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	10.000 +0/015 .3937 +0/0006	23 .9	.60 .024	13.0 .51	36 1.4	500 19.7 Cylindrical	0.5 .02	10 0.39	13 .51	1,765	2,338	
MCFR 26A MCFR 26A B MCFR 26A X MCFR 26A BX	MCFR 26A S MCFR 26A SB MCFR 26A SX MCFR 26A SBX	26.000 1.0236	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	10.000 +0/015 .3937 +0/0006	23 .9	.60 .024	13.0 .51	36 1.4	500 19.7 Cylindrical	N/A	N/A	N/A	5,200	6,050	
MCFRE 26A	MCFRE 26A S MCFRE 26A SB MCFRE 26A SX MCFRE 26A SBX	26.000 1.0236	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	10.000 +0/015 .3937 +0/0006	23 .9	.60 .024	13.0 .51	36 1.4	500 19.7 Cylindrical	0.5 .02	10 0.39	13 .51	1,169	1,360	

 $^{1.} Standard bearing \ has \ a \ crowned \ roller \ outside \ diameter. For \ straight \ cylindrical \ outside \ roller \ diameter, \ add \ suffix \ ^x?. \ Example - MCFR-35-X \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ o$

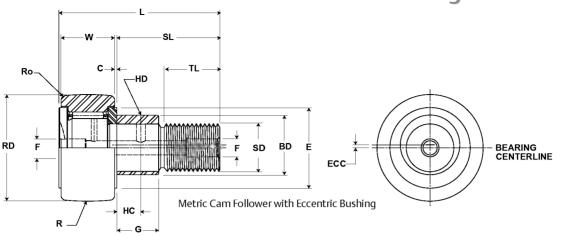
Inch dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Bearing Selection Page B-3 Features & Benefits Page B-63 Product Options Page B-66 Technical Engineering Page B-143

 $^{2. \, {\}sf Clamping \ torque \ is \ based \ on \ dry \ threads.} \, If \, threads \, are \, lubricated, \, use \, half \, of value \, shown.$


^{3.} Static load rating is based on stud strength or on internal rolling element load distribution stresses.

^{4.} Dynamic load should not exceed 50% of Dynamic Rating as a track roller.

^{5.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

Metric CAMROL Bearings MG ILL.

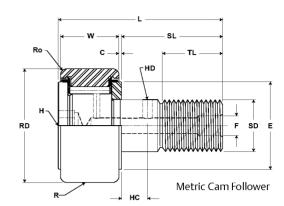
Par	t No.	HC	HD	F	E.	Fo	E.					A container	W
W/O Seals	With LUBRI-DISC	Finite	H le	Late White Disc	S. ff. s. Mile ax B	Daller Connec	With Chinashal Chinashal	Hous Dia	ing Bore meter	Thread Type	Clamping Torque	Limiting Spent (Gresse)	Bearing Weight
WIO Seals	Seals	m	m ch	m in	m ch	m in	m ch	l l	mm nch		Non	RPM	166
		(Ret)	(800)	(RM)	(800)	(Ref)	(Ref)	None	orati		Min m-Rh	POTM	100
MCF 26	MCF 26 S			.16	N/A								
MCF 26 B	MCF 26 SB			-	.16	.5	15	10.000	+.015/-0	Magazi	15	0.000	.05
MCF 26 X	MCF 26 SX	-	-	.16	N/A	.02	.6	.3937	+.0006/- 0	M10x1	133	9,000	.11
MCF 26 BX	MCF 26 SBX			-	.16								
MCFE 26	MCFE 26 S			.16	N/A								
	MCFE 26 SB			-	.16	.5	15	13.050	+0.025/-0	Magua	15	0.000	.05
	MCFE 26 SX	-	-	.16	N/A	.02	.6	.5138	+0.0009/- 0	M10x1	133	9,000	.11
	MCFE 26 SBX			-	.16								
MCFR 26	MCFR 26 S			.16	N/A								
MCFR 26 B	MCFR 26 SB			-	.16	.5	15	10.000	+.015/-0		15	40 500	.05
MCFR 26 X	MCFR 26 SX	-	-	.16	N/A	.02	.6	.3937	+.0006/- 0	M10x1	133	13,500	.11
MCFR 26 BX	MCFR 26 SBX			-	.16								
MCFRE 26	MCFRE 26 S			.16	N/A								
	MCFRE 26 SB			_	.16	.5	15	13.050	+0.025/-0		15	40 500	.05
	MCFRE 26 SX	-	-	.16	N/A	.02	.6	.5138	+0.0009/- 0	M10x1	15 133	13,500	.11
	MCFRE 26 SBX			-	.16								
MCF 26A	MCF 26A S			.16	N/A								
MCF 26A B	MCF 26A SB			-	5 2	.5	19	10.000	+.015/-0		22	0.000	.05
MCF 26A X	MCF 26A SX	-	-	.16	N/A	.02	.7	.3937	+.0006/- 0	M10x1.25	22 195	9,000	.11
MCF 26A BX	MCF 26A SBX			-	5.2								
MCFE 26A	MCFE 26A S			.16	N/A								
	MCFE 26A SB			-	.2	.5	19	13.050	+0.025/-0	M10x1.25	22 195	9.000	.05
	MCFE 26A SX	-	-	.16	N/A	.02	.7	.5138	+0.0009/- 0	WITUX1.25	195	9,000	.11
	MCFE 26A SBX			-	.2								
MCFR 26A	MCFR 26A S			.16	N/A								
MCFR 26A B	MCFR 26A SB			-	.5 .2	.5	19	10.000	+.015/-0	M40-4 DE	22	42 500	.05
MCFR 26A X	MCFR 26A SX	-	-	.16	N/A	.02	.7	.3937	+.0006/- 0	M10x1.25	22 195	13,500	.11
MCFR 26A BX	MCFR 26A SBX			-	.2 .2								
MCFRE 26A	MCFRE 26A S			.16	N/A								
	MCFRE 26A SB			-	.2	.5	19	13.050	+0.025/-0	M40v4.25	22	12 500	.05
	MCFRE 26A SX	-	-	.16	N/A	.02	.7	.5138	+0.0009/- 0	M10x1.25	22 195	13,500	.11
	MCFRE 26A SBX			-	.2 .2								

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement / Retained (Caged) Needle Roller

D 1 O 11 CL 1


Bearing Material: Bearing Quality Steel

Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

MCF, MCFE

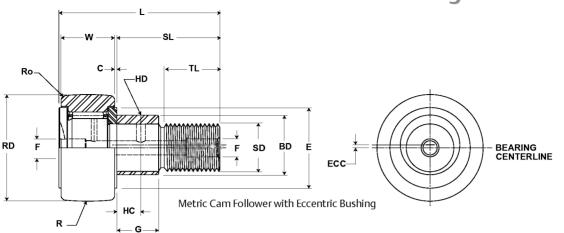
Pai	rt No.	1	RD	- 0	N	PE .	61	C	TI.	L		ECC	6	80	D	Control Station
W/O Sasks	With LUBRI-DISC	Roller	Diameter	Rollei	Width	Buil Commer	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Cylindrical Suffix MCF-xx-X		Eccentric Base Worke MCFE-xx	er	Dette 113	100 E
11.0.01111	S∉al	Tallini.	nm nch	n in	im ch	tinett Hom. Tol	(Ret)	mm inch	mi inc	n h (Men)	mm inch	(Red	mm inch	(Red)	N/Ib	N/Ib
MCF 30 MCF 30 B MCF 30 X MCF 30 BX	MCF 30 S MCF 30 SB MCF 30 SX MCF 30 SBX	30.000 1.1811	+0/050 +0/002 +0/009 +0/0004	14.000	+0/12 +0/005	12.000 +0/018 .4724 +0/0007	25	.60 .024	14.0 .55	40 1.6	500 19.7 Cylindrical	N/A	+: 002/-: 006 N/A	N/A	44 000	45.000
MCFE 30	MCFE 30 S MCFE 30 SB MCFE 30 SX MCFE 30 SBX	30.000 1.1811	+0/050 +0/002 +0/009 +0/0004	.5512	+0/12 +0/005	12.000 +0/018 .4724 +0/0007	25 .9	.60 .024	14.0 .55	40 1.6	500 19.7 Cylindrical	0.5	11 0.43	15 .59	11,080 2,491	15,300 3,440
MCFR 30 MCFR 30 B MCFR 30 X MCFR 30 BX	MCFR 30 S MCFR 30 SB MCFR 30 SX MCFR 30 SBX	30.000 1.1811	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	12.000 +0/018 .4724 +0/0007	25 .9	.60 .024	14.0 .55	40 1.6	500 19.7 Cylindrical	N/A	N/A	N/A	6,860	8,050
MCFRE 30	MCFRE 30 S MCFRE 30 SB MCFRE 30 SX MCFRE 30 SBX	30.000 1.1811	+0/050 +0/002 +0/009 +0/0004		+0/12 +0/005	12.000 +0/018 .4724 +0/0007	25 .9	.60 .024	14.0 .55	40 1.6	500 19.7 Cylindrical	0.5 .02	11 0.43	15 .59	1,542	1,810
MCF 32 MCF 32 B MCF 32 X MCF 32 BX	MCF 32 S MCF 32 SB MCF 32 SX MCF 32 SBX	32.000 1.2598	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	12.000 +0/018 .4724 +0/0007	25 .9	.60 .024	14.0 .55	40 1.6	500 19.7 Cylindrical	N/A	N/A	N/A	11.080	15,300
MCFE 32	MCFE 32 S MCFE 32 SB MCFE 32 SX MCFE 32 SBX	32.000 1.2598	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	12.000 +0/018 .4724 +0/0007	25 .9	.60 .024	14.0 .55	40 1.6	500 19.7 Cylindrical	0.5 .02	11 0.43	15 .59	2,491	3,440
MCFR 32 MCFR 32 B MCFR 32 X MCFR 32 BX	MCFR 32 S MCFR 32 SB MCFR 32 SX MCFR 32 SBX	32.000 1.2598	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	12.000 +0/018 .4724 +0/0007	25 .9	.60 .024	14.0 .55	40 1.6	500 19.7 Cylindrical	N/A	N/A	N/A	6,860	8.050
MCFRE 32	MCFRE 32 S MCFRE 32 SB MCFRE 32 SX MCFRE 32 SBX	32.000 1.2598	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	12.000 +0/018 .4724 +0/0007	25 .9	.60 .024	14.0 .55	40 1.6	500 19.7 Cylindrical	0.5 .02	11 0.43	15 .59	1,542	1,810

 $^{1.} Standard bearing \ has \ a \ crowned \ roller \ outside \ diameter. For \ straight \ cylindrical \ outside \ roller \ diameter, \ add \ suffix \ ^x?. \ Example - MCFR-35-X \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ o$

Inch dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

	Bearing Selection	Nomenclature Aid	Features & Benefits	Product Options
R-75	Page B-3	Page B-62	Page B-63	Page B-66


 $^{2. \, {\}sf Clamping \ torque \ is \ based \ on \ dry \ threads.} \, If \, threads \, are \, lubricated, \, use \, half \, of value \, shown.$

^{3.} Static load rating is based on stud strength or on internal rolling element load distribution stresses.

^{4.} Dynamic load should not exceed 50% of Dynamic Rating as a track roller.

^{5.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

Metric CAMROL Bearings MSGILL®

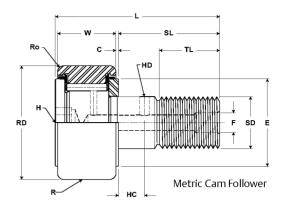
With With		Part	No.	HT.	MIT	F	- E	Fa	ď					The Steel	WIT
MCF 30 B MCF 30 S	W/O S	eals	With	Proje- Cantin	1000		S-ff-x	Differ Courses	Emmanage	Housi Dia	ing Bore meter			(Gresse)	Bearing Weight
MCF 30 S MCF 30 S		cuis		in in	ım ıch	m	ım ch	m in	m ch	L. L.	nm nch		New	pps/	
MCF 30 B MCF 30 SS MCF				(Reb	(8000)		(Ref)	(800)	(Ref)	Notes	rion		10.00		
MCF 30 X MCF 30 SX MCF 30	MCF 30		MCF 30 S			6 .24									
MCF 30 X MCF 30 SX MCF 30	MCF 30 E	В	MCF 30 SB				.24		19			M12x1 5	22	6 400	.09
MCFE 30 SB MCF	MCF 30 2	X	MCF 30 SX	.236	.118	.24		.04	.7	.4724	+.0007/-0	2	195	5,100	.20
MCFR 30 SK MC	MCF 30 E	BX	MCF 30 SBX				.24								
MCFR 30 SX MCF	MCFE 30)	MCFE 30 S			.24									
MCFR 30 SX MC			MCFE 30 SB	N/A	N/A		.24		19	15.050	+0.025/-0	M12x1.5	22	6.400	.09
MCFR 30 S MCFR						.24		.04	./	.5925	+0.0009/- 0		195	.,	.20
MCFR 30 S MCF			MCFE 30 SBX				.24								
MCFR 30 X MCFR 30 BX MCFR 30 SEX MCFR 30 SEX 236 MCFR 30 SEX 118 MCFR 30 SEX MCFR 30 SEX 6/24 MCFR 30 SEX MCFR 30 SEX N/A MCFR 30 SEX N/A MCFR 30 SEX MCFR 30 SEX N/A MCFR 30 SEX N/A MCFR 30 SEX MCFR 30 SEX N/A MCFR 32 S						.24									
MCFR 30 SX MCFR 30 SBX MCFRE 30 SX MCFRE 3									19		+.018/-0	M12x1.5	22	9,600	.09
MCFRE 30 MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 30 SB MCFRE 32 SB MCFR				.230	.118	.24		.04	./	.4724	+.00077-0		195	,	.20
MCFRE 30 SB N/A N															
MCFR 30 SX MCFR 30 SSX MCFR 30 SSX MCFR 32 S MCF 32 S MCF 32 S MCF 32 S MCF 32 S MCF 32 S MCF 32 S MCF 32 S MCF 32 S MCF 32 S MCF 32 S MCF 32 S MCF 32 S MCF 32 S MCFR	MCFRE 3	30				.24									
MCFR 30 SBX				N/A	N/A				19 7		+0.025/-0	M12x1.5	22 105	9,600	.09
MCF 32 MCF 32 S MCF 32 S MCF 32 SB MCF 32 SB MCF 32 SB MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SBX 6 400 10 10 10 10 10 10 10 10 10 10 10 10 1						.24		.04	.,	.0020	10.0003/-0		155		.20
MCF 32 SB						- 6									
MCF 32 X MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCF 32 SX MCFR 3															
MCF 32 BX MCF 32 SB MCF 32												M12x1.5	57 504	6,400	.10 22
MCFE 32 S MCFE 3				.200				.01							
MCFR 32 SB MCFR 32 SB															
MCFR 32 SX MCFR 32 SBX N/A N/A N/A	IVICE 32	2													
MCFR 32 SBX				N/A	N/A						+0.025/-0 +0.0009/- 0	M12x1.5	57 504	6,400	.10 .22
MCFR 32 MCFR 32 S MCFR 32															
MCFR 32 B MCFR 32 SB 6 3 .236	MCER 32	2													
MCFR 32 X MCFR 32 SX M								4.0		40.000	. 040/.0				40
MCFR 32 BX												M12x1.5	504	9,600	.10 .22
MCFRE 32 S MCFRE 32 SB MCFRE 32 SB MCFRE 32 SX N/A N/A N/A S N/A N/A S N/A S N/A N/A S N/A S N/A N/A S N/A S N/A N/A N/A S N/A S N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A															
MCFRE 32 SB N/A N/A N/A						6,									
MCFRE 32 SX N/A N/A 6 N/A .04 .8 .5925 +0.0009/- 0 N/12X1.5 504 9,600 .22						.24		1.0	24	15.050	±0.005/.0		57		10
				N/A	N/A	6					+0.0009/-0	M12x1.5	504	9,600	.10
			MCFRE 32 SBX				6 .24								

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement / Retained (Caged) Needle Roller

. . .


Bearing Material: Bearing Quality Steel

Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

MCF, MCFE

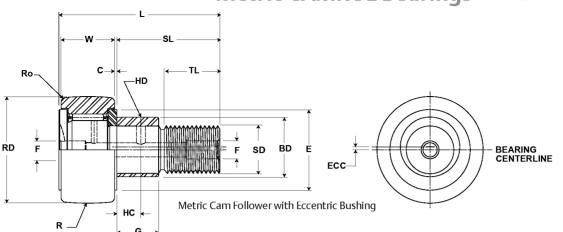
Pa	rt No.	1	RD	1	w	-		61	C	TL.	L	R	ECC	. 6	80		
W/O Sabls	With LUBR⊫DISC	Roller	Diameter	Rolle	r Width	Book O	.weter	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Cylindrical Suffix MCF-xx-X		Eccentric Base Worthe MCFE-xx	er	Dette U	Statu Statu ≘300
W:U Seas	Seal	li li	nm nch		nm nch			110000	mm inch	mr Inc		mm inch		mm inch	2000000	N/Ib	N/Ib
MOF OF	MCF 35 S	Nom.	Tat	Mon.	Tol.	Ham.	Tol	(Reti	(Rut)	(Ref)	(Ref)	Hadies	(Ret)	+.002/006	(Ret)	0.000	_22
MCF 35 B	MCF 35 SB	35.000 1.3780	+0/050 +0/002		+0/12 +0/005	16.000 ±	+0/018 ·0/0007	33 1.3	.80 .031	18.0 .71	52 2.0	500 19.7	N/A	N/A	N/A		
MCF 35 X MCF 35 BX	MCF 35 SX MCF 35 SBX	.,,,,,	+0/011 +0/0004			,,,,,,					_,,	Cylindrical				16,970 3,815	28,500 6,407
MCFE 35	MCFE 35 S MCFE 35 SB	35.000	+0/050 +0/002	18 000	+0/12	16.000 -	±0/ 010	33	.80	18.0	52	500 19.7	0.5	14	20	16,970 3,815	28,500 6,407
	MCFE 35 SX MCFE 35 SBX	1.3780	+0/011 +0/0004	.7087	+0/005		-0/0007	1.3	.031	.71	2.0	Cylindrical	.02	0.55	.79		
MCFR 35 MCFR 35 B	MCFR 35 S MCFR 35 SB	35.000	+0/050 +0/002	18,000	+0/12	16.000 -	+0/018	33	.80	18.0	52	500 19.7	NICA	NICA	N1/A		
MCFR 35 X MCFR 35 BX	MCFR 35 SX MCFR 35 SBX	1.3780	+0/011 +0/0004		+0/005	.6299 +	-0/0007	1.3	.031	.71	2.0	Cylindrical	N/A	N/A	N/A	10.890	15,900
MCFRE 35	MCFRE 35 S MCFRE 35 SB	35.000	+0/050 +0/002	18 000	+0/12		+0/- 018	33	.80	18.0	52	500 19.7	0.5	14	20	2,448	3,575
	MCFRE 35 SX MCFRE 35 SBX	1.3780	+0/011 +0/0004	.7087	+0/005		0/0007	1.3	.031	.71	2.0	Cylindrical	.02	0.55	.79		
MCF 40 MCF 40 B	MCF 40 S MCF 40 SB	40.000	+0/050 +0/002	20.000	+0/12	18.000 -	+0/- 018	37	.80	19.0 58	58	500 19.7					
MCF 40 X MCF 40 BX	MCF 40 SX MCF 40 SBX	1.5748	+0/011 +0/0004	.7874	+0/005	.7087 +		1.4	.031	.75	2.3	Cylindrical	N/A	N/A	N/A	19,420	32,200
MCFE 40	MCFE 40 S MCFE 40 SB	40.000	+0/050 +0/002	20 000	+0/12	18.000 -	+0/- 018	37	80	19.0	58	500 19.7	1	16	22	4,366	7,239
	MCFE 40 SX MCFE 40 SBX	1.5748	+0/011 +0/0004	.7874	+0/005	.7087 +		1.4	.031	.75	2.3	Cylindrical	1 16 .04 0.63		.87		
MCFR 40 MCFR 40 B	MCFR 40 S MCFR 40 SB	40.000	+0/050 +0/002	20,000	+0/12	18.000 -	+0/- 018	37	.80	19.0	58	500 19.7					
MCFR 40 X MCFR 40 BX	MCFR 40 SX MCFR 40 SBX	1.5748	+0/011 +0/0004	.7874	+0/005	.7087 +		1.4	.031	.75	2.3	Cylindrical	N/A	N/A	N/A	13,340	19,800
MCFRE 40	MCFRE 40 S MCFRE 40 SB	40.000	+0/050 +0/002	20,000	+0/12	18,000	10/ 010	27			500 19.7	1 1	16	22	2,999	4,451	
	MCFRE 40 SX MCFRE 40 SBX	1.5748	+0/011 +0/0004	.7874	+0/12			37 1.4	.80 .031	19.0 .75	58 2.3	Cylindrical	.04	16 0.63	.87		

 $^{1.} Standard bearing \ has \ a \ crowned \ roller \ outside \ diameter. For \ straight \ cylindrical \ outside \ roller \ diameter, \ add \ suffix \ ^x?. \ Example - MCFR-35-X \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ o$

Inch dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

	Bearing Selection
7	Page B-3


^{2.} Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

^{3.} Static load rating is based on stud strength or on internal rolling element load distribution stresses.

^{4.} Dynamic load should not exceed 50% of Dynamic Rating as a track roller.

^{5.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

Metric CAMROL Bearings MSGILL®

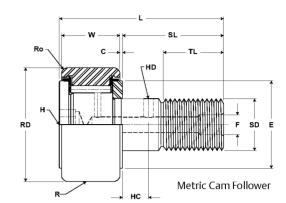
Р	art No.	HT.	HITT:	F	E.	Fo	E.					B. 3	WIT
W/O Seals	With LUBRI-DISC	Finis Cantin	Contactuals Fills Colombia	Late Water Disc	S. ff. s.	Outer Courses	With Chinashal Chinashal	Housi Dia	ing Bore meter	Thread Type	Clamping Torque	Limiting Spend (Gresse)	Bearing Weight
W/O Seals	Seals	n in	ım ıch	m in	m ch	m in	m ch	Į,	nm nch		Man an-ita	RPM	100
		(Ret)	(Rivif)	(Ref)	(800)	(Ref)	(Ref)	Period	Total		444		90
MCF 35	MCF 35 S			.24	N/A								
MCF 35 B	MCF 35 SB	8	3	-	.8 .31	1.0	24	16.000	+.018/-0	M16x1.5	85	4,200	.16
MCF 35 X	MCF 35 SX	.315	.118	.24	N/A	.04	.9	.6299	+.0007/- 0	WITOXT.5	752	4,200	.35
MCF 35 BX	MCF 35 SBX			-	.8 .31								
MCFE 35	MCFE 35 S			.24	N/A								
	MCFE 35 SB	N/A	N/A	-	.8 .31	1.0	24	20.050	+0.025/-0	M16x1.5	85	4,200	.16
	MCFE 35 SX	10/7	10/2	.24	N/A	.04	.9	.7894	+0.0009/- 0	WITOXT.0	752	4,200	.35
	MCFE 35 SBX			-	.8 .31								
MCFR 35	MCFR 35 S			.24	N/A								
MCFR 35 B	MCFR 35 SB	8	3	-	.8 .31	1.0	24	16.000	+.018/-0	M16x1.5	85	6,300	.16 .35
MCFR 35 X	MCFR 35 SX	.315	.118	.24	N/A	.04	.9	.6299	+.0007/- 0		752	0,000	.35
MCFR 35 BX	MCFR 35 SBX			-	.8 .31								
MCFRE 35	MCFRE 35 S			.24	N/A								
	MCFRE 35 SB	N/A	N/A	-	.8 .31	1.0 .04	24 .9	20.050 .7894	+0.025/-0 +0.0009/- 0	M16x1.5	85 752	6,300	.16 .35
	MCFRE 35 SX			.24	N/A	.04	.9	.7094	+0.0009/-0		/ 52	·	.35
	MCFRE 35 SBX			- 6	.8 .31								-
MCF 40	MCF 40 S			.24	N/A								
MCF 40 B	MCF 40 SB	.315	3 .118	- 6	.8 .31	1.5 .06	27 1.1	18.000 .7087	+.018/-0 +.0007/- 0	M18x1.5	85 752	3,300	.25 .55
MCF 40 X	MCF 40 SX	.515	.110	.24	N/A	.00	1.1	.7007	1.00077-0		132		.55
MCF 40 BX	MCF 40 SBX			- 6	.31								
MCFE 40	MCFE 40 S			.24	N/A								
	MCFE 40 SB	N/A	N/A	- 6	.31	1.5 .06	27 1.1	22.050 .8681	+0.025/-0 +0.0009/- 0	M18x1.5	85 752	3,300	.25 .55
	MCFE 40 SX MCFE 40 SBX			.24	N/A 8 .31	,							
MCFR 40	MCFR 40 SBX			- 6	.31 N/A								
MCFR 40 B	MCFR 40 S MCFR 40 SB			.24 -	8 .31								
MCFR 40 B	MCFR 40 SB	.315	.118	- 6 .24	.31 N/A	1.5 .06	27 1.1	18.000 .7087	+.018/-0 +.0007/- 0	M18x1.5	85 752	5,000	.25 .55
MCFR 40 X	MCFR 40 SBX			.24	8 .31								
MCFRE 40	MCFRE 40 S			6 .24	.31 N/A								
MOLINE 40	MCFRE 40 SB			.24	8 .31	4.5		00.050	.0.005/.0				
	MCFRE 40 SX	N/A	N/A	6 .24	.31 N/A	1.5 .06	27 1.1	22.050 .8681	+0.025/-0 +0.0009/- 0	M18x1.5	85 752	5,000	.25 .55
	MCFRE 40 SBX			.24	8 .31								
	WOLLE TO ODX	l	I	_	.31								

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement / Retained (Caged) Needle Roller

. . .


Bearing Material: Bearing Quality Steel

Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

MCF, MCFE

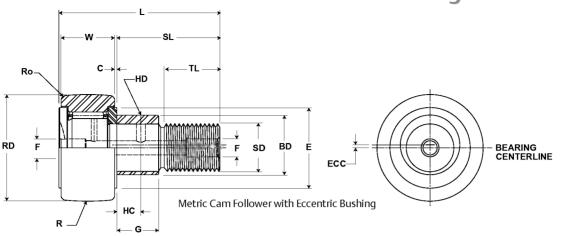
Pai	rt No.	1	RD	- (W	64	fil.	C	TI.	1	R.	ESC	6	80	D. 1555.	C. Links
W/O Sasis	With LUBRI⊧DISC	Roller	Diameter	Rolle	r Width	Bud flowerer	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Cylindrical Suffix MCF-xx-X		Eccentric Base Worke MCFE-xx	er	Dette 113	frest violite Statu Silling
111000000	S⊕al	Tables.	nm nch	ir Minis	nm ich	Hom. Tol	(Ret)	mm inch	inc inc	n h	mm inch	Main	mm inch	Ototo	N/Ib	N/Ib
MCF 40A MCF 40A B MCF 40A X MCF 40A BX	MCF 40A S MCF 40A SB MCF 40A SX MCF 40A SBX	40.000 1.5748	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	18.000 +0/018 .7087 +0/0007	37 1.4	.80 .031	20.0 .79	58 2.3	500 19.7 Cylindrical	N/A	+:.002/-:.006 N/A	N/A	19,420	32,200
MCFE 40A	MCFE 40A S MCFE 40A SB MCFE 40A SX MCFE 40A SBX	40.000 1.5748	+0/050 +0/002 +0/011 +0/0004	.7874	+0/12 +0/005	18.000 +0/018 .7087 +0/0007	37 1.4	.80 .031	20.0 .79	58 2.3	500 19.7 Cylindrical	1 .04	16 0.63	22 .87	4,366	7,239
MCFR 40A MCFR 40A B MCFR 40A X MCFR 40A BX	MCFR 40A S MCFR 40A SB MCFR 40A SX MCFR 40A SBX	40.000 1.5748	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	18.000 +0/018 .7087 +0/0007	37 1.4	.80 .031	20.0 .79	58 2.3	500 19.7 Cylindrical	N/A	N/A	N/A	13,340	19,800
MCFRE 40A	MCFRE 40A S MCFRE 40A SB MCFRE 40A SX MCFRE 40A SBX	40.000 1.5748	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	18.000 +0/018 .7087 +0/0007	37 1.4	.80 .031	20.0 .79	58 2.3	500 19.7 Cylindrical	1 .04	16 0.63	22 .87	2,999	4,451
MCF 47 MCF 47 B MCF 47 X MCF 47 BX	MCF 47 S MCF 47 SB MCF 47 SX MCF 47 SBX	47.000 1.8504	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	20.000 +0/021 .7874 +0/0008	41 1.6	.80 .031	21.0 .83	66 2.6	500 19.7 Cylindrical	N/A	N/A	N/A	25,690	46,700
MCFE 47	MCFE 47 S MCFE 47 SB MCFE 47 SX MCFE 47 SBX	47.000 1.8504	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	20.000 +0/021 .7874 +0/0008	41 1.6	.80 .031	21.0 .83	66 2.6	500 19.7 Cylindrical	1 .04	18 0.71	24 .94	5,776	10,499
MCFR 47 MCFR 47 B MCFR 47 X MCFR 47 BX	MCFR 47 S MCFR 47 SB MCFR 47 SX MCFR 47 SBX	47.000 1.8504	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	20.000 +0/021 .7874 +0/0008	41 1.6	.80 .031	21.0 .83	66 2.6	500 19.7 Cylindrical	N/A	N/A	N/A	17,750	29,800
MCFRE 47	MCFRE 47 S MCFRE 47 SB MCFRE 47 SX MCFRE 47 SBX	47.000 1.8504	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	20.000 +0/021 .7874 +0/0008	41 1.6	.80 .031	21.0 .83	66 2.6	500 19.7 Cylindrical	.04	18 0.71	24 .94	3,991	6,700

 $^{1.} Standard bearing \ has \ a \ crowned \ roller \ outside \ diameter. For \ straight \ cylindrical \ outside \ roller \ diameter, \ add \ suffix \ ^x?. \ Example - MCFR-35-X \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ o$

Inch dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

В	earing Selection
	Page B-3


 $^{2. \, {\}sf Clamping \ torque \ is \ based \ on \ dry \ threads.} \, If \, threads \, are \, lubricated, \, use \, half \, of value \, shown.$

 $^{3. \,} Static \, load \, rating \, is \, based \, on \, stud \, strength \, or \, on \, internal \, rolling \, element \, load \, distribution \, stresses.$

^{4.} Dynamic load should not exceed 50% of Dynamic Rating as a track roller.

^{5.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

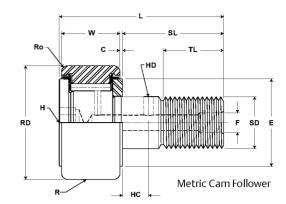
	Part No.	HT.	MIT	F	E.	Fa	E.					A continue	LWT.
W/O Seals	With LUBRI∍DISC	Printer Cantie	funtisticals Tilli Gilliantsi	Entration Disc	S-ff.s W. L. M. B	Differ Courses	Stine Stine	Housi Dia	ing Bore meter	Thread Type	Clamping Torque	Limiting Spend (Grease)	Bearing Weight
TITO Occurs	Seals	n	ım ich	m	m ch	m in	m ch	l.	nm nch		Man an-Rh	RPM	166
		(Reb	(8000)	(Ref.)	(Righ)	(800)	(Ref)	Nom	(figh		10.00		101
MCF 40A	MCF 40A S			.24	N/A								
MCF 40A B	MCF 40A SB	10	3	-	.8 .31	1.5	27	18.000	+.018/-0	M18x1.5	118	3,300	.25 .55
MCF 40A X	MCF 40A SX	.394	.118	.24	N/A	.06	1.1	.7087	+.0007/- 0	IVITOX1.5	1,044	3,300	.55
MCF 40A BX	MCF 40A SBX			-	.8 .31								
MCFE 40A	MCFE 40A S			.6 .24	N/A								
	MCFE 40A SB	N/A	N/A	-	.8 .31	1.5	27	22.050	+0.025/-0	M18x1.5	118	3,300	.25 .55
	MCFE 40A SX	I IN/A	IN/A	.6 .24	N/A	.06	1.1	.8681	+0.0009/- 0	WITOXT.5	1,044	3,300	.55
	MCFE 40A SBX			-	.8 .31								
MCFR 40A	MCFR 40A S			.24	N/A								
MCFR 40A B	MCFR 40A SB	10	3	-	.8 .31	1.5	27	18.000	+.018/-0	M18x1.5	118	5,000	.25 .55
MCFR 40A X	MCFR 40A SX	.394	.118	.6 .24	N/A	.06	1.1	.7087	+.0007/- 0	WITOXT.5	1,044	3,000	.55
MCFR 40A BX	MCFR 40A SBX			-	.8 .31								
MCFRE 40A	MCFRE 40A S			.24	N/A								
	MCFRE 40A SB	N/A	N/A	-	.8 .31	1.5	27 1.1	22.050	+0.025/-0	M18x1.5	118	5.000	.25 .55
	MCFRE 40A SX	I IVA	I IV/A	.6 .24	N/A	.06	1.1	.8681	+0.0009/- 0	IVITOX1.5	1,044	3,000	.55
	MCFRE 40A SBX			-	.8 .31								
MCF 47	MCF 47 S			.8 .31	N/A								
MCF 47 B	MCF 47 SB	9	4	-	10 .39	1.5	30	20.000	+.021/-0	M20x1.5	118	2,600	.39 .86
MCF 47 X	MCF 47 SX	.354	.157	.8 .31	N/A	.06	1.2	.7874	+.0008/- 0	WIZOX1.0	1,044	2,000	.86
MCF 47 BX	MCF 47 SBX			-	10 .39								
MCFE 47	MCFE 47 S			.8 .31	N/A								
	MCFE 47 SB	N/A	N/A	-	10 .39	1.5	30	24.050	+0.025/-0	M20x1.5	118	2,600	.39
	MCFE 47 SX	''''	1 177	.8 .31	N/A	.06	1.2	.9469	+0.0009/- 0		1,044	2,000	.86
	MCFE 47 SBX			-	10 .39								
MCFR 47	MCFR 47 S			.8 .31	N/A								
MCFR 47 B	MCFR 47 SB	9	4_	-	10 .39	1.5	30	20.000	+.021/-0	M20x1.5	118	3,900	.39 .86
MCFR 47 X	MCFR 47 SX	.354	.157	.8 .31	N/A	.06	1.2	.7874	+.0008/- 0		1,044	0,000	.86
MCFR 47 BX	MCFR 47 SBX			-	10 .39								
MCFRE 47	MCFRE 47 S			.8 .31	N/A								
	MCFRE 47 SB	N/A	N/A	-	10 .39	1.5	30	24.050	+0.025/-0	M20x1.5	118	3,900	.39 .86
	MCFRE 47 SX	1975		.8 .31	N/A	.06	1.2	.9469	+0.0009/- 0	III.ZOX1.U	1,044	3,300	.86
	MCFRE 47 SBX			-	10 .39								

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement / Retained (Caged) Needle Roller

. . .


Bearing Material: Bearing Quality Steel

Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

MCF, MCFE

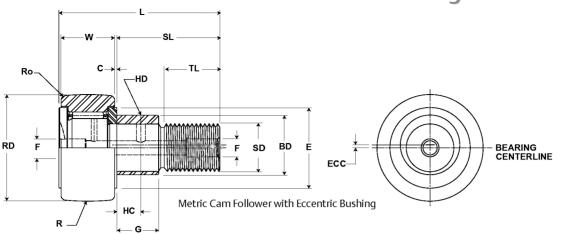
Pai	rt No.	į,	RD	- (W	84	61	C	TI.	L		ECC	6	80	D	Control of the
W/O Sanis	With LUBR⊩DISC	Roller	Diameter	Rolle	r Width	Bud Downer	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Cylindrical Suffix MCF-xx-X		Eccentric Base Worke MCFE-xx	er	Dette 113	SUIL.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	S∉al	Fillion.	nm nch	ir Minis	nm ich	tion Tol	iReti	mm inch	mi inc	m :h	mm inch	(Red	mm inch	(Red)	N/Ib	N/Ib
MCF 47A MCF 47A B MCF 47A X MCF 47A BX	MCF 47A S MCF 47A SB MCF 47A SX MCF 47A SBX	47.000 1.8504	+0/050 +0/002 +0/011 +0/0004	24.000	+0/12 +0/005	20.000 +0/021 .7874 +0/0008	41	.80 .031	22.0 .87	66 2.6	500 19.7 Cylindrical	N/A	+:.002/006 N/A	N/A	25 600	46 700
MCFE 47A	MCFE 47A S MCFE 47A SB MCFE 47A SX MCFE 47A SBX	47.000 1.8504	+0/050 +0/002 +0/011 +0/0004	.9449	+0/12 +0/005	20.000 +0/021 .7874 +0/0008	41 1.6	.80 .031	22.0 .87	66 2.6	500 19.7 Cylindrical	1 .04	18 0.71	24 .94	25,690 5,776	46,700 10,499
MCFR 47A MCFR 47A B MCFR 47A X MCFR 47A BX	MCFR 47A S MCFR 47A SB MCFR 47A SX MCFR 47A SBX	47.000 1.8504	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	20.000 +0/021 .7874 +0/0008	41 1.6	.80 .031	22.0 .87	66 2.6	500 19.7 Cylindrical	N/A	N/A	N/A	17,750	29,800
MCFRE 47A	MCFRE 47A S MCFRE 47A SB MCFRE 47A SX MCFRE 47A SBX	47.000 1.8504	+0/050 +0/002 +0/011 +0/0004		+0/12 +0/005	20.000 +0/021 .7874 +0/0008	41 1.6	.80 .031	22.0 .87	66 2.6	500 19.7 Cylindrical	1 .04	18 0.71	24 .94	3,991	6,700
MCF 52 MCF 52 B MCF 52 X MCF 52 BX	MCF 52 S MCF 52 SB MCF 52 SX MCF 52 SBX	52.000 2.0472	+0/050 +0/002 +0/013 +0/0005		+0/12 +0/005	20.000 +0/021 .7874 +0/0008	41 1.6	.80 .031	21.0 .83	66 2.6	500 19.7 Cylindrical	N/A	N/A	N/A	25,690	46.700
MCFE 52	MCFE 52 S MCFE 52 SB MCFE 52 SX MCFE 52 SBX	52.000 2.0472	+0/050 +0/002 +0/013 +0/0005		+0/12 +0/005	20.000 +0/021 .7874 +0/0008	41 1.6	.80 .031	21.0 .83	66 2.6	500 19.7 Cylindrical	1 .04	18 0.71	24 .94	5,776	10,499
MCFR 52 MCFR 52 B MCFR 52 X MCFR 52 BX	MCFR 52 S MCFR 52 SB MCFR 52 SX MCFR 52 SBX	52.000 2.0472	+0/050 +0/002 +0/013 +0/0005		+0/12 +0/005	20.000 +0/021 .7874 +0/0008	41 1.6	.80 .031	21.0 .83	66 2.6	500 19.7 Cylindrical	N/A	N/A	N/A	17,750	29,800
MCFRE 52	MCFRE 52 S MCFRE 52 SB MCFRE 52 SX MCFRE 52 SBX	52.000 2.0472	+0/050 +0/002 +0/013 +0/0005		+0/12 +0/005	20.000 +0/021 .7874 +0/0008	41 1.6	.80 .031	21.0 .83	66 2.6	500 19.7 Cylindrical	.04	18 0.71	24 .94	3,991	6,700

 $^{1.} Standard bearing \ has \ a \ crowned \ roller \ outside \ diameter. For \ straight \ cylindrical \ outside \ roller \ diameter, \ add \ suffix \ ^x?. \ Example - MCFR-35-X \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ MCF-35-SX \ or \ o$

Inch dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

Bearing Selection	
Page B-3	


 $^{2. \, {\}sf Clamping \ torque \ is \ based \ on \ dry \ threads.} \, If \, threads \, are \, lubricated, \, use \, half \, of value \, shown.$

^{3.} Static load rating is based on stud strength or on internal rolling element load distribution stresses.

^{4.} Dynamic load should not exceed 50% of Dynamic Rating as a track roller.

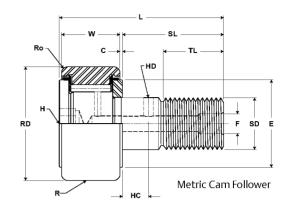
^{5.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

	Part No.	HT.	hm	F	E.	Fc	E.					70.72	WT
W/O Seals	With LUBRI-DISC	Proje Canter	funitalitais HIII Gillian III	Entrafeir Dia	S.ff.x W B	Differ Courses	Shirt Character Character	Hous Dia	ing Bore meter	Thread Type	Clamping Torque	Limiting Spent (Gresse)	Bearing Weight
W O Court	Seals	n in	ım ıch	m in	m ch	m in	m ch	- t	nm nch		Min m-th	RRM	No.
		(Reb	(8001)	(Ref)	(Ret)	(Ref)	(Ref)	Nom	(fot		10.00		10)
MCF 47A	MCF 47A S			.8 .31	N/A								
MCF 47A B	MCF 47A SB	12	4	-	10 .39	1.5	30	20.000	+.021/-0	M20x1.5	118	2,600	.39 .86
MCF 47A X	MCF 47A SX	.472	.157	.8 .31	N/A	.06	1.2	.7874	+.0008/- 0	IVIZUX 1.5	1,044	2,000	.86
MCF 47A BX	MCF 47A SBX			-	10 .39								
MCFE 47A	MCFE 47A S			.8 .31	N/A								İ
	MCFE 47A SB	N/A	NI/A	-	10 .39	1.5	30	24.050	+0.025/-0	M20x1.5	118	2,600	.39 .86
	MCFE 47A SX	IN/A	N/A	.8 .31	N/A	.06	1.2	.9469	+0.0009/- 0	IVIZUX 1.5	1,044	2,000	.86
	MCFE 47A SBX			-	10 .39								
MCFR 47A	MCFR 47A S			.8 .31	N/A								
MCFR 47A B	MCFR 47A SB	12	4	-	10 .39	1.5	30	20.000	+.021/-0	M20x1.5	118	3,900	.39 .86
MCFR 47A X	MCFR 47A SX	.472	.157	.8 .31	N/A	.06	1.2	.7874	+.0008/- 0	IVIZUX 1.5	1,044	3,900	.86
MCFR 47A B	X MCFR 47A SBX			-	10 .39								
MCFRE 47A	MCFRE 47A S			.8 .31	N/A								
	MCFRE 47A SB	NI/A	NI/A	-	10 .39	1.5	30 1.2	24.050	+0.025/-0	M20x1.5	118	3.900	.39 .86
	MCFRE 47A SX	N/A	N/A	.8 .31	N/A	.06	1.2	.9469	+0.0009/- 0	IVIZUX 1.5	1,044	3,900	.86
	MCFRE 47A SBX			-	10 .39								
MCF 52	MCF 52 S			.8 .31	N/A								
MCF 52 B	MCF 52 SB	9	4	-	10 .39	1.5	36	20.000	+.021/-0	M20x1.5	118	2.600	.45 .99
MCF 52 X	MCF 52 SX	.354	.157	.8 .31	N/A	.06	1.4	.7874	+.0008/- 0	IVIZOX 1.5	1,044	2,000	.99
MCF 52 BX	MCF 52 SBX			-	10 .39								
MCFE 52	MCFE 52 S			.8 .31	N/A								
	MCFE 52 SB	N/A	N/A	-	10 .39	1.5	36	24.050	+0.025/-0	M20x1.5	118	2.600	.45 .99
	MCFE 52 SX	19/75	I IVA	.8 .31	N/A	.06	1.4	.9469	+0.0009/- 0	WIZOX1.0	1,044	2,000	.99
	MCFE 52 SBX			-	10 .39								
MCFR 52	MCFR 52 S			.8 .31	N/A								
MCFR 52 B	MCFR 52 SB	9	4	-	10 .39	1.5	36	20.000	+.021/-0	M20x1.5	118	3,900	.45 .99
MCFR 52 X	MCFR 52 SX	.354	.157	.8 .31	N/A	.06	1.4	.7874	+.0008/- 0	IVIZUAT.S	1,044	3,300	.99
MCFR 52 BX	MCFR 52 SBX			-	10 .39								
MCFRE 52	MCFRE 52 S			.8 .31	N/A								
	MCFRE 52 SB	N/A	N/A	-	10 .39	1.5	36	24.050	+0.025/-0	M20x1.5	118	3.900	.45
	MCFRE 52 SX	I IVA	I IN/A	.8 .31	N/A	.06	1.4	.9469	+0.0009/- 0	IVIZUAT.S	1,044	3,300	.99
	MCFRE 52 SBX			-	10 .39								

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement / Retained (Caged) Needle Roller


Bearing Material: Bearing Quality Steel

> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

MCF, MCFE

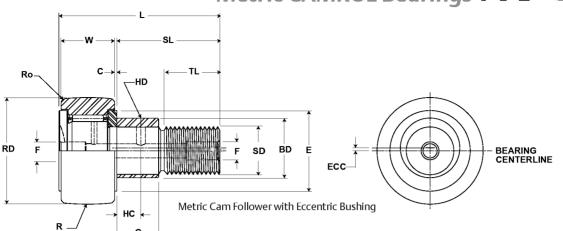
No.	1	RD	- 0	W	84		61	C	TL	L	R	ECC	. 6	80		
With	Roller	Diameter	Rolle	r Width	Book (Gover	11111	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Cylindrical Suffix MCF-xx-X		Eccentric Base Monthe MCFE-xx	r	Den i	Yrest omiler Suit ≘3000
Seal	CONTRACTOR OF THE PARTY OF	1000			#####	2111	100000	- CANCELLE	10000000		mm inch	and a	mm inch	Service .	N/lb	N/Ib
MCF 52A S	Nom.	+0/050	MUM.	HOL.	Heim. 1	OI.	IROD	(1001)	ticeti	(MM)	500	(seen)	+:002/-:006	DEFE		
MCF 52A SB	52.000	+0/002					41 1.6	.80 031	22.0 87	66 2.6	19.7	N/A	N/A	N/A		
MCF 52A SX MCF 52A SBX	2.0472	+0/013 +0/0005	l	. 6,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.0	.001	.07	2.0	Cylindrical				25 690	46,700
MCFE 52A S		+0/050									500 10.7				5,776	10,499
	52.000 2.0472		24.000 .9449	+0/12 +0/005	20.000 +0/- .7874 +0/	021 .0008	41 1.6	.80 .031	22.0 .87	66 2.6	19.7	1 .04	18 0.71	24 .94		
MCFE 52A SBX		+0/013 +0/0005									Cylindrical					
MCFR 52A SR		+0/050 +0/002									500 19.7					
MCFR 52A SX	52.000 2.0472	+0/013						.80 .031	.87	66 2.6	Culindrian	N/A	N/A	N/A		
MCFR 52A SBX		+0/0005									Cylindrical				17,750 3 991	29,800 6,700
MCFRE 52A S MCFRE 52A SB	52 000	+0/050 +0/002	24 000	+0/- 12	20.000 +0/-	. 021	/11	80	22.0	66	500 19.7	1	18	2/	0,001	0,700
MCFRE 52A SX	2.0472	+0/013							.87	2.6	Cylindrical	.04 0.71		.94		
MCF 62 S											500					
MCF 62 SB	62.000	+0/002					50	.80	25.0	80	19.7	N/A	N/A	N/A		
MCF 62 SX MCF 62 SBX	2.4403	+0/013 +0/0005	1.1417	10/003	.5445 10/-	.0000	1.5	.001	.50	5.1	Cylindrical				38.840	65,400
MCFE 62 S		+0/050 +0/002									500 19.7				8,732	14,703
MCFE 62 SX	62.000 2.4409	+0/013					50 1.9	.80 .031	25.0 .98	80 3.1	Outin daile at	.04	22 0.87	.10		
MCFE 62 SBX		+0/0005									Cylindrical					
MCFR 62 S MCFR 62 SB	62 000	+0/050 +0/002	29 000	+0/- 12	24 000 +0/-	. 021	50	80	25.0	80	500 19.7					
MCFR 62 SX	2.4409	+0/013					1.9	.031	.98	3.1	Cylindrical	N/A	N/A	N/A		
											,				26,380 5,931	46,300 10,409
MCFRE 62 SB	62.000	+0/050 +0/002					50		25.0		19.7	1	22_	28		
MCFRE 62 SX	2.4409	+0/013 +0/0005		+0/005	.9449 +0/	8000.	1.9	.031	.98	3.1	Cylindrical	.04	0.87	.10		
	MCF 52A S MCF 52A SB MCF 52A SB MCF 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFR 52A SB MCFR 52A SB MCFR 52A SB MCFR 52A SB MCFR 52A SB MCFR 52A SB MCFR 52A SB MCFR 52B MCFR 52B MCFR 52B MCFR 62 SB MCFR 62 SB MCFE 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB MCFR 62 SB	MCF 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52A SB MCFE 52B MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB MCFE 62 SB	Note	Roller Diameter Rolle Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller Roller	MCF 52A S MCF 52A S MCFE 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 52A S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S MCFR 62 S M	MCF 52A S HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005 HO/005	MCF 52A S S S S S S S S S S	With LUBRI DISC S	MCF 52A S HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO -005 HO	With LUBRI DISC Mich With With With With Endplate Minimum Thread Length Extension Minimum Thread Length Extension Minimum Thread Length Extension Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minimum Minim	Roller Diameter Roller Width Study Endplate Extension Minimum Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada	With LUBRI OISC S. 3 Minimum inch Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildle Wildl	With LUSH Diameter Roller Width Stud Endolate Minimum Length Cylindrical Stud Stud Endolate Minimum Cylindrical Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud Stud S	## Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Co	With LUBRI DISC More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S More 52A S	Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Color Col

^{1.} Standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, add suffix "X". Example - MCFR-35-X or MCF-35-SX.

Inch dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

Bearing Selection	Nomenclature Aid	Features & Benefits	Product Options	Technical Engineering
Page B-3	Page B-62	Page B-63	Page B-66	Page B-143


^{2.} Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

^{3.} Static load rating is based on stud strength or on internal rolling element load distribution stresses.

^{4.} Dynamic load should not exceed 50% of Dynamic Rating as a track roller.

^{5.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

Metric CAMROL Bearings MGILL Metric CAMROL Bearing MGILL Metric CAMROL Bear

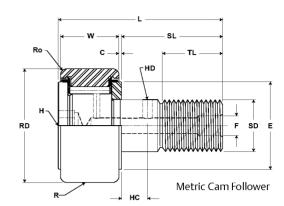
Pa	rt No.	mc	hm	F	100	Fa	E.				Harris and Commercial	A trackless	W.
W/O Seals	With LUBRI-DISC	Rivin Canto	füntfallt sin. Hillio Gillion tol	Entrafair Dia	S-ff.s W. L. M. B	Differ Courses	Stine Stine	Hous Dia	ing Bore meter	Thread Type	Clamping Torque	Limiting Spend (Grease)	Bearing Weight
Tiro ocuis	Seals	m in	ım ich	m	m ch	m in	m ch	l.	nm nch		Man an-Rh	RPM	100
		(Reb	(8008)	(Rid)	(Righ)	(800)	(Ref)	Nom	(10)		10.00		≘
MCF 52A	MCF 52A S			.8 .31	N/A								
MCF 52A B	MCF 52A SB	12	4	-	10 .39	1.5	36	20.000	+.021/-0	M20x1.5	216	2,600	.45
MCF 52A X	MCF 52A SX	.472	.157	.8 .31	N/A	.06	1.4	.7874	+.0008/- 0	IVIZUX1.5	1,912	2,000	.99
MCF 52A BX	MCF 52A SBX			-	10 .39								
MCFE 52A	MCFE 52A S			.8 .31	N/A								
	MCFE 52A SB	N1/A	NI/A	-	10 .39	1.5	36	24.050	+0.025/-0	MOONE F	216	2 600	.45
	MCFE 52A SX	N/A	N/A	.8 .31	N/A	.06	1.4	.9469	+0.0009/- 0	M20x1.5	1,912	2,600	.99
	MCFE 52A SBX			-	10 .39								
MCFR 52A	MCFR 52A S			.8 .31	N/A								
MCFR 52A B	MCFR 52A SB	12	4	-	10 .39	1.5	36	20,000	+.021/-0	M00 4 5	216	0.000	.45
MCFR 52A X	MCFR 52A SX	.472	.157	.8 .31	N/A	.06	1.4	.7874	+.0008/-0	M20x1.5	1,912	3,900	.99
MCFR 52A BX	MCFR 52A SBX			-	10 .39								
MCFRE 52A	MCFRE 52A S			.8 .31	N/A								
	MCFRE 52A SB	N1/A	NI/A	-	10 .39	1.5	36	24.050	+0.025/-0	MOONE	216	2.000	.45 .99
	MCFRE 52A SX	N/A	N/A	.8 .31	N/A	.06	36 1.4	.9469	+0.0009/- 0	M20x1.5	1,912	3,900	.99
	MCFRE 52A SBX			-	10 .39								
MCF 62	MCF 62 S			.8 .31	N/A								
MCF 62 B	MCF 62 SB	11	4	-	14 .55	2.0	44	24.000	+.021/-0	MOANAE	216	0.400	.81
MCF 62 X	MCF 62 SX	.433	.157	.8 .31	N/A	.08	1.7	.9449	+.0008/- 0	M24x1.5	1,912	2,100	1.79
MCF 62 BX	MCF 62 SBX			-	14 .55								
MCFE 62	MCFE 62 S			.8 .31	N/A								
	MCFE 62 SB	N1/6	N1/4	-	14 .55	2.0	63	28.050	+0.025/-0	MOANA E	216	2.400	.81
	MCFE 62 SX	N/A	N/A	.8 .31	N/A	.08	2.5	.1043	+0.0009/- 0	M24x1.5	1,912	2,100	1.79
	MCFE 62 SBX			-	14 .55								
MCFR 62	MCFR 62 S			.8 .31	N/A								
MCFR 62 B	MCFR 62 SB	11	4	-	14 .55	2.0	63	24.000	+.021/-0	MOANA E	216	2.400	.81
MCFR 62 X	MCFR 62 SX	.433	.157	.8 .31	N/A	.08	2.5	.9449	+.0008/- 0	M24x1.5	1,912	3,100	1.79
MCFR 62 BX	MCFR 62 SBX			-	14 .55								
MCFRE 62	MCFRE 62 S			.31	N/A								
	MCFRE 62 SB	N1/A	NI/A	-	14 .55	2.0	63	28.050	+0.025/-0	MOANA 5	216	2.400	.81
	MCFRE 62 SX	N/A	N/A	.8 .31	N/A	.08	2.5	.1043	+0.0009/- 0	M24x1.5	1,912	3,100	1.79
	MCFRE 62 SBX			-	14 .55								

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement / Retained (Caged) Needle Roller

Bearing Quality Steel


Bearing Material:

Seal Type:

LUBRI-DISC® **Lubrication:** Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

MCF, MCFE

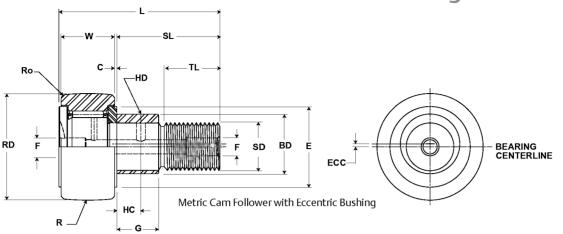
Pai	rt No.	1	RD	- 1	W		ш	61	C	TL	1	R	EBC	- 6	80	m	
W/O Sabls	With LUBRI⊧DISC	Roller	Diameter	Rolle	r Width	Build	Constant	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Cylindrical Suffix MCF-xx-X		Eccentric Base Monthe MCFE-xx	r	Denta III	Trest namer Stalls ≘3000
W/O Seeks	Stal	CONTRACTOR OF	nm nch		nm ich	10000	i.	and the second	mm inch	mr inc		mm inch	7970000	mm inch	20000000	N/Ib	N/Ib
		Non.	Tot	Mont	Tot.	Ham.	Tol	(Ret)	(Rith)	(Ref)	(Ref)	Hadies	(Ret)	+.002/006	(Ref)	- 1000	
MCF 62A B MCF 62A X	MCF 62A S MCF 62A SB MCF 62A SX	62.000 2.4409	+0/050 +0/002		+0/12 +0/005		+0/021 +0/0008	50 1.9	.80 .031	25.0 .98	80 3.1	500 19.7	N/A	N/A	N/A		
MCF 62A X	MCF 62A SBX		+0/013 +0/0005									Cylindrical				38,840	65,400
MCFE 62A	MCFE 62A S MCFE 62A SB	62.000	+0/050 +0/002		+0/12		+0/021	50	.80	25.0	80	500 19.7	1	22	28	8,732	14,703
	MCFE 62A SX MCFE 62A SBX	2.4409	+0/013 +0/0005		+0/005	.9449	+0/0008	1.9	.031	.98	3.1	Cylindrical	.04	0.87	.10		
MCFR 62A MCFR 62A B MCFR 62A X	MCFR 62A S MCFR 62A SB MCFR 62A SX	62.000 2.4409	+0/050 +0/002 +0/013	1.1417	+0/12 +0/005		+0/021 +0/0008	50 1.9	.80 .031	25.0 .98	80 3.1	500 19.7 Cylindrical	N/A	N/A	N/A		
MCFR 62A BX MCFRE 62A	MCFR 62A SBX MCFRE 62A S		+0/0005	1								500				26,380 5,931	46,300 10,409
	MCFRE 62A SB MCFRE 62A SX MCFRE 62A SBX	62.000 2.4409	+0/002 +0/013 +0/0005	1.1417	+0/12 +0/005		+0/021 +0/0008	50 1.9	.80 .031	25.0 .98	80 3.1	19.7 Cylindrical	.04	22 0.87	28 .10		
MCF 72 MCF 72 B	MCF 72 S MCF 72 SB	72.000	+0/050 +0/002		+0/12		+0/021	50	.80	25.0	80	500 19.7	N/A	N/A	N/A		
MCF 72 X MCF 72 BX	MCF 72 SX MCF 72 SBX	2.8346	+0/013 +0/0005		+0/005	.9449	+0/0008	1.9	.031	.98	3.1	Cylindrical	11// (14// (14/71	38,840	65,400
MCFE 72	MCFE 72 S MCFE 72 SB	72.000	+0/050 +0/002		+0/12		+0/021	50	.80	25.0	80	500 19.7	1	22	28	8,732	14,703
	MCFE 72 SX MCFE 72 SBX	2.8346	+0/013 +0/0005		+0/005	.9449	+0/0008	1.9	.031	.98	3.1	Cylindrical	.04	0.87	.10		
MCFR 72 MCFR 72 B	MCFR 72 S MCFR 72 SB	72.000	+0/050 +0/002		+0/12		+0/021	50	.80	25.0	80	500 19.7	N/A	N/A	N/A		
MCFR 72 X MCFR 72 BX	MCFR 72 SX MCFR 72 SBX	2.8346	+0/013 +0/0005		+0/005	.9449	+0/0008	1.9	.031	.98	3.1	Cylindrical	INICA	1907	IWA	26,380	46,300
MCFRE 72	MCFRE 72 S MCFRE 72 SB	72.000	+0/050 +0/002		+0/12		+0/021	50	.80	25.0	80	500 19.7	1	22	28	5,931	10,409
	MCFRE 72 SX MCFRE 72 SBX	2.8346	+0/013 +0/0005		+0/005	.9449	+0/0008	1.9	.031	.98	3.1	Cylindrical	.04	0.87	.10		

^{1.} Standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, add suffix "X". Example - MCFR-35-X or MCF-35-SX.

Inch dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

	Bearing Selection	Nomenclature Aid	Features & Benefits
5	Page B-3	Page B-62	Page B-63


^{2.} Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

^{3.} Static load rating is based on stud strength or on internal rolling element load distribution stresses.

^{4.} Dynamic load should not exceed 50% of Dynamic Rating as a track roller.

^{5.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

Metric CAMROL Bearings MSGILL®

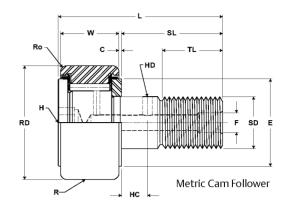
Pa	rt No.	HT.	MIT	F	- E	Fo	E.					A continue	WIT
W/O Seals	With LUBRI∍DISC	Proje Canter	findationis Tilli Tillianis	Entration Disc	S FF.S	Duties Courses	Shirt Shirtship Shirtship	Housi Dia	ing Bore meter	Thread Type	Clamping Torque	Limiting Spend (Grease)	Bearing Weight
Wo ocuis	Seals	n	ım ıch	m	ım ch	m in	m ch	l.	nm nch		Man m 46	RPM	100
		(Reb	(8005)	(Ref)	(Ret)	(Ref)	(Ref)	Nem	(Total		10-10-		
MCF 62A	MCF 62A S			.8 .31	N/A								
MCF 62A B	MCF 62A SB	12	4	-	14 .55	2.0	63	24.000	+.021/-0	M24x1.5	216	2,100	.81
MCF 62A X	MCF 62A SX	.472	.157	.8 .31	N/A	.08	2.5	.9449	+.0008/- 0	WIZ-XI.S	1,912	2,100	1.79
MCF 62A BX	MCF 62A SBX			-	14 .55								
MCFE 62A	MCFE 62A S			.8 .31	N/A								
	MCFE 62A SB	N/A	N/A	-	14 .55	2.0	63	28.050	+0.025/-0	M24x1.5	216	2,100	.81
	MCFE 62A SX	IN/A	IN/A	.8 .31	N/A	.08	2.5	.1043	+0.0009/- 0	IVIZ4X1.J	1,912	2,100	1.79
	MCFE 62A SBX			-	14 .55								
MCFR 62A	MCFR 62A S			.8 .31	N/A								
MCFR 62A B	MCFR 62A SB	12	4	-	14 .55	2.0	63	24.000	+.021/-0	M24x1.5	216	3,100	.81
MCFR 62A X	MCFR 62A SX	.472	.157	.8 .31	N/A	.08	2.5	.9449	+.0008/- 0	1012471.5	1,912	5,100	1.79
MCFR 62A BX	MCFR 62A SBX			-	14 .55								
MCFRE 62A	MCFRE 62A S			.8 .31	N/A								
	MCFRE 62A SB	N/A	N/A	-	14 .55	2.0	63 2.5	28.050	+0.025/-0	M24x1.5	216	3.100	.81
	MCFRE 62A SX	IN/A	IN/A	.8 .31	N/A	.08	2.5	.1043	+0.0009/- 0	IVIZ4X1.5	1,912	3,100	1.79
	MCFRE 62A SBX			-	14 .55								
MCF 72	MCF 72 S			.8 .31	N/A								
MCF 72 B	MCF 72 SB	12	4_	-	14 .55	2.0	63 2.5	24.000	+.021/-0	M24x1.5	216	2.100	1.04
MCF 72 X	MCF 72 SX	.472	.157	.8 .31	N/A	.08	2.5	.9449	+.0008/- 0	IVIZ-IXIT.O	1,912	2,100	2.29
MCF 72 BX	MCF 72 SBX			-	14 .55								
MCFE 72	MCFE 72 S			.8 .31	N/A								
	MCFE 72 SB	N/A	N/A	-	14 .55	2.0	63	28.050	+0.025/-0	M24x1.5	216	2,100	1.04
	MCFE 72 SX	10/4	10//	.8 .31	N/A	.08	2.5	.1043	+0.0009/- 0	MIZ-IXI.O	1,912	2,100	2.29
	MCFE 72 SBX			-	14 .55								
MCFR 72	MCFR 72 S			.8 .31	N/A								
MCFR 72 B	MCFR 72 SB	12	4_	-	14 .55	2.0	63	24.000	+.021/-0	M24x1.5	216	3,100	1.04
MCFR 72 X	MCFR 72 SX	.472	.157	.8 .31	N/A	.08	2.5	.9449	+.0008/- 0	.VIZ-7.1.0	1,912	0,100	2.29
MCFR 72 BX	MCFR 72 SBX			-	14 .55								
MCFRE 72	MCFRE 72 S			.8 .31	N/A								
	MCFRE 72 SB	N/A	N/A	-	14 .55	2.0	63	28.050	+0.025/-0	M24x1.5	216	3,100	1.04
	MCFRE 72 SX	IN/A	I IN/A	.8 .31	N/A	.08	2.5	.1043	+0.0009/- 0	IVIZ-AAT.U	1,912	3,100	2.29
	MCFRE 72 SBX			-	14 .55								

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement / Retained (Caged) Needle Roller

. . .


Bearing Material: Bearing Quality Steel

Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

MCF, MCFE

Pai	rt No.	3	RD	- 0	W	- 64		61	C	TL	1.	R	ECC	- 6	80		
W/O Sabls	With LUBRI⊧DISC	Roller	Diameter	Rolle	r Width	Book Olo	witer	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Cylindrical Suffix MCF-xx-X		Eccentric Base Monthe MCFE-xx	er	Denta III	Trest namer Stalls ≘3000
WIO SERIS	Seal	CONTRACTOR OF	nm nch		nm nch	en el		110000	mm inch	mr i <u>n</u> d	Acres 12.	mm inch	200000	mm inch	2000.000	N/Ib	N/Ib
MCF 72A	MCF 72A S	Nom.	:Tal	Monu	Tol.	Hem.	Tol	(Ret)	(Ruf)	(Ref)	(Ref)	Radios	Rut	±:002/-:006	(Ref)	- Addison	
MCF 72A B	MCF 72A SB	72.000	+0/050 +0/002	20,000	+0/12	24.000 +	0/ 004	FO	00	25.0	00	500 19.7					
MCF 72A X	MCF 72A SX	2.8346	+0/013		+0/12	.9449 +0		50 1.9	.80 .031	25.0 .98	80 3.1		N/A	N/A	N/A		
MCF 72A BX	MCF 72A SBX		+0/0005									Cylindrical				38,840	65,400
MCFE 72A	MCFE 72A S		+0/050									500				8,732	14,703
	MCFE 72A SB	72.000	+0/002		+0/12	24.000 +		50	.80	25.0	80	19.7	1	22	28		
	MCFE 72A SX MCFE 72A SBX	2.8346	+0/013 +0/0005	1.1417	+0/005	.9449 +0	0/0008	1.9	.031	.98	3.1	Cylindrical	.04	0.87	.10		
MCFR 72A	MCFR 72A S		+0/050									500					
MCFR 72AB	MCFR 72A SB	72.000 2.8346	+0/002		+0/12 +0/005	24.000 + .9449 +0		50 1.9	.80 .031	25.0 .98	80 3.1	19.7	N/A	N/A	N/A		
MCFR 72A X MCFR 72A BX	MCFR 72A SX MCFR 72A SBX	2.0340	+0/013 +0/0005	1.1417	+0/003	.9449 +0	0/0000	1.9	.031	.90	3.1	Cylindrical					
MCFRE 72A	MCFRE 72A S											500				26,380 5,931	46,300 10,409
WOTTE TEX	MCFRE 72A SB	72.000	+0/050 +0/002	20 000	+0/12	24.000 +	.07 021	50	.80	25.0	80	500 19.7	1	22	28		
	MCFRE 72A SX	2.8346	+0/013		+0/005	9449 +0		1.9	.031	.98	3.1	Cultin dain al	.04	22 0.87	.10		
	MCFRE 72A SBX		+0/0005									Cylindrical					
MCF 80 MCF 80 B	MCF 80 S MCF 80 SB		+0/050									500 19.7					
MCF 80 B	MCF 80 SB	80.000 3.1496			+0/12 +0/005	30.000 + 1.1811 +0		63 2.5	1.00 .039	32.0 1.26	100 3.9		N/A	N/A	N/A		
MCF 80 BX	MCF 80 SBX		+0/015 +0/0006									Cylindrical				64,140	102,300
MCFE 80	MCFE 80 S		+0/050 +0/002									500 19,7				14,420	22,999
	MCFE 80 SB MCFE 80 SX	80.000 3.1496			+0/12 +0/005	30.000 + 1.1811 +0		63 2.5	1.00 .039	32.0 1.26	100 3.9		1.5 .06	29 1.14	35 .38		
	MCFE 80 SBX		+0/015 +0/0006									Cylindrical					
MCFR 80A	MCFR 80A S		+0/050									500					
MCFR 80A B	MCFR 80A SB	80.000 3.1496	+0/002			30.000 + 1.1811 +0		63 2.5	1.00 .039	32.0 1.26	100 3.9	19.7	N/A	N/A	N/A		
MCFR 80A X MCFR 80A BX	MCFR 80A SX MCFR 80A SBX	3.1490	+0/015 +0/0006	1.5700	10/003	1.1011	0/0000	2.0	.009	1.20	0.9	Cylindrical				46,680	87,600
MCFRE 80A	MCFRE 80A S		+0/050									500				10,495	19,694
	MCFRE 80A SB	80.000 3.1496	+0/002			30.000 + 1.1811 +0		63 2.5	1.00	32.0 1.26	100 3.9	19.7	1.5 .06	29 1.14	35 .38		
	MCFRE 80A SX MCFRE 80A SBX		+0/015 +0/0006		, o, -, ooo	1.1011 +0	5,0000	2.0	.009	1.20	0.9	Cylindrical	.00	1.14	.00		
	IVICERE OUA SBX		2														

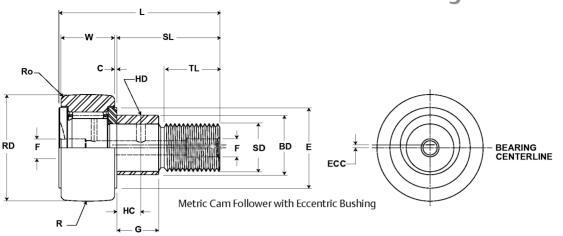
^{1.} Standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, add suffix "X". Example - MCFR-35-X or MCF-35-SX.

Inch dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

Bearing Selection
Page B-3

 $^{2. \, {\}sf Clamping \ torque \ is \ based \ on \ dry \ threads.} \, If \, threads \, are \, lubricated, \, use \, half \, of value \, shown.$


^{3.} Static load rating is based on stud strength or on internal rolling element load distribution stresses.

^{4.} Dynamic load should not exceed 50% of Dynamic Rating as a track roller.

^{5.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

Metric CAMROL Bearings MSGILL®

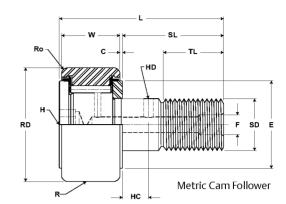
Par	t No.	HT.	hm	F		Fa	E.					Total Control	WIT
W/O Seals	With LUBRI-DISC	VIII) Canto	findalitai. 100 Colombii	Entrafair Dia	S-ff-x W- ax B	Differ Courses	Stine Stine	Housi Dia	ing Bore meter	Thread Type	Clamping Torque	Limiting Spend (Grease)	Bearing Weight
W/O ocuis	Seals	m	ım ch	m	m ch	m	m ch	l.	nm nch		Man an-Rh	RPM	100
		(Reb	(Rief)	(Ref)	(Ret)	(Ref)	(Ref)	Nom	(Tell		10.00		
MCF 72A	MCF 72A S			.8 .31	N/A								
MCF 72A B	MCF 72A SB	11	4	-	14 .55	2.0	63	24.000	+.021/-0	M24x1.5	216	2,100	1.04
MCF 72A X	MCF 72A SX	.433	.157	.8 .31	N/A	.08	2.5	.9449	+.0008/- 0	IVIZ4X1.J	1,912	2,100	2.29
MCF 72A BX	MCF 72A SBX			-	14 .55								
MCFE 72A	MCFE 72A S			.8 .31	N/A								
	MCFE 72A SB	N/A	N/A	-	14 .55	2.0	63	28.050	+0.025/-0	M24x1.5	216	2,100	1.04
	MCFE 72A SX	IN/A	I IN/A	.8 .31	N/A	.08	2.5	.1043	+0.0009/- 0	1012431.5	1,912	2,100	2.29
	MCFE 72A SBX			-	14 .55								
MCFR 72A	MCFR 72A S			.8 .31	N/A								
MCFR 72A B	MCFR 72A SB	11	4	-	14 .55	2.0	63	24.000	+.021/-0	M24x1.5	216	3,100	1.04
MCFR 72A X	MCFR 72A SX	.433	.157	.8 .31	N/A	.08	2.5	.9449	+.0008/- 0	1012431.5	1,912	3,100	2.29
MCFR 72A BX	MCFR 72A SBX			-	14 .55								
MCFRE 72A	MCFRE 72A S			.8 .31	N/A								
	MCFRE 72A SB	N1/A	N./A	-	14 .55	2.0	63 2.5	28.050	+0.025/-0	MO4:4 F	216	2.400	1.04
	MCFRE 72A SX	N/A	N/A	.8 .31	N/A	.08	2.5	.1043	+0.0009/- 0	M24x1.5	1,912	3,100	2.29
	MCFRE 72A SBX			-	14 .55								
MCF 80	MCF 80 S			.8 .31	N/A								
MCF 80 B	MCF 80 SB	15	4	-	14 .55	2.0	63	30.000	+.021/-0	MOONE	441	4 500	1.64
MCF 80 X	MCF 80 SX	.591	.157	.8 .31	N/A	.08	63 2.5	.1811	+.0008/- 0	M30x1.5	3,903	1,500	3.62
MCF 80 BX	MCF 80 SBX			-	14 .55								
MCFE 80	MCFE 80 S			.8 .31	N/A								
	MCFE 80 SB	N 1/A	N1/A	-	14 .55	2.0	63	35.050	+0.025/-0	MOONE	441	0.000	1.64
	MCFE 80 SX	N/A	N/A	.8 .31	N/A	.08	2.5	.3799	+0.0009/- 0	M30x1.5	3,903	2,200	3.62
	MCFE 80 SBX			-	14 .55								
MCFR 80A	MCFR 80A S			.8 .31	N/A								
MCFR 80A B	MCFR 80A SB	15	4	-	14 .55	2.0	63	30.000	+.021/-0	MOONE	441	0.000	1.64
MCFR 80A X	MCFR 80A SX	.591	.157	.31	N/A	.08	2.5	.1811	+.0008/- 0	M30x1.5	3,903	2,200	3.62
MCFR 80A BX	MCFR 80A SBX			-	14 .55								
MCFRE 80A	MCFRE 80A S			.31	N/A								
	MCFRE 80A SB	.		-	14 .55	2.0	63	35.050	+0.025/-0	MOC 1 5	441	0.000	1.64
	MCFRE 80A SX	N/A	N/A	.8 .31	N/A	.08	2.5	.3799	+0.0009/- 0	M30x1.5	3,903	2,200	3.62
	MCFRE 80A SBX			-	14 .55								

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement / Retained (Caged) Needle Roller

. . .


Bearing Material: Bearing Quality Steel

Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

Technical Engineering Page B-143

MCF, MCFE

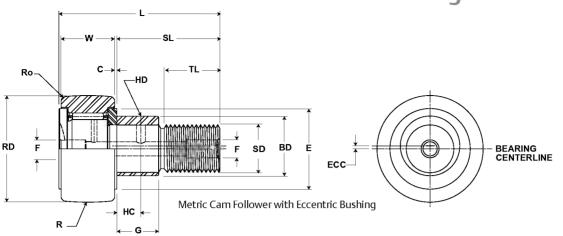
Pai	rt No.	1	RD	- 0	N	64	61	C	TL	L	R	ecc	. 6	80		
W/O Sabls	With LUBRI⊧DISC	Roller	Diameter	Rollei	Width	Book Oliverner	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Cylindrical Suffix MCF-xx-X	-	Eccentric Base Monthe MCFE-xx	r	Bank Park	Trest of the State of the Stat
W/U-Seals	Seal	CONTRACTOR OF	nm nch		ım ich	to the	UPSO/	mm inch	mi inc		mm inch	The late	mm inch	Decree P.A.	N/Ib	N/Ib
MCF 80	MCF 80 S	Nom.	(Tail)	Mont	Tol.	Mam. Tol	(Ret)	(Ruf)	IRefi	(Rief)	Hadies	(Ret)	+:002/-:006	(Ref)	- Colonia	227.
MCF 80 B	MCF 80 SB	85.000	+0/050 +0/002	35.000	+0/12	30.000 +0/02	63	1.00	32.0	100	500 19.7		.	N 1/4		
MCF 80 X MCF 80 BX	MCF 80 SX MCF 80 SBX	3.3465	+0/015 +0/0006		+0/005	1.1811 +0/000	8 2.5	.039	1.26	3.9	Cylindrical	N/A	N/A	N/A	64,140	102,300
MCFE 80	MCFE 80 S MCFE 80 SB		+0/050 +0/002								500 19.7				14,420	22,999
	MCFE 80 SX MCFE 80 SBX	85.000 3.3465	+0/015 +0/0006	1.3780	+0/12 +0/005	30.000 +0/02° 1.1811 +0/000		1.00 .039	32.0 1.26	100 3.9	Cylindrical	1.5 .06	29 1.14	35 .38		
MCFR 85 MCFR 85 B	MCFR 85 S MCFR 85 SB	85.000	+0/050 +0/002	35 000	+0/12	30.000 +0/02	63	1.00	32.0	100	500 19.7					
MCFR 85 X MCFR 85 BX	MCFR 85 SX MCFR 85 SBX	3.3465	+0/015 +0/0006	1.3780		1.1811 +0/000		.039	1.26	3.9	Cylindrical	N/A	N/A	N/A	46.680	87.600
MCFRE 85 MCFRE 85 B	MCFRE 85 S MCFRE 85 SB	85.000	+0/050 +0/002	35.000	+0/12	30.000 +0/02	63	1.00	32.0	100	500 19.7	1.5	29	35	10,495	19,694
MCFRE 85 X MCFRE 85 BX	MCFRE 85 SX MCFRE 85 SBX	3.3465	+0/015 +0/0006		+0/005			.039	1.26	3.9	Cylindrical	.06	1.14	.38		
MCF 90 MCF 90 B	MCF 90 S MCF 90 SB	90.000	+0/050 +0/002	35.000	+0/12	30.000 +0/02	63	1.00	32.0	100	500 19.7	N 1/A	NICA	.		
MCF 90 X MCF 90 BX	MCF 90 SX MCF 90 SBX	3.5433	+0/015 +0/0006	1.3780	+0/005	1.1811 +0/000	8 2.5	.039	1.26	3.9	Cylindrical	N/A	N/A	N/A	64,140	102,300
MCFE 90	MCFE 90 S MCFE 90 SB	90.000	+0/050 +0/002		+0/12	30.000 +0/02		1.00	32.0	100	500 19.7	1.5	29	35	14,420	22,999
	MCFE 90 SX MCFE 90 SBX	3.5433	+0/015 +0/0006		+0/005	1.1811 +0/000	8 2.5	.039	1.26	3.9	Cylindrical	.06	1.14	.38		
MCFR 90 MCFR 90 B	MCFR 90 S MCFR 90 SB	90.000	+0/050 +0/002	35.000	+0/12	30.000 +0/02	63	1.00	32.0	100	500 19.7	N1/6	N/A	N 1/6		
MCFR 90 X MCFR 90 BX	MCFR 90 SX MCFR 90 SBX	3.5433	+0/015 +0/0006		+0/005	1.1811 +0/000	8 2.5	.039	1.26	3.9	Cylindrical	N/A	N/A	N/A	46,680	87,600
MCFRE 90	MCFRE 90 S MCFRE 90 SB	90.000	+0/050 +0/002	35.000	+0/12	30.000 +0/02	63	1.00	32.0	100	500 19.7	1.5	29	35	10,495	19,694
	MCFRE 90 SX MCFRE 90 SBX	3.5433	+0/015 +0/0006	1.3780		1.1811 +0/000		.039	1.26	3.9	Cylindrical	.06	1.14	.38		

^{1.} Standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, add suffix "X". Example - MCFR-35-X or MCF-35-SX.

Inch dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

Bearing Selection	Nomenclature Aid	Features & Benefits	Product Options
Page B-3	Page B-62	Page B-63	Page B-66


^{2.} Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

 $^{3. \,} Static \, load \, rating \, is \, based \, on \, stud \, strength \, or \, on \, internal \, rolling \, element \, load \, distribution \, stresses.$

^{4.} Dynamic load should not exceed 50% of Dynamic Rating as a track roller.

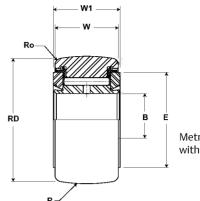
^{5.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

Metric CAMROL Bearings MSGILL®

Pa	rt No.	HTE:	HITT	F	E.	Fo	E.					Total Control	WIT
W/O Seals	With LUBRI-DISC	Proje- Cantin	füntfallt sin. Hillio Gillion tol	Entrafair Dia	S.ff.x W s.c.B	Darket Constant	Stine Stine	Housi Dia	ng Bore meter	Thread Type	Clamping Torque	Limiting Spend (Grease)	Bearing Weight
Tiro ocuis	Seals	m in	ım ich	m	m ch	m in	m ch	l.	nm ich		Man an-Rh	RPM	100
		(Reb	(800f)	(Ref)	(Ret)	(Ref)	(Ref)	Nom	(Tell		101/05		
MCF 80	MCF 80 S			.8 .31	N/A								
MCF 80 B	MCF 80 SB	15	4	-	14 .55	2.0	63	30.000	+.021/-0	M30x1.5	441	1,500	1.64
MCF 80 X	MCF 80 SX	.591	.157	.8 .31	N/A	.08	2.5	.1811	+.0008/- 0	IVIOUX1.0	3,903	1,500	3.62
MCF 80 BX	MCF 80 SBX			-	14 .55								
MCFE 80	MCFE 80 S			.8 .31	N/A								
	MCFE 80 SB	15	4	-	14 .55	2.0	63	35.050	+0.025/-0	M30x1.5	441	1,500	1.64
	MCFE 80 SX	.591	.157	.8 .31	N/A	.08	2.5	.3799	+0.0009/- 0	WISOX1.5	3,903	1,300	3.62
	MCFE 80 SBX			-	14 .55								
MCFR 85	MCFR 85 S			.8 .31	N/A								
MCFR 85 B	MCFR 85 SB	15	4_	-	14 .55	2.0	63	30.000	+.021/-0	M30x1.5	441	2,200	1.81
MCFR 85 X	MCFR 85 SX	.591	.157	.8 .31	N/A	.08	2.5	.1811	+.0008/- 0	WIOOX1.0	3,903	2,200	3.99
MCFR 85 BX	MCFR 85 SBX			-	14 .55								
MCFRE 85	MCFRE 85 S			.8 .31	N/A								
MCFRE 85 B	MCFRE 85 SB	N/A	N/A	-	14 .55	2.0	63 2.5	35.050	+0.025/-0	M30x1.5	441	2,200	1.81
MCFRE 85 X	MCFRE 85 SX	107	1071	.8 .31	N/A	.08	2.5	.3799	+0.0009/- 0	WIGOX1.0	3,903	2,200	3.99
MCFRE 85 BX	MCFRE 85 SBX			-	14 .55								
MCF 90	MCF 90 S			.8 .31	N/A								
MCF 90 B	MCF 90 SB	15	4	-	14 .55	2.0	68 2.7	30.000	+.021/-0	M30x1.5	441	1,500	1.99
MCF 90 X	MCF 90 SX	.591	.157	.8 .31	N/A	.08	2.7	.1811	+.0008/- 0		3,903	.,	4.39
MCF 90 BX	MCF 90 SBX			-	14 .55								
MCFE 90	MCFE 90 S			.31	N/A								
	MCFE 90 SB	15 .591	.157	-	14 .55	2.0	68 2.7	35.050	+0.025/-0	M30x1.5	441	1,500	1.99 4.39
	MCFE 90 SX	.591	.157	.8 .31	N/A	.08	2.7	.3799	+0.0009/- 0		3,903		4.39
	MCFE 90 SBX			-	14 .55								
MCFR 90	MCFR 90 S			.31	N/A								
MCFR 90 B	MCFR 90 SB	15 .591	.157	-	14 .55	2.0 .08	68 2.7	30.000 .1811	+.021/-0 +.0008/- 0	M30x1.5	441 3,903	2,200	1.99 4.39
MCFR 90 X	MCFR 90 SX	.591	.157	.8 .31	N/A	.00	2.1	.1011	+7.0000/- U		3,903		4.59
MCFR 90 BX	MCFR 90 SBX			- Ω	14 .55								
MCFRE 90	MCFRE 90 S			.8 .31	N/A								
	MCFRE 90 SB	N/A	N/A	- 8	14 .55	2.0 .08	68 2.7	35.050 .3799	+0.025/-0 +0.0009/- 0	M30x1.5	441 3.903	2,200	1.99 4.39
	MCFRE 90 SX			.8 .31	N/A	.00	2.1	.5199	0.00031-0		3,903		4.59
	MCFRE 90 SBX			-	14 .55								

Basic Construction Type: Yoke Type Crowned /

Cylindrical Outside Diameter


Rolling Elements: Full Complement / Retained

(Caged) Needle Roller

Bearing Material: Bearing Quality Steel

Seal Type: LUBRI-DISC®

Lubrication: Lithium Soap Grease NLGI #2

Metric Cam Yoke Roller with Crowned O.D.

MCYR

P:	art No.	F	₹D		W		В	٧	V1	8	172.00	-
W/O Seals	With LUBRI-DISC		Diameter		r Width		ore		ll Width	Cylindrical Suffin MCYR-X	Track Roller Oynamic Rating	Track Roll Static Rating
	Seals	n in	ım ıch	ŗ	nm ich	i	nm nch	n in	ım ıch	men	9000	1,000
		Nom	Stat	Non	Tol	Niom	Hel	(Ref)	(R+t)	Radius		
MCYR 5	MCYR 5 S		0/-0.05 +0/-0.0002							500	5,790	6,900
MCYR 5 X	MCYR 5 SX	16.000	+0/008 +0/0003	11.00	+0/12	5.000	+0/008	12.000	+0/18	20	1,302	1,551
MCYRR 5	MCYRR 5 S	.6299	0/-0.05 +0/-0.0002	.433	+0/005	.1969	+0/0003	.4724	+0/007	Cylindrical	3,430	3,380
MCYRR 5 X	MCYRR 5 SX		+0/008 +0/0003							Cylindrical	771	760
MCYR 6	MCYR 6 S		0/-0.05 +0/-0.0002							500	6,670	8,760
MCYR 6 X	MCYR 6 SX	19.000	+0/009 +0/0004	11.00	+0/12	6.000	+0/008	12.000	+0/18	20	1,500	1,969
MCYRR 6	MCYRR 6 S	.7480	0/-0.05 +0/-0.0002	.433	+0/009	.2362	+0/0003	.4724	+0/007	Culindrical	3,730	4,090
MCYRR 6 X	MCYRR 6 SX		+0/009 +0/0004							Cylindrical	839	920
MCYR 8	MCYR 8 S		0/-0.05 +0/-0.0002							500	9,610	12,600
MCYR 8 X	MCYR 8 SX	24.000	+0/009 +0/0004	14.00	+0/12	8.000	+0/008	15.000	+0/18	20	2,161	2,833
MCYRR 8	MCYRR 8 S	0.9449	0/-0.05 +0/-0.0002	.551	+0/013	.3150	+0/0003	.5906	+0/007	Culindrical	5,690	6,450
MCYRR 8 X	MCYRR 8 SX		+0/009 +0/0004							Cylindrical	1,279	1,450
MCYR 10	MCYR 10 S		0/-0.05 +0/-0.0002							500	11,080	15,300
MCYR 10 X	MCYR 10 SX	30.000	+0/009 +0/0004	14.00	+0/12	10.000	+0/008	15.000	+0/18	20	2,491	3,440
MCYRR 10	MCYRR 10 S	1.1811	0/-0.05 +0/-0.0002	.551	+0/017	.3937	+0/0003	.5906	+0/007	Cylindrical	6,860	8,050
MCYRR 10 X	MCYRR 10 SX		+0/009 +0/0004							Cyllilatical	1,542	1,810
MCYR 12	MCYR 12 S		0/-0.05 +0/-0.0002							500	12,060	17,400
MCYR 12 X	MCYR 12 SX	32.000	+0/011 +0/0004	14.00	+0/12	12.000	+0/008	15.000	+0/18	20	2,711	3,912
MCYRR 12	MCYRR 12 S	1.2598	0/-0.05 +0/-0.0002	.551	+0/021	.4724	+0/0003	.5906	+0/007	Cylindrical	1,260	9,120
MCYRR 12 X	MCYRR 12 SX		+0/011 +0/0004							Cyllilatical	283	2,050
MCYR 15	MCYR 15 S		0/-0.05 +0/-0.0002							500	16,970	28,500
MCYR 15 X	MCYR 15 SX	35.000	+0/011 +0/0004	18.00	+0/12	15.000	+0/008	19.000	+0/21	20	3,815	6,407
MCYRR 15	MCYRR 15 S	1.3780	0/-0.05 +0/-0.0002	.709	+0/025	.5906	+0/0003	.7480	+0/008	Cylindrical	10,890	15,900
MCYRR 15 X	MCYRR 15 SX		+0/011 +0/0004							Cylindrical	2,448	3,575
MCYR 17	MCYR 17 S		0/-0.05 +0/-0.0002				<u> </u>			500	19,420	32,200
MCYR 17 X	MCYR 17 SX	40.000	+0/011 +0/0004	20.00	+0/12	17.000	+0/008	21.000	+0/21	20	4,366	7,239
MCYRR 17	MCYRR 17 S	1.5748	0/-0.05 +0/-0.0002	.787	+0/029	.6693	+0/0003	.8268	+0/008	Culindrical	13,340	19,700
MCYRR 17 X	MCYRR 17 SX		+0/011 +0/0004							Cylindrical	2,999	4,429

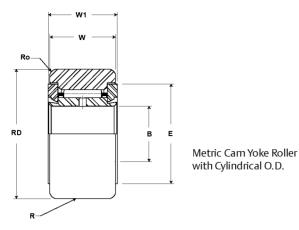
^{1.} Standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, add suffix "X". Example - MCFR-35-X or MCF-35-SX. The standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, add suffix "X". Example - MCFR-35-X or MCF-35-SX. The standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, and suffix "X". Example - MCFR-35-X or MCF-35-SX. The standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, and suffix "X". Example - MCFR-35-X or MCF-35-SX. The standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, and suffix "X". Example - MCFR-35-X or MCF-35-SX. The standard bearing high roller diameter. For straight cylindrical outside roller diameter, and suffix "X". Example - MCFR-35-X or MCF-35-SX. The standard bearing high roller diameter. For straight cylindrical outside roller diameter, and straight high roller diameter. For straight high roller diameter high roller diameter high roller diameter. For straight high roller diameter hi

Inch dimensions for reference only

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Bearing Selection Nomenclature Aid Features & Benefits


Q1 Page B-3 Page B-62 Page B-63

Product Options Page B-66 Technical Engineering Page B-143

^{2.} Clamping torque is based on dry threads. If threads are lubricated, use half of value shown

 $^{3. \,} Static \, load \, rating \, is \, based \, on \, stud \, strength \, or \, on \, internal \, rolling \, element \, load \, distribution \, stresses.$

Metric CAMROL Bearings MGILL Metric CAMROL Bearing MGILL Metric CAMROL Bear

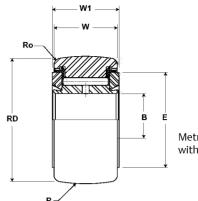
P	art No.	(8)	Ro	LF	LFT	TF	TFT		WT
		Min. Clamping	Outon Connex		Recommended	Shaft Diameters		Limitin S eed	Bearing
W/O Seals	With LUBRI-DISC	Diameter	Outer Corner	Loc (for ligh	se⁼rπt t loads) g6	Lig (for mediu	ht i i t im loads) h6	No.	Weight
W/O Seals	Seals	m inc	m ch		nm nch	l l	nm nch	RPM	kg
		(Ref)	(Ref)	Nom.	Tol.	Nom.	Tol.	EXF IVI	lb
MCYR 5	MCYR 5 S							13,000	
MCYR 5 X	MCYR 5 SX	11	.30	4.996	+0/008	5.000	+0/0	13,000	.01
MCYRR 5	MCYRR 5 S	.4	.012	.1967	+0/0003	.1968	+0/00	40 500	.02
MCYRR 5 X	MCYRR 5 SX							19,500	
MCYR 6	MCYR 6 S							40.500	
MCYR 6 X	MCYR 6 SX	13	.30	5.996	+0/008	6.000	+0/0	10,500	.02
MCYRR 6	MCYRR 6 S	.5	.012	.2361	+0/0003	.2362	+0/00	,,,,,,,	.04
MCYRR 6 X	MCYRR 6 SX							15,500	
MCYR 8	MCYR 8 S								
MCYR 8 X	MCYR 8 SX	16	.50	7.995	+0/009	8.000	+0/0	8,400	.04
MCYRR 8	MCYRR 8 S	.6	.020	.3148	+0/0004	.3149	+0/00		.09
MCYRR 8 X	MCYRR 8 SX							12,500	
MCYR 10	MCYR 10 S								
MCYR 10 X	MCYR 10 SX	19	1.00	9.995	+0/009	10.000	+0/0	6,400	.06
MCYRR 10	MCYRR 10 S	.7	.039	.3935	+0/0004	.3937	+0/00		.13
MCYRR 10 X	MCYRR 10 SX							9,600	
MCYR 12	MCYR 12 S								
MCYR 12 X	MCYR 12 SX	21	1.00	11.994	+0/011	12.000	+0/0	6,400	.07
MCYRR 12	MCYRR 12 S	.8	.039	.4722	+0/0004	.4724	+0/00		.15
MCYRR 12 X	MCYRR 12 SX							9,600	
MCYR 15	MCYR 15 S							4.000	
MCYR 15 X	MCYR 15 SX	24	1.00	14.994	+0/011	15.000	+0/0	4,200	10
MCYRR 15	MCYRR 15 S	24 0.9	.039	.5903	+0/0004	.5905	+0/00		.10 .22
MCYRR 15 X	MCYRR 15 SX							6,300	
MCYR 17	MCYR 17 S							0.000	
MCYR 17 X	MCYR 17 SX	27	1.50	16.994	+0/011	17.000	+0/0	3,300	.15
MCYRR 17	MCYRR 17 S	1.1	.059	.6691	+0/0004	.6692	+0/00		.33
MCYRR 17 X	MCYRR 17 SX							5,000	

For a tight fit and heavy loads, us ISO tolerance J6.

MCYR

Basic Construction Type: Yoke Type Crowned /

Cylindrical Outside Diameter


Rolling Elements: Full Complement / Retained

(Caged) Needle Roller

Bearing Material: Bearing Quality Steel

Seal Type: LUBRI-DISC®

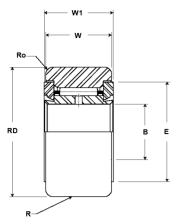
Lubrication: Lithium Soap Grease NLGI #2

Metric Cam Yoke Roller with Crowned O.D.

MCYR

Part No.		RD		W		В		W1		8	1778	Track Roller
W/O Seals	With LUBRI-DISC Seals	Roller Diameter		Roller Width		Bore		Overall Width		Cylindrical author MCYR-X	Track Roller Oynamic Rating	Blatic Rating
		mm inch		mm inch		mm inch		mm inch		mon	5000	110000
		Nom	Stati	Non	Tol	Niom	Fel	(Ref)	(Reb	Podem		
MCYR 20	MCYR 20 S		0/-0.05 +0/-0.0002		+0/12	20.000	+0/010	25.000	+0/21	500	25,690	48,000
MCYR 20 X	MCYR 20 SX	47.000	+0/011 +0/0004	24.00						20	5,776	10,791
MCYRR 20	MCYRR 20 S	1.8504	0/-0.05 +0/-0.0002	.945	+0/033	.7874	+0/0004	.9843	+0/008	Cylindrical	17,750	29,800
MCYRR 20 X	MCYRR 20 SX		+0/011 +0/0004							Cylindrical	3,991	6,700
MCYR 25	MCYR 25 S		0/-0.05 +0/-0.0002		+0/12 +0/037	25.000 .9843	+0/010 +0/0004	25.000 .9843	+0/21 +0/008	500	28,440	58,700
MCYR 25 X	MCYR 25 SX	52.000	+0/013 +0/0005	24.00						20	6,394	13,197
MCYRR 25	MCYRR 25 S	2.0472	0/-0.05 +0/-0.0002	.945						Cylindrical	19,120	34,900
MCYRR 25 X	MCYRR 25 SX		+0/013 +0/0005							Cylindrical	4,299	7,846
MCYR 30	MCYR 30 S	62.000 2.4409	0/-0.05 +0/-0.0002	29.00 1.142	+0/12 +0/041	30.000 1.1811	+0/010 +0/0004	29.000 1.1417	+0/21 +0/008	500	41,480	89,000
MCYR 30 X	MCYR 30 SX		+0/013 +0/0005							20	9,326	20,009
MCYRR 30	MCYRR 30 S		0/-0.05 +0/-0.0002							Codinadai col	28,340	54,300
MCYRR 30 X	MCYRR 30 SX		+0/013 +0/0005							Cylindrical	6,371	12,208
MCYR 35	MCYR 35 S	72.000	0/-0.05 +0/-0.0002	29.00 1.142	+0/12 +0/045	35.000 1.3780	+0/012 +0/0005	29.000 1.1417	+0/21 +0/008	500	47,370	10,000
MCYR 35 X	MCYR 35 SX		+0/013 +0/0005							20	10,650	2,248
MCYRR 35	MCYRR 35 S	2.8346	0/-0.05 +0/-0.0002							Codinadai sal	32,460	60,900
MCYRR 35 X	MCYRR 35 SX		+0/013 +0/0005							Cylindrical	7,298	13,692
MCYR 40	MCYR 40 S		0/-0.05 +0/-0.0002	35.00 1.378	+0/12 +0/049	40.000 1.5748	+0/012 +0/0005	32.000 1.2598	+0/25 +0/010	500	58,350	123,000
MCYR 40 X	MCYR 40 SX	80.000	+0/015 +0/0006							20	13,118	27,653
MCYRR 40	MCYRR 40 S	3.1496	0/-0.05 +0/-0.0002							Cylindrical	41,480	78,700
MCYRR 40 X	MCYRR 40 SX		+0/015 +0/0006							Oyimanaa	9,326	17,693
MCYR 45	MCYR 45 S	85.000 3.3465	0/-0.05 +0/-0.0002	35.00 1.378	+0/12 +0/053	45.000 1.7717	+0/012 +0/0005	32.000 1.2598	+0/25 +0/010	500	61,490	136,000
MCYR 45 X	MCYR 45 SX		+0/015 +0/0006							20	13,824	30,576
MCYRR 45	MCYRR 45 S		0/-0.05 +0/-0.0002 +0/015							Cylindrical	42,760 9.613	84,100 18.907
MCYRR 45 X	MCYRR 45 SX		+0/015							Ť	9,613	10,907
MCYR 50	MCYR 50 S	90.000 3.5433	+0/-0.0002 +0/015	35.00 1.378	+0/12 +0/057	50.000 1.9685	+0/012 +0/0005	32.000 1.2598	+0/25 +0/010	500 20	64,330 14,463	148,000 33,273
MCYR 50 X	MCYR 50 SX		+0/015							20	14,400	50,210
MCYRR 50	MCYRR 50 S		+0/-0.0002							Cylindrical	45,600 10,252	94,800 21,313
MCYRR 50 X	MCYRR 50 SX		+0/0006								10,202	21,010

- 1. Standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, add suffix "X". Example MCFR-35-X or MCF-35-SX. The standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, add suffix "X". Example MCFR-35-X or MCF-35-SX. The standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, and suffix "X". Example MCFR-35-X or MCF-35-SX. The standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, and suffix "X". Example MCFR-35-X or MCF-35-SX. The standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, and suffix "X". Example MCFR-35-X or MCF-35-SX. The standard bearing high roller diameter. For straight cylindrical outside roller diameter, and suffix "X". Example MCFR-35-X or MCF-35-SX. The standard bearing high roller diameter. For straight cylindrical outside roller diameter, and straight high roller diameter. For straight high roller diameter is a straight high roller diameter. For straight high roller diameter is a straight high roller diameter in the straight high roller diameter. For straight high roller diameter is a straight high roller diameter in the straight high roller diameter is a straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller diameter in the straight high roller
- 2. Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.
- 3. Static load rating is based on stud strength or on internal rolling element load distribution stresses.


Inch dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

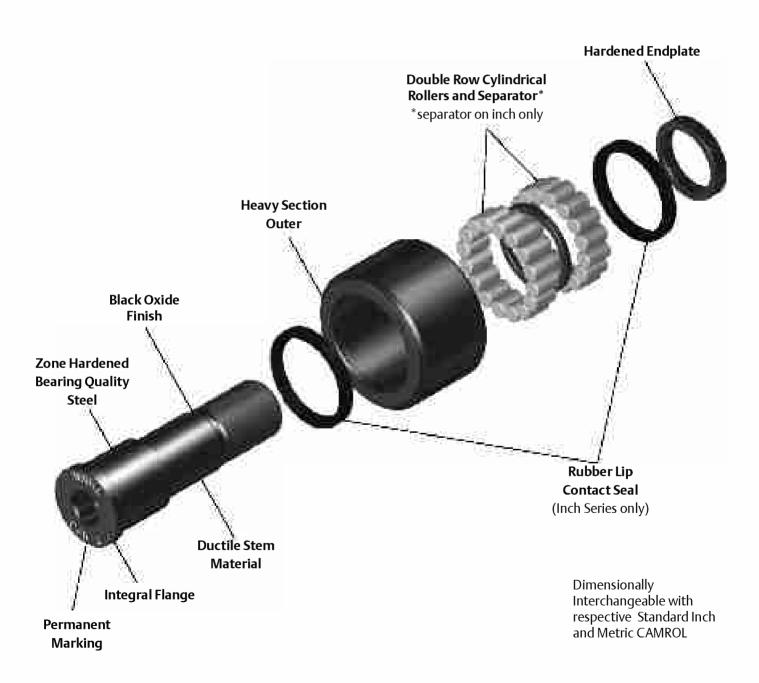
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Bearing Selection Page B-3

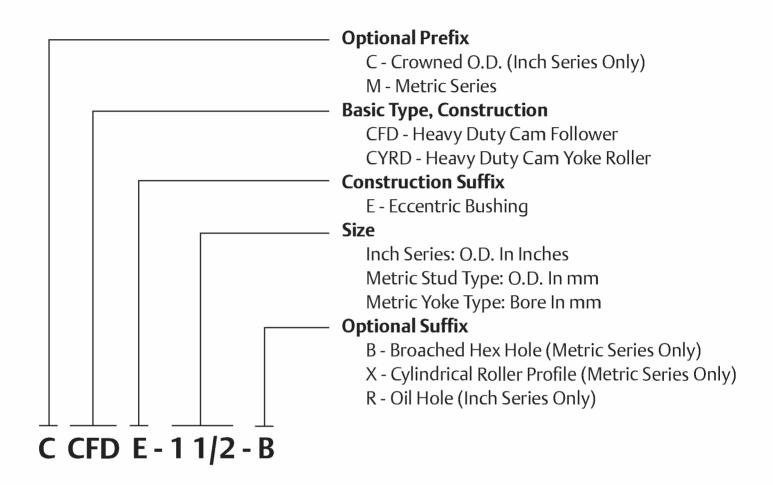
Metric CAMROL Bearings MGILL.

Metric Cam Yoke Roller with Cylindrical O.D.

MCYR


	Part	t No.	Ē	Ro	LF	LFT	TF	TFT		WT
ı			Min. Clamping	Outer Corner	1871	Recommended	A STATE OF THE STA		Limitin S eed	Bearing
	W/O Seals	With LUBRI-DISC	Diameter	Outer Corner	Loos (for light		Ligt (for mediu	nt i≕t m loads) h6	- C	Weight
	W/O Seals	Seals	m in	m ch	m ine	m ch	m in	m ch	RPM	kg
			(Rēf)	(Ref)	Nom.	Tol.	Nom.	Tol.	12.16	lb
	MCYR 20	MCYR 20 S							2,600	
	MCYR 20 X	MCYR 20 SX	30	1.50	19.993	+0/013	20.000	+0/0	2,000	.25 .55
	MCYRR 20	MCYRR 20 S	1.2	.059	.7871	+0/0005	.7874	+0/00	3,900	.55
	MCYRR 20 X	MCYRR 20 SX							3,300	
	MCYR 25	MCYR 25 S							2,600	
	MCYR 25 X	MCYR 25 SX	36	1.50	24.993	+0/013	25.000	+0/0	2,000	.29
	MCYRR 25	MCYRR 25 S	1.4	.059	.9840	+0/0005	.9842	+0/00	3.900	.64
	MCYRR 25 X	MCYRR 25 SX							3,900	
	MCYR 30	MCYR 30 S							2,100	
	MCYR 30 X	MCYR 30 SX	44 1.7	2.00	29.993	+0/013	30.000	+0/0	2,100	.47
	MCYRR 30	MCYRR 30 S		.079	1.1808	+0/0005	1.1811	+0/00	3,100	1.04
	MCYRR 30 X	MCYRR 30 SX							3,100	
	MCYR 35	MCYR 35 S							2.100	
	MCYR 35 X	MCYR 35 SX	52	2.00	34.991	+0/016	35.000	+0/0	2,100	.64
	MCYRR 35	MCYRR 35 S	2.0	.079	1.3776	+0/0006	1.3779	+0/00	3,100	1.41
	MCYRR 35 X	MCYRR 35 SX							3,100	
	MCYR 40	MCYR 40 S							1.500	
	MCYR 40 X	MCYR 40 SX	58	2.00	39.991	+0/016	40.000	+0/0	1,000	.84
	MCYRR 40	MCYRR 40 S	2.3	.079	1.5744	+0/0006	1.5748	+0/00	2,200	1.84
	MCYRR 40 X	MCYRR 40 SX								
	MCYR 45	MCYR 45 S							1,500	
-	MCYR 45 X	MCYR 45 SX	63 2.5	2.00 .079	44.991 1.7713	+0/016 +0/0006	45.000 1.7716	+0/0 +0/00		.90 1.99
	MCYRR 45	MCYRR 45 S		.019	1.7713	10/-,0000	1.7710	10/=,00	2,200	1.33
-	MCYRR 45 X	MCYRR 45 SX								
	MCYR 50	MCYR 50 S	68 2.7						1,500	
-	MCYR 50 X	MCYR 50 SX		2.00 .079	45.991 1.8107	+0/016 +0/0006	50.000 1.9685	+0/0 +0/00		.97 2.14
	MCYRR 50	MCYRR 50 S							2,200	
	MCYRR 50 X	MCYRR 50 SX								

For a tight fit and heavy loads, us ISO tolerance J6.


MGILL. Heavy Duty CAMROL Bearings

Heavy-Duty Inch and Metric CAMROL®

McGill Heavy-Duty CAMROL bearings are full complement cylindrical roller bearings featuring black oxide treated bearing steel, available in two basic mounting styles (stud or yoke) for use mechanical automation or linear motion applications. Our standard integral flange construction of stud version bearings helps maintain bearing integrity throughout the life. The inch series utilizes a rubber lip seal to provide a barrier for contamination and lubricant retention. Within the following section you can learn more about how these features and others can be applied to your application.

Cam Follower Inch and Metric Nomenclature

MGILL. Heavy Duty CAMROL Bearings

Features and Benefits

Double Row Full Complement Needle Rollers

The roller diameter to length ratio of Cylindrical rollers provides an end face and increases surface area to help support incidental thrust loads.

Heavy Section Outer

The heavy section outer helps support radial loading and provide proper rolling element support.

Rubber Lip Seals - Inch Series

Heavy-Duty CAMROL® Bearings have rubber lip seals to help keep contamination our and lubricant in. The seals are mounted inward to improve grease retention. Inch Only, removed as option- NS

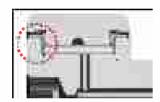
Metallic Shields - Metric Series

The metric series Heavy-Duty bearings metallic side shields providing a barriers to help retain grease and keep out containments. Metric Only, removed as option – NS

Crowned Outside Diameter (OD)

A crown on the OD of a cam follower bearing can increase bearing life versus a standard cylindrical cam follower. The crown achieves this performance by helping to distribute the stress on the outer ring and rolling elements resulting from misalignment due to mounting inaccuracy or stud deflection. The crown also helps reduce outer skidding in turntable or rotary applications. Not all applications may see the benefit of a crowned OD, consult Application Engineering for guidance for your application. Crowned OD is an option for Inch Series. Crowned OD is standard for Metric Series.

Features and Benefits continued


Cylindrical Outside Diameter (OD)

The cylindrical OD can improve performance in certain applications such as improved track capacity by maximizing the contact area with the track. Cylindrical OD is standard for Inch Series. Cylindrical OD is and option for Metric Series.

Zone Hardened Raceways

Heat treatment used to precisely harden working surfaces of the raceway and flange. The hardened surfaces provide support for the rolling element contact stresses, while keeping the core of the inner ductile to help absorb shock loads.

Integral Flange

The integral flange helps maintain bearing integrity throughout the bearing life. Zone hardened to provide wear resistance from incidental contact with the outer or rollers, and provides a sealing surface for rubber lipped seal.

Hex Hole (Broached)

The hex hole can aide in the installation and removal of stud type cam followers by increasing the holding power over a standard screw driver slot. *Standard on inch, option on Metric.

MGILL® Heavy Duty CAMROL Bearings

Features and Benefits continued

Hardened Endplate

Similar to the flange, the endplate must provide a contact surface for the seal and resist wear from incidental contact with the outer or rollers.

Factory Grease Fill

The cam follower and cam yoke roller bearings are factory lubricated with a medium temperature grease. Contact Application Engineering when application conditions require special lubricants.

Lubrication Reservoir

The inch series heavy-Duty bearings incorporate a spacer, resulting in an increased lubricant reservoir. Inch only

Black Oxide Finish

Bearings have a black oxide finish on all external surfaces.

Options

Permanent Marking

Part number permanently marked on bearing face, helps bearing identification after years of service.

Installation Accessory Pack - Metric Series Stud Type

All McGill Metric Cam followers include (2) oil hole plug to help provide proper lubrication path to the rolling elements and prevent contamination from entering the bearing through a unused oil hole. Metric only, Inch as -OH option,

Eccentric Stud

Eccentric stud option provides a means of adjusting the radial position of the bearing, which can improve the load sharing of inline bearing combinations. Cam follower load sharing helps reduce operation costs by reducing premature failures due to overloaded bearings, the need of precise mounting hole location tolerances and providing ability to realign bearing due to track wear.

MGILL. Heavy Duty CAMROL Bearings

Additional Options

BHTBroached (Hex) hole at threaded end of cam follower stud.

THTThreaded axial lubrication hole at threaded end of cam follower stud.

THFThreaded axial lubrication hole at flanged end of cam follower stud. Available with all screw driver slot cam followers or broached cam followers over 3".

THBThreaded axial oil hole on both ends of cam follower stud. Available with all screw driver slot cam followers or broached cam followers over 3".

ALGAnnular lubrication groove at cam follower stem radial lubrication hole.

Custom Capabilities

- Customer specified factory grease fill
- Grease fitting installed
- Stud or thread length modifications
- Roller diameter variations or tolerances
- Cam followers grouped or matched diameter tolerance / run out sets
- Custom engineered to order designs

MGILL. Heavy Duty CAMROL Bearings

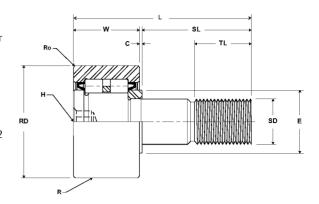
Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement Cylindrical

Roller

Bearing Material: Bearing Quality Steel


Seal Type: LUBRI-DISC

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric /

Heavy Stud

Mounting Feature: Slot / Hex Hole

CFD

Part No.	F	RD	1	w	;	SD	SL	c	TH.	16	B.	Truck Roller	Track Rollin Static
	Roller	Diameter	Rolle	r Width	Stud E	Diameter	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Prefix GGFD	Track Roller Dynamic Rating	Static Rating
With Seals	in the second	nch nm	n	ich im	ir n	nch nm	10 Page 11 B B 1	ch m	ľ	nch nm	inch mm	16/N	16/04
	Nom.	ToL	Non	Tol.	Flores	ToL	(Ref)	(Ref)	(Ref)	(Ref)	Radius		
CFD 1 1/4	1.250	+0/001	.750	+0/001 +0/03	.500	+0/001	1.25	.03	.63	2.03	Cylindrical	3,300	2,400
CCFD 1 1/4	31.75	+0/03	19.05	+0/03	12.70	+0/03	31.8	.8	15.9	51.6	14 356	14,680	10,680
CFD 1 3/8	1.375	+0/001	.750	+0/001	.500	+0/001	1.25	.03	.63	2.03	Cylindrical	3,600	2,400
CCFD 1 3/8	34.93	+0/03	19.05	+0/03	12.70	+0/03	31.8	.8	15.9	51.6	14 356	16,000	10,680
CFD 1 1/2	1.500	+0/001	.875	+0/001 +0/03	.625	+0/001	1.50	.03 .8	.75	2.41	Cylindrical	5,000	4,100
CCFD 1 1/2	38.10	+0/03	22.23	+0/03	15.88	+0/03	38.1	.8	19.1	61.1	20 508	22,240	18,240
CFD 1 5/8	1.625 41.28	+0/001	.875 22.23	+0/001 +0/03	.625	+0/001 +0/03	1.50	.03 .8	.75	2.41 61.1	Cylindrical	5,400 24,020	4,100
CCFD 1 5/8	41.28	+0/03	22.23	+0/03	15.88	+0/03	38.1	.8	19.1	61.1	20 508	24,020	18,240
CFD 1 3/4	1.750	+0/001	1.000	+0/001	.750	+0/001	1.75	.03	.88 22.2	2.78	Cylindrical	6,650	6,100
CCFD 1 3/4	44.45	+0/03	25.40	+0/03	19.05	+0/03	44.5	.8	22.2	70.6	20 508	29,580	27,130
CFD 1 7/8	1.875	+0/001	1.000	+0/001	.750	+0/001 +0/03	1.75	.03 .8	.88 22.2	2.78	Cylindrical	7,100	6,100
CCFD 1 7/8	47.63	+0/03	25.40	+0/03	19.05	+0/03	44.5	.8	22.2	70.6	20 508	31,580	27,130
CFD 2	2.000	+0/001	1.250	+0/001	.875	+0/001	2.00	.03	1.00	3.28	Cylindrical	9,500	8,300
CCFD 2	50.80	+0/03	31.75	+0/03	22.23	+0/03	50.8	.8	25.4	83.3	24 610	42,260	36,920
CFD 2 1/4	2.250 57.15	+0/001 +0/03	1.250 31.75	+0/001 +0/03	.875	+0/001 +0/03	2.00	.03	1.00 25.4	3.28	Cylindrical	10,500	8,300
CCFD 2 1/4	57.15	+0/03	31.75	+0/03	22.23	+0/03	50.8	.8	25.4	83.3	24 610	46,700	36,920

 $Clamping\ torque\ is\ based\ on\ dry\ threads.\ If\ threads\ are\ lubricated,\ use\ half\ of\ value\ shown.$

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard of fering, please contact Application Engineering (800) 626-2093.

CFD

Part No.	H	Œ	Ro					WT
With Seals CFD 1 1/4	Hex Hole	Min. Clamping Diameter	Corner	Di	sing Bore ameter	Thread	Clamping Torque	Bearing Weight
With Seals	i	nch nm	inch mm		inch mm	Туре	in b	b
	Sfize	(Ref)	(Ref)	Nom.	Tol.		Nm	k.
CFD 1 1/4	.25 6.4	.98 25.0	.03 .8	.5003	+.0002/0003	1/2-20	350	.29 .13
CCFD 1 1/4	6.4	25.0	N/A	12.708	+.0005/0008	1,2 23	40	.13
CFD 1 3/8	.25 6.4	.98	.05 1.2	.5003	+.0002/0003	1/2-20	350	.35 .16
CCFD 1 3/8	6.4	25.0	N/A	12.708	+.0005/0012	1/2-20	40	.16
CFD 1 1/2	.312 7.9	1.09	.06 1.6	.6253	+.0002/0003	5/8-18	650 73	.50 .22
CCFD 1 1/2	7.9	27.8	N/A	15.883	+.0005/0016	5/8-16	73	.22
CFD 1 5/8	.312 7.9	1.09 27.8	.06 1.6	.6253	+.0002/0003	5/8-18	650 73	.58 .26
CCFD 1 5/8	7.9	27.8	N/A	15.883	+.0005/0020	5/8-16	73	.26
CFD 1 3/4	.312	1.25	.06 1.6	.7503	+.0002/0003	3/4-16	1,250	.81
CCFD 1 3/4	.312 7.9	31.8	N/A	19.058	+.0005/0024	3/4-16	141	.37
CFD 1 7/8	.312	1.25	.06 1.6	.7503	+.0002/0003	2/4.46	1,250	.91
CCFD 1 7/8	.312 7.9	31.8	N/A	19.058	+.0005/0028	3/4-16	141	.41
CFD 2	437	1.41	.09 2.4	.8753	+.0002/0003	7/0.14	1,500	1.29
CCFD 2	.437 11.1 D 2	35.7	N/A	22.233	+.0005/0032	7/8-14	170	.59
CFD 2 1/4	.437	1.41	.09 2.4	.8753	+.0002/0003	7/0.44	1,500	1.59
CCFD 2 1/4		1.41 35.7	N/A	22.233	+.0002/0003 +.0005/0036	7/8-14	170	1.59 .72

Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

MGILL. Heavy Duty CAMROL Bearings

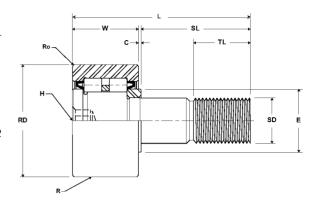
Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Full Complement Cylindrical **Rolling Elements:**

Roller

Bearing Material: Bearing Quality Steel


> LUBRI-DISC® Seal Type:

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric /

Heavy Stud

Mounting Feature: Slot / Hex Hole

CFD

Part No.	F	RD		w	;	SD	SL	0	714	1.	R.	Truck Roller	Truck Rollin
	Roller I	Diameter	Rolle	r Width	Stud E	Diameter	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Crown Prefix CCFD	Dynamic Setime	Static Rating
With Seals	ir n	nch nm	ir n	nch nm	ir n	nch nm	in m	ich im	i i	nch nm	inch mm	16/N	1604
	Mom	ToL	Non	Tol.	Flore	ToL	(Ref)	eReft .	(Ret)	(Ref)	Radius		
CFD 2 1/2	2.500	+0/001	1.500	+0/001	1.000	+0/001	2.25	.03	1.125	3.78	Cylindrical	14,000	10,400
CCFD 2 1/2	63.50	+0/03	38.10	+0/03	25.40	+0/03	57.2	.8	28.6	96.0	30 762	62,270	46,260
CFD 2 3/4	2.750	+0/001	1.500	+0/001	1.000	+0/001	2.25	.03	1.125	3.78	Cylindrical	15,000	10,400
CCFD 2 3/4	69.85	+0/03	38.10	+0/03	25.40	+0/03	57.2	.8	28.6	96.0	30 762	66,720	46,260
CFD 3	3.000	+0/001	1.750	+0/001	1.250	+0/001	2.50	.03	1.25	4.28	Cylindrical	18,300	18,100
CCFD 3	76.20	+0/03	44.45	+0/03	31.75	+0/03	63.5	.8	31.7	108.7	30 762	81,400	80,510
CFD 3 1/4	3.250	+0/001	1.750	+0/001	1.250	+0/001	2.50	.03	1.25	4.28	Cylindrical	20,300	18,100
CCFD 3 1/4	82.55	+0/03	44.45	+0/03	31.75	+0/03	63.5	.8	31.7	108.7	30 762	90,290	80,510
CFD 3 1/2	3.500	+0/001	2.000	+0/001	1.375	+0/001	2.75	.03	1.375	4.78	Cylindrical	23,700	21,500
CCFD 3 1/2	88.90	+0/03	50.80	+0/03	34.93	+0/03	69.9	.8	34.9	121.4	30 762	105,420	95,630
CFD 4	4.000	+0/001	2.250	+0/001	1.500	+0/001	3.50	.03	1.50	5.78	Cylindrical	32,500	22,800
CCFD 4	101.60	+0/03	57.15	+0/03	38.10	+0/03	88.9	.8	38.1	146.8	30 762	144,560	101,410
CFD 5	5.000	+0/001	2.750	+0/001	2.000	+0/001	5.06	.06	2.00	7.88 200.0	Cylindrical	50,500	50,800
CCFD 5	127.00	+0/03	69.85	+0/03	50.80	+0/03	128.6	1.6	50.4	200.0	48 1,219	224,620	225,960
CFD 6	6.000	+0/001	3.250	+0/001	2.500	+0/001	6.00	.06	2.50	9.31 236.5	Cylindrical	71,500	86,100
CCFD 6	152.40	+0/03	82.55	+0/03	63.50	+0/03	152.4	1.6	63.5	236.5	30 762	318,030	382,970

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

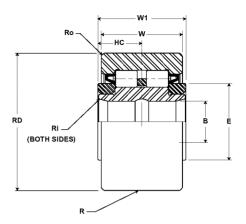
CFD

Part 📭o.	H	E	Ro					WT
With Sea's	Hex Hole	Min. Clamping Diameter	Corner	Di	sing Bore ameter	Thread	Clamping Torque	Bearing Weight
With Sea/s	į	nch nm	inch mm		inch mm	Туре	in-lb	b
	Slize	(Ref)	(Ref)	Nom.	Tol.		Nm	k s
CFD 2 1/2	.50 12.7	1 69	.09 2.4	1.0003	+.0002/0003	1-14	2,250	2.38
CCFD 2 1/2	12.7	42.9	N/A	25.408	+.0005/0040		254	1.08
CFD 2 3/4	.50	1 69	.09 2.4	1.0003	+.0002/0003	1-14	2,250	2.93
CCFD 2 3/4	12.7	42.9	N/A	25.408	+.0005/0044	1-14		1.33
CFD 3	.75 19.1	2.13	.13 3.2	1.2503	+.0002/0003	1 1/4-12	3,450	4.20
CCFD 3	19.1	54.0	N/A	31.758	+.0005/0048	1 1/4-12	390	1.91
CFD 3 1/4	.75 19.1	2 13	.13 3.2	1,2503	+.0002/0003	4 4/4 40	3 450	4.52
CCFD 3 1/4	19.1	2 13 54.0	N/A	1.2503 31.758	+.0002/0003 +.0005/0052	1 1/4-12	390	4.52 2.05
CFD 3 1/2	.75	2.44	.13 3.2	1.3753	+.0002/0003	1.0/0.10	4,200	5.99
CCFD 3 1/2	19.1	2.44 61.9	N/A	34.933	+.0005/0056	1 3/8-12	475	2.72
CFD 4	.75	2.80	.13 3.2	1.5003	+.0002/0003	4.4/2.42	5.000	8.97
CCFD 4	19.1	2.80 71.0	N/A	38.108	+.0005/0060	1 1/2-12	565	4.07
CFD 5	.875	3 56	.13 3.2	2.0003	+.0002/0003	0.40	5,000	18.37
CCFD 5	.875 22.2	90.5	N/A	50.808	+.0005/0064	2-12	565	8.33
CFD 6	1.00 25.4	4 47	.13 3.2	2.5003	+.0002/0003	0.4/0.40	5 000	31.99
CCFD 6		113.5	N/A	63.508	+.0005/0068	2 1/2-12	565	14.51

Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

MCGILL. Heavy Duty CAMROL Bearings

Basic Construction Type: Yoke Type Crowned /


Cylindrical Outside Diameter

Rolling Elements: Full Complement Cylindrical

Bearing Material: Bearing Quality Steel

> Seal Type: Rubber Lip Seal

Lubrication: Lithium Soap Grease NLGI #2

CYRD

Part No.		RD		w		В		W1	R		
	Roller	Diameter	Rolle	r Width	Bore	Diameter		verall Vidth	rown Prefi	Track Roller Dynamic Rating	Track Roller Static Rating
With Seals	ir	nch nm	in r	nch mm		inch mm		inch mm			
	Nom	Total	Mont.	Titl	Non	Tel	Non	Tal	Radius	lb/N	lb/N
CYRD 1 1/4	1.250	+0/001	.750	+0/001	.375	+.0002/0004	.8125	+0.005/-0.01	Cylindrical	3,300	2 400
CCYRD 1 1/4	31.75	+0/03	9.05	+0/03	9.53	+.0005/0010	20.6	+0.13/-0.25	14 356	14,680	10,680
CYRD 1 3/8	1.375	+0/001	.750	+0/001	.375	+.0002/0004	.8125	+0.005/-0.01	Cylindrical	3 600	2,400
CCYRD 1 3/8	34.93	+0/03	9.05	+0/05	9.53	+.0005/0010	20.6	+0.13/-0.25	14 356	16,000	10,680
CYRD 1 1/2	1.500	+0/001	.875	+0/001	.438	+.0002/0004	.9375	+0.005/-0.01	Cylindrical	5,000	4,100
CCYRD 1 1/2	38.10	+0/03	2.23	+0/07	1.11	+.0005/0010	23.8	+0.13/-0.25	20 508	22,240	18,240
CYRD 1 5/8	1.625	+0/001	.875	+0/001	.438	+.0002/0004	.9375	+0.005/-0.01	Cylindrical	5.400	4.100
CCYRD 1 5/8	41.28	+0/03	.875 2.23	+0/09	1.11	+.0005/0010	23.8	+0.13/-0.25	20 508	24.020	18,240
CYRD 1 3/4	1.750	+0/001	1.000	+0/001	.500	+.0002/0004	1.0625	+0.005/-0.01	Cylindrical	6 650	6,100
CCYRD 1 3/4	44.45	+0/03	25.40	+0/11	2.70	+.0005/0010	27.0	+0.13/-0.25	20 508	29,580	27 130
CYRD 1 7/8	1.875	+0/001	1.000	+0/001	.500	+.0002/0004	1.0625	+0.005/-0.01	Cylindrical	7 100	6 100
CCYRD 1 7/8	47.63	+0/03	25.40	+0/13	2.70	+.0005/0010	27.0	+0.13/-0.25	20 508	31 580	27.130
CYRD 2	2.000	+0/001	1.250	+0/001	.625	+.0002/0004	1.3125	+0.005/-0.01	Cylindrical	9,500	8,300
CCYRD 2	50.80	+0/03	31.75	+0/15	5.88	+.0005/0010	33.3	+0.13/-0.25	24 610	42,260	36,920
CYRD 2 1/4	2.250	+0/001	1.250	+0/001	.625	+.0002/0004	1.3125	+0.005/-0.01	Cylindrical	10 500	8 300
CCYRD 2 1/4	57.15	+0/03	31.75	+0/17	5.88	+.0005/0010	33.3	+0.13/-0.25	24 610	46 700	36,920

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

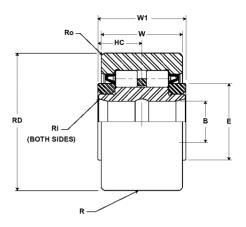
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

CYRD

											CIKL
Part No.	×	E	im	Pis			Recommended	Shaft Diameters	s		WT
	Finler Castles	Mir Carepir	Motor Corner	Proper Formers Northern	Due	h Fit		/e Fit		s Fit	Bearing Weight
With Seals	i	nch nm	ine	ch m		ich im		ich im		ch im	(6)
	(Red)	(Ref)	(Ret)	rReti	1000mil	tol	None	mor	Moni	Tel	*
CYRD 1 1/4	.31 7.9	.98 5.0	.03	.03	.3745	±.0002	.3751	±.0002	.3753	±.0002	.21
CCYRD 1 1/4	7.9	5.0	0.8	0.8	9.512	±.005	9.53	±.005	9.53	±.005	.09
CYRD 1 3/8	.31 7.9	.98 5.0	.03 0.8	.05 1.2	.3745	±.0002	.3751	±.0002	.3753	±.0002	.26 .12
CCYRD 1 3/8	7.9	5.0	0.8	1.2	9.512	±.005	9.53	±.005	9.53	±.005	.12
CYRD 1 1/2	.38 9.5	1.09	.04	.06	.4370	±.0002	.4376	±.0002	.4378	±.0002	.35
CCYRD 1 1/2	9.5	27.8	1.0	1.6	1.100	±.005	11.12	±.005	11.12	±.005	.16
CYRD 1 5/8	.38 9.5	1.09	.04	.06 1.6	.4370	±.0002	.4376	±.0002	.4378	±.0002	.43 .19
CCYRD 1 5/8	9.5	27.8	1.0	1.6	1.100	±.005	11.12	±.005	11.12	±.005	.19
CYRD 1 3/4	.44	1.25	.05	.06	.4995	±.0002	.5001	±.0002	.5005	±.0002	.57
CCYRD 1 3/4	1.1	31.8	1.3	1.6	2.687	±.005	12.70	±.005	12.71	±.005	.26
CYRD 1 7/8	.44	1.25	.05 1.3	.06 1.6	.4995	±.0002	.5001	±.0002	.5005	±.0002	.66 .29
CCYRD 1 7/8	1.1	31.8	1.3	1.6	2.687	±.005	12.70	±.005	12.71	±.005	.29
CYRD 2	.50 2.7	1.41	.06	.09 2.4	.6245	±.0002	.6251	±.0002	.6255	±.0002	.88
CCYRD 2	2.7	35.7	1.5	2.4	5.862	±.005	15.88	±.005	15.89	±.005	.39
CYRD 2 1/4	.50 2.7	1.41	.06	.09 2.4	.6245	±.0002	.6251	±.0002	.6255	±.0002	1.18
CCYRD 2 1/4		35.7	1.5	2.4	5.862	±.005	15.88	±.005	15.89	±.005	.54

MCGILL. Heavy Duty CAMROL Bearings

Basic Construction Type: Yoke Type Crowned /


Cylindrical Outside Diameter

Rolling Elements: Full Complement Cylindrical

Bearing Material: Bearing Quality Steel

> Seal Type: Rubber Lip Seal

Lubrication: Lithium Soap Grease NLGI #2

CYRD

Part No.		RD		w		В		W1	R		
	Roller	Diameter	Rolle	r Width	Bore	Diameter		verall /idth	rown Prefi	Track Roller Dynamic Rating	Track Roller Static Rating
With Seals	ir	nch nm	ir r	nch nm		inch mm		inch mm		15-751	11-751
t	Nom	Total	Mon.	Foll	Non	Tel	Nom	Tel	Radius	lb/N	lb/N
CYRD 2 1/2	2.500	+0/001	1.500	+0/001	.750	+.0002/0004	1.5625	+0.005/-0.01	Cylindrical	14.000	10.400
CCYRD 2 1/2	63.50	+0/03	38.10	+0/19	9.05	+.0005/0010	39.7	+0.13/-0.25	30 762	62 270	46,260
CYRD 2 3/4	2.750	+0/001	1.500	+0/001	.750	+.0002/0004	1.5625	+0.005/-0.01	Cylindrical	15.000	10,400
CCYRD 2 3/4	69.85	+0/03	38.10	+0/21	9.05	+.0005/0010	39.7	+0.13/-0.25	30 762	66 720	46,260
CYRD 3	3.000	+0/-,001	1.750	+0/-,001	1.000	+.0001/0005	1.8125	+0.005/-0.01	Cylindrical	18.300	18,100
CCYRD 3	76.20	+0/03	44.45	+0/23	25.40	+.0003/0013	46.0	+0.13/-0.25	30 762	81 400	80,510
CYRD 3 1/4	3.250	+0/001	1.750	+0/001	1.000	+.0001/0005	1.8125	+0.005/-0.01	Cylindrical	20.300	18,100
CCYRD 3 1/4	82.55	+0/03	44.45	+0/25	25.40	+.0003/0013	46.0	+0.13/-0.25	30 762	90 290	80,510
CYRD 3 1/2	3.500	+0/001	2.000	+0/001	1.125	+.0001/0005	2.0625	+0.005/-0.01	Cylindrical	23,700	21,500
CCYRD 3 1/2	88.90	+0/03	50.80	+0/27	28.58	+.0003/0013	52.4	+0.13/-0.25	30 762	105,420	95,630
CYRD 4	4.000	+0/001	2.250	+0/001	1.250	+.0001/0005	2.3125	+0.005/-0.01	Cylindrical	32,500	22,800
CCYRD 4	101.60	+0/03	57.15	+0/29	31.75	+.0003/0013	58.7	+0.13/-0.25	30 762	144 560	101 410
CYRD 5	5.000	+0/001	2.750	+0/001	1.750	+.0001/0005	2.875	+0.005/-0.01	Cylindrical	50500	50,800
CCYRD 5	127.00	+0/03	69.85	+0/31	44.45	+.0003/0013	73.0	+0.13/-0.25	48 1,219	224 620	225,960
CYRD 6	6.000	+0/-,001	3.250	+0/001	2.250	+.0001/0005	3.375	+0.005/-0.01	Cylindrical	71.500	86,100
CCYRD 6	152.40	+0/03	82.55	+0/33	57.15	+.0003/0013	85.7	+0.13/-0.25	56 1,422	318,030	382 970

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

CYRD

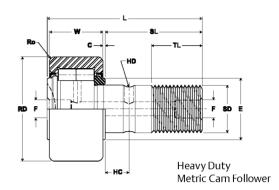
											CIKL
Part No.	×	E	m	Fi			Recommended	Shaft Diameters	s		WT
	Finle Caption	Min Clarepin	Hotel Corner	Proper Former Northern	Pue	h Fit		ve Fit		s Fit	Bearing Weight
With Seals	ir	nch nm	ine	ch m		ch im		ich im		ch im	160
	(Red)	(Ref)	(Ret)	rReti	1000mil	tel	None	Titol	16000	Tot	*
CYRD 2 1/2	.56 4.3	1.69	.07	.09	.7495	±.0002	.7501	±.0002	.7505	±.0002	1.74
CCYRD 2 1/2	4.3	42.9	1.8	2.4	9.037	±.005	19.05	±.005	19.06	±.005	.79
CYRD 2 3/4	.56 4.3	1.69	.07	.09 2.4	.7495	±.0002	.7501	±.0002	.7505	±.0002	2.17
CCYRD 2 3/4	4.3	42.9	1.8	2.4	9.037	±.005	19.05	±.005	19.06	±.005	.98
CYRD 3	.63 5.9	2.13	.08 2.0	.13 3.2	.9994	±.0002	1.002	±.0002	1.006	±.0002	3.08
CCYRD 3	5.9	54.0	2.0	3.2	5.385	±.005	25.5	±.005	25.55	±.005	1.39
CYRD 3 1/4	.63	2.13 54.0	.08 2.0	.13 3.2	.9994	±.0002	1.002	±.0002	1.006	±.0002	3.62
CCYRD 3 1/4	5.9	54.0	2.0	3.2	5.385	±.005	25.5	±.005	25.55	±.005	1.64
CYRD 3 1/2	.69 7.5	2.44	.09	.13 3.2	1.1244	±.0002	1.1252	±.0002	1.1256	±.0002	4.41
CCYRD 3 1/2	7.5	61.9	2.3	3.2	28.560	±.005	28.58	±.005	28.59	±.005	2.00
CYRD 4	.75 9.1	2.80 71.0	.10 2.5	.13 3.2	1.2494	±.0002	1.2502	±.0002	1.2506	±.0002	6.57 2.98
CCYRD 4	9.1	71.0	2.5	3.2	31.735	±.005	31.76	±.005	31.77	±.005	2.98
CYRD 5	.88 2.2	3.56	.11	.13 3.2	1.7494	±.0002	1.7502	±.0002	1.7506	±.0002	12.33
CCYRD 5	2.2	90.5	.11 2.8	3.2	44.435	±.005	44.46	±.005	44.47	±.005	5.59
CYRD 6	1.00	4.47	.12 3.0	.13 3.2	2.2494	±.0002	2.2502	±.0002	2.2506	±.0002	20.47
CCYRD 6	25.4	113.5	3.0	3.2	57.135	±.005	57.16	±.005	57.17	±.005	9.29

MGILL. Heavy Duty CAMROL Bearings

Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement Cylindrical


Bearing Material: Bearing Quality Steel

> Seal Type: Metallic Shield

Lubrication: Lithium Soap Grease NLGI #2

System Configuration: Concentric / Eccentric

Mounting Feature: Slot / Hex Hole

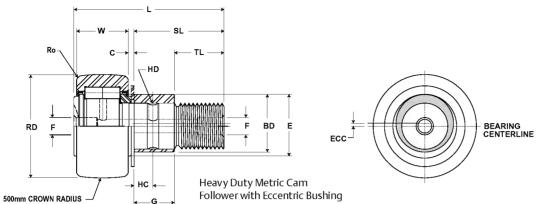
MCFD, MCFDE

Part No.	Ē	RD	- 8	W	;	SD	116		n.		. 8	ESC	G	BD	E-5 Mbs	Washington.
	Roller I	Diameter	Rolle	r Width	Stud [Diameter	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall	Cylindrical Suffix MCFD-xx-X		Eccentric Lase Moanter MCFDE-xx		nace nellist livinimis lilling	2001
With Shields	n	nm ich	Į.	nm ich	Į,	nm nch	ri ir	nm nch	m	m :h	mm inch		mm inch		Mills.	900a
t	None:	Total	None	100	Hom	100	(B)(f)	(Ref)	(Rint)	Blefi	(Ref)	Reb	-05/ 15 (See Table		
MCFD 35		+0/050									500	N/A	N/A	N/A		
MCFDE 35	35.000	+0/002	18.00	+0/.12	16.000	+0/018	32.50	.80	17.00	52.00	20	0.5 .02	14 0.55	20 .79	16,000	18,000
MCFD 35 X	1.3780	+0/011	.709	+0/005	.6299	+0/0007	1.280	.031	.669	2.047	Cylindrical	N/A	N/A	N/A	3,597	4,047
MCFDE 35 X		+0/0004									Cylindrical	0.5 .02	14 0.55	20 .79		
MCFD 40		+0/050									500	N/A	N/A	N/A		
MCFDE 40	40.000	+0/002	20.00	+0/.12	18.000	+0/018	36.50	.80	19.00	58.00	20	1 .04	16 0.63	22 .87	18,000	22,000
MCFD 40 X	1.5748	+0/011	.787	+0/009	.7087	+0/0007	1.437	.031	.748	2.283	Culindrical	N/A	N/A	N/A	4,047	4,946
MCFDE 40 X		+0/0004									Cylindrical	1 .04	16 0.63	22 .87		
MCFD 47		+0/050									500	N/A	N/A	N/A		
MCFDE 47	47.000	+0/002	24.00	+0/.12	20.000	+0/021	40.50	.80	21.00	66.00	20	1 .04	18 0.71	24 .94	27,000	32,000
MCFD 47 X	1.8504	+0/011	.945	+0/013	.7874	+0/0008	1.594	.031	.827	2.598	Cylindrical	N/A	N/A	N/A	6,070	7,194
MCFDE 47 X		+0/0004									Cylindrical	1 .04	18 0.71	24 .94		
MCFD 52		+0/050									500	N/A	N/A	N/A		
MCFDE 52	52.000	+0/002	24.00	+0/.12	20.000	+0/021	40.50	.80	21.00	66.00	20	1 .04	18 0.71	24 .94	30,000	35,000
MCFD 52 X	2.0472	+0/013	.945	+0/017	.7874	+0/0008	1.594	.031	.827	2.598	Cylindrical	N/A	N/A	N/A	6,745	7,869
MCFDE 52 X		+0/0005									Cylindrical	1 .04	18 0.71	24 .94		
MCFD 62		+0/050									500	N/A	N/A	N/A	4,047 27,000 6,070 30,000 6,745	
MCFDE 62	62.000	+0/002	29.00	+0/.12	24.000	+0/021	49.50	.80	25.00	80.00	20	1 .04	22 0.87	28 .10	41,000	48,000
MCFD 62 X	2.4409	+0/013	1.142	+0/021	.9449	+0/0008	1.949	.031	.984	3.150	Culinder	N/A	N/A	N/A	9,218	10,791
MCFDE 62 X		+0/0005									Cylindrical	1 .04	22 0.87	28 .10		

^{1.} Standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, add suffix "X". Example - MCFD-35-X.

Inch dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.


For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Bearing Selection Page B-3

^{2.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. If grease lubricated, frequent relubrication is required. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

^{3.} Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

MCFD, MCFDE

Par	rt No.	HIT	m	D	E	Fic	anno	34E	Th Ty	47	usn	WT
VACOL.	Shields	Mete Coolin	Humal kails, 1000 Owinter	had the	Min, Elbouring Elamola	Cube Radios Sollis X	Housin Dian	ig Bore neter	Timan	Clamating Surgar	Silve	win
vvitn s	Snielas	m in	ım ch	m inc	m ch		mm inch		300	290.	6990	be 1
		(0.0)	illeh.	400	illet	1068	flea	76		-		TH
MCFD 35	5											
MCFDE 3	35	8.00	3.00	6.00	21.00	1.00	16.000	+0/018	M40 4 5	85	0.500	.16
MCFD 35	i X	.315	.118	.236	.827	.039	.6299	+0/0007	M16x1.5	752	6,500	.36
MCFDE 3	35 X											
MCFD 40)											
MCFDE 40	10	8.00	3.00	6.00	23.00	1.50	18.000	+0/018		85		.24
MCFD 40	X	.315	.118	.236	.906	.059	.7087	+0/0007	M18x1.5	752	5,500	.53
MCFDE 40	10 X											
MCFD 47												
MCFDE 4	17	9.00	4.00	8.00	27.00	1.50	20.000	+0/021		118	4.000	.38
MCFD 47	' X	.354	.157	.315	1.063	.059	.7874	+0/0008	M20x1.5	1,044	4,200	.84
MCFDE 4	17 X											
MCFD 52	2											
MCFDE 5	52	9.00	4.00	8.00	21.00	1.50	20.000	+0/021	M20v4 E	118	2 400	.45
MCFD 52	: X	.354	.157	.315	.827	.059	.7874	+0/0008	M20x1.5	1,044	3,400	.99
MCFDE 5	52 X											
MCFD 62	!	11.00 .433										
MCFDE 6	52		4.00	8.00	38.00	2.00	24.000	+0/021	M24x1.5	216	2.600	.80
MCFD 62	2 X		.157	.315	1.496	.079	.9449	+0/0008	IVIZ4X 1.3	1,912	2,600	1.75
MCFDE 6	32 X											

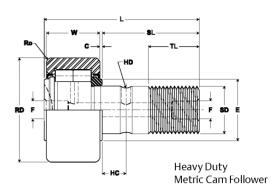
Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Full Complement Cylindrical

Bearing Material: Bearing Quality Steel

> Seal Type: Metallic Shield


Lubrication: Lithium Soap Grease NLGI #2

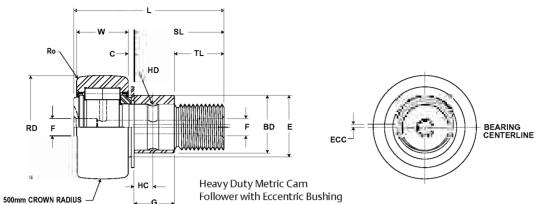
System Configuration: Concentric / Eccentric /

Heavy Stud

Slot / Hex Hole **Mounting Feature:**

ISO Standard **Dimensional Interchange:**

MCFD MCFDF


ANTIBULE CO.	Selection of	Willia Wath	- September 1	1		n 1	100	860	Harrison H	10	Trace Books Francisco Francisco	THE SERVICE Market
	THE RESERVE TO THE RE	<i>111</i>	W/6	1000	and the second	721.	10010	diam'r	227. 100 - Tan	granare	31117	173377
HCPC *1	(1400a)						141	8.9	4.96	1,4		
HOTELS TO		20-01 +1-70	051 11 405081	366	125	2011	3,094.01	26	JU WAT	45	ALL WATER	9001601
HETE YOU		15-201- Web (156)	A DOMEST SE	3/50	387	ale Cherry		N.K	3,6	84	S#1,000	19(9(3))
М ОТЕТЬУ		1					世界が対	5%	22 007	20 12		
MCFD 80	+0/- 050 +0/- 002						500	N/A	N/A	N/A		
MCFDE 80		35 00 +0/ 12	30 000 +0/- 021	63 00	1 00	32 00 100 00	20	1 5 06	29 -1_14	35 38	67 000	91 000
MCFD 80 X	3 1496 +0/- 015	1 378 +0/- 029	1 1811 +0/- 0008	2 480	039	1 260 3 937	Cylindrical	N/A	N/A	N/A	15 063	20 459
MCFDE 80 X	+0/- 015 +0/- 0006						Cylindrical	1 5 06	29 1_14	35 38		
нси::-	#1 #1. (0.1%) #1.601 (0.34) (0.34) (0.34)						36	195	164	K9=-		
HCFC±9A		1550 1741	METER TOO	63,60	356	2172 0006	(39)	(5)	J. A.	8	77 290	101201
MATERIAL V		3% %-130	01 \$1700	3.150	289	1321 2 3 627	Edward	N/4	0.00	ħ#	(35.884)	11.007
NATION C							7,80.5	(6)	7.4	80		

^{1.} Standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, add suffix "X", Example - MCFD-35-X.

3. Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

^{2.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. If grease lubricated, frequent relubrication is required. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

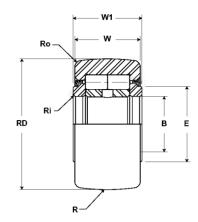
MCFD, MCFDE

HARTE	- 12.00	100	-0		HE	Hilling	****	7 77	- (G)	-20	-WE-
Will filled	250	Ministra Harman	999,062,00	Williams	00000	Hills	5005	20000000	100000	Livering Seesa (Cressed	Total
West Street	17.		:W			()(44)			W-		W.
	1000	District Co.	-0.00	projection).	graff)	THAN	111	4 4	MARK	1,0000	
MOTE *1			*! ###	1 SEC.	100	ir ide (des	-1/A -1/A	MYWOL	1300		
MOTESTA:	36.66	350								1591	551
HOTE TO II	1008	ne									2240
MCCC724											
MCFD 80				47 00 1 850	2 00 079	30 000 1 1811	+0/- 021 +0/- 0008	M30x1 5	441 3 903	1.800	
MCFDE 80	15 00	4 00	8 00								1 54
MCFD 80 X	591	157	315								3 39
MCFDE 80 X	-										
96600				1755 1865							
Marchael.	1.50 391	165	411 341		2.50 279	30,500	0. 38 165-0003	MARK T	3/80	- ARK	25. (33
AKACTES.	(a)(H.C. 1987				= (E.1)					***
MARIL CARL											

MGILL Heavy Duty CAMROL Bearings

Basic Construction Type: Yoke Type Crowned /

Cylindrical Outside Diameter


Rolling Elements: Full Complement Cylindrical

Roller

Bearing Material: Bearing Quality Steel

> Seal Type: Metallic Shield

Lubrication: Lithium Soap Grease NLGI #2

MCYRD

Part No.		RD.		w		В		W1	R.			
With Old Life	Roller	Diameter	Rolle	er Width	Bore [Diameter	Over	all Width	Cylimbrical Suffix MCF-X	Track Roller Dynamic Rating	Track Roller Static Rating	
With Shields	li li	nm ich	mm inch		mm inch		i	mm nch	inch	N/lb	S.///	
	Monu. Tol.		Nom. Tot		Nom (for		Home Titl		Rumes	N/ID	N/lb	
MCYRD 15	35.000	+0/050 +0/002	18.00	+0/.12	15.000	+0/008	19.00	+0/-0.21	500 20	16,000	18,000	
MCYRD 15 X	1.3780	+0/-0.011 +0/- 0.0004	.709	+0/005	.5906	+0/0003	.748	+0/-0.0008	Cylindrical	3,597	4,Ö47	
MCYRD 17	40.000	+0/050 +0/002	20.00	+0/.12	17.000	+0/008	21.00	+0/-0.21	500 20	18,000 4,047	22,000	
MCYRD 17 X	1.5748	+0/-0.011 +0/- 0.0004	.787	+0/009	.6693	+0/0003	.827	+0/-0.0008	Cylindrical		4,946	
MCYRD 20	47.000	+0/050 +0/002	24.00	+0/.12	20.000	+0/010	25.00	+0/-0.21	500 20	27.000	32.000	
MCYRD 20 X	1.8504	+0/-0.011 +0/- 0.0004	.945	+0/013	.7874	+0/0004	.984	+0/-0.0008	Cylindrical	6,070	7 194	
MCYRD 25	52.000	+0/050 +0/002	24.00	+0/.12	25,000	+0/010	25.00	+0/-0.21	500 20	30 000	35.000	
MCYRD 25 X	2.0472	+0/-0.013 +0/- 0.0005	.945	+0/017	.9843	+0/0004	.984	+0/-0.0008	Cylindrical	6,745	7 869	
MCYRD 30	62.000	+0/050 +0/002	28.00	+0/.12	30,000	+0/010	29.00	+0/-0.21	500 20	41,000 9,218	47.000	
MCYRD 30 X	2.4409	+0/-0.013 +0/- 0.0005	1.102	+0/021	1.1811	+0/0004	1.142	1.142 +0/-0.0008	Cylindrical		10 567	
MCYRD 35	72.000	+0/050 +0/002	28.00	+0/.12	35.000	+0/012	29.00	+0/-0.21	500 20	46.000	57.000	
MCYRD 35 X	2.8346	+0/-0.013 +0/- 0.0005	1.102	+0/025	1.3780	+0/0005	1.142	+0/-0.0008	Cylindrical	10.342	12 815	
MCYRD 40	80.000	+0/050 +0/002	30.00	+0/.12	40,000	+0/012	32.00	+0/-0.25	500 20	64.000	71.000	
MCYRD 40 X	3.1496	+0/-0.015 +0/- 0.0006	1.181	+0/029	1.5748	+0/0005	1.260	+0/-0.009	Cylindrical	14,388	15,962	
MCYRD 45	85.000	+0/050 +0/002	30.00	+0/.12	45,000	+0/012	32.00	+0/-0.25	500 20	67 000	72.000	
MCYRD 45 X	3.3465	+0/-0.015 +0/- 0.0006	1.181	+0/033	1.7717	+0/0005	1.260	+0/-0.009	Cylindrical	15 063	16 187	
MCYRD 50	90.000	+0/050 +0/002	30.00	+0/.12	50.000	+0/012	32.00	+0/-0.25	500 20	71 000	77.000	
MCYRD 50 X	3.5433	+0/-0.015 +0/- 0.0006	1.181	+0/037	1.9685	+0/0005	1.260	+0/-0.009	Cylindrical	15.962	17 311	

^{1.} Standard bearing has a crowned roller outside diameter. For straight cylindrical outside roller diameter, add suffix "X". Example - MCYRD-15-X.

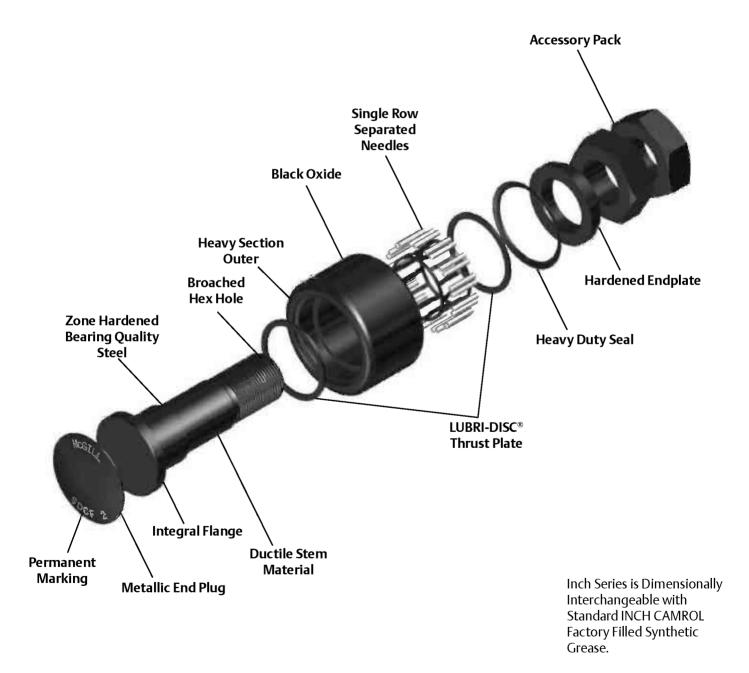
Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

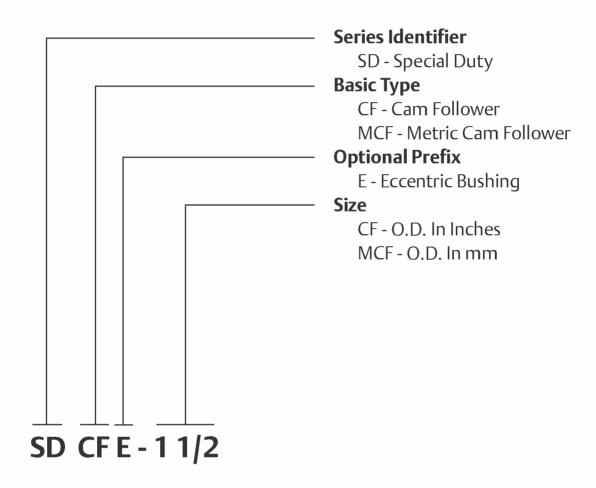
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

^{2.} Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speed. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. If grease lubricated, frequent relubrication is required. Actual bearing testing in the specific application should be conducted if the anticipated operating speed approaches the listed limiting speed.

 $^{3. \,} Positive \, clamping \, across \, end plates \, required \, to \, ensure \, proper \, end \, play \, after \, mounting.$



MCYRD


	1/22/		100						MCTRD	
	E	Ro	Ri	LF	LFT	TF	TFT	LSD	WT	
	Min. Clamping Diameter	Outer Corner Radi	Inner Corner Radius			Shaft Diameters		Limiting Speed (Grease)	Bearing Weight	
		am	mm		ose Fit		ıht Fit	(5.55.5)		
		nm nch	mm in≣h		mm inch		mm nch	RPM	kg b	
_	(Ref)	(Ref)	(i ei)	Nom	Tol	Nom	Tol	_		
	20.00 .787	.60 .024	.30 .012	14.994 .5903	+0/011 +0/0004	15.000 .5906	+0/011 +0/0004	6,500	.10 .22	
	22.00 .866	1.00 .039	.30 .012	16.994 .6691	+0/011 +0/0004	17.000 .6693	+0/011 +0/0004	5,500	.15 .32	
	27.00 1.063	1.00 .039	.30 .012	19.993 .7871	+0/013 +0/0005	20.000 .7874	+0/013 +0/0005	4,200	.25 .54	
	31.00 1.220	1.00 .039	.30 .012	24.993 .9840	+0/013 +0/0005	25.000 .9843	+0/013 +0/0005	3,400	.28 .62	
	38.00 1.496	1.00 .039	.30 .012	29.993 1.1808	+0/013 +0/0005	30.000 1.1811	+0/013 +0/0005	2,600	.46 1.02	
	44.00 1.732	1.10 .043	.60 .024	34.991 1.3776	+0/016 +0/0006	35,000 1,3780	+0/016 +0/0006	2,100	.63 1.39	
	51.00 2.008	1.10 .043	.60 .024	39.991 1.5744	+0/016 +0/0006	40.000 1.5748	+0/016 +0/0006	1,600	.82 1.80	
	55.00 2.165	1.10 .043	.60 .024	44.991 1.7713	+0/016 +0/0006	45.000 1.7717	+0/016 +0/0006	1,400	.89 1.95	
	60.00 2.362	1.10 .043	.60 .024	45.991 1.8107	+0/016 +0/0006	50.000 1.9685	+0/016 +0/0006	1,300	.95 2.09	

McGill Special Duty Cam Followers

Special-Duty CAMROL bearings are available feature black oxide treated bearing steel in both inch and metric sizes for your motion control needs. Designed for severe applications, bearings thick section outer race, together with a caged (retainer) needle roller set provides the basic foundation for a cam follower suited for severe duty. Integral flange construction, on stud version bearings help maintain bearing integrity throughout the service life. A metallic face plug seal provides a wear resistant seal while the heavy duty seal provides a barrier for contaminate entry to support reduced maintenance applications. Within the following section you can learn more about these feature and how the can be applied to your tough application.

Special Duty Cam Follower Nomenclature

M^çGILL_® Special Duty CAMROL Bearings

Features and Benefits

Retainer Type

The retainer (cage) option provides heat-treated steel cage for improved durability and wear resistance. The needle separation produces larger lubrication reservoir and helps achieve higher bearing speeds. The cages are designed with two rollers per pockets to help improve static and dynamic load ratings.

Heavy Section Outer

The heavy section outer helps support radial loading and provide proper rolling element support.

LUBRI-DISC® Seal

The CAMROL standard for seals, the LUBRI-DISC seal helps keep contaminants out and lubrication in the bearing, with an integral back plate to separate the metal to metal contact between the outer ring and endplate(s) or flange. The back plate feature reduces friction resulting in lower operating temperatures which can extend grease life and allowing for higher operating speeds. The seal also includes vents to help prevent seal blowout during relubrication, while the outer raceway is machined with a reservoir for additional lubricant capacity. The LUBRI-DISC seal option has a good balance of sealing, lubricant capacity, and low drag operation essential to a precision cam follower suited for most industrial applications.

End Plug Seal

Metallic Plug seal helps keep contamination out of the bearing and resistant to weld spatter, abrasive contaminants and washout. The plug installed into the outer encapsulates the flange side of the bearing resulting in a large grease reservoir and wear resistant bearing seal.

Cylindrical Outside Diameter (OD)

The cylindrical OD can improve performance in certain applications such as improved track capacity by maximizing the contact area with the track.

Features and Benefits continued

Zone Hardened Raceways

Heat treatment used to precisely harden working surfaces of the raceway and flange. The hardened surfaces provide support for the rolling element contact stresses, while keeping the core of the inner ductile to help absorb shock loads.

Hex Hole (Broached)

The hex hole can aide in the installation and removal of stud type cam followers by increasing the holding power over a standard screw driver or milled slot.

Hardened Endplate

Similar to the flange, the endplate must provide a seal surface for the LUBRI-DISC seal and resist wear from incidental contact with the outer or rollers. The hardened and ground endplate provides a sealing surface with LUBRI-DISC® seal option.

MGILL Special Duty CAMROL Bearings

Features and Benefits

LUBRI-DISC® Thrust Washer

Utilizing the LUBRI-DISC properties as a back plate to separate the metal to metal contact between the outer ring and endplate(s) or flange. The back plate feature reduces friction resulting in lower operating temperatures which can extend grease life and allowing for higher operating speeds.

Factory Grease Fill

The cam follower and cam yoke roller bearings are factory lubricated with synthetic grease. Contact Application Engineering when application conditions require special lubricants

Black Oxide Finish

Bearings have a black oxide finish on all external surfaces.

Permanent Marking

Part number permanently marked on bearing face, helps bearing identification after years of service.

Installation Accessory Pack

All McGill stud type special duty Cam followers include (2) jam nuts to ensure proper thread type (Metric/ Inch), grease fitting and oil hole plug to help provide proper lubrication path to the rolling elements and prevent contamination from entering the bearing through a unused oil hole.

Options

Eccentric Stud

Eccentric stud option provides a means of adjusting the radial position of the bearing which can improve the load sharing of inline bearing combinations. Cam follower load sharing helps reduce operation costs by reducing premature failures due to overloaded bearings, the need of precise mounting hole location tolerances and providing ability to realign bearing due to track wear.

Custom Capabilities

- Customer specified factory grease fill
- Stud or thread length modifications
- Roller diameter variations or tolerances
- Cam followers grouped or matched diameter tolerance / run out sets
- Custom engineered to order designs

MGILL. Special Duty CAMROL Bearings

Basic Construction Type: Stud Type Crowned /

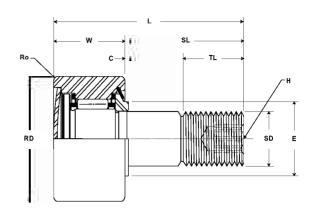
Cylindrical Outside Diameter

Rolling Elements: Retained (Caged) Needle

Roller

Bearing Material: Bearing Quality Steel

> Seal Type: Metal Extension Plug and


LUBRI-DISC® Seal

Lubrication: Synthetic Grease NLGI#2

System Configuration: Concentric / Eccentric

Mounting Feature: Hex Hole on Thread Face

Dimensional Interchange: Standard CAMROL Bearing

SDCF

- Section	SHARE	no Barren	Na ne Wilter:		and the rener		escripto	enella.	T-	Series.	Trans Debar Sylvania Salay	Time Social Signal Signal
we deliced.		WILL T									(Besi	3700
	-	700	(60)	000	100			1000	704			
SDCF 1	1 000 25 40	+0 / -0 001 +0 / - 0 03	6250 15 875	+0 / -0 010 +0 / - 0 25	4375 11 113	+0 001 /-0 +0 03 / - 0	1 00 25 4	03 8	50 12 7	1 09 27 8	1 450 6 450	1 280 5 693
Pistor School	8 87tf: #127	-4f11381 Uni (98	7.00 10.00	****	98 ******	#1:07/1- 1:626 ()	84	36	10 1000	100	20 ml +20 m	7/6
SDCF 1 1/2	1 500 38 10	+0 / -0 001 +0 / - 0 03	8750 22 225	+0 / -0 010 +0 / - 0 25	6250 15 875	+0 001 /-0 +0 03 / - 0	1 50 38 1	03 8	75 19 1	1 53 38 9	3 570 15 879	2 450 10 898
68. Pm	1667	074 0. (0100)	100.12 110.22	L+13*34 **,**L9	.64± 3539	nuuti la nuuti la	ui.	306- 32	44 253	1.7% 25.2	# 450 86504	5.00± 3.30±
SDCF 2	2 000 50 80	+0 / -0 001 +0 / - 0 03	1 2500 31 750	+0 / -0 010 +0 / - 0 25	8750 22 225	+0 001 /-0 +0 03 / - 0	2 00 50 8	03 8	2 00 50 8	2 16 54 8	6 700 29 802	4 000 17 792
dochary.	2 523 22 52	90 000 90 000	4 55 55 25 75 25 75	\$1,02.9 31.533	.700 25.000	10001-0 10017-0	H	8.	3,25 97,2	2.50 845	191-02 162 5 0	5/8/11 25.9**
SDCF 3	3 000 76 20	+0 / -0 001 +0 / - 0 03	1 7500 44 450	+0 / -0 010 +0 / - 0 25	1 2500 31 750	+0 001 /-0 +0 03 / - 0	2 50 63 5	03 8	2 50 63 5	3 03 77 0	19 700 87 626	10 500 46 704
WK-1	83. (0/044	#11187 #= 101	17.11	704-1-24 2 7 24	ATTE	enteres de enteres de	314 31.1	**	A (PP)	5 e	3047 41170	14.00 14.00

Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

Special Duty CAMROL Bearings MG ILL

SDCF

the state	erme Statistics		HE MANUAL PARTY CONTRACTOR CONTRA			These	2000	(()()()()()()()(\$700
TWA VILLET		OTHER.	2560	19007	101	Chian :	relike	West .	#
SDCF 1	25 6 4	59 15 1	03 8	44 11 1	+ 0002/- 0003 + 0005/- 0008	7/16-20	250 28	12 500	16 07
F €+18**	81 (100.0)	A.	18	19	#18 g SE -14 a #80	\$74.0	(#) (2)	A. H	¥.
SDCF 1 1/2	31 7 9	95 24 2	06 1 6	63 15 9	+ 0002/- 0003 + 0005/- 0008	5/8-18	650 73	6 300	49 22
est the	77	III ISI	36 13	-5	86.72.1396 36.75.7386	395 F	1:00 41	5,000	95 35
SDCF 2	44 11 1	1 28 32 5	09 2 4	88 22 2	+ 0002/- 0003 + 0005/- 0008	7/8-14	1 500 170	3,900	1 30 59
0001349	<u>.</u>	48	.00 2.4	£.	00000000000 0000000000	36.00	1330	W-00	2.50
SDCF 3	75 19 1	2 14 54 4	13 3 2	25 31 8	+ 0002/- 0003 + 0005/- 0008	1 1/4 12	3 450 390	2 200	3 87 1 76
presu	7.7	***	30 30	2.	*18 o 86 *18 * *6	1446	(2) (A)	1184	mister is the

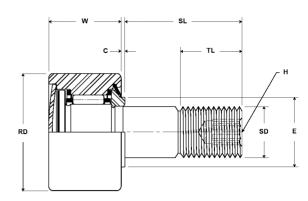
Basic Construction Type: Stud Type Crowned /

Cylindrical Outside Diameter

Rolling Elements: Retained (Caged) Needle

Roller

Bearing Material: Bearing Quality Steel


> Seal Type: Metal Extension Plug and

Rubber Lip Seal

Synthetic Grease NLGI#2 **Lubrication:**

System Configuration: Concentric / Eccentric

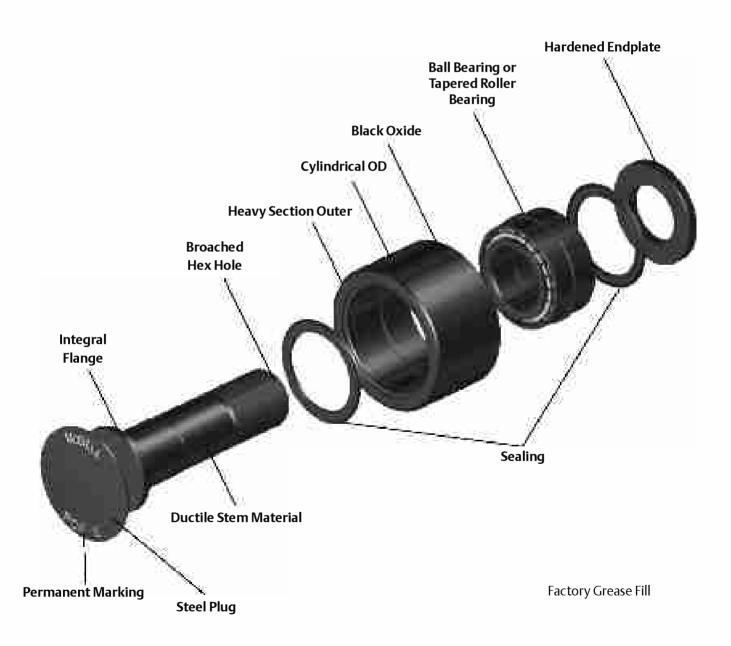
Mounting Feature: Hex Hole on Thread Face

SDMCF

Part No.		RD		W		SD	90	.6	TL:		R	ECC	0	BD	- (8.0)	Trock Roller
With LUBRI-DISC	Rolle	Roller Diameter		Roller Width		Stud Diameter		Stud Endplate Length Extension		Length Overall	Cylindrical Prefix SDCF-XX	Eccentric Base Modifier SDCFE-XX			Track Roller Dynamic Rating	Static Rating
Seah		mm inch		mm inch		mm inch	Į.	nm 1ch	mi	n h	men		mm inch	ocus.	MAG	10/16
	Hons	töti	None	Tol	Hon.	Tob	(Ref)	(Ref)	(Rint)	(Rint)	Radion	(Ret)	*0: 001 (*0:-63)	# 001 (1 03		
SDMCF 25	25.00	+0 / -0.02	16.00	+0 / -0.25	10.00	+0 / -0.02	25	.8	14	27	500 20	N/A	N/A	N/A	6,450	5,690
SDMCFE 25		+0 / = 0.001	.630	+0 / - 0.010	.394	+0 / - 0.001	.98	.03	.55	1.1	500 20	.5 .02	10 .39	13 .51	1,450	1,279
SDMCF 40	40.00	+0 / -0.02	25.00	+0 / -0.25	16.00	+0 / -0.02	30	.8	17	42	500 20	N/A	N/A	N/A	15,900	10.890
SDMCFE 40	1.575	+0 / = 0.001	.984	+0 / - 0.010	.630	+0 / - 0.001	1.18	.03	.67	1.6	500 20	.5 .02	14 .55	20 .79	3,575	2,448
SDMCF 50	50.00	+0 / -0.02	30.00	+0 / -0.25	20.00	+0 / -0.02	40	.8	22	51	500 20	N/A	N/A	N/A	29.800	17,750
SDMCFE 50	1.969	+0 / = 0.001	1.181	+0 / - 0.010	.787	+0 / - 0.001	1.57	.03	.87	2.0	500 20	1 .04	18 .71	24 .94	6,700	3,991
SDMCF 60	60.00	+0 / -0.02	35.00	+0 / -0.25	24.00	+0 / -0.02	50	.8	27	60	500 20	N/A	N/A	N/A	46,300	26,380
SDMCFE 60	2.362	+0 / - 0.001	1.378	+0 / - 0.010	.945	+0 / - 0.001	1.97	.03	1.06	2.4	500 20	1 .04	22 .87	28 .10	10,409	5,931
SDMCF 80	80.00	+0 / -0.02 45.00	45.00	+0 / -0.25	30.00	+0 / -0.02	60	.8	32	76	500 20	N/A	N/A	N/A	87,600 19,694	4,680
SDMCFE 80	3.150	+0 / - 0.001	1.772	+0 / - 0.010	1.181	+0 / - 0.001	2.36	.03	1.26	3.0	500 20	.5 .06	29 .14	35 .38		1,052
SDMCF 100	100.00 3.937	+0 / -0.02 +0 / - 0.001	50.00 1.969	+0 / -0.25 +0 / - 0.010	36.00 1.417	+0 / -0.02 +0 / - 0.001	80 3.15	.8 .03	42 1.65	87 3.4	800 31	N/A	N/A	N/A	103,200 23,201	56,500 12,702

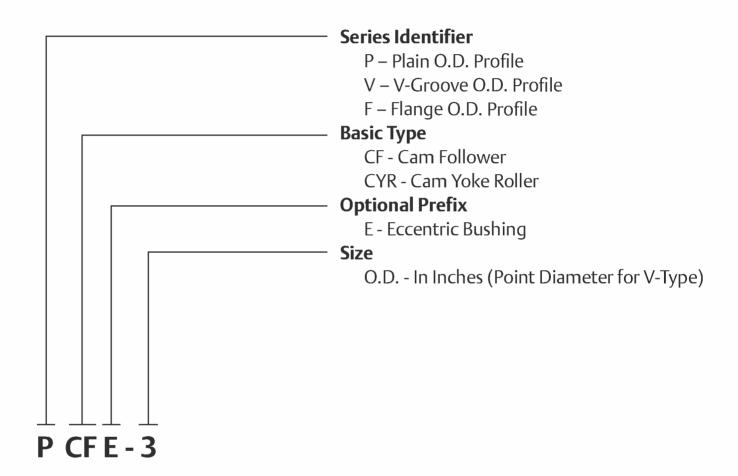
Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

Special Duty CAMROL Bearings MGILL


SDMCF

Partie	104106	100 Miles	11555511	16.20 17	***	114443	HWH!	/m:	
	,iii	2/5	745		T w		#	4	
SDMCF 25	5	151	1	10 00	+ 025/- 000	MdOrd OF	57	06	
SDMCFE 25	20	59	04	394	+ 001/- 000	M10x1 25	6	14	
SWESSES	7	arn	%	Ti-P	6-175-15	Charles Account	10	560	
CMC 240	101	-910	11667	1,4667	######################################	901/33/	740	11,11477	
SDMCF 50	10 39	32 <u>.</u> 5 1 28	1 04	20_00 787	+ 025/- 000 + 001/- 008	M20x1 5	85 10	50 1 10	
SDMCFE 50									
CAC AL	7	3343	131	37540	+ 2011 (V) + 3011 (A)	in the same	70 30	16	
P 44 44	46	251	16-	P.S.	3577/494		20)	1.00	
SDMCF 80	14	54.2	2	30 00	+ 025/- 000	M30x2	118	1 89	
SDMCFE 80	55	213	08	181	+_001/- 016		13	4 16	
e.##**##	79	133	ie.	8600 40,	-e_mercia * e_del*-til *	Leu . n	9	3.30 5.40	

MGILL® TRAKROL Cam Follower Bearings


McGill TRAKROL Followers

TRAKROL bearings feature black oxide treated bearing steel and utilize either a precision ball or tapered roller bearing insert for longer operating life under combination radial and thrust loads. The capacity for combination loads allow the TRAKROL bearing to be available in plain (cylindrical), V-groove, and flanged O.D. in both stud and yoke styles. Small sizes (<3" OD or point diameter) use sealed ball bearing inserts along with a NYLAPLATE seal for additional protection. Stud type configurations utilize a metal end plug seal on the roller face providing a long lasting seal. Both bearing types provide a large internal grease reservoir along with special sealing makes TRAKROL bearings an excellent choice where reduced maintenance is required.

TRAKROL Cam Follower Bearings A GILL®

TRAKROL Nomenclature

MGILL. TRAKROL Cam Follower Bearings

Features and Benefits

Configurations

TRAKROL® bearings feature precision ball bearings or tapered roller bearings to help provide longer life when subjected to a combination of radial and thrust loads.

Plain Series

Plain OD bearings are generally used to support radial loads. Can also act as a "float" bearing when used in conjunction with a flange or V-Groove type.

Flanged Series

Flanged OD bearings are popular in guide rail applications since integral flange help direct the load axially.

V-Groove Series

Typically used with "V" shaped tracks for both guidance and radial support. The configuration of the track reduces the amount of sediment build-up on the track

Heavy Section Outer

The heavy section outer helps support radial loading and provide proper rolling element support.

Sealing

All TRAKROL bearing utilize rubber lip seals to help improve sealing and grease retention. TRAKROL bearings under 3" feature a ball bearing insert along with a NYLAPLATE wiping seal for addition protection. The NYLAPLATE seal is exclusive to McGill TRAKROL bearings and complements the rubber lip seal provided with the bearing insert.

Features and Benefits continued

Steel Plug

Metallic Plug seal helps keep continuation out the bearing and is resistant to weld spatter, abrasive contaminants and washout.

Cylindrical Outside Diameter (OD)

The cylindrical OD can improve performance in certain applications such as improved track capacity by maximizing the contact area with the track.

Ductile Material

Ductile stem helps resist shock loads.

The bearings are factory lubricated with medium temperature grease. Contact Application Engineering when application conditions require special lubricants.

Black Oxide Finish

Bearings have a black oxide finish on all external surfaces.

Permanent Marking

Part number permanently marked on bearing face, helps bearing identification after years of service.

MGILL TRAKROL Cam Follower Bearings

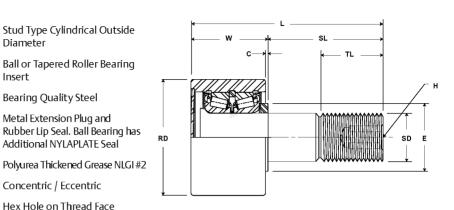
Basic Construction Type: Stud Type Cylindrical Outside

Diameter

Rolling Elements: Ball or Tapered Roller Bearing

Insert

Bearing Material: Bearing Quality Steel


> Metal Extension Plug and Seal Type:

Rubber Lip Seal. Ball Bearing has Additional NYLAPLATE Seal

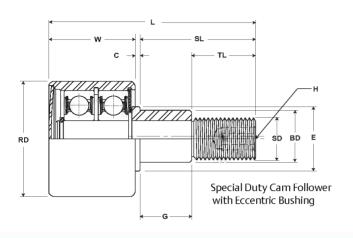
Stem Configuration: Concentric / Eccentric

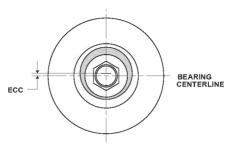
Lubrication:

Mounting Feature: Hex Hole on Thread Face

PCF

Part No.	Innert Type	RD	W .i		SD	61	9	TH	16	Track Roller	Track Roller:	
With LUBRI-DISC	Ball or Topered Roller	Roller Diameter	Roller Width	Stud I	Diameter	Stud Lingth	Endplate Extension	Thread Unigth	Length Overall	Dynamic Rating	Dynamic Thrust Rating	Track Roller Static Rating
Seals	Poller Searing	lin m	ch m		nch mm	in m	ch im	in m	ch m	16/01	1600	116694
	THE COLUMN	cRuti	(filet)	Mon	tol	(Ref)	(R) 6	Min	(Rin)	1011	Table 1	
PCF 1 1/2	ВВ	1.50	1.19	.625	+0 / -0.001	1.500	.06	.75	2.69	2,520	1,320	1,370
PCFE 1 1/2	55	38.1	30.2	15.9	+0 / - 0.03	38.10	1.6	19.1	68.3	11,209	5,871	6,094
PCF 1 3/4	20	1.75	1.19	.750	+0 / -0.001	1.750	.06	.88	2.94	2,520	1,320	1,370
PCFE 1 3/4	ВВ	44.5	30.2	19.1	+0 / - 0.03	44.45	1.6	22.2	74.6	11,209	5,871	6,094
PCF 2	ВВ	2.00	1.69	.875	+0 / -0.001	2.000	.06	1.13	3.69	3,490	1,830	2,000
PCFE 2		50.8	42.9	22.2	+0 / - 0.03	50.80	1.6	28.6	93.7	15,524	8,140	8,896
PCF 2 1/4	ВВ	2.25	1.69	.875	+0 / -0.001	2.000	.06	1.13	3.69	3,490	1,830	2,000
PCFE 2 1/4	ВВ	57.2	42.9	22.2	+0 / - 0.03	50.80	1.6	28.6	93.7	15,524	8,140	8,896
PCF 2 1/2	ВВ	2.50	1.69	1.00	+0 / -0.001	2.250	.06	1.50	3.94	5,120	2,680	3,120
PCFE 2 1/2		63.5	42.9	25.4	+0 / - 0.03	57.15	1.6	38.1	100.0	22,774	11,921	13,878
PCF 3	TRB	3.00	2.00	1.25	+0 / -0.001	2.500	.06	1.75	4.50	14,300	5,790	16,000
PCFE 3	IKB	76.2	50.8	31.8	+0 / - 0.03	63.50	1.6	44.5	114.3	63,606	25,754	71,168
PCF 3 1/4	TRB	3.25	2.00	1.25	+0 / -0.001	2.500	.06	1.75	4.50	14,300	5,790	16,000
PCFE 3 1/4	IIVB	82.6	50.8	31.8	+0 / - 0.03	63.50	1.6	44.5	114.3	63,606	25,754	71,168
PCF 3 1/2	TRB	3.50	2.00	1.25	+0 / -0.001	2.750	.06	1.75	4.75	14,300	5,790	16,000
PCFE 3 1/2	IKB	88.9	50.8	31.8	+0 / - 0.03	69.85	1.6	44.5	120.7	63,606	25,754	71,168
PCF 4	TRB	4.00	2.00	1.25	+0 / -0.001	2.750	.06	1.75	4.75	14,300	5,790	16,000
PCFE 4	III	101.6	50.8	31.8	+0 / - 0.03	69.85	1.6	44.5	120.7	63,606	25,754	71,168
PCF 4 1/2	TRB	4.50	2.00	1.25	+0 / -0.001	2.750	.06	1.75	4.75	14,300	5,790	16,000
PCF 5	IND	114.3	50.8	31.8	+0 / - 0.03	69.85	1.6	44.5	120.7	63,606	25,754	71,168
PCF 6	TRB	6.00	3.00	2.50	+0 / -0.001	5.500	.06	3.25	8.50	35,800	14,200	62,000
PCF 7	1170	152.4	76.2	63.5	+0 / - 0.03	139.70	1.6	82.6	215.9	159,238	63,162	275,776
PCF 8	TRB	8.00 203.2	3.00 76.2	2.50 63.5	+0 / -0.001 +0 / - 0.03	5.500 139.70	.06 1.6	3.25 82.6	8.50 215.9	35,800 159,238	14,200 63,162	62,000 275,776


^{*}Dynamic thrust load rating based on application of a centric, axial load. Fatigue life calculations for combined radial and thrust loading require special considerations and Application Engineering should be contacted.


Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

PCF

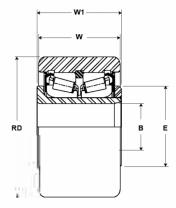
	Part No.	550	Æ	MD:	Ħ	£				The second state of	WI
	With LUBRI-DISC		Eccentric Base Modifier PCFE-XX		00000	Sko filmping Discortes	Housi Diar	ng Bore neter	Thread Type	Clamping Torque	Bearing Weight
	Seals		inch mm		in	ch	in	ich im	1300	melic	- 10
L		(Rich)	+0/5010	2.001	Oten	0000	Nomi	Total	_	in-da Nes	No.
F	PCF 1 1/2	-	-	-	.2500	.75 19.1	.6260 15.900	±.001		650	.51
F	PCFE 1 1/2	.03 .8	.73 18.5	.875 22.2	6.350	1.13 28.6	.8780 22.301	±.025	5/8-18	74	.23
F	PCF 1 3/4	-	-	-	.2500	1.00 25.4	.7510 19.075	±.001		1,250	.81
F	PCFE 1 3/4	.03 .8	.86 21.7	1.000 25.4	6.350	1.25 31.8	1.0030 25.476	±.025	3/4-16	142	.37
F	PCF 2	-	-	-	.3750	1.00 25.4	.8760 22.250	±.001		1,500	1.34
F	PCFE 2	.03 .8	.98 24.9	1.187 30.1	9.525	1.50 38.1	1.1900 30.226	±.025	7/8-14	170	.61
F	PCF 2 1/4	-	-	-	.3750	1.00 25.4	.8760 22.250	±.001	7/8-14	1,500	1.72
F	PCFE 2 1/4	.03 .8	.98 24.9	1.187 30.1	9.525	1.50 38.1	1.1900 30.226	±.025	7/6-14	170	.78
F	PCF 2 1/2	-	-	-	.4375	1.25 31.8	1.0010 25.425	±.001	1-14	2,240	2.12
F	PCFE 2 1/2	.03 .8	.98 24.9	1.187 30.1	11.113	1.50 38.1	1.1900 30.226	±.025	1-14	254	.96
F	PCF 3	-	-	-	.4375	1.75 44.5	1.2510 31.775	±.001	4.44.40	3,440	3.91
F	PCFE 3	.06 1.5	1.23 31.2	1.750 44.5	11.113	2.31 58.7	1.7530 44.526	±.025	1 1/4-12	388	1.77
F	PCF 3 1/4	-	-	-	.4375	1.75 44.5	1.2510 31.775	±.001	1.444.40	3,440	4.60
F	PCFE 3 1/4	.06 1.5	1.23 31.2	1.750 44.5	11.113	2.31 58.7	1.7530 44.526	±.025	1 1/4-12	388	2.08
F	PCF 3 1/2	-	-	-	.4375	1.75 44.5	1.2510 31.775	±.001		3,440	6.25
F	PCFE 3 1/2	.06 1.5	1.36 34.4	1.812 46.0	11.113	2.31 58.7	1.8150 46.101	±.025	1 1/4-12	388	2.83
F	PCF 4	-	-	-	.4375	1.75 44.5	1.2510 31.775	±.001		3,440	7.94
F	PCFE 4	.06 1.5	1.36 34.4	1.812 46.0	11.113	2.31 58.7	1.8150 46.101	±.025	1 1/4-12	388	3.60
F	PCF 4 1/2	-	-	-	.4375	1.75 44.5	1.2510 31.775	±.001		3,440	9.88
F	PCF 5	-	-	-	11.113	3.25 82.6	2.0010 50.825	±.025	1 1/4-12	388	4.48
F	PCF 6	-	-	-	.8750	3.25 82.6	2.5010 63.525	±.001		5,000	30.00
F	PCF 7	-	-	-	22.225	3.25 82.6	2.5010 63.525	±.025	2 1/2-12	566	13.61
F	PCF 8	-	-	-	.8750 22.225	3.25 82.6	2.5010 63.525	±.001 ±.025	2 1/2-12	5,000 566	49.00 22.23

Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

MGILL TRAKROL Cam Follower Bearings

Basic Construction Type: Yoke Type Cylindrical Outside

Diameter


Rolling Elements: Ball or Tapered Roller Bearing

Insert

Bearing Material: Bearing Quality Steel

Seal Type: Rubber Lip

Lubrication: Polyurea Thickened Grease NLGI#2

PCYR

The state of the s	annel Va	10	\$441		5000000	が	E STATE	Parket Market	THE RESERVE		(Mil) (Signal)
We trick out	HEREN I	0.000	nd Joint	(2005)	T EME	17(66)	#500	:9)	4	#	
PCYR 3	TRB	3 00 76 2	1 75 44 5	1 000 25 40	+0 0007 /-0 +0 02 / - 0	1 81 46 0	1 75 44 5	14 300 63 606	5 790 25 754	20 000 88 960	2 57 1 17
ter San San San	1,048	**	100	80.00	1.00°.0 10025	23	1.70 10.0	538	376	25,800 627,088	236
PCYR 4	TRB	4 00 101 6	2 25 57 2	1 250 31 75	+0 0007 /-0 +0 02 / - 0	2 31 58 7	2 25 57 2	14 300 63 606	5 790 25 754	27 200 120 986	6 57 2 98
ta a	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	74 170 F		1,30	# 3 SPS H # 35 y /	100	77	700	11.00 11.00	***	****
PCYR 5	TRB	5 00 127 0	3 75 95 3	1 750 44 45	+0 0007 /-0 +0 02 / - 0	2 85 72 3	3 00 76 2	35 800 159 238	13 300 59 158	58 400 259 763	11 61 5 27
eces.	:00:	538. 82.00	122	17.5	Pot of	125	250	75 0 Kr 0/0 2 M	37%	30,30 307/0	1020 1020

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

^{*}Dynamic thrust load rating based on application of a centric, axial load. Fatigue life calculations for combined radial and thrust loading require special considerations and Application Engineering should be contacted.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

er Enginee	ing see p	age D-147	•	

MSGILL. TRAKROL Cam Follower Bearings

Basic Construction Type: Stud Type Flanged Outside

Diameter

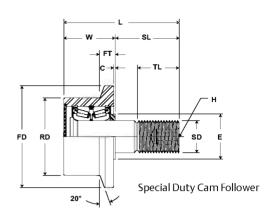
Rolling Elements: Ball or Tapered Roller Bearing

Insert

Bearing Material: Bearing Quality Steel

Seal Type: Metal Extension Plug and Rubber

Lip Seal Ball Bearing with Additional


NYLAPLATE Seal

Lubrication: Polyurea Thickened Grease NLGI#2

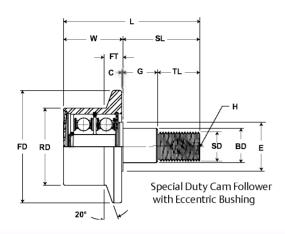
Stem Configuration: Concentric / Eccentric / Heavy

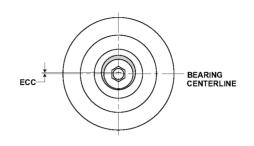
Stud

Mounting Feature: Hex Hole on Thread Face

FCF

Part No.	Insert Type	RD	₩	FD	117		SD	51.	- 6	n.	(6)	20.000		
With LUBRI-DISC	Ball or Tapered	Roller Diameter	Roller Width	Fla Diametei	nge Width	Stud	Diameter	Sturi Length	Endplate Extension	Minimum Thread Length	Length Overall	Track Roller Dynamic Feating	Thrust Capacity	Track Roller Stutic Rating
Seals	Roller Bearing	in m		in m	ch m		inch mm		ich im	in n	ch im	PARTY.	10000	100000
		(Ref)	(Ref)	(Ref)	(Ref)	Nom	=Tél	(Ref)	(Ref)	(Ref)	(Ref)	IBN:	15/74	16/44
FCF 1 1/2		1.50	1,188	2.19	.34	.625	+0 / -0.001	1.50	.06	.75	2.69	2,520	1,320	1,370
FCFE 1 1/2	BB	38.1	30.16	55.6	8.7	15.9	+0 / - 0.03	38.1	1.6	19.1	68.3	11,209	5,871	6,094
FCF 1 3/4		1.75	1.188	2.44	.34	.750	+0 / -0.001	1.75	.06	.88	2.94	2.520	1,320	1,370
FCFE 1 3/4	BB	44.5	30.16	61.9	8.7	19.1	+0 / - 0.03	44.5	1.6	22.2	74.6	11,209	5,871	6,094
FCF 2 1/2		2.50	1.688	3.19	.59	1.00	+0 / -0.001	2.25	.06	1.50	3.94	5,120	2.680	3,120
FCFE 2 1/2	BB	63.5	42.86	81.0	15.1	25.4	+0 / - 0.03	57.2	1.6	38.1	100.0	22,774	11,921	13,878
FCF 2 3/4		2.75	1.688	3.44	.59	1.00	+0 / -0.001	2.25	.06	1.50	3.94	5,120	2.680	3,120
FCFE 2 3/4	BB	69.9	42.86	87.3	15.1	25.4	+0 / - 0.03	57.2	1.6	38.1	100.0	22,774	11,921	13,878
FCF 3		3.00	2.000	3.94	.59	1.25	+0 / -0.001	2.50	.06	1.75	4.50	14,300	5,790	16.000
FCFE 3	TRB	76.2	50.80	100.0	15.1	31.8	+0 / - 0.03	63.5	1.6	44.5	114.3	63,606	25,754	71,168
FCF 3 1/4	TD0	3.25	2.000	4.19	.59	1.25	+0 / -0.001	2.50	.06	1.75	4.50	14,300	5,790	16,000
FCFE 3 1/4	TRB	82.6	50.80	106.4	15.1	31.8	+0 / - 0.03	63.5	1.6	44.5	114.3	63,606	25,754	71,168
FCF 3 1/2	TRB	3.50	2.000	4.44	.59	1.25	+0 / -0.001	2.75	.06	1.75	4.75	14,300	5.790	16.000
FCFE 3 1/2	IRB	88.9	50.80	112.7	15.1	31.8	+0 / - 0.03	69.9	1.6	44.5	120.7	63,606	25,754	71,168
FCF 4	TRB	4.00	2.000	4.94	.59	1.25	+0 / -0.001	2.75	.06	1.75	4.75	14,300	5.790	16,000
FCFE 4	IND	101.6	50.80	125.4	15.1	31.8	+0 / - 0.03	69.9	1.6	44.5	120.7	63,606	25,754	71,168
FCF 4 1/2	TRB	4.50 114.3	2.000 50.80	5.44 138.1	.59 15.1	1.25 31.8	+0 / -0.001 +0 / - 0.03	2.75 69.9	.06 1.6	1.75 44.5	4.75 120.7	14,300 63,606	5,790 25,754	16,000 71,168
FCF 5	TRB	5.00 127.0	3.000 76.20	5.94 150.8	.72 18.3	1.25 31.8	+0 / -0.001 +0 / - 0.03	4.50 114.3	.06 1.6	2.50 63.5	7.50 190.5	35,800 159,238	13,300 59,158	40,000 177,920
FCF 6	TRB	6.00 152.4	3.000 76.20	6.94 176.2	.72 18.3	2.50 63.5	+0 / -0.001 +0 / - 0.03	5.50 139.7	.06 1.6	3.25 82.6	8.50 215.9	35,800 159,238	14,200 63,162	62,000 275,776
FCF 7	TRB	7.00 177.8	3.000 76.20	7.94 201.6	.72 18.3	2.50 63.5	+0 / -0.001 +0 / - 0.03	5.50 139.7	.06 1.6	3.25 82.6	8.50 215.9	35,800 159,238	14,200 63,162	62,000 275,776
FCF 8	TRB	8.00 203.2	3.000 76.20	8.94 227.0	.72 18.3	2.50 63.5	+0 / -0.001 +0 / - 0.03	5.50 139.7	.06 1.6	3.25 82.6	8.50 215.9	35,800 159,238	14,200 63,162	62,000 275,776


For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.


^{*}Dynamic thrust load rating based on application of a centric, axial load. Fatigue life calculations for combined radial and thrust loading require special considerations and Application Engineering should be contacted.

Metric dimensions for reference only.

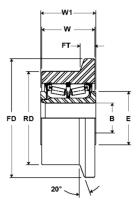
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

FCF

Part No.	EAC	2	BE	Ħ	E					WT
		Eccentric Base Modifier		No. on	Clamp III	Housii Dian	ng Bore neter	Thread Type	Clamping Torque	Bearing Weight
With LUBRI-DISC Seals		FCFE-XX inch mm		in	ich im	in	ch im		The State of the S	16
	(Ret)	+01-010	100001	- (Ref)	(Reti)	None	Total	(Riid)	Ness Ness	10)
FCF 1 1/2	-	-	-	.25	.75	.6260 15.900	±.0002 ±.005	E/0.40	650	.63
FCFE 1 1/2	.03 .8	.730 18.54	.875 22.23	6.4	19.1	.878 22.30	+.001 +.025	5/8-18	74	1.4
FCF 1 3/4	-	-	-	.25	1.00	.7510 19.075	±.0002 ±.005	3/4-16	1,250	1.00
FCFE 1 3/4	.03 .8	0.855 21.72	1.000 25.40	6.4	25.4	1.003 25.47	+.001 +.025	3/4-16	142	.45
FCF 2 1/2	-	-	-	.44	1.25	1.0010 25.425	±.0002 ±.005	4.44	2,240	2.75
FCFE 2 1/2	.03 .8	1.105 28.07	1.375 34.93	11.1	31.8	1.378 35.00	+.001 +.025	1-14	254	1.25
FCF 2 3/4	-	-	-	.44	1.25	1.0010 25.425	±.0002 ±.005	1-14	2,240	3.25
FCFE 2 3/4	.03 .8	1.105 28.07	1.375 34.93	11.1	31.8	1.378 35.00	+.001 +.025	1-14	254	1.47
FCF 3	-	-	-	.44	1.75	1.2510 31.775	±.0002 ±.005	1 1/4-12	3,440	4.69
FCFE 3	.06 1.5	1.230 31.24	1.750 44.45	11.1	44.5	1.753 44.52	+.001 +.025	1 1/4-12	388	2.13
FCF 3 1/4	ı	-	-	.44	1.75	1.2510 31.775	±.0002 ±.005	1 1/4-12	3,440 388	5.42
FCFE 3 1/4	.06 1.5	1.230 31.24	1.750 44.45	11.1	44.5	1.753 44.52	+.001 +.025	1 1/4-12	388	2.46
FCF 3 1/2	i	-	-	.44	1.75	1.2510 31.775	±.0002 ±.005	1 1/4-12	3,440 388	6.25
FCFE 3 1/2	.06 1.5	1.355 34.42	1.812 46.02	11.1	44.5	1.815 46.10	+.001 +.025	1 1/4-12	388	2.83
FCF 4	-	-	-	.44	1.75	1.2510 31.775	±.0002 ±.005	1 1/4-12	3,440	7.94
FCFE 4	.06 1.5	1.355 34.42	1.812 46.02	11.1	44.5	1.815 46.10	+.001 +.025	1 1/4-12	388	3.60
FCF 4 1/2	i	-	-	.44 11.1	1.75 44.5	1.2510 31.775	±.0002 ±.005	1 1/4-12	3,440 388	9.88 4.48
FCF 5	-	-	-	.88 22.2	3.25 82.6	2.0010 50.825	±.0002 ±.005	2-12	5,000 566	18.50 8.39
FCF 6		-	-	.88 22.2	3.25 82.6	2.5010 63.525	±.0002 ±.005	2 1/2-12	5,000 566	30.00 13.61
FCF 7	-	-	-	.88 22.2	3.25 82.6	2.5010 63.525	±.0002 ±.005	2 1/2-12	5,000 566	38.00 17.24
FCF 8	-	-	-	.88 22.2	3.25 82.6	2.5010 63.525	±.0002 ±.005	2 1/2-12	5,000 566	49.00 22.23

Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

Basic Construction Type: Yoke Type Flanged Outside


Diameter

Rolling Elements: Tapered Roller Bearing Insert

Bearing Material: Bearing Quality Steel

> Seal Type: Rubber Lip Seal

Lubrication: Polyurea Thickened Grease NLGI#2

FCYR

entin		22.52 22.52	W Dec	III) Daysan	iri dar Meralili	U. day	Mirrore Mirrore			Trial Biller Egyptelic Cetty	(60.00) (10.00)	instance (instance)	Skill
W) (China b es: Scott	1000), Name	A CONTRACTOR	Z/A	Mi Hinnin	111976	****	2		ARREST .	III.ntt	19070	10.70
FCYR 3	TRB	3 00 76 2	1 75 44 5	3 94 100 0	59 15 1	1 000 25 40	+0 0007 /-0 +0 02 / - 0	1 81 46 0	1 75 44 5	14 300 63 606	5 790 25 754	20 000 88 960	3 28 1 49
er becklijg	s#E	. 3.45 62.6	Æ.	100	7	100 200	00000 -5 2007 -5	1 de 2	102	#6355 85 855	\$ 700 52 754	78111	12
FCYR 3 1/2	TRB	3 50 88 9	2 00 50 8	4 44 112 7	59 15 1	1 125 28 58	+0 0007 /-0 +0 02 / - 0	2 06 52 4	2 00 50 8	14 300 63 606	5 790 25 754	27 200 120 986	4 97 2 25
1676-6	162	1.36	3	7074	200	9 50 10 ff	49824	a (*)	1880	72; ‡	2.22	97.9 9199	/#E
FCYR 4 1/2	TRB	4 50 114 3	1 75 44 5	5 44 138 1	59 15 1	1 000 25 40	+0 0007 /-0 +0 02 / - 0	1 81 46 0	1 75 44 5	14 300 63 606	5 790 25 754	20 000 88 960	10 19 4 62
ure,	7	= 30 107	111	#2- Mass	2	100	10,007 O	15	摄	96477 194,88	nesi Chr.	12.00	7290
FCYR 6	TRB	6 00 152 4	3 25 82 6	6 94 176 2	72 18 3	2 250 57 15	+0 0007 /-0 +0 02 / - 0	3 38 85 7	3 25 82 6	35 800 159 238	14 200 63 162	58 400 259 763	20 04 9 09

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

^{*}Dynamic thrust load rating based on application of a centric, axial load. Fatigue life calculations for combined radial and thrust loading require special considerations and Application Engineering should be contacted.

Metric dimensions for reference only.

er Enginee	ing see p	age D-147	•	

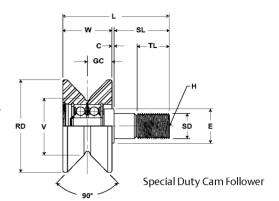
MG I LL. TRAKROL Cam Follower Bearings

Basic Construction Type: Stud Type V-Grooved Outside

Diameter

Rolling Elements: Ball or Tapered Roller Bearing

Insert


Bearing Material: Bearing Quality Steel

Seal Type: Metal Extension Plug and Rubber

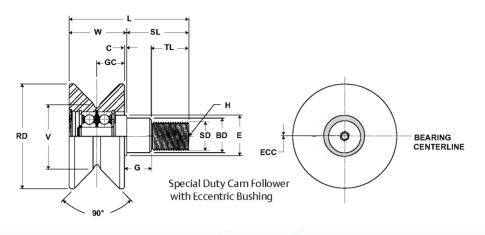
Lip Seal Ball

Lubrication: Polyurea Thickened Grease NLGI#2

Stem Configuration: Concentric / Eccentric **Mounting Feature:** Hex Hole on Thread Face

VCF

Part No.	hour Type	RO			8		SD	96	(C)	H		800		BD
With LUBRI-DISC	Buller factorial States flavored	Roller Diameter	Roller Width	Point Diameter	Groove Center	Stud I	Diameter	Stud Length	Endplate Extension	Length Overall	Thread Length		Eccentric Base Monifier VCFE-XX	
Seals	hinne ground.	in m	ch m	in m	ch m		nch nm	in m	ch im	in m	ch m		inch mm	
		(Ref)	(RHS	(Ref)	(Ref)	Mon.	T01/	(Ref)	(Ret)	(Ref)	(Ret)	4845	405600	5,000
VCF 2 1/2	BB	2.50	1.31	1.50	.69	1.00	+0/-0.001	1.75	0.06	2.94 75	0.88	-	-	-
VCFE 2 1/2	55	63.5	33.3	38.1	17.5	25.4	+0/- 0.03	44	2	75	22	.03 1	.86 22	1.00 25
VCF 3 1/2	BB	3.50	1.69	2.25	.88	1.25	+0/-0.001	2.00	0.06	3.69	1.13	1	-	-
VCFE 3 1/2	88	88.9	42.9	57.2	22.2	31.8	+0/- 0.03	51	2	94	29	.03 1	.98 25	1.19 30
VCF 4 1/2	TRB	4.50	2.00	3.00	1.00	1.25	+0/-0.001 +0/- 0.03	2.50	0.06	4.50	1.75	-	-	-
VCFE 4 1/2	IND	114.3	50.8	76.2	25.4	31.8	+0/- 0.03	64	2	114	44	.06 2	1.23 31	1.75 44
VCF 5 1/2	TRB	5.50	2.00	4.00	1.00	1.25	+0/-0.001	2.75	0.06	4.75	1.75	-	-	-
VCFE 5 1/2	IND	139.7	50.8	101.6	25.4	31.8	+0/- 0.03	70	2	121	44	.06 2	1.36 34	1.81 46
VCF 6 1/2	TRB	6.50 165.1	3.00 76.2	5.00 127.0	1.50 38.1	2.00 50.8	+0/-0.001 +0/- 0.03	4.50 114	0.06 2	7.50 191	2.50 64	-	-	-
VCF 7 1/2	TRB	7.50 190.5	3.00 76.2	6.00 152.4	1.50 38.1	2.50 63.5	+0/-0.001 +0/- 0.03	5.50 140	0.06 2	8.50 216	3.25 83	1	-	-
VCF 8 1/2	TRB	8.50 215.9	3.00 76.2	7.00 177.8	1.50 38.1	2.50 63.5	+0/-0.001 +0/- 0.03	5.50 140	0.06 2	8.50 216	3.25 83	-	-	-


For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

^{*}Dynamic thrust load rating based on application of a centric, axial load. Fatigue life calculations for combined radial and thrust loading require special considerations and Application Engineering should be contacted.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

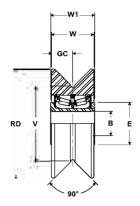
VCF

-		-		H	Ē				-	WT
	Cyminia Thira	they make	Toron Redon	Ties their	Trin Cremping		sing Bore ameter	Thread Type	Clamping Torque	Bearing Weight
	=111	HeA.	1000	in m	ch m		inch mm	-"	in-lb	lb
				(Ref)	Ref)	More.	700		Nm	kg
	2,520	1,320	1,370	.25	1.0	.7510 19	+.0002/0003 +.0005/0008	3/4-16	1,250	1.3 .59
	11,209	5, ⁸ 71	6,094	6	25	1.003 25.47	±.001 ±.025		142	.59
	3 ₋ 490	1,830	2 000	.38	1.0	.8760 22	+.0002/0003 +.0005/0010	7/8-14	1,500	3.2
	15 _, 524	8 140	8,896	10	25	1.190 30.23	±.001 ±.025	770-14	170	1.45
	14,300	5,790	16,000	.44	1.75	1.2510 32	+.0002/0003 +.0005/0013	1 1/4-12	3,440	6.8
	63,606	25,754	71 168	11	44	1.753 44.52	±.001 ±.025	1 1/4-12	388	3.08
	14.300	5 790	16:000	.44 11	1.75	1.2510 32	+.0002/0003 +.0005/0015	1 1/4-12	3,440	10.7
	63,606	25,754	71 168	11	44	1.815 46.10	±.001 ±.025	1 1/4-12	388	4.85
	35,800 159,238	13,300 59,158	40,000 177,920	.88 22	3.25 83	2.0010 51	+.0002/0003 +.0005/0017	2-12	5,000 566	26.1 11.84
	35,800 159,238	14,200 63,162	62,000 275,776	.88 22	3.25 83	2.5010 64	+.0002/0003 +.0005/0018	2 1/2-12	5,000 566	34.0 15.42
	35,800 159,238	14,200 63,162	62,000 275,776	.88 22	3.25 83	2.5010 64	+.0002/0003 +.0005/0019	2 1/2-12	5,000 566	45.0 20.41

Clamping torque is based on dry threads. If threads are lubricated, use half of value shown.

MGILL TRAKROL Cam Follower Bearings

Basic Construction Type: Yoke Type V-Grooved Outside


Diameter

Rolling Elements: Tapered Roller Bearing Insert

Bearing Material: Bearing Quality Steel

> Seal Type: Rubber Lip Seal

Lubrication: Polyurea Thickened Grease NLGI#2

VCYR

Andrews	THE TANK	110 117774	2013)	(325)	(80000) Se	10000	B Menical	eri Arithus	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Trans teams Expenses Feetas	100001	1000000	3000 30000
Withham	100		V Hillips	***		THEFT	# (F)	21 110 - 111		/WW	4850	188	JE
VCYR 4 1/2	TRB	4 50 114	1 75 44	3 00 76	1 00 25	1 0000 25 40	+0 0007/-0 +0 02/- 0	1 81 46	1 75 44	14 300 63 606	5 790 25 754	20 000 88 960	4 98 2 26
SWAFT	1	100		*#5	*ii:	551 H 70 (n)	allsaot Täyöll	8	(434) (444)	17 FM 78 FM	****	4-1	444
VCYR 6 1/2	TRB	6 50 165	2 75 70	5 00 127	1 50 38	1 7500 44 45	+0 0007/-0 +0 02/- 0	2 88 73	3 00 76	35 800 159 238	13 300 59 158	56 <u>2</u> 00 249 978	24 72 11 21

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

^{*}Dynamic thrust load rating based on application of a centric, axial load. Fatigue life calculations for combined radial and thrust loading require special considerations and Application Engineering should be contacted.

Metric dimensions for reference only.

er Enginee	ing see p	age D-147	•	

MGILL Cam Follower Engineering Section

Load Ratings and Life

Life Calculations

The L10 (rating) life for any given application and bearing selection can be calculated in terms of millions of revolutions by using the bearing Basic Dynamic Rating and applied radial load (or, equivalent radial load in the case of radial bearing applications having combined radial and thrust loads). The L10 life for any given application can be calculated in terms of hours, using the bearing Basic Dynamic Rating, applied load (or equivalent radial load) and suitable speed factors, by the following equation:

$$L_{10} = \left(\frac{C}{P}\right) x \frac{1,000,000}{60 x n} = \left(\frac{C}{P}\right)^{10/3} x \frac{16667}{n}$$

Where:

L₁₀ = The # of hours that 90% of identical bearings under ideal conditions will operate at a specific speed and condition before fatigue is expected to occur.

C = Basic Dynamic Rating (lbs) 1,000,000 Revolutions

P = Constant Equivalent Radial Load (lbs)

n = Speed(RPM)

Additionally, the ABMA provides application factors for all types of bearings which need to be considered to determine an adjusted Rated Life (Lna). L10 life rating is based on laboratory conditions yet other factors are encountered in actual bearing application that will reduce bearing life. Lna life rating takes into account reliability factors, material type, and operating conditions.

$$L_{na} = a_1 \times a_2 \times a_3 \times L_{10}$$

Where:

 L_{na} = Adjusted Rated Life.

a₁ = Reliability Factor. Adjustment factor applied where estimated fatigue life is based on reliability other than 90% (See Table No 1).

Reliability %	L _{na}	a ₁
90	L10	1
95	L5	0.62
96	L4	0.53
97	L3	0.44
98	L2	0.33
99	L1	0.21
50	L50	5

- $\mathbf{a_2}$ =Material Factor. Life adjustment for bearing race material. Power Transmission Solutions bearing races are manufactured from bearing quality steel. Therefore the $\mathbf{a_2}$ factor is 1.0.
 - a₃ = Life Adjustment Factor for Operating Conditions. This factor should take into account the adequacy of lubricant, presence of foreign matter, conditions causing changes in material properties, and unusual loading or mounting conditions. Assuming a properly selected and mounted bearing having adequate seals and lubricant, the a3 factor should be 1.0.

Load Ratings and Life Continued

Vibration and shock loading can act as an additional loading to the steady expected applied load. When shock or vibration is present, an a3 Life Adjustment Factor can be applied. Shock loading has many variables which often are not easily determined. Typically, it is best to rely on one's experience with the particular application. Consult Application Engineering for assistance with applications involving shock or vibration loading.

The a3 factor takes into account a wide range of application and mounting conditions as well as bearing features and design. Accurate determination of this factor is normally achieved through testing and in-field experience. Power Transmission Solutions offers a wide range of options which can maximize bearing performance. Consult Application Engineering for more information.

Variable Load Formula

Root mean load (RML) is to be used when a number of varying loads are applied to a bearing for varying time limits. Maximum loading still must be considered for bearing size selection.

$$RML^* = \sqrt[10/3]{\frac{\left(L_1^{10/3}N_1\right) + \left(L_2^{10/3}N_2\right) + \left(L_3^{10/3}N_3\right)}{100}}$$

Where:

RML = Root Mean Load (lbs.)

 L_1 , L_2 , etc. = Load in pounds

 N_1 , N_2 , etc. = Percent of total time operated at loads L_1 , L_2 , etc.

Mean Speed Formula

The following formula is to be used when operating speed varies over time.

Mean Speed =
$$\frac{S_1 N_1 + S_2 N_2 + S_3 N_3}{100}$$

 S_1S_2 , etc = Speeds in RPM

N₁N₂, etc = Percentage of total time operated at speeds S₁S₂, etc

^{*} Apply RML to rating at mean speed to determine resultant life.

MGILL® Cam Follower Engineering Section

Load Ratings and Life Continued

Bearing Life In Oscillating Applications

The equivalent rotative speed (ERS) is used in life calculations when the bearing does not make complete revolutions during operation. The ERS is then used as the bearing operating speed in the calculation of the L10 (Rating) Life. The formula is based on sufficient angular rotation to have roller paths overlap.

ERS = Equivalent Rotative Speed

N = Total number of degrees per minute through

which the bearing will rotate.

 $ERS = \frac{N}{360}$

In the above formula, allowance is made for the total number of stress applications on the weakest race per unit time, which, in turn, determines fatigue life and the speed factors. The theory behind fretting corrosion is best explained by the fact that the rolling elements in small angles of oscillation retrace a path over an unchanging area of the inner or outer races where the lubricant is prevented by inertia from flowing in behind the roller as the bearing oscillates in one direction. Upon reversal, this small area of rolling contact is traversed by the same roller in the dry state. The friction of the two unlubricated surfaces causes fretting corrosion and produces failures which are unpredictable from a normal life standpoint.

With a given bearing selected for an oscillating application, the best lubrication means is a light mineral oil under positive flow conditions. With a light oil, there is a tendency for all areas in the bearing load zone to be immersed in lubricant at all times. The full flow lubrication dictates that any oxidized material which may form is immediately carried away by the lubricant, and since these oxides are abrasive, further wear tends to be avoided. If grease lubrication must be used, it is best to consult with either the bearing manufacturer or the lubricant manufacturer to determine the best possible type of lubricant. Greases have been compounded to resist the detrimental effect of fretting corrosion for such applications.

Static Load Rating

The "static load rating" for rolling element bearings is that uniformly distributed static radial load acting on a non-rotating bearing, which produces a contact stress of 580,000 psi (roller bearings) or 607,000 psi (ball bearings) at the center of the most heavily loaded rolling element. At this stress level, plastic deformation begins to be significant. Experience has shown that the plastic deformation at this stress level can be tolerated in most bearing applications without impairment of subsequent bearing operation. In certain applications where subsequent rotation of the bearing is slow and where smoothness and friction requirements are not too exacting, a higher static load limit can be tolerated. Where extreme smoothness is required or friction requirements are critical, a lower static load limit may be necessary.

Minimum Bearing Load

Skidding, or sliding, of the rolling elements on the raceway instead of a true rolling motion can cause excessive wear. Applications with high speeds and light loading are particularly prone to skidding. As a general guideline, rolling element bearings should be radially loaded at least 2% of Basic Dynamic Rating. For applications where load is light relative to the bearings dynamic load rating, consult Application Engineering for assistance.

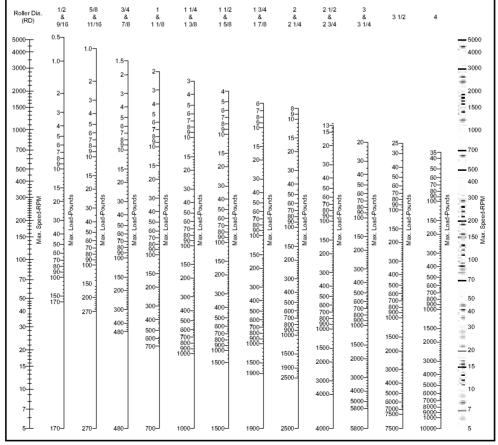
Load Ratings and Life Continued

Bushing Type Cam Follower/ Yoke Roller

Because bushing type bearings operate with sliding motion instead of rolling motion, they do not follow standard bearing life theory. Instead, life is based on an acceptable wear rate based on operating load and speed for the given bearing size. The following chart and examples are provided to aid in selection of bushing type cam followers

To determine maximum bearing capacity at a given speed, read vertical load scale under basic bearing size under consideration at proper speed.

Example:

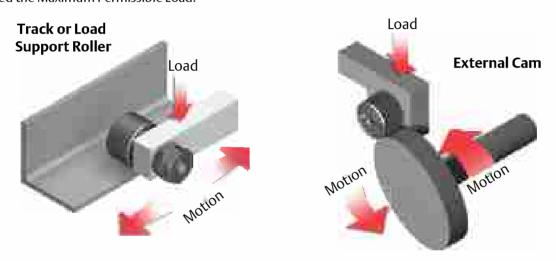

Determine load capacity of BCF-3/4-S at 100 RPM. Read down vertical load scale under basic 3/4 size to intersection of horizontal line for maximum speed of 100 RPM. Load rating would be 100 pounds.

To determine minimum bearing size required for application, draw horizontal line through application speed until application load can be read on one of the vertical load scales. The basic bearing size can then be read at the top of the column.

Example:

Application speed = 200 RPM Application load = 50 pounds

Minimum basic bearing size required would be a BCF or BCYR - 11/4-S.



Values based on continuous rotation and no lubrication

Cam Follower Engineering Section

Load Ratings

ABMA and ISO Dynamic and Static Load Ratings, when listed, follow standard calculations as accepted by ABMA and ISO. These ratings are based on a bearing that is fully supported within a rigid housing. Cam follower and track roller bearings generally operate with an unsupported outer ring in rolling contact with a cam or track. As such, these standard ratings cannot be applied. ABMA and ISO dynamic and static load ratings when listed in the dimension tables for cam follower and track roller bearings are therefore provided for comparison only. When listed, Track Roller Dynamic Load Rating is to be used for the purpose of bearing size selection or theoretical bearing life calculation. The track roller rating considers the unsupported outer ring condition of the cam follower or track roller bearing design. The Maximum Permissible Load as listed considers stud strength. Static loads should not exceed the Maximum Permissible Load.

Track Roller Static Load Rating as listed considers internal rolling element contact stress. Static loads greater than the Static Rating may impair subsequent dynamic operations.

Load Considerations

In any bearing application, radial, shock and thrust loads must be taken into consideration to help assure successful performance.

Radial Load

Maximum dynamic radial load should not exceed 50% of Basic Dynamic Rating. If radial load and/or root mean load exceed 50% of Basic Dynamic Rating, life calculations must be reviewed by Application Engineering. If dynamic radial loads exceed 25% of Basic Dynamic Rating, consideration should be given to use of heavy stud option (CFH series) or yoke type (CYR, CYR-CR, CYRD, MCYR, MCYRD series). Applications involving reversing radial loads should be reviewed by Application Engineering.

Shock Load

The load ratings in this catalog are based on uniform and steady loading. When the loading is of a shock nature and/ or vibration is present, or the loading is indeterminate, a bearing of greater rating must be selected. If such conditions exist, it is advisable to use the Load Factor as shown in the table below. The actual bearing load should be multiplied by the appropriate load factor and the resultant value used to calculate the bearing life or to determine the required Basic Dynamic Rating as described in the General Engineering Section.

Type of Load	Load Factor
Uniform and Constant	1.0
Light Shock	1.5
Moderate Shock	2.0
Heavy Shock	3.0

Thrust Load Series CF, CFH, CYR, BCF, BCYR, CF-CR, CYR-CR, SDCF, SDMCF, MCF, MCYR

Designed for radial loads, these series' bearings do not have design features that help them to support thrust loading. Therefore, these cam followers and track rollers should be mounted to minimize, or preferably eliminate, the possibility of any thrust loading on the outer ring.

Series CFD, CYRD, MCFD, MCYRD

These series provide improved thrust capability versus the above needle rolling element and bushing type designs. They are designed using a double row of full complement cylindrical rolling elements. Their construction helps to support incidental thrust sometimes associated with cam follower and track roller applications.

Series PCF, FCF, VCF, PCYR, FCYR, VCYR

These series use radial ball and tapered roller bearing assemblies. These constructions make possible successful bearing operation with various combinations of radial and thrust loads. Refer to dimension tables for specific thrust load ratings.

Track Design

Since either cam followers or cam yoke rollers are merely one component of a two-piece bearing construction involving (1) the cam follower or cam yoke roller and (2) the track or cam on which it operates, some consideration must be given to selection of track or cam materials, since they must be considered bearing components and have a direct effect upon ultimate life and performance of the cam roll application. From the standpoint of track design where bearings are used as support or guide rollers, it is often difficult to obtain high hardness and tensile strength values for the machine members against which the bearings operate. In most applications, in the interest of economy, relatively soft structural materials can be applied. Where dimensional accuracy is not extremely critical, the work hardening of ferrous, low carbon track materials, accompanied by relatively small amounts of wear-in of the bearing into the track surface generally results in satisfactory bearing performance. It is common, for instance, in the application of cam follower or cam yoke roller bearings as lift truck mast rollers to employ formed structural steel sections as bearing track support members. The wearing-in and work hardening of the track surface generally results in a satisfactory bearing application, providing loads are not excessive.

Track Capacity

Track capacity of all cam followers and cam yoke roller bearings is the load which a steel track of a given tensile strength will withstand without plastic deformation or brinelling of the track surface. The following tables list track capacities and track capacity factors for steel tracks, as applied to all cam follower and cam yoke roller bearings except crowned O.D. versions. For the crowned O.D. versions, multiply by 0.8 to obtain the track capacity ratings.

To obtain track capacities for a track hardness other than 40 Rockwell "C" scale (180,000 psi or 1242 Mpa tensile strength), multiply the track capacity by the track capacity factor in Table 1. Regardless of the resulting track capacity, dynamic load should not exceed 50% of the dynamic rating as a track roller and static load should not exceed the static rating as a track roller for that bearing.

Table 1 - Track Capacity Factor

Track Tensile Strength, psi	Track Tensile Strength, MPa	Track Hardness Rockwell "C"	Track Capacity Factor
60,000		69	0.111
80,000		85	0.198
100,000		95	0.309
120,000	828	26	0.445
140,000	966	32	0.607
160,000	1104	36	0.792
180,000	1242	40	1.000
200,000	1380	44	1.237
220,000	1518	47	1.495
240,000	1656	50	1.775
260,000	1794	53	2.090
280,000	1932	56	2.420
300,000	2070	58	2.780

Table 2 - Track Capacity, Inch Series Bearings

Basic Bearing Number	Track Capacity Lbs.	Basic Bearing Number	Track Capacity Lbs.
1/2-N	485	17/8	5,415
1/2	530	2	7,350
5/9	595	2 1/4	8,260
5/8-N	725	2 1/2	11,100
5/8	785	2 3/4	12,250
2/3	865	3	15,050
3/4	1,085	3 1/4	16,300
7/8	1,260	3 1/2	20,200
1	1,835	4	26,200
1 1/8	2,060	5	38,600
1 1/4	2,660	6	55,600
1 3/8	2,920	7	75,600
1 1/2	3,760	8	94,000
1 5/8	4,065	9	118,000
1 3/4	5,060	10	145,000

Table 3 - Track Capacity, Metric Series Bearings

Basic Bearing Number	Track Capacity Newtons	Basic Bearing Number	Track Capacity Newtons
M CFR-13-X	2390	M CFR-52-X	24000
M CFR-16-X	3675	M CYRR-25-X	24000
M CYRR-5-X	3675	M CFD-52-X	24000
M CFR-19-X	4360	M CYRD-25-X	24000
M CYRR-16	4360	M CFR-62-X	35500
M CFR-22-X	5340	M CYRR-30-X	34250
M CYRR-8-X	6875	M CFD-62-X	35500
M CFR-26-X	6310	M CYRD-30-X	34250
M CFR-30-X	7940	M CFR-72-X	39750
M CYRR-10-X	7940	M CYRR-35-X	38125
M CFR-32-X	8475	M CFD-72-X	39750
M CYRR-12-X	8475	M CYRD-35-X	38125
M CFR-35-X	12300	M CFR-80-X	54750
M CYRR-15-X	12300	M CYRR-40-X	45875
M CFD-35-X	12300	M CFD-80-X	54750
M CYRD-15-X	12300	M CYRD-40-X	45875
M CFR-40-X	15000	M CFR-85-X	58000
M CYRR-17-X	15000	M CYRR-45-X	48750
M CFD-40-X	15000	M CYRD-45-X	48750
M CYRD-17-X	15000	M CFR-90-X	61500
M CFR-47-X	21750	M CYRR-50-X	51625
M CYRR-20-X	21750	M CFD-90-X	61500
M CFD-47-X	21750	M CYRD-50-X	51625
M CYRD-20-X	21750	·	·

Cam Design

Most cam applications are similar in many respects to the track or support roller applications; however, usually bearing speeds are higher due to the multiplication of cam revolutions per minute by the ratio of the cam O.D. to the cam follower O.D. For cam applications, oil lubrication is preferred due to the tendency towards higher speeds noted above. Where such lubrication methods are not possible, frequent replacement of grease should be followed.

In the application of box or drum cams, it is possible to obtain differential rotation of the cam follower outer race as well as associated load reversals. Unless proper cam hardness and materials are employed as well as ample lubrication, excessive cam or cam follower wear may result. In box cams of this nature, the cam rise and cam fall should be watched closely, since the load reversal encountered can cause shock loads in excess of the capacity of the stud or the bearing.

The above precaution would also apply to ordinary circular cams, and instantaneous loads due to rapid cam rise should be carefully calculated and kept below the maximum recommended load or static capacity as listed for the bearing.

In ordinary cam design it is possible to employ the most efficient materials for best resistance to fatigue and brinelling. Attainment of high track surface hardnesses associated with good wear resistance are quite feasible. The same general precautions with regard to tensile strength versus hardness, as listed under track design above, should be followed for cam design; and applications involving high marginal bearing or cam loading should be referred to Application Engineering for review.

Cam Follower and Track Roller Bearing Lubrication

Standard series cam followers and track rollers as listed are factory filled with an NLGI 2 grease suitable for operating temperatures of -20°F to +250°F. Consult Application Engineering regarding grease compatibility issues.

Series	Туре
CF, CFH, CYR, CFD, CYRD, MCF, MCYR, MCFD, MCYRD,	Lithium Soap
SDCF, SDMCF	Lithium Complex Soap
PCF, PCYR, FCF, FCYR, VCF, VCYR (Ball Bearing)	Lithium Soap
PCF, PCYR, FCF, FCYR, VCF, VCYR (Tapered Roller Bearing)	Polyurea
BCF, BCYR	Not grease lubricated, coated with preservative oil.
CF-CR, CYR-CR	Aluminum Complex Soap USDA H-1 Authorized*

^{*}Authorized by USDA for use in federally inspected meat and poultry plants. USDA H-1 authorized lubricants may be used on equipment as a lubricant or anti-rust film in locations in which there is exposure of the lubricated part to the edible product.

Frequency of lubrication depends primarily upon the speed of rotation of the bearing, the type of lubrication employed and the amount of contamination present in the application. It is possible to achieve extended operating life without lubrication where speeds are low and contamination is not excessive. This is primarily true in track support applications where bearing rotation is intermittent.

For continuously rotating applications, it is necessary to either provide continuous oil lubrication or else frequent grease lubrication, depending upon the severity of service. Automatic lubrication devices are ideal for intermittent lubrication, since accurate metering of grease and consistent relubrication is maintained through the use of these devices. In applications involving paper dust and other similar abrasive contaminants, relubrication must be resorted to at more frequent intervals and Application Engineering should be consulted for these critical applications. In LUBRI-DISC® sealed cam followers and track rollers, small vents or reliefs are provided in each seal to enable relubrication of the bearing. To avoid loss of seal efficiency, these seal vents are kept as small as possible, and for this reason the rate of relubrication should be kept at lower levels to avoid seal displacement.

MGILL® Cam Follower Engineering Section

Cam Follower Engineering Section continued

Reduced Maintenance Cam Followers and Track Rollers

Series CFD, CYRD, SDCF, SDMCF, PCF, FCF, VCF cam followers and track rollers are designed for use without relubrication and are not provided as standard with provisions for relubrication. These types of bearings may be limited by the life of the original grease fill and the ability of the seals to protect the bearing from contamination.

Lubrication of Stud-Type Cam Followers and Track Rollers

Series CF, CFH, CF-CR, MCF and MCFD cam followers and track rollers with integral studs are supplied with potential for 3 alternate means of lubrication; namely, through either end of the stud with an appropriate grease fitting or through the radial hole in the stem of the stud.

- The four smallest sizes in inch series CF, CFH, CF-CR (1/2, 9/16, 5/8 and 11/16) and the three smallest sizes in metric series MCF (13, 16 and 19) are an exception to the above information, since they contain neither the radial oil hole in the stem nor the axial hole at the threaded end of the stud. Therefore, these bearings may only be lubricated from the flange end of the stud in the screwdriver slot type only.
- The radial oil hole is not present in metric series MCF sizes through 26 mm OD.
- Bearings utilizing the hex hole feature, unless noted otherwise on the dimension tables, do not have the axial lubrication hole present at that end.
 - Since in most cam followers two axial lubrication holes are provided, it is necessary to plug one or both of the holes, depending upon the type of relubrication means employed. For this purpose, oil hole plugs are provided in the bearing wrapping and may be press fitted in the reamed lubrication fitting hole. They are designed to withstand normal relubrication pressures. If the stem radial oil hole is present but not used for relubrication, it should be covered by the housing; therefore, no plug is supplied for this hole.

Grease Lubrication Fittings

Series CF, CFH, CF-CR

Basic Bearing No. Bearing Size	Drive Fitting Size	Ref. Alemite No.	Fitting Included
1 /2 to 11/16 incl.	1/8"	3019	No
3 /4 to 2 3/4 incl.	3/16"	1728-B	No
3 to 4 incl.	1/4"	1743-B	Yes*
5 to 10 incl.	1/4" NPT	1627-B	No
* For hex hole option only.			·

Series MCF, MCFD

Basic Bearing No. Bearing Size	Drive Fitting Size	Fitting Included mm
13	3.1	Yes
16 to 26 incl.	4	Yes
30 to 40 incl.	6	Yes
47 to 90 incl.	8	Yes

Lubrication of Yoke-Type Cam Followers and Track Rollers

The relubrication of yoke-type cam follower and track roller bearings is straight forward and is accomplished by means of a radial oil hole and annular lubrication groove found on the inner race of the bearing series. The mounting pin for this bearing series must be drilled axially and radially to properly line up with the groove and hole of the CYR bearing inner race to effect proper lubrication.

Mounting Details - Stud Type Cam Followers and Track Rollers Series CF, CFH, BCF, CF-CR, CFD, MCF, MCFD

Proper mounting of stud type cam follower and track roller bearings require a close fit between the bearing stud and the housing hole. The endplate must be backed up by the housing member face. Likewise the face of the housing adjacent to the bearing endplate face should be square to the housing bore. The following are some general quidelines and details to bear in mind when installing the above series' bearings.

1. Inspect housing.

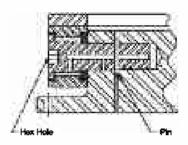
- Clean, remove burrs and sharp edges.
- Check housing bore diameter. The stud diameter should have a tight fit in the housing bore. Refer to the recommended housing bore diameters given in the dimensional tables.

2. Press stud into housing.

- For best bearing performance, bearing should be mounted with raceway radial lubrication hole in the unloaded portion of the raceway. Raceway radial hole is oriented in line with stem radial hole.
- Direct pressure against solid end of stud, not against the flanged portion.
- Do not apply pressure against outer ring face.
- Use arbor press whenever possible.
- Do not hammer on bearing faces.

Install nut and lock washer.

- Follow recommended clamping torque on dimensional table. Do not over tighten, otherwise undue stress may be set up in stud. Overtightening nut can also cause stretching of the stud diameter with consequent loosening of the stud in the housing member.
- A screwdriver slot is provided at the flanged end of the stud for the purpose of preventing the stud from turning
 when the nut is tightened. The bottom of the screwdriver slot is rounded and in some cases it may be necessary
 to use a special screwdriver having a rounded edge to hold the stud securely.
- An optional hexagonal hole is provided in the stud face on selected sizes for use with applications requiring
 greater than average thread torque or for ease of installation. In this modification, the ability to relubricate
 through the flange end of the stud, unless otherwise noted in the dimension tables, is eliminated.


MGILL® Cam Follower Engineering Section

Cam Follower Engineering Section continued

Blind Hole Mounting

Sometimes a stud type follower must be mounted where a nut and lock-washer cannot be used on the threaded portion. In such blind hole mountings, special care must be given to the fit-up of the stem in the housing.

- The drilling diameter used for tapping will generally result in a loose fit between the stud and housing hole. This can lead to premature fatigue fracture of the stud in applications with varying or reverse radial load. Press fitting the stud into a reamed hole without tapped threads would be better for these applications. The non-hardened stud can be retained by drilling and pinning, or by using a set screw to bear against the stud.
- Certain applications require blind hole mounting into tapped threads. The hex hole option should be used in these cases so that adequate torque can be applied to provide good endplate support.

Blind Hote Mounting

Eccentric Bushing Mounting Series CFE, BCFE, CFE-CR, SDCFE, SDMCFE, CFDE, MCFE, MCFDE, PCFE, FCFE, VCFE

In addition to the mounting details listed above, the following should be considered for proper mounting of stud type followers with the eccentric bushing option.

• The eccentric bushing diameter should have a .001" to .005" loose fit in the housing bore. Refer to dimensional table for specific housing bore diameter.

- For proper end-wise clamping, housing width must be .010" wider than bushing length.
- Lock-nut or lock washer and nut is sufficient to hold the bearing at the desired position for most applications.
- Where a more positive means of holding a given position is required, the bushing and stem can be drilled for pinning. Bushing and exposed stem area is unhardened steel.
- Hex hole option allows more positive grip for adjustment and locking.

Series PCF, FCF, VCF, SDCF, SDMCF

These series cam followers and track rollers do not have an exposed stud face at the roller end. That face is enclosed by a metal plug assembled into the outer ring face. A loose stud fit in the housing is recommended so that minimal pressure is required to drive stud into the housing bore.

- Recommended housing bore fit for these series is .0005" to .0025" loose. Refer to dimensional table for specific housing bore diameter.
- A hex hole is provided at the threaded end of the stud for the purpose of holding the stud from turning when the nut is tightened.
- These series can not be tightened into a blind drilled and tapped hole.

Mounting Details - Yoke Type Cam Followers and Track Rollers Series CYR, CYR-CR, CYRD, MCYR, MCYRD

Endplate support is critical when mounting yoke-type series cam followers and track rollers. If the endplates are not properly backed up, they can be displaced from the inner ring. The preferred mounting method is to provide complete axial clamping of the endplates.

If the endplates can not be clamped end-wise, it is essential to have a close fit axially in the yoke in which the bearing is mounted to prevent the bearing endplates displacing axially.

M^cGILL_® Cam Follower Engineering Section

Cam Follower Engineering Section continued

The following are some general guidelines and details when installing yoke type followers.

- 1. Inspect housing.
- Clean, remove burrs and sharp edges.
- 2. Check shaft diameter size.
- Follow recommended shaft fits per table below. Refer to dimensional table for specific shaft diameter and tolerance.
- 3. Press shaft through bearing within yoke housing.
- For best bearing performance, mount follower with lubrication hole in the unloaded portion of the raceway.
- Apply pressure towards center or below on endplate face if pressing bearing onto shaft.
- Do not apply pressure against outer ring face.
- Use abor press whenever possible.
- Do not hammer on bearing faces.

Shaft Fit Selection - Inch Series CYR, CYR-CR, CYRD

Load	End-Wise Clamped	Fit	Shaft Condition
Light	Yes	Push	Not Hardened
Medium	Yes	Push	Hardened
Heavy	Yes	Drive or Press	Hardened
Light	No	Press	Not Hardened
Medium	No	Press	Hardened
Heavy	No	Press	Hardened

Shaft Fit Selection - Metric Series MCYR, MCYRD

Load	End-Wise Clamped	Fit	Shaft Condition
Light	Yes	g6	Not Hardened
Medium	Yes	g6	Hardened
Heavy	Yes	h6 or j6	Hardened
Light	No	j6	Not Hardened
Medium	No	j6	Hardened
Heavy	No	j6	Hardened

Special Modified Cam Follower and Track Roller Bearings

McGill offers certain options for the CF, CFH and MCF series cam follower and track roller bearings with low minimum order quantity and short order lead time. Contact customer service for price and delivery information, 1-800-626-2120.

Threaded Axial Lubrication Holes

Standard reamed axial hole is tapped to accommodate threaded lubrication fitting. This option is popular when using automatic lubrication systems.

Specifications - Inch Series

Bearing OD Size	Thread Size
1/2 thru 11/16	Not Available
3/4 thru 1 3/8	1/4-28 UNF
1 1/2 thru 4	1/8 NPT

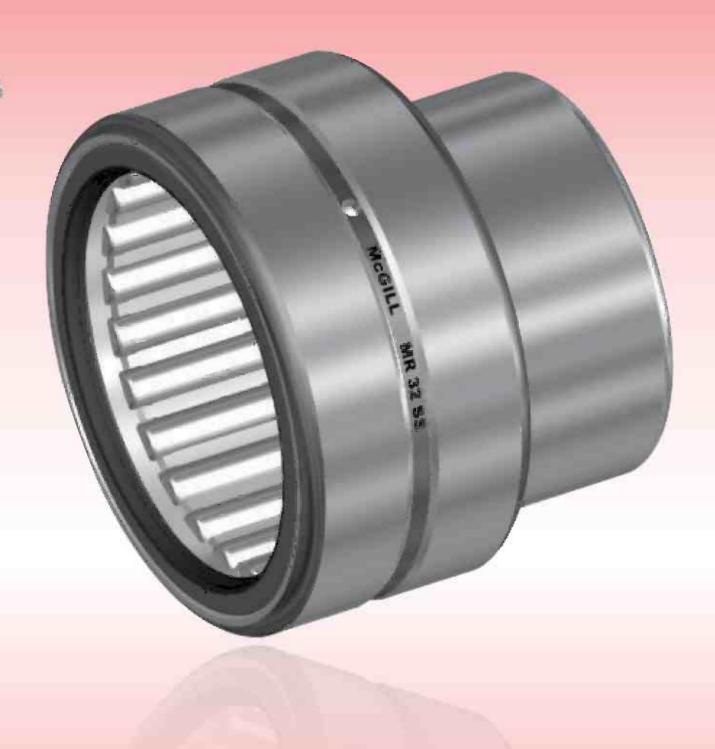
Specifications - Metric Series

Bearing OD Size	Thread Size
13	Not Available
16 thru 26	M6 X 0.75
35 thru 90	1/8 NPT

Axial Lubrication Holes Plugged

Options include threaded end, flange end or both ends of stud. Plugs are normally supplied loose in box. If the bearing is not to be lubricated in service, plugging the holes helps prevent entry of contamination. Bearings supplied with plugs installed saves user's time and provides a bearing ready to install.

Hex Hole or Screwdriver Slot at Threaded End of Stud


These options are typically selected when roller end of stud is not accessible at installation.

Annular Lubrication Groove at Stem Radial Hole

This option helps entry of lubricant through stud radial hole so that alignment of stem and housing lubrication holes is not critical

Hex Wrench Sizes

Basic Bearing No.	Hex Wrench Sizes	Basic Bearing No.	Hex Wrench Sizes
1/2	1/8	17/8	5/16
9/16	1/8	2	7/16
5/8	1/8	2 1/4	7/16
11/16	1/8	2 1/2	1/2
3/4	3/16	23/4	1/2
7/8	3/16	3	3/4
1	1/4	3 1/4	3/4
1 1/8	1/4	3 1/2	3/4
1 1/4	1/4	4	3/4
13/8	1/4	5	7/8
1 1/2	5/16	6	1
1 5/8	5/16	7, 8, 9, 10	1 1/4
13/4	5/16	-	-

Needle

Unmounted bearing assembly consisting of through hardened precision machined inner and outer raceways with either full complement or separated (cage) needle rolling elements. Depending on the bearing configuration the retainer can be land or roller riding and available with several seal options. Machined race needle bearings provide an antifriction solution when supporting rotating shafts with radial loads.

Bearing Configurations

Separable Or Non-Separable Inner/Outer Raceway

Shaft Diameter Range

1/2" To 9 1/4" And 15 mm To 235 mm

Materials

Bearing Quality Steel

MGILL ROLLWAY Needle Bearings

Needle Selection Guide

	2			Size Range				
		Product Series	Material / Roller Complement	Inch	Metric Equiv.			
		MR		5/8" - 9 1/4"	16 - 235			
CAGEROL	THE RESERVE TO SERVE	MR Sealed	Bearing Steel Caged Needle Roller	5/8" - 4 1/4"	16 - 108			
		MR Narrow		5/8" - 6 1/2"	16 - 165			
		GR		1/2" - 9 1/4"	13 - 235			
GUIDEROL		GR Sealed	Bearing Steel Full Complement Center Guided Needle Roller	5/8" - 4 1/4"	16 - 108			
		GR Narrow		5/8" - 6 1/2"	16 - 165			
MULTIROL	RS Bearing Steel		Bearing Steel	3/4" - 3"	19 - 76			
WOLTIKOL		Full Complement Needle Roller		1 1/4" - 4"	32 - 102			
Journal	1	200 Series	Bearing Steel	1 3/16" - 8 5/8"	30 - 220			
Journal	(3)	300 Series	Caged Roller	1" - 5 3/16"	25 - 130			

Metric dimensions are for reference only. Listed needle roller bearings are manufactured to inch dimensions.

 $^{^* \} For \ estimating \ purpose \ only, individually \ sizes \ may \ vary \ and \ are \ subject \ to \ change \ without \ notification$

Needle Bearings ROLLWAY® MGILL®

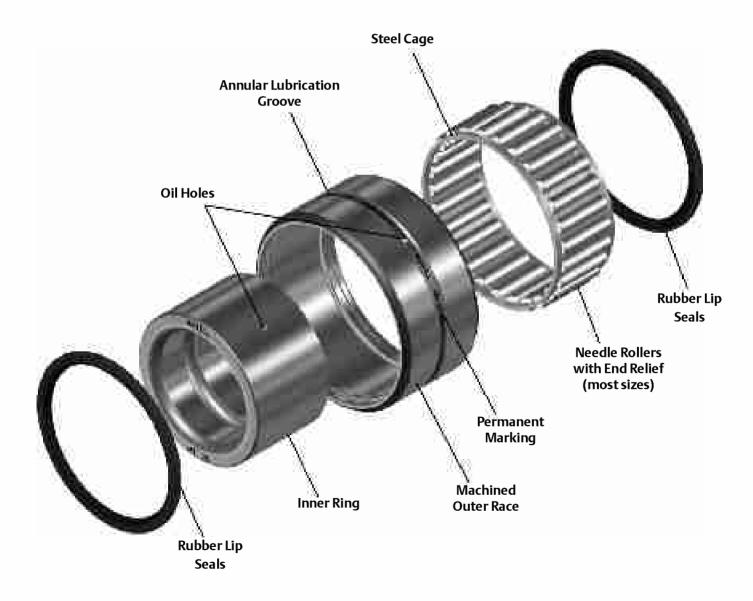
ourna
a e
leed
A TOTAL
1

	Desid	эн Сна	RACTERIS		Features								
Limited Radial Space	Dynamic Load Rating	Static Load Rating	Oscillating Capability	High Speed	Redution Uses Sonsi	Separable www. Hace	Double Row	Oil Heas	7	Metallic Shield	DB Mainting	Separatio Outer	Page No.
•	•	•	•	•	\$	0	-	S	-	-	0		C-9
0	•	0	•	0	\$	0	-	s	S	-	0	-	C-9
0	•	0	•	•	\$	0	-	S	-	-	0	-	C-9
•	•	•		•	\$\$\$	0	-	s	-	-	0	-	C-21
•	•	•		0	\$\$\$	0	-	s	S	-	0	-	C-21
•	•	•	•	•	\$\$\$	0	-	s	-	-	0	-	C-21
0	•	0	•	•	\$\$	-	-	S	-	S	0	-	C-33
•	•	0	•	0	\$\$	-	S	S	-	S	0	-	C-34
	0	•	(•	\$\$\$	0	-	S	-	-	-	S	C-37
9	0	•	O	0	\$\$\$	0	-	s	-	-	-	S	C-37
Utilize Mi Inner Rings For Installations On Unhardened Shafts Higher Radial Loads Relubrication To Help Promote Long Operating Life Contamination Barrier Lubrication Retention Elevated Temperature Applications (When Applied With Suitable Lubricant)													

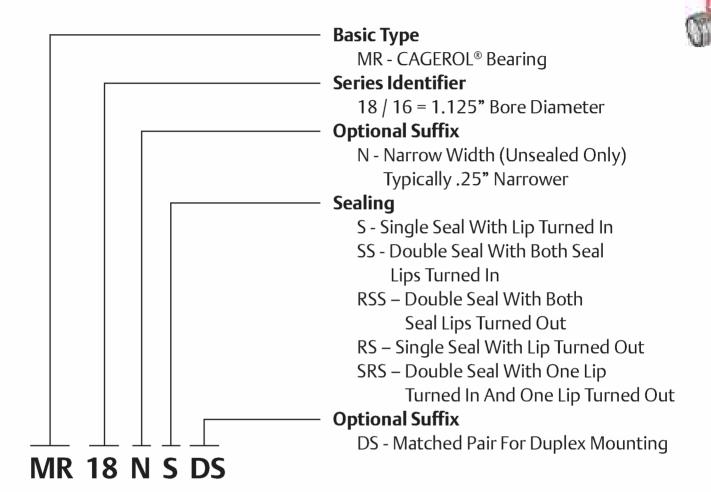
O = Optional

S = Standard

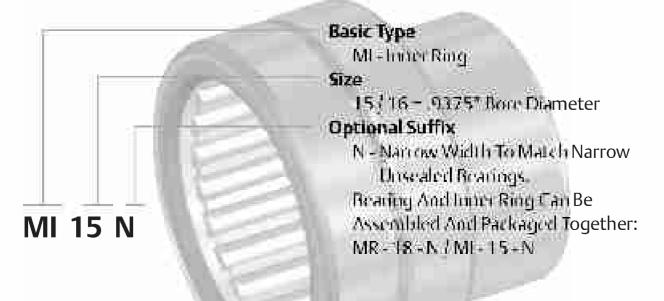
○ = Not Recommended


Available As Complete Assembly Or Individual Components

MGILL. CAGEROL® Bearings


McGill CAGEROL®

McGill CAGEROL® machined race needle bearings are manufactured from bearing quality steel. Most sizes use crowned, or end relieved, rollers to help reduce end stresses and allows for greater misalignment. The rollers are separated by a steel retainer (cage) to help achieve higher speeds and provide a lubricant reservoir. CAGEROL® bearings are constructed with radial lubrication hole and groove on the outer and optional inner raceway (MIseries) for relubrication through the housing or shaft. Other options include a variety of seal configurations to either help prevent contaminant entry or contain the lubricant. Depending on your preference, these bearings are available in a wide variety of sizes and sealing options as illustrated on the pages to follow.



CAGEROL® Bearings MG LL.®

CAGEROL® Nomenclature

Inner Ring

MGILL CAGEROL® Bearings

Features and Benefits

Machined Outer Race

Race manufactured from bearing quality steel and hardened to carry heavy dynamic and static loads.

Needle Rollers with End Relief (Most Sizes)

Precision Needle Rollers provide high radial load capabilities in small radial envelope dimension. End relief features help reduce raceway stress when shaft misalignment occurs.

Steel Cage

Welded construction minimizes roller radial play for ease of assembly and provides roller guidance helping to reduce friction. The spacing provided by the retainer contributes to the high speed capabilities and lubricant reservoir within the bearing envelope.

Annular Lubrication Groove

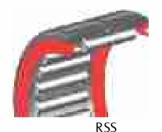
The groove provides a circumferential path to direct lubricant to the hole when lubricating through the housing.

Factory Grease Fill

The Sealed CAGEROL bearings are factory lubricated with a medium temperature (-30° to 250°F, -34° to 121° C) NLGI 1 grease, unsealed bearings packaged with light oil film as a rust preventative. Contact Application Engineering when application conditions require special lubricants.

Options

Seals


The rubber lip seal is capable of 250° F maximum temperature and is available in several different configurations.

"DS" Matched Bearings – Load Sharing

When two bearings are installed with the distance between both bearing less than the width of one bearing, it is recommended the bearings be diametrically matched to prevent unequal load sharing. The option, when applicable matches OD and ID tolerances, diametrical clearance within 30% of the tolerance range and the radial runout within 20% of the tolerance range with high point of runout indicated on the bearing faces. For more information and matching factors please review the engineering section for matched bearings. Matched bearings are packaged as sets.

Machined Inner Ring (MI)

Precision ground inner ring provides a hardened raceway for the rollers when used with an unhardened shaft. The ring contains an oil hole and annular groove for relubrication of the bearing and can be used with both CAGEROL and GUIDEROL bearings or can be utilized as a bushing in plain bearing applications.

Grease Options

When requested, standard bearings can be factory filled with customer specified lubricant.

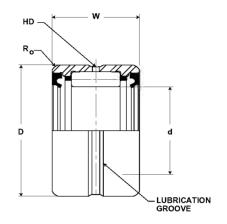
MGILL. CAGEROL® Bearings

Basic Construction Type:

Machined Race with Optional Separable Inner Ring

Cage Guided Precision **Rolling Elements:**

Needles


Bearing Quality Steel **Bearing Material:**

> Rubber Lip Seal Type:

Lubrication: Sealed Bearings: Lithium

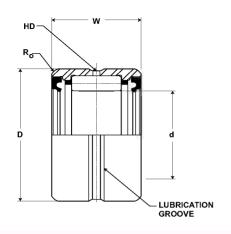
Soap Grease NLGI #1 Unsealed Bearings: Rust

Preventative

MR SERIES

Part No.		d			D W		HD	Ro				O limit					
McGill Outer		Shaft	Shaft Diameter		tside neter	Width	Housin	Housing Bore Diameter			Max Hsg Radius to Clear	Penn Frenn	ting		Assem ly We gl I		
Ring & Roller Assembly	Military No.	inch mm		inch mm		inch mm	inch mm			înch mm			- 2-4		200		
		Noni	Tol	Nom	Tol.	To: +0/005 (+0/.13)	Rotating	Stationary	fot	(Rei)	(Ref)	PROPERTY.	lb/N		kg		
	MS 51961-1						.750	1.1247 28.579	1.1257 28.604	+0/0007 +0/018	.08 2	0.03 1	19250	4,320 19,215	4,300 19,126	.12 .05	
MR 10 N	MS 51961-1	.6250	+0/0005	1.1250	+0/0005	19.05	1.1247 28.579	1.1257 28.604	+0/0007 +0/018	.08 2	0.03 1	19250	4,320 19,215	4,300 19,126	.12 .05		
MR 10 SS, S, RS, SRS, RSS			+0/013		+0/013	1.000	1.1247 28.579	1.1257 28.604	+0/0007 +0/018	.08 2	0.03 1	6100	4,320 19,215	4,300 19,126	.15 .07		
MR 10						25.40	1.1247 28.579	1.1257 28.604	+0/0007 +0/018	.08 2	0.03 1	19250	5,930 26,377	6,500 28,912	.15 .07		
MR 12 N	MS 51961-2		.7500 +0/0005 19.1 +0/013		.750	1.2497 31.755	1.2507 31.780	+0/0007 +0/018	.08 2	0.04 1	16000	4,990 22,196	5,400 24,019	.14 .06			
WIT 12 IN	MS 51961-2					2500 +0/0005	19.05	1.2497 31.755	1.2507 31.780	+0/0007 +0/018	.08 2	0.04 1	16000	4,990 22,196	5,400 24,019	.14 .06	
MR 12 SS, S, RS, SRS, RSS		19.1			19.1 +0/013	31.8	31.8 +0/013	1.000	1.2497 31.755	1.2507 31.780	+0/0007 +0/018	.08 2	0.04 1	5100	4,990 22,196	5,400 24,019	.17 .08
MR 12	MS 51961-3					25.40	1.2497 31.755	1.2507 31.780	+0/0007 +0/018	.08 2	0.04 1	16000	6,830 30,380	8,100 36,029	.17 .08		
MR 14 N	MS 51961-5		.8750 +0/0005 22.2 +0/013			.750	1.3747 34.931	1.3757 34.957	+0/0007 +0/018	.08 2	0.04 1	13750	5,280 23,485	6,000 26,688	.16 .07		
	MS 51961-5					1.3750 +0/0005	19.05	1.3747 34.931	1.3757 34.957	+0/0007 +0/018	.08 2	0.04 1	13750	5,280 23,485	6,000 26,688	.16 .07	
MR 14 SS, S, RS, SRS, RSS		22.2			2 +0/013	34.9 +0/013	1.000	1.3747 34.931	1.3757 34.957	+0/0007 +0/018	.08 2	0.04 1	4400	5,280 23,485	6,000 26,688	.21 .09	
MR 14	MS 51961-6					25.40	1.3747 34.931	1.3757 34.957	+0/0007 +0/018	.08 2	0.04 1	13750	7,240 32,204	9,000 40,032	.21 .09		
MR 16 N	MS 51961-8						1.4997 38.107	1.5007 38.133	+0/0007 +0/018	.08 2	0.04 1	12000	5,840 25,976	7,100 31,581	.20 .09		
	MS 51961-8			5 1.5000 +0/0005 38.1 +0/013			1.4997 38.107	1.5007 38.133	+0/0007 +0/018	.08 2	0.04 1	12000	5,840 25,976	7,100 31,581	.20 .09		
MR 16 SS, S, RS, SRS, RSS		25.4			1.000	1.4997 38.107	1.5007 38.133	+0/0007 +0/018	.08	0.04	3800	5,840 25,976	7,100 31,581	.23 .10			
MR 16	MS 51961-9					25.40	1.4997 38.107	1.5007 38.133	+0/0007 +0/018	.08	0.04 1	12000	8,000 35,584	10,600 47,149	.23 .10		
MR 18 N	MS 51961-11		1.1250 +0/0005 28.6 +0/013				.750	1.6247 41.284	1.6257 41.309	+0/0007 +0/018	.09	0.04 1	10700	8,720 38,787	12,200 54,266	.24 .11	
	MS 51961-11				1.6250 +0/0005	19.05	1.6247 41.284	1.6257 41.309	+0/0007 +0/018	.09	0.04 1	10700	8,720 38,787	12,200 54,266	.24		
MR 18 SS, S, RS, SRS, RSS					3.6 +0/013 41.3	41.3	1.3 +0/013		1.6247 41.284	1.6257 41.309	+0/0007 +0/018	.09	0.04	3400	8,720 38,787	12,200 54,266	.32 .15
MR 18	MS 51961-12					25.40	1.6247 41.284	1.6257 41.309	+0/0007 +0/018	.09	0.04	10700	10,900 48,483	16,300 72,502	.32 .15		
MR 20 N	MS 51961-14	1.2500+0/0005 31.8 +0/013					+0/013 1.250		1.7497 44.460	1.7507 44.485	+0/0007 +0/018	.09	0.04	9600	9,020 40,121	13,100 58,269	.27 .12
MR 20 SS, S, RS, SRS, RSS						500+0/0005 1.7500 + 1.8 +0/013 44.5			1.7497 44.460	1.7507 44.485	+0/0007 +0/018	.09	0.04	3050	9,020 40,121	13,100 58,269	.34 .15
MR 20	MS 51961-15					31.75	1.7497 44.460	1.7507 44.485	+0/0007 +0/018	.09 2	0.04 1	9600	11,300 50,262	17,500 77,840	.34 .15		

Metric dimensions for reference only.


weetic uniferioris for reflective Only.

For sealed bearings, Outside diameter may be slightly oversize due to seal press fit.

For DS matching as DS suffix to part number

* For bearing properly filled with #1 grease reduce speed by 50%

CAGEROL® Bearings MGILL®

MR SERIES

Part	No.			В		D1	WI	HD	n in				
McGill Outer	Separable	Military No.	Bore D)iameter	Outside	e Diameter	Width	Radiaı Lub. Hole Diameter	Mar That Particular Class		nended Shat with inner ri		Weight
Ring & Roller Assembly	Inner Ring Only	Willitary 140.		nch nm		nch mm		inch mm			inch mm		(16)
			Nom	Tol	Nom	Tol.	Tol +0/005 (+0/.13)	(Rei)	(Ref)	Rotating	Stationary	Tot	Ng
MD 40 M	MI 6 N	MS 500072-1	.3750 9.529	+0/0004 +0/010	.6245 15.9	+0/0004 +0/010	.760 19.3	.09 2.4	.25 6.4	.3755 9.541	.3747 9.521	+0/0005 +0/013	.05 .02
MR 10 N	MI7N		.4375 11.117	+0/0004 +0/010	.6245 15.9	+0/0004 +0/010	.760 19.3	.09 2.4	.25 6.4	.4380 11.130	.4372 11.109	+0/0005 +0/013	.04 .02
MR 10 SS, S, RS, SRS, RSS	MI 6	•	.3750 9.529	+0/0004 +0/010	.6245 15.9	+0/0004 +0/010	1.010 25.7	.09 2.4	.25 6.4	.3755 9.541	.3747 9.521	+0/0005 +0/013	.05 .02
MR 10	IVII O		.3750 9.529	+0/0004 +0/010	.6245 15.9	+0/0004 +0/010	1.010 25.7	.09 2.4	.25 6.4	.3755 9.541	.3747 9.521	+0/0005 +0/013	.05 .02
MR 12 N	MI 8 N	MS 500072-2	.5000 12.705	+0/0004 +0/010	.7493 19.0	+0/0005 +0/013	.760 19.3	.13 3.2	.40 10.2	.5005 12.718	.4997 12.697	+0/0005 +0/013	.04 .02
WITC 12 IN	MI 9 N		.5625 14.293	+0/0004 +0/010	.7493 19.0	+0/0005 +0/013	.760 19.3	.13 3.2	.40 10.2	.5630 14.306	.5623 14.286	+0/0005 +0/013	.04 .02
MR 12 SS, S, RS, SRS, RSS	MI8	MS 500072-3	.5000 12.705	+0/0004 +0/010	.7493 19.0	+0/0005 +0/013	1.010 25.7	.13 3.2	.40 10.2	.5005 12.718	.4997 12.697	+0/0005 +0/013	.06 .03
MR 12	IVII O	1013 300072-3	.5000 12.705	+0/0004 +0/010	.7493 19.0	+0/0005 +0/013	1.010 25.7	.13 3.2	.40 10.2	.5005 12.718	.4997 12.697	+0/0005 +0/013	.06 .03
MR 14 N	MI 10 N	MS 500072-4	.6250 15.881	+0/0004 +0/010	.8743 22.2	+0/0005 +0/013	.760 19.3	.13 3.2	.40 10.2	.6255 15.894	.6247 15.874	+0/0005 +0/013	.06 .03
WIIX 14 IN	MI 11 N		.6875 17.469	+0/0004 +0/010	.8743 22.2	+0/0005 +0/013	.760 19.3	.13 3.2	.40 10.2	.6880 17.482	.6872 17.462	+0/0005 +0/013	.05 .02
MR 14 SS, S, RS, SRS, RSS	MI 10		.6250 15.881	+0/0004 +0/010	.8743 22.2	+0/0005 +0/013	1.010 25.7	.13 3.2	.40 10.2	.6255 15.894	.6247 15.874	+0/0005 +0/013	.08 .04
MR 14	WII TO		.6250 15.881	+0/0004 +0/010	.8743 22.2	+0/0005 +0/013	1.010 25.7	.13 3.2	.40 10.2	.6255 15.894	.6247 15.874	+0/0005 +0/013	.08 .04
MR 16 N	MI 12 N	MS 500072-5	.7500 19.058	+0/0004 +0/010	.9993 25.4	+0/0005 +0/013	.760 19.3	.13 3.2	.40 10.2	.7505 19.070	.7497 19.050	+0/0005 +0/013	.07 .03
WIIC TO IN	MI 13 N	MS 500072-6	.8125 20.646	+0/0005 +0/013	.9993 25.4	+0/0005 +0/013	.760 19.3	.13 3.2	.40 10.2	.8130 20.658	.8121 20.638	+0/0005 +0/013	.07 .03
MR 16 SS, S, RS, SRS, RSS	MI 12		.7500 19.058	+0/0004 +0/010	.9993 25.4	+0/0005 +0/013	1.010 25.7	.13 3.2	.40 10.2	.7505 19.070	.7497 19.050	+0/0005 +0/013	.10 .05
MR 16	MI 13	MS 500072-7	.8125 20.646	+0/0005 +0/013	.9993 25.4	+0/0005 +0/013	1.010 25.7	.13 3.2	.40 10.2	.8130 20.658	.8121 20.638	+0/0005 +0/013	.11 .05
MR 18 N	MI 14 N	MS 500072-8	.8750 22.234	+0/0005 +0/013	1.124 28.6	+0/0005 +0/013	1.010 25.7	.13 3.2	.40 10.2	.8755 22.246	.8746 22.226	+0/0005 +0/013	.11 .05
	MI 15 N	MS 500072-9	.9375 23.822	+0/0005 +0/013	1.124 28.6	+0/0005 +0/013	1.010 25.7	.13 3.2	.40 10.2	.9380 23.835	.9371 23.814	+0/0005 +0/013	.11 .05
MR 18 SS, S, RS, SRS, RSS	MI 14		.8750 22.234	+0/0005 +0/013	1.124 28.6	+0/0005 +0/013	1.260 32.0	.13 3.2	.40 10.2	.8755 22.246	.8746 22.226	+0/0005 +0/013	.13 .06
MR 18	1011 1-4		.8750 22.234	+0/0005 +0/013	1.124 28.6	+0/0005 +0/013	1.260 32.0	.13 3.2	.40 10.2	.8755 22.246	.8746 22.226	+0/0005 +0/013	.13 .06
MR 20 N	MI 16 N	MS 500072-10	1.0000 25.410	+0/0005 +0/013	1.249 31.7	+0/0006 +0/015	1.010 25.7	.13 3.2	.40 10.2	1.0005 25.423	0.9996 25.402	+0/0005 +0/013	.13 .06
MR 20 SS, S, RS, SRS, RSS	MI 16		1.0000 25.410	+0/0005 +0/013	1.249 31.7	+0/0006 +0/015	1.260 32.0	0.13 3	0.40 10	1.001 25.4	1.000 25.4	+0/0005 +0/013	.16 .07
MR 20	WIT TO	MS 500072-11	1.0000 25.410	+0/0005 +0/013	1.249 31.7	+0/0006 +0/015	1.260 32.0	0.13 3	0.40 10	1.001 25.4	1.000 25.4	+0/0005 +0/013	.16 .07

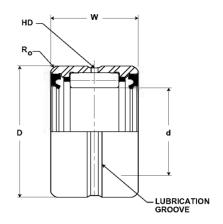
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120. For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

MGILL. CAGEROL® Bearings

Basic Construction Type: Machined Race With Optional

Separable Inner Ring

Rolling Elements: Cage Guided Precision


Needles

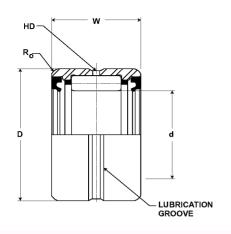
Bearing Material: Bearing Quality Steel

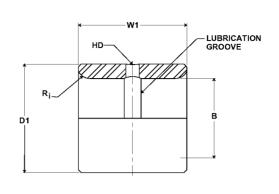
> Rubber Lip Seal Type:

Lubrication: Sealed Bearings: Lithium Soap

Grease NLGI #1 Unsealed Bearings: Rust Preventative

MR SERIES (continued)


Part	No.		d	1	D	W				HD	Ro				O time al
McGill Outer		Shaft I	Diameter		side neter	Width	Housin	g Bore Dia	meter	Radial Lub. Hole Diameter	Max Hsg Radius to Clear	Penn Frenn	ting		Assem ly We gill
Ring & Roller Assembly	Military No.		nch nm		ich im	inch mm		inch mm		în m	ch m		TI- ONL		300
2		Nam	ToL	Nom	Tol.	To₁ -0/005 (+0/.13)	Rotating	Stationary	Tot	(Rei)	(Ref)	Parameter .	lb/N		kg
MR 22 N	MS 51961-18					1.000 25.40	1.8747 47.636	1.8757 47.662	+0/0007 +0/018	.09 2	0.04 1	8750	9,640 42,879	14,700 65,386	.31 .14
MR 22 SS, S, RS, SRS, RSS			+0/0005 +0/013		+0/0006 +0/015	1.250	1.8747 47.636	1.8757 47.662	+0/0007 +0/018	.09 2	0.04 1	2800	9,640 42,879	14,700 65,386	.36 .16
MR 22	MS 51961-19					31.75	1.8747 47.636	1.8757 47.662	+0/0007 +0/018	.09 2	0.04 1	8750	12,100 53,821	19,700 87,626	.36 .16
MR 24 N	MS 51961-21					1.000 25.40	2.0621 52.398	2.0632 52.426	+0/0007 +0/018	.09 2	0.06 2	8000	10,300 45,814	15,500 68,944	.41 .19
MR 24 SS, S, RS, SRS, RSS			+0/0005 +0/013		+0/0006 +0/015	1.250	2.0621 52.398	2.0632 52.426	+0/0007 +0/018	.09 2	0.06 2	2500	10,300 45,814	15,500 68,944	.47 .21
MR 24	MS 51961-22					31.75	2.0621 52.398	2.0632 52.426	+0/0007 +0/018	.09 2	0.06 2	8000	13,000 57,824	20,800 92,518	.47 .21
MR 26 N	MS 51961-24					1.000 25.40	2.1871 55.574	2.1882 55.602	+0/0007 +0/018	.09 2	0.06 2	7400	10,600 47,149	16,400 72,947	.46 .21
MR 26 SS, S, RS, SRS, RSS			+0/0005 +0/013		+0/0006 +0/015	1.250	2.1871 55.574	2.1882 55.602	+0/0007 +0/018	.09 2	0.06 2	2350	10,600 47,149	16,400 72,947	.51 .23
MR 26	MS 51961-25					31.75	2.1871 55.574	2.1882 55.602	+0/0007 +0/018	.09 2	0.06 2	7400	13,300 59,158	22,100 98,301	.51 .23
MR 28 N	MS 51961-27					1.000 25.40	2.3121 58.750	2.3132 58.778	+0/0007 +0/018	.09 2	0.06 2	6850	11,200 49,818	18,100 80,509	.47 .21
MR 28 SS, S, RS, SRS, RSS			+0/0005				2.3121 59	2.3132 59	+0/0007 +0/018	.09 2	0.06 2	2200	11,200 49,818	18,100 80,509	.55 .25
MR 28	MS 51961-28	44.5	+0/013	58.8	+0/015	1.250 31.75	2.3121 59	2.3132 59	+0/0007 +0/018	.09 2	0.06 2	6850	14,100 62,717	24,400 108,531	.55 .25
	MS 51961-28						2.3121 59	2.3132 59	+0/0007 +0/018	.09 2	0.06 2	6850	14,100 62,717	24,400 108,531	.55 .25
MR 30 SS, S, RS, SRS, RSS			+0/0005				2.4371 61.927	2.4382 61.955	+0/0007 +0/018	.09 2	0.06 2	2040	11,400 50,707	19,000 84,512	.59 .27
MR 30	MS 51961-29	47.6	+0/013	61.9	+0/015	31.75	2.4371 62	2.4382 62	+0/0007 +0/018	.09 2	0.06 2	6400	14,400 64,051	25,600 113,869	.59 .27
MR 31			+0/0005 +0/013		+0/0006 +0/015	1.250 31.75	2.4996 63.515	2.5007 63.543	+0/0007 +0/018	.09 2	0.06 2	6200	12,400 55,155	22,400 99,635	.60 .27
MR 32 N						1.000 25.40	2.5621 65.103	2.5632 65.131	+0/0007 +0/018	.09 2	0.06 2	6000	12,000 53,376	20,700 92,074	.55 .25
MR 32 SS, S, RS, SRS, RSS			+0/0005				2.5621 65	2.5632 65	+0/0007 +0/018	.09 2	0.06 2	1900	12,000 53,376	20,700 92,074	.61 .28
MR 32	MS 51961-30	50.8	+0/013	65.1	+0/015	1.250 31.75	2.5621 65	2.5632 65	+0/0007 +0/018	.09 2	0.06 2	6000	15,200 67,610	27,900 124,099	.61 .28
WII COZ	MS 51961-30						2.5621 65	2.5632 65	+0/0007 +0/018	.09 2	0.06 2	6000	15,200 67,610	27,900 124,099	.61 .28
MR 36 N	MS 51961-31					1.500 38.10	2.9996 76.220	3.0007 76.248	+0/0007 +0/018	.13 3	0.08 2	5350	22,400 99,635	39,100 173,917	1.13 .51
MR 36 SS, S, RS, SRS, RSS		2.2500 57.2	+0/0005 +0/013		+0/0006 +0/015	1.750	2.9996 76	3.0007 76	+0/0007 +0/018	.13 3	0.08 2	1700	22,400 99,635	39,100 173,917	1.32 .59
MR 36	MS 51961-32					44.45	2.9996 76	3.0007 76	+0/0007 +0/018	.13 3	0.08 2	5350	26,000 115,648	47,400 210,835	1.32 .59


Metric dimensions for reference only.

For sealed bearings, Outside diameter may be slightly oversize due to seal press fit.
For DS matching as DS suffix to part number

* For bearing properly filled with #1 grease reduce speed by 50%

CAGEROL® Bearings MSGILL®

MR SERIES (continued)

Part	No.			В		D1	WI	HD	- Ni	-		(COTTEN	
McGill Outer	Separable	Military No.	Bore D	Diameter	Outside	e Diameter	Width	Radiaı Lub. Hole Diameter	Man That I		nended Sha with inner ri		inner Weight
Ring & Roller Assembly	Inner Ring Only	inimal y 110.		nch nm		nch mm		inch mm			ĩnch mm		(6)
			Nom	Tol	Nom	Tot	Tol +0/005 (+0/.13)	(Rei)	(Ref)	Rotating	Stationary	Tot	ing
MR 22 N	MI 18 N	MS 500072-12	1.1250 28.586	+0/0005 +0/013	1.374 34.9	+0/0006 +0/015	1.010 25.7	.13 3.2	.40 10.2	1.1255 28.599	1.1246 28.579	+0/0005 +0/013	.14 .06
MR 22 SS, S, RS, SRS, RSS	MI 17		1.0625 26.998	+0/0005 +0/013	1.374 34.9	+0/0006 +0/015	1.260 32.0	0.13 3	0.40 10	1.0630 27.011	1.0621 26.991	+0/0005 +0/013	.16 .07
MR 22	MI 18	MS 500072-13	1.1250 28.586	+0/0005 +0/013	1.374 34.9	+0/0006 +0/015	1.260 32.0	0.13 3	0.40 10	1.1255 28.599	1.1246 28.579	+0/0005 +0/013	.17 .08
MR 24 N	MI 20 N	MS 500072-15	1.2500 31.763	+0/0005 +0/013	1.499 38.1	+0/0006 +0/015	1.010 25.7	.13 3.2	.06 1.5	1.2505 31.775	1.2496 31.755	+0/0005 +0/013	.19 .09
MR 24 SS, S, RS, SRS, RSS	MI 19	MS 500072-16	1.250 31.8	+0/0005 +0/013	1.499 38.1	+0/0006 +0/015	1.260 32.0	.13 3.2	.06 1.5	1.2505 31.775	1.2497 31.755	+0/0005 +0/013	.24 .11
	MI 20	MS 500072-14	1.1875 30.174	+0/0005 +0/013	1.499 38.1	+0/0006 +0/015	1.260 32.0	.13 3.2	.06 1.5	1.1880 30.187	1.1871 30.167	+0/0005 +0/013	.22 .09
MR 26 N	MI 21 N	MS 500072-17	1.3125 33.351	+0/0005 +0/013	1.624 41.3	+0/0006 +0/015	1.010 25.7	.13 3.2	.06 1.5	1.3130 33.363	1.3121 33.343	+0/0005 +0/013	.20 .09
MR 26 SS, S, RS, SRS, RSS	MI 21		1.3125 33.351	+0/0005 +0/013	1.624 41.3	+0/0006 +0/015	1.260 32.0	0.13 3	0.06 2	1.3130 33.363	1.3122 33.343	+0/0005 +0/013	.26 .12
MR 26	MI 22 4S	MS 500072-18	1.3750 34.939	+0/0005 +0/013	1.624 41.3	+0/0006 +0/015	1.260 32.0	0.13 3	0.06 2	1.3755 34.951	1.3746 34.931	+0/0005 +0/013	.20 .09
MR 28 N	MI 24 N	MS 500072-21	1.5000 38.115	+0/0005 +0/013	1.749 44.4	+0/0006 +0/015	1.010 25.7	.13 3.2	.06 1.5	1.5005 38.128	1.4996 38.107	+0/0005 +0/013	.22 .09
	MI 22	MS 500072-19	1.3750 34.939	+0/0005 +0/013	1.749 44.4	+0/0006 +0/015	1.260 32.0	.13 3.2	.06 1.5	1.3755 34.951	1.3746 34.931	+0/0005 +0/013	.26 .12
MR 28 SS, S, RS, SRS, RSS	MI 23	MS 500072-20	1.4375 36.527	+0/0005 +0/013	1.749 44.4	+0/0006 +0/015	1.260 32.0	.13 3.2	.06 1.5	1.4380 36.540	1.4371 36.519	+0/0005 +0/013	.27 .12
	MI 24	MS 500072-22	1.5000 38.115	+0/0005 +0/013	1.749 44.4	+0/0006 +0/015	1.260 32.0	.13 3.2	.06 1.5	1.5005 38.128	1.4996 38.107	+0/0005 +0/013	.22 .09
MR 30 SS, S, RS, SRS, RSS	MI 25 4S		1.5625 39.703	+0/0005 +0/013	1.874 47.6	+0/0006 +0/015	1.260 32.0	.13 3.2	0.06 2	1.5630 39.716	1.5621 39.696	+0/0005 +0/013	.27 .12
MR 30	WII 25 45		1.5625 39.703	+0/0005 +0/013	1.874 47.6	+0/0006 +0/015	1.260 32.0	.13 3.2	0.06 2	1.5630 39.716	1.5621 39.696	+0/0005 +0/013	.27 .12
MR 31	MI 26 2S		1.6250 41.291	+0/0005 +0/013	1.936 49.2	+0/0007 +0/018	1.260 32.0	.13 3.2	.06 1.5	1.6255 41.304	1.6246 41.284	+0/0005 +0/013	.30 .14
MR 32 N	MI 26 N		1.6250 41.291	+0/0005 +0/013	1.999 50.8	+0/0007 +0/018	1.010 25.7	.13 3.2	.06 1.5	1.6255 41.304	1.6246 41.284	+0/0005 +0/013	.30 .14
MR 32 SS, S, RS, SRS, RSS	MI 25		1.5625 39.703	+0/0005 +0/013	1.999 50.8	+0/0007 +0/018	1.260 32.0	.13 3.2	.06 1.5	1.5630 39.716	1.5621 39.696	+0/0005 +0/013	.30 .14
MR 32	MI 26	MS 500072-23	1.6250 41.291	+0/0005 +0/013	1.999 50.8	+0/0007 +0/018	1.260 32.0	.13 3.2	.06 1.5	1.6255 41.304	1.6246 41.284	+0/0005 +0/013	.38 .17
IVIIX 32	MI 27		1.6875 42.879	+0/0005 +0/013	1.999 50.8	+0/0007 +0/018	1.260 32.0	.13 3.2	.06 1.5	1.6880 42.892	1.6871 42.872	+0/0005 +0/013	.32 .15
MR 36 N	MI 28 N	MS 500072-24	1.7500 44.468	+0/0005 +0/013	2.249 57.1	+0/0007 +0/018	1.510 38.4	.19 4.8	.06 1.5	1.7505 44.480	1.7496 44.460	+0/0005 +0/013	.63 .29
MR 36 SS, S,	MI 28	MS 500072-25	1.750 44.5	+0/0005 +0/013	2.249 57.1	+0/0007 +0/018	1.760 44.7	0.19 5	0.06 2	1.7505 44.480	1.7497 44.460	+0/0005 +0/013	.74 .34
RS, SRS, ŘSŠ	MI 30		1.8750 47.644	+0/0005 +0/013	2.249 57.1	+0/0007 +0/018	1.760 44.7	0.19 5	0.06 2	1.8755 47.656	1.8746 47.636	+0/0005 +0/013	.85 .39

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120. For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

MGILL CAGEROL® Bearings

Basic Construction Type:

Machined Race With Optional

Separable Inner Ring

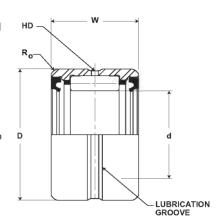
Rolling Elements:

Cage Guided Precision

Needles

Rubber Lip

Bearing Material:


Bearing Quality Steel

Seal Type: **Lubrication:**

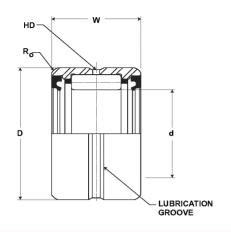
Sealed Bearings: Lithium Soap

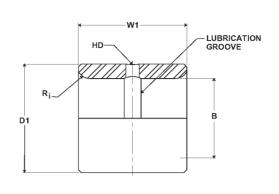
Grease NLGI #1 Unsealed

Bearings: Rust Preventative

MR SERIES (continued)

Part	No.	d	D	W				HD	Ro				Ouint
McGill Outer		Shaft Diameter	Outside Diameter	Width	Housin	g Bore Dia	meter	Radial Lub. Hole Diameter	Max Hsg Radius to Clear	in the	ting	all all a	Assem ly We gi i
Ring & Roller Assembly	Military No.	inch mm	inch mm	inch mm		inch mm			ch m				2100
1		Nam Tol.	Nom Tol.	To: -0/005 (+0/.13)	Rotating	Stationary	Tot	(Rei)	(Ref)	THE PERSON NAMED IN	lb/N	= (1)	kg
MR 40 N	MS 51961-33			1.500 38.10	3.2496 82.572	3.2507 82.600	+0/0007 +0/018	.13 3	0.08 2	4800	23,400 104,083	42,900 190,819	1.23 .56
MR 40 SS, S, RS, SRS, RSS		2.5000 +0/0005	3.2500 +0/0008		3.2496 83	3.2507 83	+0/0007 +0/018	.13 3	0.08 2	1530	23,400 104,083	42,900 190,819	1.44 .65
MR 40	MS 51961-34	63.5 +0/013	82.6 +0/020	1.750 44.45	3.2496 83	3.2507 83	+0/0007 +0/018	.13 3	0.08 2	4800	27,200 120,986	52,100 231,741	1.44 .65
MR 40	MS 51961-34			·	3.2496 83	3.2507 83	+0/0007 +0/018	.13 3	0.08 2	4800	27,200 120,986	52,100 231,741	1.44 .65
MR 44 N	MS 51961-35			1.500 38.10	3.4995 89	3.5008 89	+0/0010 +0/025	.13 3	0.08 2	4370	24,500 108,976	46,700 207,722	1.36 .62
MR 44 SS, S, RS, SRS, RSS		2.7500+0/0005 69.9 +0/013	3.5000 +0/0008 88.9 +0/020	1.750	3.4995 89	3.5008 89	+0/0010 +0/025	.13 3	0.08 2	1390	24,500 108,976	46,700 207,722	1.59 .72
MR 44	MS 51961-36			44.45	3.4995 89	3.5008 89	+0/0010 +0/025	.13 3	0.08 2	4370	28,400 126,323	56,700 252,202	1.59 .72
MR 48 N	MS 51961-37			1.500 38.10	3.7495 95.275	3.7508 95.308	+0/0010 +0/025	.13 3	0.08 2	4000	26,100 116,093	52,300 232,630	1.53 .69
MR 48 SS, S, RS, SRS, RSS		3.0000+0/0005	3.7500 +0/0008		3.7495 95	3.7508 95	+0/0010 +0/025	.13 3	0.08 2	1270	26,100 116,093	52,300 232,630	1.79 .77
MR 48	MS 51961-38	76.2 +0/013	95.3 +0/020	1.750 44.45	3.7495 95	3.7508 95	+0/0010 +0/025	.13 3	0.08 2	4000	30,300 134,774	63,400 282,003	1.79 .77
WIK 40	MS 51961-38			,	3.7495 95	3.7508 95	+0/0010 +0/025	.13 3	0.08 2	4000	30,300 134,774	63,400 282,003	1.79 .77
† MR 52 SS, S, RS, SRS, RSS			4.2500 +0/0008	1.750	4.2495 107	4.2508 108	+0/0010 +0/025	.19 5	0.08 2	1175	25,100 111,645	54,300 241,526	2.64 1.19
MR 52	MS 51961-39	82.6 +0/013	108.0 +0/020	44.45	4.2495 108	4.2508 108	+0/0010 +0/025	.19 5	0.08 2	3700	29,900 132,995	64,400 286,451	2.64 1.19
MR 56 N	MS 51961-41			1.750 44.45	4.4995 114	4.5008 114	+0/0010 +0/025	.19 5	0.08 2	3440	31,300 139,222	71,600 318,477	2.88 1.31
MR 56 SS, S, RS, SRS, RSS			4.5000 +0/0008	2.000 50.80	4.4995 114	4.5008 114	+0/0010 +0/025	5	0.08 2	1090	31,300 139,222	71,600 318,477	3.18 1.44
MR 56	MS 51961-42	88.9 +0/013	114.3 +0/020	2.000	4.4995 114	4.5008 114	+0/0010 +0/025	.19 5	0.08 2	3440	35,900 159,683	83,500 371,408	3.18 1.44
WIICO	MS 51961-42			50.80	4.4995 114	4.5008 114	+0/0010 +0/025	.19 5	0.08 2	3440	35,900 159,683	83,500 371,408	3.18 1.44
† MR 60 SS, S, RS, SRS, RSS			4.7500 +0/0008	2.000	4.7495 121	4.7508 121	+0/0010 +0/025	.19 5	0.10 3	1020	31,600 140,557	74,700 332,266	3.38 1.53
MR 60	MS 51961-43	95.3 +0/013	120.7 +0/020	50.80	4.7495 121	4.7508 121	+0/0010 +0/025	.19 5	0.10 3	3200	36,500 162,352	87,100 387,421	3.38 1.53
† MR 64 SS, S, RS, SRS, RSS			5.0000 +0/0010	2.000	4.9999 127	5.0011 127	+0/0015 +0/038	.19 5	0.10 3	950	32,000 142,336	80,400 357,619	3.56 1.61
MR 64	MS 51961-45	101.6 +0/018	127.1 +0/025	50.80	4.9999 127	5.0011 127	+0/0015 +0/038	.19 5	0.10 3	3000	38,000 169,024	93,800 417,222	3.56 1.61


For sealed bearings, Outside diameter may be slightly oversize due to seal press fit. For DS matching as DS suffix to part number
For bearing properly filled with #1 grease reduce speed by 50%
† Not available from stock. Consult McGill customer service for availability.


Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

CAGEROL® Bearings MSGILL®

MR SERIES (continued)

Part	No.			В		D1	WI	HD	H				
McGill Outer	Separable	Military No.	Bore D)iameter	Outside	Diameter	Width	Radia Lub. Hole Diameter	Man That's Fundade to Clase		nended Sha with inner ri		inner Weight
Ring & Roller Assembly	Inner Ring Only	,		nch nm		nch nm		inch mm			ĭnch mm		16
			Nom	Tol	Nom	Tol	ToI +0/005 (+0/.13)	(Rei)	(Ref)	Rotating	Stationary	Tot	Ng.
MR 40 N	MI 32 N	MS 500072-27	2.0000 50.820	+0/0005 +0/013	2.249 57.1	+0/0007 +0/018	1.510 38.4	.19 4.8	.08 2.0	2.0005 50.833	1.9996 50.812	+0/0005 +0/013	.74 .34
	MI 31	MS 500072-26	1.9375 49.232	+0/0005 +0/013	2.249 57.1	+0/0007 +0/018	1.510 38.4	.19 4.8	.08 2.0	1.9380 49.245	1.9371 49.224	+0/0005 +0/013	.97 .44
MR 40 SS, S, RS, SRS, RSS	MI 32		2.0000 50.820	+0/0005 +0/013	2.249 57.1	+0/0007 +0/018	1.760 44.7	.19 4.8	.08 2.0	2.0005 50.833	1.9996 50.812	+0/0005 +0/013	.87 .39
	MI 34		2.1250 53.996	+0/0006 +0/015	2.249 57.1	+0/0007 +0/018	1.760 44.7	.19 4.8	.08 2.0	2.1258 54.017	2.1247 53.989	+0/0008 +0/020	1.00 .45
MR 44 N	MI 36 N	MS 500072-29	2.2500 57.173	+0/0006 +0/015	2.749 69.8	+0/0007 +0/018	1.510 38.4	.19 4.8	.08 2.0	2.2508 57.193	2.2497 57.165	+0/0008 +0/020	.83 .37
MR 44 SS, S,	MI 35	MS 500072-28	2.1875 55.584	+0/0006 +0/015	2.749 69.8	+0/0007 +0/018	1.510 38.4	0.19 5	0.08 2	2.1883 55.605	2.1872 55.577	+0/0008 +0/020	1.06 .48
RS, SRS, ŔSŚ	MI 36		2.2500 57.173	+0/0006 +0/015	2.749 69.8	+0/0007 +0/018	1.760 44.72	0.19 5	0.08 2	2.2508 57.193	2.2497 57.165	+0/0008 +0/020	.97 .44
MR 48 N	MI 40 N	MS 500072-31	2.5000 63.525	+0/0006 +0/015	2.9989 76.202	+0/0007 +0/018	1.510 38.37	.19 4.8	.08 2.0	2.5008 63.545	2.4997 63.517	+0/0008 +0/020	.92 .43
	MI 38	MS 500072-30	2.3750 60.349	+0/0006 +0/015	2.9989 76.202	+0/0007 +0/018	1.760 44.72	.19 4.8	.08 2.0	2.3758 60.369	2.3747 60.341	+0/0008 +0/020	1.28 .58
MR 48 SS, S, RS, SRS, RSS	MI 39		2.4375 61.937	+0/0006 +0/015	2.9989 76.202	+0/0007 +0/018	1.510 38.37	.19 4.8	.08 2.0	2.4383 61.957	2.4372 61.929	+0/0008 +0/020	1.05 .47
	MI 40		2.5000 63.525	+0/0006 +0/015	2.9989 76.202	+0/0007 +0/018	1.760 44.72	.19 4.8	.08 2.0	2.5008 63.545	2.4997 63.517	+0/0008 +0/020	1.07 .48
† MR 52 SS, S, RS, SRS, RSS	MI 42		2.6250 66.701	+0/0006 +0/015	3.2487 82.549	+0/0009 +0/023	1.760 44.72	.19 4.8	0.08 2	2.6258 66.722	2.6247 66.694	+0/0008 +0/020	1.12 .51
MR 52	MI 44	MS 500072-32	2.7500 69.878	+0/0006 +0/015	3.2487 82.549	+0/0009 +0/023	1.760 44.72	0.19 5	0.08 2	2.7508 69.898	2.7497 69.870	+0/0008 +0/020	1.17 .53
MR 56 N	MI 48 N		3.0000 76.230	+0/0006 +0/015	3.4987 88.902	+0/0009 +0/023	1.760 44.72	.25 6.4	.08 2.0	3.0008 76.250	2.9997 76.222	+0/0008 +0/020	1.32 .59
MR 56 SS, S, RS, SRS, RSS	MI 46		2.8750 73.054	+0/0006 +0/015	3.4987 88.902	+0/0009 +0/023	2.010 51.07	0.25 6	0.08 2	2.8758 73.074	2.8747 73.046	+0/0008 +0/020	1.30 .59
MR 56	MI 47	MS 500072-34	2.9375 74.642	+0/0006 +0/015	3.4987 88.902	+0/0009 +0/023	2.010 51.07	0.25 6	0.08 2	2.9383 74.662	2.9372 74.634	+0/0008 +0/020	1.58 .72
IVIT 30	MI 48		3.0000 76.230	+0/0006 +0/015	3.4987 88.902	+0/0009 +0/023	2.010 51.07	0.25 6	0.08 2	3.0008 76.250	2.9997 76.222	+0/0008 +0/020	1.43 .65
† MR 60 SS, S,	MI 50	MS 500072-35	3.1250 79.406	+0/0006 +0/015	3.7487 95.254	+0/0009 +0/023	2.010 51.07	.25 6.4	.10 2.5	3.1260 79.432	3.1246 79.396	+0/0010 +0/025	1.88 .85
RS, SRS, RSS	MI 52	MS 500072-36	3.2500 82.583	+0/0006 +0/015	3.7487 95.254	+0/0009 +0/023	2.010 51.07	0.25 6.4	0.10 2.5	3.2510 82.608	3.2496 82.572	+0/0010 +0/025	1.52 .69
† MR 64 SS, S,	MI 54	MS 500072-38	3.3750 85.759	+0/0008 +0/020	3.9985 101.602	+0/0009 +0/023	2.010 51.07	.25 6.4	.10 2.5	3.3760 85.784	3.3746 85.749	+0/0010 +0/025	2.04 .93
RS, SRS, RSS	MI 56		3.5000 88.935	+0/0008 +0/020	3.9985 101.602	+0/0009 +0/023	2.010 51.07	0.25 6.4	0.10 2.5	3.5010 88.960	3.4996 88.925	+0/0010 +0/025	1.63 .74

† Not available from stock. Consult McGill customer service for availability.

MGILL. CAGEROL® Bearings

Basic Construction Type:

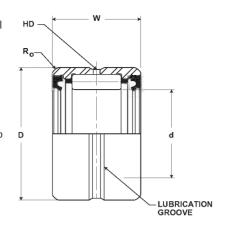
Machined Race With Optional

Separable Inner Ring

Rolling Elements:

Cage Guided Precision

Needles


Bearing Material:

Bearing Quality Steel

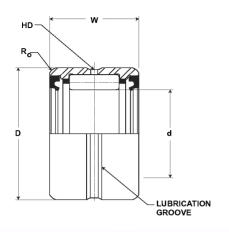
Seal Type: Rubber Lip **Lubrication:** Sealed Bea

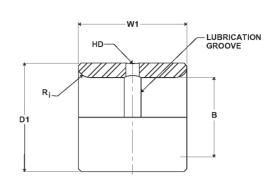
Sealed Bearings: Lithium Soap

Grease NLGI #1 Unsealed Bearings: Rust Preventative

MR SERIES (continued)

VIII JEINII		- III								10000	70.01				
Part	No.		d		D	W				HD	Ro	F	5-7-	-	Odbill
McGill Outer		Shaft	Diameter		tside meter	Width	Housin	g Bore Dia	meter	Radial Lub. Hole Diameter	Max Hsg Radius to Clear	Snumber of the state of the sta	t till	100	Assem ly We gill
Ring & Roller Assembly	Military No.		nch mm		nch nm	inch mm		inch mm			ch ım				and the
		Nom	Tol	Nom	Tal	To: +0/005 (+0/.13)	Rotating	Stationary	Tot	(Ref)	(Ref)	RPM	lb/N	=111	kg
† MR 68 SS, S, RS, SRS, RSS			+0/0007		+0/0010		5.2499 133	5.2511 133	+0/0015 +0/038	.19 5	0.10 3	900	34,000 151,232	86,200 383,418	3.74 1.69
MR 68	MS 51961-46	108.0	+0/018	133.4	+0/025	50.80	5.2499 133	5.2511 133	+0/0015 +0/038	.19 5	0.10 3	2820	39,500 175,696	101,000 449,248	3.74 1.69
MR 72	MS 51961-48		+0/0007 +0/018		+0/0010 +0/025	2.250 57.15	5.9999 152	6.0011 152	+0/0015 +0/038	.19 5	0.10 3	2660	60,300 268,214	130,000 578,240	7.13 3.23
MR 80			+0/0007 +0/018		+0/0010 +0/025	2.250 57.15	6.4999 165	6.5011 165	+0/0015 +0/038	.19 5	0.10 3	800	64,600 287,341	148,000 658,304	7.78 3.53
MR 88 N	MS 51961-52	5.5000	+0/0007	7.0000	+0/0010	2.500 63.50	6.9999 178	7.0011 178	+0/0015 +0/038	.25 6	0.10 3	2180	70,200 312,250	169,800 755,270	10.40 4.72
MR 88	MS 51961-53	139.8	+0/018	177.9	+0/025	3.000 76.20	6.9999 178	7.0011 178	+0/0015 +0/038	6	0.10 3	2180	85,700 381,194	222,000 987,456	11.82 5.36
MR 96 N	MS 51961-55	J6.0000	+0/0010			2.500 63.50	7.4998 190	7.5011 190	+0/0015 +0/038	.25 6	0.12 3	2000	71,000 315,808	177,000 787,296	11.08 5.02
MR 96	MS 51961-56	152.5	+0/025	190.6	+0/030	3.000 76.20	7.4998 190	7.5011 190	+0/0015 +0/038	.25 6	0.12 3	2000	86,600 385,197	228,000 1,014,144	12.69 5.76
MR 104 N	MS 51961-57		+0/0010			2.500 63.50	7.9998 203	8.0011 203	+0/0015 +0/038	.25 6	0.12 3	1850	71,700 318,922	183,000 813,984	11.85 5.37
† MR 104	MS 51961-58		+0/025		+0/030	3.000 76.20	7.9998 203	8.0011 203	+0/0015 +0/038	.25 6	0.12 3	1850	87,500 389,200	237,000 1,054,176	13.55 6.15
MR 116	MS 51961-59	184.2	+0/0010 +0/025	231.9	+0/030	3.000 76.20	9.1248 231	9.1261 231	+0/0015 +0/038	.25 6	0.12 3	1680	95,200 423,450	234,000 1,040,832	19.32 8.76
† MR 124		196.9	+0/0010 +0/025	244.6	+0/0012 +0/030	3.000 76.20	9.6250 244	9.6265 244	+0/0020 +0/051	.25 6	0.12 3	1530	99,100 440,797	252,000 1,120,896	19.80 8.97
† MR 132		209.6	+0/0010 +0/025	257.3	+0/030	3.000 76.20	10.1250 257	10.1265 257	+0/0020 +0/051	.25 6	0.12 3	1460	103,000 458,144	270,000 1,200,960	21.63 9.81
† MR 140		222.3	+0/0010 +0/025	270.0	+0/036	3.000 76.20	10.6250 269	10.6265 270	+0/0020 +0/051	.25 6	0.16 4	1370	104,000 462,592	280,000 1,245,440	22.73 10.31
MR 148			+0/0010 +0/025		+0/0014 +0/036	3.000 76.20	11.1250 282	11.1265 282	+0/0020 +0/051	.25 6	0.16 4	1300	108,000 480,384	292,000 1,298,816	24.90 10.88


For sealed bearings, Outside diameter may be slightly oversize due to seal press fit.


For DS matching as DS suffix to part number

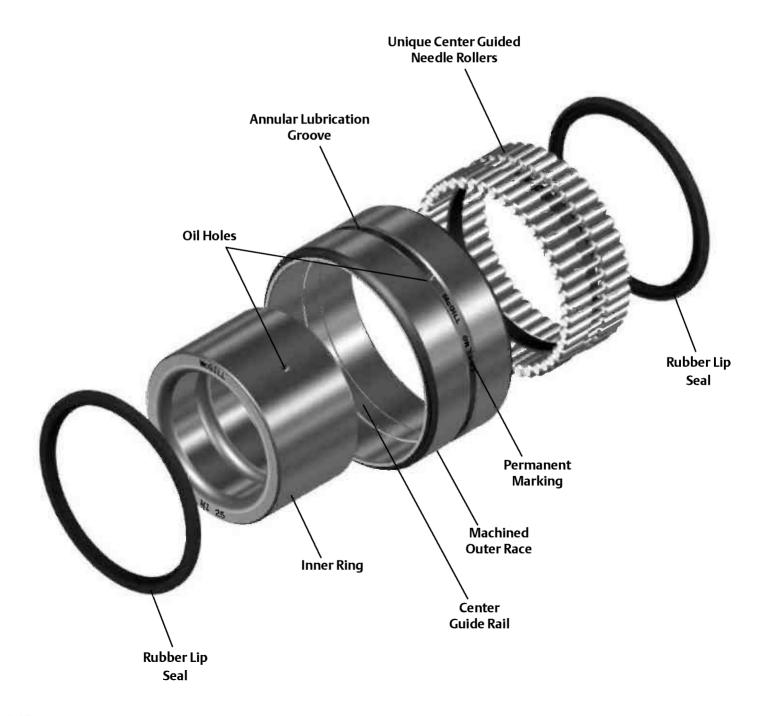
† Not available from stock. Consult McGill customer service for availability.

^{*} For bearing properly filled with #1 grease reduce speed by 50%

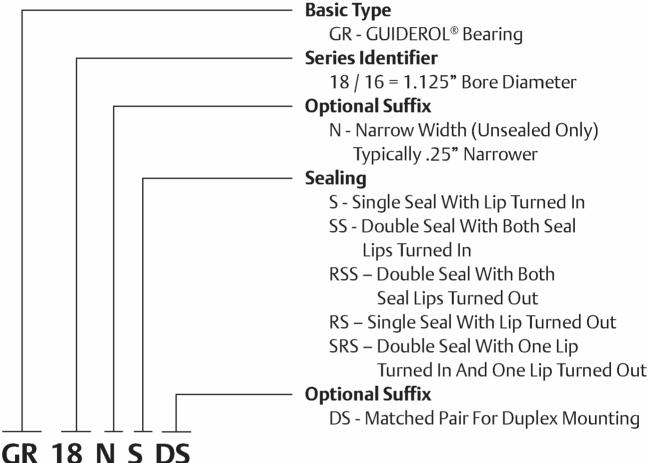
CAGEROL® Bearings MGILL®

MR SERIES (continued)

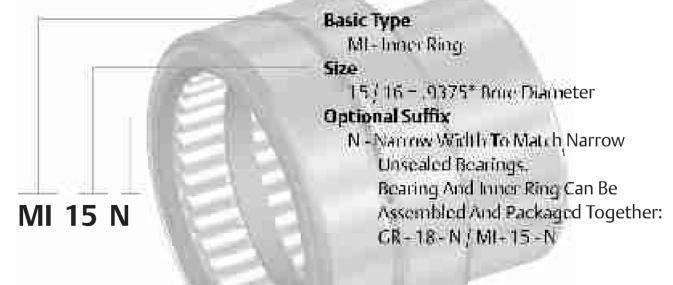
Par	t No.			В		D1	Wi	HD	File	=			-
McGill Outer	Separable	Military No.	Bore D	iameter	Outside	Diameter	Width	Radiaı Lub. Hole Diameter	Mar, Sharti Haditus bs Chair		nended Sha with inner ri		Weight
Ring & Roller Assembly		Willitary 140.		ich im		nch nm		inch mm			inch mm		(16)
			Nom	Til.	Nom	106:	()	(Ref)	(Ref)	Rotating	Stationary	Tot	Ng
† MR 68 SS, S RS, SRS, RSS	MI 58		3.6250 92.111	+0/0008 +0/020	4.2485 107.954	+0/0009 +0/023	2.010 51.07	.25 6.4	0.10 3	3.6260 92.137	3.6246 92.101	+0/0010 +0/025	1.70 .77
MR 68	MI 60	MS 500072-40	3.7500 95.288	+0/0008 +0/020	4.2485 107.954	+0/0009 +0/023	2.010 51.07	0.25 6	0.10 3	3.7510 95.313	3.7496 95.277	+0/0010 +0/025	1.75 .79
MR 72	MI 62		3.8750 98.464	+0/0008 +0/020	4.4985 114.307	+0/0009 +0/023	2.260 57.43	.25 6.4	.10 2.5	3.8760 98.489	3.8746 98.454	+0/0010 +0/025	3.25 1.47
MR 80	MI 64		4.0000 101.640	+0/0008 +0/020	4.9985 127.012	+0/0010 +0/025	2.260 57.43	.25 6.4	0.10 3	4.0010 101.665	3.9996 101.630	+0/0010 +0/025	4.38 1.99
IVIK OU	MI 68		4.2500 107.993	+0/0008 +0/020	4.9985 127.012	+0/0010 +0/025	2.260 57.43	0.25 6	0.10 3	4.2510 108.018	4.2496 107.982	+0/0010 +0/025	5.24 2.37
MR 88 N	MI 72 N	MS 500072-43	4.5000 114.345	+0/0008 +0/020	5.4985 139.717	+0/0010 +0/025	2.515 63.91	.25 6.4	0.10 3	4.5010 114.370	4.4996 114.332	+0/0010 +0/025	5.43 2.47
MR 88	MI 72	MS 500072-44	4.5000 114.345	+0/0008 +0/020	5.4985 139.717	+0/0010 +0/025	3.015 76.61	0.25 6	0.10 3	4.5010 114.370	4.4995 114.332	+0/0010 +0/025	5.97 2.71
MR 96 N	MI 80 N	MS 500072-46	5.0000 127.050	+0/0010 +0/025	5.9983 152.417	+0/0010 +0/025	2.515 63.91	.31 7.9	0.12 3	5.0010 127.075	4.9995 127.037	+0/0010 +0/025	5.97 2.71
MR 96	MI 80	MS 500072-47	5.0000 127.050	+0/0010 +0/025	5.9983 152.417	+0/0010 +0/025	3.015 76.61	0.31 8	0.12 3	5.0010 127.075	4.9995 127.037	+0/0010 +0/025	7.12 3.23
MR 104 N	MI 88 N	MS 500072-48	5.5000 139.755	+0/0010 +0/025	6.4983 165.122	+0/0010 +0/025	2.515 63.91	.31 7.9	0.12 3	5.5010 139.780	5.4995 139.742	+0/0010 +0/025	6.30 2.88
† MR 104	MI 88	MS 500072-49	5.5000 139.755	+0/0010 +0/025	6.4983 165.122	+0/0010 +0/025	3.015 76.61	0.31 8	0.12 3	5.5010 139.780	5.4995 139.742	+0/0010 +0/025	7.56 3.43
MR 116	MI 96	MS 500072-50	6.0000 152.460	+0/0010 +0/025	7.2481 184.174	+0/0012 +0/030	3.015 76.61	.31 7.9	.12 3.0	6.0012 152.490	5.9995 152.447	+0/0012 +0/030	11.06 5.03
† MR 124	MI 104		6.5000 165.165	+0/0010 +0/025	7.7481 196.879	+0/0012 +0/030	3.015 76.61	.31 7.9	.12 3.0	6.5012 165.195	6.4995 165.152	+0/0012 +0/030	11.99 5.39
† MR 132	MI 112		7.0000 177.870	+0/0010 +0/025	8.2481 209.584	+0/0012 +0/030	3.015 76.61	.31 7.9	.12 3.0	7.0012 177.900	6.9995 177.857	+0/0012 +0/030	12.70 5.77
† MR 140	MI 120		7.5000 190.575	+0/0012 +0/030	8.7480 222.287	+0/0012 +0/030	3.015 76.61	.31 7.9	.16 4.1	7.5012 190.605	7.4995 190.562	+0/0012 +0/030	13.60 6.17
† MR 148	MI 128		8.0000 203.280	+0/0012 +0/030	9.2480 234.992	+0/0012 +0/030	3.015 76.61	.31 7.9	.16 4.1	8.0012 203.310	7.9995 203.267	+0/0012 +0/030	14.40 6.55


 \dagger Not available from stock. Consult McGill customer service for availability.

MGILL GUIDEROL® Bearings


McGill GUIDEROL® Bearings

McGill GUIDEROL® machined race full complement needle bearings are manufactured from bearing quality steel with unique roller and race design to provide center-guided rolling elements for higher radial load capacity and is well suited for oscillating applications. GUIDEROL® bearings are constructed with radial lubrication hole and groove on the outer and optional inner raceway (MI-series) for relubrication through the housing or shaft. Other options include a variety of seal configurations to either help prevent contaminant entry or contain the lubricant. Depending on your preference, these bearings are available in a wide variety of sizes and sealing options as illustrated on the pages to follow.



GUIDEROL® Bearings MG LL.

GUIDEROL® Nomenclature

Inner Ring

MGILL. GUIDEROL® Bearings

Features and Benefits

Machined Outer Race

Race manufactured from bearing quality steel and hardened to carry heavy dynamic and static loads.

Unique Center Guided Needle Rollers

Centered guided rollers designed to fit a mating guide rail and allow for maximum width of roller within the bearing.

Retaining Ring and Center Rail

Provides retention of needle rollers and helps guide rollers to prevent skewing.

Annular Lubrication Groove

The groove provides a circumferential path to direct lubricant to the oil hole, when lubricating through the housing.

Factory Grease Fill

The sealed GUIDEROL® bearings are factory lubricated with a medium temperature (-30° to 250°F, -34° to 121° C) NLGI 1 grease, unsealed bearings packaged with light oil film as a rust preventative. Contact Application Engineering when application conditions require special lubricants.

Options

Seals

The rubber lip seal is capable of 250° F maximum temperature and is available in several different configurations on bearings capable being sealed.

"DS" Matched Bearings – Load Sharing

When two bearings are installed with the distance between both bearing less than the width of one bearing, it is recommended the bearings be diametrically matched to prevent unequal load sharing. The option matches OD and ID tolerances, diametrical clearance within 30% of the tolerance range and the radial runout within 20% of the tolerance range with high point of runout indicated on the bearing faces. For more information and matching factors please review the engineering section for matched bearings. Matched bearings are packaged as sets, but can be used individually if desired.

Machined Inner Ring (MI)

Precision ground inner ring provides a hardened raceway for the rollers when used with an unhardened shaft. The ring contains an oil hole and annular groove for relubrication of the bearing and can be used with both CAGEROL and GUIDEROL bearings or can be utilized as a bushing in plain bearing applications.

Grease Options

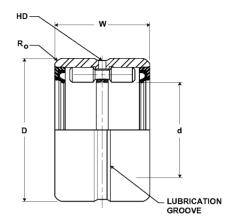
When requested, standard bearings can be factory filled with customer specified lubricant.

MGILL GUIDEROL® Bearings

Basic Construction Type: Machined Race with full Complement of Needles

> **Rolling Elements:** Center Guided Precision

> > Needles

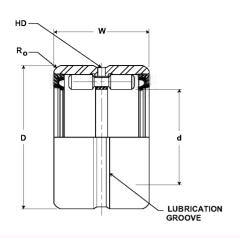

Bearing Material: Bearing Quality Steel

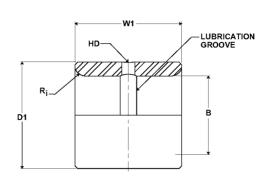
> Rubber Lip Seal Type:

Lubrication: Sealed Bearings: Lithium

Soap Grease NLGI #1 Unsealed Bearings: Rust

Preventative




GR SERIES

Part No.		d	- 19	D	W				HD	Ro		1		
0.4. 0. 0.0.	Shaft	Diameter		tside neter	Width	Housi	ng Bore D	iameter	Radial Lub. Hole Diameter	Max Hsg Radius to Clear	Limiting Speed (In Oil)*	Basic Dynamic Rating	Basic Static Rating	Outer & Roller Assembly Weight
Outer Ring & Roller Assembly		inch mm		ich im	inch mm		inch mm		in m					lb
	Non	Tot	Non	Tol.	Toi +0/005 (+0/.13)	Rotating	Stationary	Tol.	(Ref)	(Ref)	RPM	lb/N	lb/N	kg
GR 8 N	.5000 12.7	+0/_0005 +0/_013		+0/0005 +0/013	.750 19.05	0.9997 25.402	1.0070 25.588	+0/0007 +0/018	.08 2	0.03 1	TBD	2,600 11,565	4,500 20,016	.12 .05
GR 10 N					.750	1.1247 28.579	1.1257 28.604	+0/0007 +0/018	.08	0.03	9,600	3,400 15,123	6,400 28,467	.12 .05
		+0/0005		+0/0005	19.05	1.1247 28.579	1.1257 28.604	+0/0007 +0/018	.08	0.03 1	9,600	3,400 15,123	6,400 28,467	.12 .05
GR 10 SS, S, RS, SRS, RSS	15.9	+0/013	28.6	+0/013	1.000	1.1247 28.579	1.1257 28.604	+0/0007 +0/018	.08 2	0.03 1	6,100	3,400 15,123	6,400 28,467	.15 .07
GR 10					25.40	1.1247 28.579	1.1257 28.604	+0/0007 +0/018	.08 2	0.03 1	9,600	4,700 20,906	9,100 40,477	.15 .07
GR 12 N					.750	1.2497 31.755	1.2507 31.780	+0/0007 +0/018	.08	0.04	8,000	3,700 16,458	7,200 32,026	.14 .06
		+0/0005		+0/0005	19.05	1.2497 31.755	1.2507 31.780	+0/0007 +0/018	.08 2	0.04 1	8,000	3,700 16,458	7,200 32,026	.14 .06
GR 12 SS, S, RS, SRS, RSS	19.1	+0/013	31.8	+0/013	1.000	1.2497 31.755	1.2507 31.780	+0/0007 +0/018	.08 2	0.04 1	5,100	3,700 16,458	7,200 32,026	.17 .08
GR 12					25.40	1.2497 31.755	1.2507 31.780	+0/0007 +0/018	.08 2	0.04 1	8,000	5,100 22,685	10,900 48,483	.17 .08
GR 14 N					.750	1.3747 34.931	1.3757 34.957	+0/0007 +0/018	.08 2	0.04 1	6,800	4,150 18,459	8,400 37,363	.16 .07
		+0/0005		+0/0005	19.05	1.3747 34.931	1.3757 34.957	+0/0007 +0/018	.08 2	0.04 1	6,800	4,150 18,459	8,400 37,363	.16 .07
GR 14 SS, S, RS, SRS, RSS	22.2	+0/013	34.9	+0/013	1.000	1.3747 34.931	1.3757 34.957	+0/0007 +0/018	.08 2	0.04 1	4,400	4,150 18,459	8,400 37,363	.21 .09
GR 14					25.40	1.3747 34.931	1.3757 34.957	+0/0007 +0/018	.08 2	0.04 1	6,800	5,700 25,354	12,800 56,934	.21 .09
GR 16 N					.750	1.4997 38.107	1.5007 38.133	+0/0007 +0/018	.08 2	0.04 1	6,000	4,350 19,349	9,600 42,701	.20 .09
		+0/0005		+0/0005	19.05	1.4997 38.107	1.5007 38.133	+0/0007 +0/018	.08 2	0.04 1	6,000	4,350 19,349	9,600 42,701	.20 .09
GR 16 SS, S, RS, SRS, RSS	25.4	+0/013	38.1	+0/013	1.000	1.4997 38.107	1.5007 38.133	+0/0007 +0/018	.08 2	0.04 1	3,800	4,350 19,349	9,600 42,701	.23 .10
GR 16					25.40	1.4997 38.107	1.5007 38.133	+0/0007 +0/018	.08 2	0.04 1	6,000	6,050 26,910	14,500 64,496	.23 .10
GR 18 N					.750	1.6247 41.284	1.6257 41.309	+0/0007 +0/018	.09 2	0.04	5,300	6,250 27,800	15,200 67,610	.24 .11
		+0/0005		+0/0005	19.05	1.6247 41.284	1.6257 41.309	+0/0007 +0/018	2	0.04 1	5,300	6,250 27,800	15,200 67,610	.24 .11
GR 18 SS, S, RS, SRS, RSS	28.6	+0/013	41.3	+0/013	1.000	1.6247 41.284	1.6257 41.309	+0/0007 +0/018	.09 2	0.04 1	3,400	6,250 27,800	15,200 67,610	.3 .14
GR 18					25.40	1.6247 41.284	1.6257 41.309	+0/0007 +0/018	.09 2	0.04 1	5,300	7,900 35,139	20,900 92,963	.3 .14

For sealed bearings, Outside diameter may be slightly oversize due to seal press fit. For DS matching as DS suffix to part number
* For bearing properly filled with #1 grease reduce speed by 50%

GUIDEROL® Bearings MG ILL®

GR SERIES

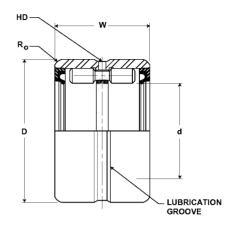
Part	No.		3		1	801	HD	FI				
Outer Ring	Separable	Bore D	iameter	Outside	Diameter	Model	F≥3mi Lub. Hota Ulimouter	that to the control of the control o		ended Shaft vith inner rir		Inner Weight
& Roller Assembly	Inner Ring Only	in m	ch m	in m	ch m	-	inch mm			inch mm		1.06
_		Nom	Tel	Nom	Tot	To: 0/-005 (40/-13)	(Ren	(Ren	Rotating	Stationary	Tot	kg
GR 8 N	-	-	-	-	-	-	-	-	-	-	-	-
GR 10 N	MI 6 N	.3750 9.529	+0/0004 +0/010	.6245 15.869	+0/0004 +0/010	.760 19.31	0.09 2	0.25 6	.3755 9.5	.3747 9.5	+0/0005 +0/013	.05 .02
Sixion	MI7N	.4375 1 1 .117	+0/0004 +0/010	.6245 15.869	+0/0004 +0/010	.760 19.31	0.09 2	0.25 6	.4380 1 1.1	.4372 11.1	+0/0005 +0/013	.04 .02
GR 10 SS, S, RS, SRS, RSS	MI 6	.3750 9.529	+0/0004 +0/010	.6245 15.869	+0/0004 +0/010	1.010 25.66	0.09 2	0.25 6	.3755 9.5	.3747 9.5	+0/0005 +0/013	.05 .02
GR 10	MI 6	.3750 9.529	+0/0004 +0/010	.3750 9.530	+0/0004 +0/010	1.010 25.66	0.09 2	0.25 6	.3755 9.5	.3747 9.5	+0/0005 +0/013	.05 .02
OD 40 N	MI 8 N	.5000 12.705	+0/0004 +0/010	.7493 19.040	+0/0005 +0/013	.760 19.31	0.13 3	0.40 10	.5005 12.7	.4997 1 2.7	+0/0005 +0/013	.04 .02
GR 12 N	MI 9 N	.5625 14.293	+0/0004 +0/010	.7493 19.040	+0/0005 +0/013	.760 19.31	0.13 3	0.40 10	.5630 14.3	.5623 14.3	+0/0005 +0/013	.04 .02
GR 12 SS, S, RS, SRS, RSS	MI 8	.5000 12.705	+0/0004 +0/010	.7493 19.040	+0/0005 +0/013	1.010 25.66	0.13 3	0.40 10	.5005 12.7	.4997 12.7	+0/0005 +0/013	.06 .03
GR 12	MI 8	.5000 12.705	+0/0004 +0/010	.7493 19.040	+0/0005 +0/013	1.010 25.66	0.13 3	0.40 10	.5005 12.7	.4997 12.7	+0/0005 +0/013	.06 .03
	MI 10 N	.6250 15.881	+0/0004 +0/010	.8743 22.216	+0/0005 +0/013	.760 19.31	0.13 3	0.40 10	.6255 15.9	.6247 15.9	+0/0005 +0/013	.06 .03
GR 14 N	MI 11 N	.6875 17.469	+0/0004 +0/010	.8743 22.216	+0/0005 +0/013	.760 19.31	0.13 3	0.40 10	.6880 17.5	.6872 17.5	+0/0005 +0/013	.05 .02
GR 14 SS, S, RS, SRS, RSS	MI 10	.6250 15.881	+0/0004 +0/010	.8743 22.216	+0/0005 +0/013	1.010 25.66	0.13 3	0.40 10	.6255 15.9	.6247 15.9	+0/0005 +0/013	.08 .04
GR 14	MI 10	.6250 15.881	+0/0004 +0/010	.8743 22.216	+0/0005 +0/013	1.010 25.66	0.13 3	0.40 10	.6255 15.9	.6247 15.9	+0/0005 +0/013	.08
07.40.11	MI 12 N	.7500 19.058	+0/0004 +0/010	.9993 25.392	+0/0005 +0/013	.760 19.31	0.13 3	0.40 10	.7505 19.1	.7497 19.0	+0/0005 +0/013	.07
GR 16 N	MI 13 N	.8125 20.646	+0/0004 +0/010	.9993 25.392	+0/0005 +0/013	.760 19.31	0.13 3	0.40 10	.8130 20.7	.8121 20.6	+0/0005 +0/013	.07
GR 16 SS, S, RS, SRS, RSS	MI 12	.7500 19.058	+0/0004 +0/010	.9993 25.392	+0/0005 +0/013	1.010 25.66	0.13 3	0.40 10	.7505 19.1	.7497 19.0	+0/0005 +0/013	.10 .05
GR 16	MI 13	.8125 20.646	+0/0004 +0/010	.9993 25.392	+0/0005 +0/013	1.010 25.66	0.13 3	0.40 10	.8130 20.7	.8121 20.6	+0/0005 +0/013	.11 .05
00.401	MI 14 N	.8750 22.234	+0/0005 +0/013	1.124 28.563	+0/0005 +0/013	1.010 25.66	0.13 3	0.40 10	.8755 22.2	.8746 22.2	+0/0005 +0/013	.11 .05
GR 18 N	MI 15 N	.9375 23.822	+0/0005 +0/013	1.124 28.563	+0/0005 +0/013	1.010 25.66	0.13 3	0.40 10	.9380 23.8	.9371 23.8	+0/0005 +0/013	.11 .05
GR 18 SS, S, RS, SRS, RSS	MI 14	.8750 22.234	+0/0005 +0/013	1.124 28.563	+0/0005 +0/013	1.260 32.02	0.13 3	0.40 10	.8755 22.2	.8746 22.2	+0/0005 +0/013	.13 .06
GR 18	MI 15	.9375 23.822	+0/0005 +0/013	1.124 28.563	+0/0005 +0/013	1.260 32.02	0.13 3	0.40 10	.9380 23.8	.9371 23.8	+0/0005 +0/013	.12 .06

MGILL GUIDEROL® Bearings

Basic Construction Type: Machined Race with full Complement of Needles

Rolling Elements: Center Guided Precision

Needles


Bearing Material: Bearing Quality Steel

> Rubber Lip Seal Type:

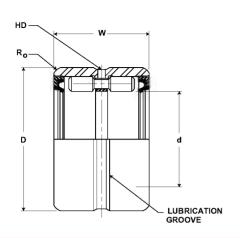
Lubrication: Sealed Bearings: Lithium

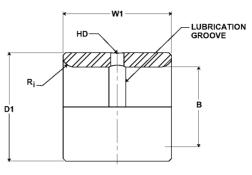
Soap Grease NLGI #1 Unsealed Bearings: Rust

Preventative

GR SERIES (continued)

Part No.				D	W				HD	Ro		00		
Outon Dinas & Dollon		Diameter		ıtside meter	Width	Hous	ing Bore D	iameter	Radial Lub. Hole Diameter	Max Hsg Radius to Clear	Limiting Speed (In Oil)*	Basic Dynamic Rating	Basic Static Rating	Outer & Roller Assembly Weight
Outer Ring & Roller Assembly		inch mm		nch nm	inch mm		inch mm		in m	ch m				lb
	Non	Tot	Nom	Tol	Toi +0/005 (+0/.13)	Rotating	Stationary	Total	(Ref)	(Ref)	RPM	lb/N	lb/N	kg
GR 20 N					1.000 25.40	1.7497 44.460	1.7507 44.485	+0/0007 +0/018	.09 2	0.04 1	4,800	6,500 28,912	17,000 75,616	.27 .12
GR 20 SS, S, RS, SRS, RSS		+0/_,0005 +0/_,013		+0/0005 +0/013	1.250	1.7497 44.460	1.7507 44.485	+0/0007 +0/018	.09 2	0.04 1	3,050	6,500 28,912	17,000 75,616	.39 .15
GR 20					31.75	1.7497 44.460	1.7507 44.485	+0/0007 +0/018	.09 2	0.04 1	4,800	8,300 36,918	23,100 102,749	.39 .15
GR 22 N					1.000 25.40	1.8747 47.636	1.8757 47.662	+0/0007 +0/018	.09 2	0.04 1	4,400	7,100 31,581	18,600 82,733	.31 .14
GR 22 SS, S, RS, SRS, RSS		+0/-,0005		+0/0006 +0/015	1.250	1.8747 47.636	1.8757 47.662	+0/0007 +0/018	.09 2	0.04 1	2,800	7,100 31,581	18,600 82,733	.36 .16
GR 22	1				31.75	1.8747 47.636	1.8757 47.662	+0/0007 +0/018	.09 2	0.04 1	4,400	9,050 40,254	25,500 113,424	.36 .16
GR 24 N					1.000 25.40	2.0621 52.398	2.0632 52.426	+0/0007 +0/018	.09 2	0.06 2	4,000	7,150 31,803	20,200 89,850	.41 .19
GR 24 SS, S, RS, SRS, RSS		+0/-,0005		+0/0006 +0/015	1.250	2.0621 52.398	2.0632 52.426	+0/0007 +0/018	.09 2	0.06 2	2,500	7,150 31,803	20,200 89,850	.47 .21
GR 24	1				31.75	2.0621 52.398	2.0632 52.426	+0/0007 +0/018	.09 2	0.06 2	4,000	9,150 40,699	27,800 123,654	.47 .21
GR 26 N					1.000 25.40	2.1871 55.574	2.1882 55.602	+0/0007 +0/018	.09 2	0.06 2	3,700	7,500 33,360	21,700 96,522	.46 .21
GR 26 SS, S, RS, SRS, RSS		+0/-,0005		+0/0006 +0/015	1.250	2.1871 55.574	2.1882 55.602	+0/0007 +0/018	.09 2	0.06 2	2,350	7,500 33,360	21,700 96,522	.51 .23
GR 26	1				31.75	2.1871 55.574	2.1882 55.602	+0/0007 +0/018	.09 2	0.06 2	3,700	9,600 42,701	29,800 132,550	.51 .23
GR 28 N					1.000 25.40	2.3121 58.750	2.3132 58.778	+0/0007 +0/018	.09 2	0.06 2	3,400	7,750 34,472	23,300 103,638	.47 .21
GR 28 SS, S, RS, SRS, RSS	1.7500	+0/0005	2.3125	+0/0006		2.3121 58.750	2.3132 58.778	+0/0007 +0/018	.09 2	0.06 2	2,200	7,750 34,472	23,300 103,638	.55 .25
00.00	44.5	+0/013	58.8	+0/015	1.250 31.75	2.3121 58.750	2.3132 58.778	+0/0007 +0/018	.09 2	0.06 2	3,400	9,850 43,813	32,100 142,781	.55 .25
GR 28						2.3121 58.750	2.3132 58.778	+0/0007 +0/018	.09 2	0.06 2	3,400	9,850 43,813	32,100 142,781	.55 .25
GR 30 SS, S, RS, SRS, RSS	1.8750	+0/0005	2.4375	+0/0006	1.250	2.4371 61.927	2.4382 61.955	+0/0007 +0/018	.09 2	0.06 2	2,040	8,150 36,251	25,200 112,090	.59 .27
GR 30		+0/013		+0/015	31.75	2.4371 61.927	2.4382 61.955	+0/0007 +0/018	.09 2	0.06 2	3,100	8,150 36,251	25,200 112,090	.59 .27
GR 32 N					1.000 25.40	2.5621 65.103	2.5632 65.131	+0/0007 +0/018	.09 2	0.06	3,000	8,000 35,584	26,700 118,762	.55 .25
GR 32 SS, S, RS, SRS, RSS	2.0000	+0/0005	2.5625	+0/0006		2.5621 65.103	2.5632 65.131	+0/0007 +0/018	.09	0.06	1,900	8,000 35,584	26,700 118,762	.61 .28
, , , , , , , , , , , , , , , , , , ,		+0/013		+0/015	1.250 31.75	2.5621 65.103	2.5632 65.131	+0/0007 +0/018	.09	0.06	3,000	10,250 45,592	36,700 163,242	.61 .28
GR 32						2.5621 65.103	2.5632 65.131	+0/0007	.09	0.06	3,000	10,250 45,592	36,700 163,242	.61 .28


For sealed bearings, Outside diameter may be slightly oversize due to seal press fit. For DS matching as DS suffix to part number
* For bearing properly filled with #1 grease reduce speed by 50%


Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

GUIDEROL® Bearings **MSGILL**®

GR SERIES (continued)

Part	No.		В)1	181	HD	FI				
Outer Ring	Separable	Bore D	iameter	Outside	Diameter	Modes	F≥3gi Lub. Hota Ulumuta	Jan Shaft Pas-Julio Casi		ended Shaft with inner rin		Inner Weight
& Roller Assembly	Inner Ring Only		ch im		ch im		inch mm			înch mm		lb.
		Nom	0	Nom	Tot	To: +0/-005 (+0/-13)	(Ren	(Ref)	Rotating	Stationary	0	1kg
GR 20 N	MI 16 N	1.0000 25.410	+0/0005 +0/013	1.2491 31.740	+0/0006 +0/015	1.010 25.66	0.13 3	0.40 10	1.0005 25.4	0.9996 25.4	+0/0005 +0/013	.13 .06
GR 20 SS, S, RS, SRS, RSS	MI 16	1.0000 25.410	+0/0005 +0/013	1.2491 31.740	+0/0006 +0/015	1.260 32.02	0.13 3	0.40 10	1.0005 25.4	0.9996 25.4	+0/0005 +0/013	.16 .07
GR 20	MI 16	1.0000 25.410	+0/0005 +0/013	1.2491 31.740	+0/0006 +0/015	1.260 32.02	0.13 3	0.40 10	1.0005 25.4	0.9996 25.4	+0/0005 +0/013	.16 .07
GR 22 N	MI 18 N	1.1250 28.586	+0/0005 +0/013	1.3741 34.916	+0/0006 +0/015	1.010 25.66	0.13 3	0.40 10	1.1255 28.6	1.1246 28.6	+0/0005 +0/013	.14 .06
GR 22 SS, S, RS, SRS, RSS	MI 18	1.1250 28.586	+0/0005 +0/013	1.3741 34.916	+0/0006 +0/015	1.260 32.02	0.13 3	0.40 10	1.1255 28.6	1.1246 28.6	+0/0005 +0/013	.17 .08
GR 22	MI 17	1.0625 26.998	+0/0005 +0/013	1.3741 34.916	+0/0006 +0/015	1.260 32.02	0.13 3	0.40 10	1.0630 27.0	1.0621 27.0	+0/0005 +0/013	.16 .07
GR 24 N	MI 20 N	1.2500 31.763	+0/0005 +0/013	1.4990 38.090	+0/0006 +0/015	1.010 25.66	0.13 3	0.06 2	1.2505 31.8	1.2496 31.8	+0/0005 +0/013	.19 .09
GR 24 SS, S, RS, SR S , R S S	MI 20	1.2500 31.763	+0/0005 +0/013	1.4990 38.090	+0/0006 +0/015	1.260 32.02	0.13 3	0.06 2	1.2505 31.8	1.2496 31.8	+0/0005 +0/013	.22 .09
GR 24	MI 19	1.1875 30.174	+0/0005 +0/013	1.4990 38.090	+0/0006 +0/015	1.260 32.02	0.13 3	0.06 2	1.1880 30.2	1.1871 30.2	+0/0005 +0/013	.24 .11
GR 26 N	MI 21 N	1.3125 33.351	+0/0005 +0/013	1.6240 41.266	+0/0006 +0/015	1.010 25.66	0.13 3	0.06 2	1.3130 33.4	1.3121 33.3	+0/0005 +0/013	.20 .09
GR 26 SS, S, RS, SRS, RSS	MI 21	1.3125 33.351	+0/0005 +0/013	1.6240 41.266	+0/0006 +0/015	1.260 32.02	0.13 3	0.06 2	1.3130 33.4	1.3121 33.3	+0/0005 +0/013	.26 .12
GR 26	MI 22 4S	1.3750 34.939	+0/0005 +0/013	1.6240 41.266	+0/0006 +0/015	1.260 32.02	0.13 3	0.06 2	1.3755 35.0	1.3746 34.9	+0/0005 +0/013	.20 .09
GR 28 N	MI 24 N	1.5000 38.115	+0/0005 +0/013	1.7490 44.442	+0/0006 +0/015	1.010 25.66	0.13 3	0.06 2	1.5005 38.1	1.4996 38.1	+0/0005 +0/013	.22 .09
GR 28 SS, S, RS, SR S , R S S	MI 22	1.3750 34.939	+0/0005 +0/013	1.7490 44.442	+0/0006 +0/015	1.260 32.02	0.13 3	0.06 2	1.3755 35.0	1.3746 34.9	+0/0005 +0/013	.26 .12
GR 28	MI 23	1.4375 36.527	+0/0005 +0/013	1.7490 44.442	+0/0006 +0/015	1.260 32.02	0.13 3	0.06 2	1.4380 36.5	1.4371 36.5	+0/0005 +0/013	.27 .12
GR 20	MI 24	1.5000 38.115	+0/0005 +0/013	1.7490 44.442	+0/0006 +0/015	1.260 32.02	0.13 3	0.06 2	1.5005 38.1	1.4996 38.1	+0/0005 +0/013	.22 .09
GR 30 SS, S, RS, SRS, RSS	MI 25 4S	1.5625 39.703	+0/0005 +0/013	1.8740 47.618	+0/0006 +0/015	1.260 32.02	0.13 3	0.06 2	1.5630 39.7	1.5621 39.7	+0/0005 +0/013	.27 .12
GR 30	MI 25 4S	1.5625 39.703	+0/0005 +0/013	1.8740 47.618	+0/0006 +0/015	1.260 32.02	0.13 3	0.06 2	1.5630 39.7	1.5621 39.7	+0/0005 +0/013	.27 .12
GR 32 N	MI 26 N	1.6250 41.291	+0/0005 +0/013	1.9989 50.792	+0/0007 +0/018	1.010 25.66	0.13 3	0.06 2	1.6255 41.3	1.6246 41.3	+0/0005 +0/013	.30 .14
GR 32 SS, S, RS, SRS, RSS	MI 25	1.5625 39.703	+0/0005 +0/013	1.9989 50.792	+0/0007 +0/018	1.260 32.02	0.13 3	0.06 2	1.5630 39.7	1.5621 39.7	+0/0005 +0/013	.30 .14
CD 22	MI 26	1.6250 41.291	+0/0005 +0/013	1.9989 50.792	+0/0007 +0/018	1.260 32.0	0.13 3	0.06 2	1.6255 41.3	1.6246 41.3	+0/0005 +0/013	.38 .17
GR 32	MI 27	1.6875 42.879	+0/0005 +0/013	1.9989 50.792	+0/0007 +0/018	1.260 32.0	0.13 3	0.06 2	1.6880 42.9	1.6871 42.9	+0/0005 +0/013	.32 .15

MGILL. GUIDEROL® Bearings

Basic Construction Type:

Machined Race with full

Complement of Needles

Rolling Elements:

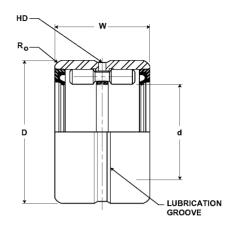
Center Guided Precision

Needles

Bearing Material:

Bearing Quality Steel

Seal Type:


Rubber Lip

Lubrication:

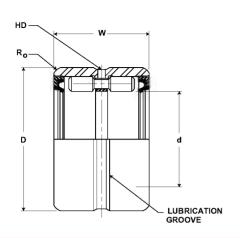
Sealed Bearings: Lithium Soap Grease NLGI #1

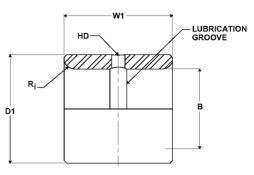
Unsealed Bearings: Rust

Preventative

GR SERIES (continued)

Part No.		d		D	W				FID	E.				
Outer Ring & Roller	Shaft	Diameter		ıtside meter	Width	Housi	ing Bore D	iameter	Rediction Fole Dunctor		Spee (In	yr mcl ting	ating	Outer & Roller Assembly Weight
Assembly		inch mm		nch nm	inch mm		inch mm		în m					lb
	Non	Tot	Non	Tol	To: +0/005 (+0/.13)	Rotating	Stationary	Tot	liz+t)	liz+ti	RPM	lb/N	b/N	kg
GR 36 N					1.500 38.10	2.9996 76.220	3.0007 76.248	+0/0007 +0/018	.13 3	0.08 2	2,700	15,250 67,832	49,100 218,397	1.13 .51
GR 36 SS, S, RS, SRS, RSS	2.2500 57.2	+0/0005 +0/013	3.0000 76.2	+0/0006 +0/015	1.750	2.9996 76.220	3.0007 76.248	+0/0007 +0/018	.13 3	0.08 2	1,700	15,250 67,832	49,100 218,397	1.32 .59
GR 36	1				44.45	2.9996 76.220	3.0007 76.248	+0/0007 +0/018	.13 3	0.08 2	2,700	18,450 82,066	60,200 267,770	1.32 .59
GR 40 N					1.500 38.10	3.2496 82.572	3.2507 82.600	+0/0007	.13	0.08	2,400	16,200 72,058	54,500 242,416	1.23 .56
GR 40 SS, S, RS, SRS, RSS	2 5000	+0/0005	3 2500	+0/0008	00.10	3.2496 82.572	3.2507 82.600	+0/0007 +0/018	.13	0.08 2	1,530	16,200 72,058	54,500 242,416	1.44 .65
,	63.5	+0/013		+0/020	1.750 44.45	3.2496 82.572	3.2507 82.600	+0/0007 +0/018	.13	0.08	2,400	19,800 88,070	66,800 297,126	1.44 .65
GR 40					74.40	3.2496 82.572	3.2507 82.600	+0/0007 +0/018	.13	0.08	2,400	19,800 88,070	66,800 297,126	1.44 .65
GR 44 N					1.500 38.10	3.4995 88.922	3.5008 88.955	+0/0010 +0/025	.13	0.08	2,200	16,800 74,726	59,900 266,435	1.36 .62
GR 44 SS, S, RS, SRS, RSS	2.7500 69.9	+0/0005 +0/013	3.5000 88.9	+0/0008 +0/020	1.750	3.4995 88.922	3.5008 88.955	+0/0010 +0/025	.13	0.08	1,390	16,800 74,726	59,900 266,435	1.59
GR 44	09.9	+0/013	00.9	+0/020	44.45	3.4995 88.922	3.5008 88.955	+0/025 +0/0010 +0/025	.13	0.08	2,200	20,350 90,517	73,400 326,483	1.59 .72
GR 48 N					1.500 38.10	3.7495	3.7508	+0/0010	.13	0.08	2,000	20,500	65,400	1.53
GR 48 SS, S, RS,	-	-01 0005	0.7500	.01.0000	36.10	95.275 3.7495	95.308 3.7508	+0/025	.13	0.08	1,270	91,184	290,899 65,400	.69 1.70
SRS, RSS		+0/0005 +0/013		+0/0008 +0/020	1.750	95.275 3.7495	95.308 3.7508	+0/025	.13	0.08	2,000	91,184	290,899 80,200	1.70
GR 48					44.45	95.275 3.7495	95.308 3.7508	+0/025	.13	0.08	2.000	91,629	356,730 80,200	1.70
GR 52 SS, S, RS,						95.275 4.2495	95.308 4.2508	+0/025	.19	0.08	1,175	91,629 25,100	356,730 63,800	2.64
SRS, RSS GR 52	3.2500 82.6	+0/0005 +0/013		+0/0008 +0/020	1.750 44.45	107.980 4.2495	108.013 4.2508	+0/025 +0/0010	.19	0.08	1,850	111,645 23,950	283,782 80,100	1.19 2.64
GR 56 N					1.750	107.980 3.2496	108.013 3.2507	+0/025 +0/0010	.19	0.08	1,700	106,530 25,100	356,285 86,500	1.19 2.88
GR 56 SS, S, RS,					44.45	82.572 3.4995	82.600 3.5008	+0/025 +0/0010	.19	0.08	1,090	111,645 25,100	384,752 86,500	1.31 3.18
SRS, RSS	3.5000 88.9	+0/0005 +0/013		+0/0008 +0/020	2.000	88.922 3.4995	88.955 3.5008	+0/025 +0/0010	.19	0.08	1,700	111,645 28,900	384,752 104,000	1.44 3.18
GR 56					50.80	88.922 3.4995	88.955 3.5008	+0/025 +0/0010	.19	2 0.08	1,700	128,547 28,900	462,592 104,000	1.44 3.18
GR 60 SS, S, RS,						88.922 4.7495	88.955 4.7508	+0/025 +0/0010	.19	2 0.10	•	128,547 25,450	462,592 92,300	1.44 3.38
SRS, RSS	3.7500 95.3	+0/0005 +0/013		+0/0008 +0/020	2.000 50.80	120.685 4.7495	120.718 4.7508	+0/025 +0/0010	.19	3 0.10	1,020	113,202 29,300	410,550 111,000	1.53 3.38
GR 60					,	120.685		+0/025	5	3	1,600	130,326	493,728	1.53


For sealed bearings, Outside diameter may be slightly oversize due to seal press fit. For DS matching as DS suffix to part number
* For bearing properly filled with #1 grease reduce speed by 50%


Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

GUIDEROL® Bearings MG ILL®

GR SERIES (continued)

Part	No.		3		01	161	110	H				
Outer Ring	Separable	Bore D	iameter	Outside	Diameter	Moden	Fz-dipi Lub. Hota Ulimouter	Jaco Sibarti 1005-2019 Citar		ended Shaft vith inner rin		Inner Weight
& Roller Assembly	Inner Ring Only	în m			ch im		inch mm			inch mm		166
_		Nom	0	Nom	Tot	To: 0/ 005 (40/13)	(Ren	(Ref)	Rotating	Stationary	<u>o</u>	kg
GR 36 N	MI 28 N	1.7500 44.468	+0/0005 +0/013	2.2489 57.145	+0/0007 +0/018	1.510 38.37	0.19 5	0.06 2	1.7505 44.5	1.7496 44.5	+0/0005 +0/013	.63 .29
GR 36 SS, S, RS, SRS, RSS	MI 28	1.7500 44.468	+0/0005 +0/013	2.2489 57.1	+0/0007 +0/018	1.760 44.72	0.19 5	0.06	1.7505 44.5	1.7497 44.5	+0/0005 +0/013	.74 .34
GR 36	MI 30	1.8750 47.644	+0/0005 +0/013	2.2489 57.1	+0/0007 +0/018	1.760 44.72	0.19 5	0.06 2	1.8755 47.7	1.8746 47.6	+0/0005 +0/013	.85 .39
GR 40 N	MI 32 N	2.0000 50.820	+0/0005 +0/013	2.2489 57.145	+0/0007 +0/018	1.510 38.37	0.19 5	0.08	2.0005 50.8	1.9996 50.8	+0/0005 +0/013	.74 .34
GR 40 SS, S, RS, SRS, RSS	MI 31	1.9375 49.232	+0/0005 +0/013	2.2489 57.1	+0/0007 +0/018	1.510 38.4	0.19 5	0.08	1.9380 49.2	1.9371 49.2	+0/0005 +0/013	.97 .44
00.40	MI 32	2.0000 50.820	+0/0005 +0/013	2.2489 57.1	+0/0007 +0/018	1.760 44.72	0.19 5	0.08 2	2.0005 50.8	1.9996 50.8	+0/0005 +0/013	.87 .39
GR 40	MI 34	2.1250 53.996	+0/0006 +0/015	2.2489 57.1	+0/0007 +0/018	1.760 44.7	0.19 5	0.08	2.1258 54.0	2.1247 54.0	+0/0008 +0/020	1.00 .45
GR 44 N	MI 36 N	2.2500 57.173	+0/0006 +0/015	2.7489 69.850	+0/0007 +0/018	1.510 38.37	0.19 5	0.08	2.2508 57.2	2.2497 57.2	+0/0008 +0/020	.83 .36
GR 44 SS, S, RS, SRS, RSS	MI 35	2.1875 55.584	+0/0006 +0/015	2.7489 69.8	+0/0007 +0/018	1.510 38.4	0.19 5	0.08 2	2.1883 55.6	2.1872 55.6	+0/0008 +0/020	1.06 .48
GR 44	MI 36	2.2500 57.173	+0/0006 +0/015	2.7489 69.8	+0/0007 +0/018	1.760 44.72	0.19 5	0.08 2	2.2508 57.2	2.2497 57.2	+0/0008 +0/020	.97 .44
GR 48 N	MI 40 N	2.5000 63.525	+0/0006 +0/015	2.9989 76.202	+0/0007 +0/018	1.510 38.37	0.19 5	0.08	2.5008 63.5	2.4997 63.5	+0/0008 +0/020	.92 .43
GR 48 SS, S, RS, SRS, RSS	MI 38	2.3750 60.349	+0/0006 +0/015	2.9989 76.2	+0/0007 +0/018	1.760 44.72	0.19 5	0.08	2.3758 60.4	2.3747 60.3	+0/0008 +0/020	1.28 .58
	MI 39	2.4375 61.937	+0/0006 +0/015	2.9989 76.2	+0/0007 +0/018	1.510 38.37	0.19 5	0.08	2.4383 62.0	2.4372 61.9	+0/0008 +0/020	1.05 .47
GR 48	MI 40	2.5000 63.525	+0/0006 +0/015	2.9989 76.2	+0/0007 +0/018	1.760 44.72	0.19 5	0.08 2	2.5008 63.5	2.4997 63.5	+0/0008 +0/020	1.07 .48
GR 52 SS, S, RS, SR S , R S S	MI 42	2.6250 66.701	+0/0006 +0/015	3.2487 82.549	+0/0009 +0/023	1.760 44.72	0.19 5	0.08 2	2.6258 66.7	2.6247 66.7	+0/0008 +0/020	1.12 .51
GR 52	MI 44	2.7500 69.878	+0/0006 +0/015	3.2487 82.549	+0/0009 +0/023	1.760 44.72	0.19 5	0.08 2	2.7508 69.9	2.7497 69.9	+0/0008 +0/020	1.17 .53
GR 56 N	MI 48 N	3.0000 76.230	+0/0006 +0/015	3.4987 88.902	+0/0009 +0/023	1.760 44.72	0.25 6	0.08 2	3.0008 76.3	2.9997 76.2	+0/0008 +0/020	1.32 .55
GR 56 SS, S, RS, SRS, RSS	MI 46	2.8750 73.054	+0/0006 +0/015	3.4987 88.9	+0/0009 +0/023	2.010 51.07	0.25 6	0.08	2.8758 73.1	2.8747 73.0	+0/0008 +0/020	1.30 .59
	MI 47	2.9375 74.642	+0/0006 +0/015	3.4987 88.9	+0/0009 +0/023	2.010 51.07	0.25 6	0.08	2.9383 74.7	2.9372 74.6	+0/0008 +0/020	1.58 .72
GR 56	MI 48	3.0000 76.230	+0/0006 +0/015	3.4987 88.9	+0/0009 +0/023	2.010 51.1	0.25 6	0.08	3.0008 76.3	2.9997 76.2	+0/0008 +0/020	1.43 .65
GR 60 SS, S, RS, SRS, RSS	MI 50	3.1250 79.406	+0/0006 +0/015	3.7487 95.254	+0/0009 +0/023	2.010 51.07	0.25 6	0.10 3	3.1260 79.4	3.1246 79.4	+0/0010 +0/025	1.88 .85
GR 60	MI 52	3.2500 82.583	+0/0006 +0/015	3.7487 95.254	+0/0009 +0/023	2.010 51.07	0.25 6	0.10 3	3.2510 82.6	3.2496 82.6	+0/0010 +0/025	1.52 .69

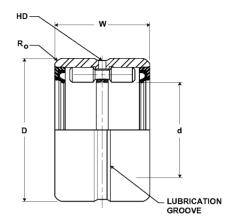
MGILL GUIDEROL® Bearings

Basic Construction Type: Machined Race with full

Complement of Needles

Rolling Elements: Center Guided Precision

Needles


Bearing Material: Bearing Quality Steel

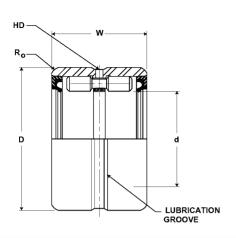
Seal Type: Rubber Lip

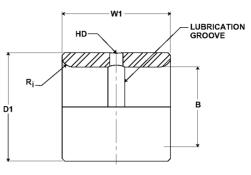
Lubrication: Sealed Bearings: Lithium

Soap Grease NLGI #1 Unsealed Bearings: Rust

Preventative

GR SERIES (continued)


Part No.		d	1	D	W				HD	Ro		n i		
Outor Dings & Dellar	Shaft	Diameter		side neter	Width	Housi	ng Bore Di	ameter	Radial Lub. Hole Diameter	Max Hsg Radius to Clear	Limiting Speed (In Oil)*	Basic Dynamic Rating	Basic Static Rating	Outer & Roller Assembly Weight
Outer Ring & Roller Assembly		inch mm		ch ım	inch mm		inch mm			ch im	RPM	lb/N	lb/N	lb
	Nom	Tot	Nom	Tol	Tol +0/005 (+0/.13)		Stationary	Tot.	(Ref)	(Ref)	KFW			<u>k</u> .
GR 64 SS, S, RS, SRS, RSS	4 0000	+0/0007	5 0000 ±	+0/0010	2.000	4.9999 127.047	5.0011 127.078	+0/0015 +0/038	.19 5	0.10 3	950	26,750 118,984	98,800 439,462	3.56 1.61
GR 64		+0/-018		+0/025	50.80	4.9999 127.047	5.0011 127.078	+0/0015 +0/038	.19 5	0.10	1,500	30,900 137,443	119,000 529,312	3.56 1.61
GR 68 SS, S, RS, SRS, RSS	4 2500	+0/0007	5 2500	+0/0010	2.000	5.2499 133.400	5.2511 133.430	+0/0015 +0/038	.19	0.10	900	27,400 121.875	104,000 462,592	3.74 1.69
GR 68		+0/-,018		+0/025	50.80	5.2499 133.400	5.2511 133.430	+0/0015 +0/038	.19 5	0.10	1,410	31,500 140,112	126,000 560,448	3.74 1.69
GR 72		+0/0007 +0/018		+0/0010 +0/025	2.250 57.15	5.9999 152.457	6.0011 152.488	+0/0015 +0/038	.19	0.10	1,330	43,400 193,043	145,000 644,960	7.13 3.23
GR 80				+0/0010		6.4999 165.162	6.5011 165.193	+0/0015 +0/038	.19 5	0.10 3	1,200	48,800 217,062	161,000 716,128	7.78 3.53
GR 60	127.1	+0/_,018	165.2	+0/025	57.15	6.4999 165.162	6.5011 165.193	+0/0015 +0/038	.19 5	0.10 3	1,200	48,800 217,062	161,000 716,128	7.78 3.53
GR 88 N	5.5000	+0/-,0007	7.0000 +	+0/0010	2.500 63.50	4.7495 120.685	4.7508 120.718	+0/0015 +0/038	.25 6	0.10 3	1,090	60,700 269,994	171,000 760,608	10.40 4.73
GR 88	139.8	+0/018	177.9	+0/025	3.000 76.20	4.7495 120.685	4.7508 120.718	+0/0015 +0/038	.25 6	0.10 3	1,090	65,000 289,120	205,000 911,840	11.82 5.36
GR 96 N	6.0000	+0/-,0010	7.5000 +	+0/0012	2.500 63.50	5.2499 133.400	5.2511 133.430	+0/0015 +0/038	.25 6	0.12 3	1,000	65,700 292,234	223,000 991,904	11.08 5.02
GR 96	152.5	+0/-,025	190.6	+0/030	3.000 76.20	5.2499 133.400	5.2511 133.430	+0/0015 +0/038	.25 6	0.12 3	1,000	71,400 317,587	283,000 1,258,784	12.69 5.76
GR 104 N	6.5000	+0/-,0010	8.0000 +	+0/0012	2.500 63.50	5.9999 152.457	6.0011 152.488	+0/0015 +0/038	.25 6	0.12 3	930	68,900 306,467	242,000 1,076,416	11.85 5.37
GR 104	165.2	+0/-,025	203.3	+0/030	3.000 76.20	5.9999 152.457	6.0011 152.488	+0/0015 +0/038	.25 6	0.12 3	930	75,000 333,600	308,000 1,369,984	13.55 6.15
GR 116		+0/0010 +0/025		+0/0012 +0/030	3.000 76.20	9.1248 231.861	9.1261 231.894	+0/0015 +0/038	.25 6	0.12 3	840	83,900 373,187	332,000 1,476,736	19.32 8.76
GR 124		+0/0010 +0/025	9.6250 ± 244.6	+0/0012 +0/030	3.000 76.20	6.6250 168.341	6.6265 168.379	+0/0020 +0/051	.25 6	0.12 3	770	86,200 383,418	355,000 1,579,040	19.80 8.97
GR 132		+0/0010 +0/025	10.1250+ 257.3	+0/0012 +0/030	3.000 76.20	10.1250 257.276	10.1265 257.314	+0/0020 +0/051	.25 6	0.12 3	730	88,700 394,538	378,000 1,681,344	21.63 9.81
GR 140	8.7500 222.3	+0/0010 +0/025	10.6250+	+0/0014 +0/036	3.000 76.20	10.6250 269.981	10.6265 270.019	+0/0020 +0/051	.25 6	0.16 4	690	91,500 406,992	401,000 1,783,648	22.73 10.31
GR 148	9.2500		11.1250+	+0/0014 +0/036	3.000 76.20	11.1250 282.686	11.1265	+0/0020 +0/051	.25 6	0.16 4	650	93,500 415,888	423,000 1,881,504	24.00 10.88


For sealed bearings, Outside diameter may be slightly oversize due to seal press fit.

For DS matching as DS suffix to part number

^{*} For bearing properly filled with #1 grease reduce speed by 50%

GUIDEROL® Bearings MG ILL®

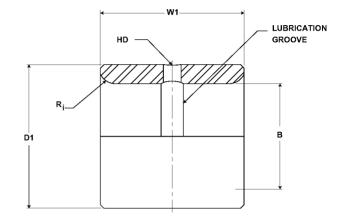
GR SERIES (continued)

Р	art No.		3	D	01	Wi	HE	R2				-
Outer Ring	Separable	Bore D	iameter	Outside	Diameter	Milde	fiz-zigi Lulo. Herka Uliumoten	hies that leading to Con-		ended Shaft vith inner rin		Inner Weight
& Roller Assembly	Inner Ring Only	in m	ch m		ch im	17700000	inch mm			inch mm		16
		Nom	Tol	Nom	Tol	965	(Rel)	(Ref)	Retating	Stationary	9	kg
GR 64 SS, RS, SRS, R		3.3750 85.759	+0/0008 +0/020	3.9985 101.602	+0/0009 +0/023	2.010 51.07	0.25 6	0.10 3	3.3760 85.8	3.3746 85.7	+0/0010 +0/025	2.04 .93
GR 64	MI 56	3.5000 88.935	+0/0008 +0/020	3.9985 101.602	+0/0009 +0/023	2.010 51.07	0.25 6	0.10 3	3.5010 89.0	3.4996 88.9	+0/0010 +0/025	1.63 .74
GR 68 SS, RS, SR S , R		3.6250 92.111	+0/0008 +0/020	4.2485 107.954	+0/0009 +0/023	2.010 51.07	0.25 6	0.10 3	3.6260 92.1	3.6246 92.1	+0/0010 +0/025	1.70 .77
GR 68	MI 60	3.7500 95.288	+0/0008 +0/020	4.2485 107.954	+0/0009 +0/023	2.010 51.07	0.25 6	0.10 3	3.7510 95.3	3.7496 95.3	+0/0010 +0/025	1.75 .79
GR 72	MI 62	3.8750 98.464	+0/0008 +0/020	4.4985 114.307	+0/0009 +0/023	2.260 57.43	0.25 6	0.10 3	3.8760 98.5	3.8746 98.5	+0/0010 +0/025	3.25 1.47
GR 80	MI 64	4.0000 101.640	+0/0008 +0/020	4.9985 127.012	+0/0010 +0/025	2.260 57.43	0.25 6	0.10 3	4.0010 101.7	3.9996 101.6	+0/0010 +0/025	4.38 1.99
01100	MI 68	4.2500 107.993	+0/0008 +0/020	4.9985 127.012	+0/0010 +0/025	2.260 57.43	0.25 6	0.10 3	4.2510 108.0	4.2496 108.0	+0/0010 +0/025	5.24 2.37
GR 88 N	MI 72 N	4.5000 114.345	+0/0008 +0/020	5.4985 139.717	+0/0010 +0/025	2.515 63.91	0.25 6	0.10 3	4.5010 114.4	4.4996 114.3	+0/0010 +0/025	5.43 2.47
GR 88	MI 72	4.5000 114.345	+0/0008 +0/020	5.4985 139.717	+0/0010 +0/025	3.015 76.61	0.25 6	0.10 3	4.5010 114.4	4.4996 114.3	+0/0010 +0/025	5.97 2.71
GR 96 N	MI 80 N	5.0000 127.050	+0/0010 +0/025	5.9983 152.417	+0/0010 +0/025	2.515 63.91	0.31 8	0.12 3	5.0010 127.1	4.9995 127.0	+0/0010 +0/025	5.97 2.71
GR 96	MI 80	5.0000 127.050	+0/0010 +0/025	5.9983 152.417	+0/0010 +0/025	3.015 76.61	0.31 8	0.12 3	5.0010 127.1	4.9995 127.0	+0/0010 +0/025	7.12 3.23
GR 104 N	MI 88 N	5.5000 139.755	+0/0010 +0/025	6.4983 165.122	+0/0010 +0/025	2.515 63.91	0.31 8	0.12 3	5.5010 139.8	5.4995 139.7	+0/0010 +0/025	6.30 2.88
GR 104	MI 88	5.5000 139.755	+0/0010 +0/025	6.4983 165.122	+0/0010 +0/025	3.015 76.61	0.31 8	0.12	5.5010 139.8	5.4995 139.7	+0/0010 +0/025	7.56 3.43
GR 116	MI 96	6.0000 152.460	+0/0010 +0/025	7.2481 184.174	+0/0012 +0/030	3.015 76.61	0.31 8	0.12 3	6.0012 152.5	5.9995 152.4	+0/0012 +0/030	11.06 5.03
GR 124	MI 104	6.5000 165.165	+0/0010 +0/025	7.7481 196.879	+0/0012 +0/030	3.015 76.61	0.31 8	0.12 3	6.5012 165.2	6.4995 165.2	+0/0012 +0/030	11.99 5.39
GR 132	MI 112	7.0000 177.870	+0/0010 +0/025	8.2481 209.584	+0/0012 +0/030	3.015 76.61	0.31 8	0.12 3	7.0012 177.9	6.9995 177.9	+0/0012 +0/030	12.70 5.77
GR 140	MI 120	7.5000 190.575	+0/0012 +0/030	8.7480 222.287	+0/0012 +0/030	3.015 76.61	0.31 8	0.16 4	7.5012 190.6	7.4995 190.6	+0/0012 +0/030	13.60 6.17
GR 148	MI 128	8.0000 203.280	+0/0012 +0/030	9.2480 234.992	+0/0012 +0/030	3.015 76.61	0.31 8	0.16 4	8.0012 203.3	7.9995 203.3	+0/0012 +0/030	14.40 6.55

MGILL Machined Inner Rings

McGill Machined Inner Ring

Precision ground inner ring provides a hardened raceway for the rollers when used with an unhardened shaft. The ring contains an oil hole and annular groove for relubrication of the bearing and can be used with both CAGEROL and GUIDEROL bearings or can be utilized as a bushing in plain bearing applications.



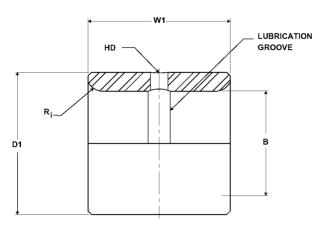
Basic Construction Type:

Thru Hardened Precision

Ground Rings

Ring Material: Bearing Quality Steel

MI Series


			В		D1	WI	Ш	Recomm	nended Shaft	Diameter	innet
Part No.		Bore [)iameter	Outside	Diameter	Wells	Same		vith Inner Rin		Weight
	Military No.		nch nm		nch nm		im		ĩnch mm		16
Inner Ring		Norm	Tot	None	Total	+0 - 005 (+0/13)	(Ref)	Rotating	Stationary	Tol	NO
MI 6 N	MS 51962-1	.3750	+0/0004	.6245	+0/0004	.760 19.3	.25 6	.3755 9.5	.3747 9.5	+0/0005 +0/013	.05 .02
MI 6		9.5	+0/010	15.9	+0/010	1.010 25.7	.25 6	.3755 9.5	.3747 9.5	+0/0005 +0/013	.05 .02
MI 7 N		.4375 1 1.1	+0/0004 +0/010	.6245 15.9	+0/0004 +0/010	.760 19.3	.25 6	.4380 1 1.1	.4372 1 1.1	+0/0005 +0/013	.04 .02
MI 8 N	MS 51962-2	.5000	+0/0004	.7493	+0/0005	.760 19.3	.40 10	.5005 12.7	.4997 1 2.7	+0/0005 +0/013	.04 .02
MI 8	MS 51962-3	12.7	+0/010	19.0	+0/013	1.010 25.7	.40 10	.5005 12.7	.4997 12.7	+0/0005 +0/013	.06 .03
MI 9 N		.5625 14.3	+0/0004 +0/010	.7493 19.0	+0/0005 +0/013	.760 19.3	.40 10	.5630 14.3	.5622 14.3	+0/0005 +0/013	.04 .02
MI 10		.6250	+0/0004	.8743	+0/0005	1.010 25.7	.40 10	.6255 15.9	.6247 15.9	+0/0005 +0/013	.08 .04
MI 10 N	MS 51962-4	15.9	+0/010	22.2	+0/013	.760 19.3	.40 10	.6255 15.9	.6247 15.9	+0/0005 +0/013	.06 .03
MI 11 N		.6875 17.5	+0/0004 +0/010	.8743 22.2	+0/0005 +0/013	.760 19.3	.40 10	.6880 17.5	.6872 17.5	+0/0005 +0/013	.05 .02
MI 12 N	MS 51962-5	.7500	+0/0004	.9993	+0/0005	.760 19.3	.40 10	.7505 19.1	.7497 19.0	+0/0005 +0/013	.07 .03
MI 12		19.1	+0/010	25.4	+0/013	1.010 25.7	.40 10	.7505 19.1	.7497 19.0	+0/0005 +0/013	.10 .05
MI 13 N	MS 51962-6	.8125	+0/0005	.9993	+0/0005	.760 19.3	.40 10	.8129 20.7	.8121 20.6	+0/0005 +0/013	.07 .03
MI 13	MS 51962-7	20.6	+0/013	25.4	+0/013	1.010 25.7	.40 10	.8130 20.7	.8122 20.6	+0/0005 +0/013	.11 .05
MI 14 N	MS 51962-8	.8750	+0/0005	1.124	+0/0005	1.010 25.7	.40 10	.8754 22.2	.8746 22.2	+0/0005 +0/013	.11 .05
MI 14		22.2	+0/013	28.6	+0/013	1.260 32.0	.40 10	.8755 22.2	.8747 22.2	+0/0005 +0/013	.13 .06
MI 14 N	MS 51962-8	.8750	+0/0005	1.124	+0/0005	1.010 25.7	.40 10	.9379 23.8	.9371 23.8	+0/0005 +0/013	.11 .05
MI 15		22.2	+0/013	28.6	+0/013	1.260 32.0	.40 10	.9380 23.8	.9372 23.8	+0/0005 +0/013	.12 .05

Metric dimensions for reference only.

 $Not all \ parts \ are \ available \ from \ stock. \ Please \ contact \ customer \ service \ for \ availability \ (800) \ 626-2120.$

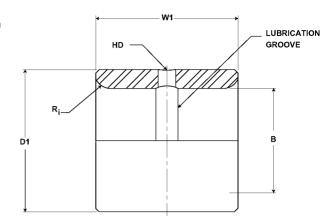
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Machined Inner Rings **MSGILL**®

MI Series

ħ .		=	В		01	991	R				1 Series
Part No.			iameter		Diameter	annin	Internal		nended Shaft with Inner Rin		Inner Weight
Gardana.	Military No.	ir	ich im	ir	nch nm	ir n	ich im		inch mm		3161
Inner Ring		Nem	Tot	Nom	Tol.	Tol +0/-005 (+0/.13)	(Ref)	Rotating	Stationary	Tol.	Ng
MI 16 N	MS 51962-10	1.000	+0/0005	1.249	+0/0006	1.010 25.7	.40 10	1.0004 25.4	.9996 25.4	+0/0005 +0/013	.13 .06
MI 16	MS 51962-11	25.4	+0/013	31.7	+0/015	1.260 32.0	.40 10	1.001 25.4	1.000 25.4	+0/0005 +0/013	.16 .07
MI 17		1.063 27.0	+0/0005 +0/013	1.374 34.9	+0/0006 +0/015	1.260 32.0	.40 10	1.063 27.0	1.0621 27.0	+0/0005 +0/013	.16 .07
MI 18 N	MS 51962-12	1.125	+0/0005	1.374	+0/0006	1.010 25.7	.40 10	1.1255 28.6	1.1246 28.6	+0/0005 +0/013	.14 .06
MI 18	MS 51962-13	28.6	+0/013	34.9	+0/015	1.260 32.0	.40 10	1.126 28.6	1.125 28.6	+0/0005 +0/013	.17 .08
MI 19	MS 51962-14	1.188 30.2	+0/0005 +0/013	1.499 38.1	+0/0006 +0/015	1.260 32.0	.06 2	1.188 30.2	1.1871 30.2	+0/0005 +0/013	.24 .11
MI 20 N	MS 51962-15	1.250	+0/0005	1.499	+0/0006	1.010 25.7	.06 2	1.2505 31.8	1.2496 31.8	+0/0005 +0/013	.19 .09
MI 20	MS 51962-16	31.8	+0/013	38.1	+0/015	1.260 32.0	.06 2	1.251 31.8	1.250 31.8	+0/0005 +0/013	.22 .09
MI 21 N	MS 51962-17	1.313	+0/0005	1.624	+0/0006	1.010 25.7	.06 2	1.313 33.4	1.3121 33.3	+0/0005 +0/013	.20 .09
MI 21		33.4	+0/013	41.3	+0/015	1.260 32.0	.06 2	1.313 33.4	1.312 33.3	+0/0005 +0/013	.26 .12
MI 22 4S	MS 51962-18	1.375	+0/0005	1.624 41.3	+0/0006 +0/015	1.260 32.0	.06 2	1.3755 35.0	1.3746 34.9	+0/0005 +0/013	.20 .09
MI 22	MS 51962-19	34.9	+0/013	1.749 44.4	+0/0006 +0/015	1.260 32.0	.06 2	1.376 35.0	1.375 34.9	+0/0005 +0/013	.26 .12
MI 23	MS 51962-20	1.438 36.5	+0/0005 +0/013	1.749 44.4	+0/0006 +0/015	1.260 32.0	.06 2	1.438 36.5	1.4371 36.5	+0/0005 +0/013	.27 .12
MI 24 N	MS 51962-21	1.500	+0/0005	1.749	+0/0006	1.010 25.7	.06 2	1.5005 38.1	1.4996 38.1	+0/0005 +0/013	.22 .09
MI 24	MS 51962-22	38.1	+0/013	44.4	+0/015	1.260 32.0	.06 2	1.501 38.1	1.500 38.1	+0/0005 +0/013	.22 .09
MI 25 4S		1.563	+0/0005	1.874 47.6	+0/0006 +0/015	1.260 32.0	.06 2	1.563 39.7	1.5621 39.7	+0/0005 +0/013	.27 .12
MI 25		39.7	+0/013	1.999 50.8	+0/0007 +0/018	1.260 32.0	.06 2	1.563 39.7	1.562 39.7	+0/0005 +0/013	.30 .14
MI 26 N				1.999	+0/0007	1.010 25.7	.06 2	1.6255 41.3	1.6246 41.3	+0/0005 +0/013	.30 .14
MI 26	MS 51962-23	1.625 41.3	+0/0005 +0/013	50.8	+0/018	1.260 32.0	.06 2	1.6255 41.3	1.6246 41.3	+0/0005 +0/013	.38 .17
MI 26 2S				1.936 49.2	0/0007 +0/018	1.260 32.0	.06 2	1.6255 41.3	1.625 41.3	+0/0005 +0/013	.30 .14
MI 27 N		1.688	+0/0005	1.999	+0/0007	1.010 25.7	.06 2	1.688 42.9	1.6871 42.9	+0/0005 +0/013	.30 .14
MI 27		42.9	+0/013	50.8	+0/018	1.260 32.0	.06 2	1.688 42.9	1.687 42.9	+0/0005 +0/013	.32 .15

MGILL_® Machined Inner Rings

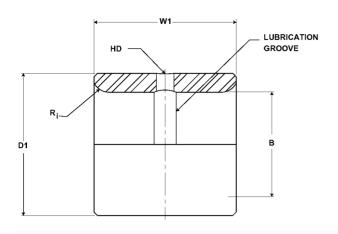


Basic Construction Type: Thru Hardened Precision

Ground Rings

Bearing Material: Bearing Quality Steel

MI Series (continued)


ded Shaft Diameter Inner Ring	Short of
	Weigh
ĩnch mm	416
tationary Tol.	ling
1.6871 +0/0005 42.9 +0/013	.32 .15
1.750 +0/0005 44.5 +0/013	.63 .29
1.8746 +0/0005 47.6 +0/013	.85 .39
1.9371 +0/0005 49.2 +0/013	.97 .43
1.9996 +0/0005 50.8 +0/013	.74 .33
2.000 +0/0005 50.8 +0/013	.87 .39
2.1247 +0/0008 54.0 +0/020	1.00 .45
2.1872 +0/0008 55.6 +0/020	1.06 .48
2.2497 +0/0008 57.2 +0/020	.83
2.2497 +0/0008 57.2 +0/020	.97
2.3747 +0/0008	1.28
2.4372 +0/0008	1.05 .47
2.4997 +0/0008	.92
2.500 +0/0008	1.07
2.6247 +0/0008	1.12 .51
2.7497 +0/0008	1.17
2.8747 +0/0008	1.30 .59
2.9372 +0/0008	1.58 .72
2.9997 +0/0008	1.32
3.000 +0/0008	.59 1.43
3.1246 +0/0010	1.88
3.2496 +0/0010	.85 1.52 .69
	2.3747 +0/0008 60.3 +0/020 2.4372 +0/020 2.4997 +0/020 2.4997 +0/020 2.500 +0/020 2.501 +0/020 2.6247 +0/020 2.7497 +0/020 2.8747 +0/020 2.8747 +0/020 2.9372 +0/020 74.6 +0/020 2.9997 +0/0008 76.2 +0/020 3.000 +0/020 3.1246 +0/020 3.1246 +0/021 79.4 +0/025

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Machined Inner Rings **MGILL**®

MI Series (continued)

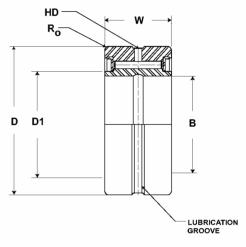
			В		D1	W)	100	Recomn	nended Shaft I	Diameter	Imper
Part No.		Bore D)iameter	Outside	Diameter	WORT	hijit Haj		with Inner Rin		Weight
	Military No.		nch nm		nch nm	n	nch nm		inch mm		16
Inner Ring		Nom	Tel	Nem	Tel.	Fol. +0/- 005 (+0/.13)	(Ref)	Rotating	Stationary	Tol.	No.
MI 54	MS 51962-38	3.375 85.8	+0/0008 +0/020	3.999 101.6	+0/0009 +0/023	2.010 51.1	.10 3	3.3758 85.8	3.3746 85.7	+0/0010 +0/025	2.04 .93
MI 56		3.500	+0/0008	3.999 101.6	+0/0009 +0/023	2.010 51.1	.10 3	3.5008 89.0	3.4996 88.9	+0/0010 +0/025	1.63 .74
MI 56 8G		88.9	+0/020	4.249 108.0	+0/0009 +0/023	2.010 51.1	.10 3	3.501 89.0	3.500 88.9	+0/0010 +0/025	1.67 .75
MI 58		3.625 92.1	+0/0008 +0/020	4.249 108.0	+0/0009 +0/023	2.010 51.1	.10 3	3.6258 92.1	3.6246 92.1	+0/0010 +0/025	1.70 .77
MI 60	MS 51962-40	3.750 95.3	+0/0008 +0/020	4.249 108.0	+0/0009 +0/023	2.010 51.1	.10 3	3.7508 95.3	3.7496 95.3	+0/0010 +0/025	1.75 .79
MI 62		3.875 98.5	+0/0008 +0/020	4.499 114.3	+0/0009 +0/023	2.260 57.4	.10 3	3.876 98.5	3.875 98.5	+0/0010 +0/025	3.25 1.47
MI 64		4.000 101.6	+0/0008 +0/020	4.999 127.0	+0/0010 +0/025	2.260 57.4	.10 3	4.001 101.7	4.000 101.6	+0/0010 +0/025	4.38 1.99
MI 68		4.250 108.0	+0/0008 +0/020	4.999 127.0	+0/0010 +0/025	2.260 57.4	.10 3	4.251 108.0	4.250 108.0	+0/0010 +0/025	5.24 2.37
MI 72 N	MS 51962-43	4.500	+0/0008	5.499	+0/0010	2.515 63.9	.10 3	4.501 114.4	4.500 114.3	+0/0010 +0/025	5.43 2.47
MI 72	MS 51962-44	114.3	+0/020	139.7	+0/025	3.015 76.6	.10 3	4.501 114.4	4.500 114.3	+0/0010 +0/025	5.97 2.71
MI 80 N	MS 51962-46	5.000	+0/0010	5.998	+0/0010	2.515 63.9	.12 3	5.001 127.1	5.000 127.0	+0/0010 +0/025	5.97 2.71
MI 80		127.1	+0/025	152.4	+0/025	2.010 51.1	.10 3	3.501 89.0	3.500 88.9	+0/0010 +0/025	7.12 3.23
MI 88 N	MS 51962-48	5.500	+0/0010	6.498	+0/0010	2.515 63.9	.12 3	5.501 139.8	5.500 139.7	+0/0010 +0/025	6.30 2.88
MI 88	MS 51962-49	139.8	+0/025	165.1	+0/025	3.015 76.6	.12 3	5.501 139.8	5.500 139.7	+0/0010 +0/025	7.56 3.54
MI 96	MS 51962-50	6.000 152.5	+0/0010 +0/025	7.248 184.2	+0/0012 +0/030	3.015 76.6	.12 3	6.001 152.5	6.000 152.4	+0/0012 +0/030	11.06 5.03
MI 104		6.500 165.2	+0/0010 +0/025	7.748 196.9	+0/0012 +0/030	3.015 76.6	.12 3	6.501 165.2	6.500 165.2	+0/0012 +0/030	11.90 5.39
MI 112		7.000 177.9	+0/0010 +0/025	8.248 209.6	+0/0012 +0/030	3.015 76.6	.12 3	7.001 177.9	7.000 177.9	+0/0012 +0/030	12.70 5.77
MI 120		7.500 190.6	+0/0012 +0/030	8.748 222.3	+0/0012 +0/030	3.015 76.6	.16 4	7.501 190.6	7.500 190.6	+0/0012 +0/030	13.60 6.17
MI 128		8.000 203.3	+0/0012 +0/030	9.248 235.0	+0/0012 +0/030	3.015 76.6	.16 4	8.001 203.3	8.000 203.3	+0/0012 +0/030	14.40 6.55

McGILL MULTI-ROL Bearings

McGill MULTI-ROL Needle Bearings

Full complement needle bearing provides high radial load rating with good shaft support, angular rigidity, and is dimensionally equivalent to most plain bearings with bronze or babbitt bushing. Available in both single and two row designs with non separable inner race and metallic shields for pure radial load applications. The angular lube groove provides a circumferential path to direct lubricant to the oil hole.

Basic Construction Type: Full Complement Machined


Race Needle Bearing and Non Separable Inner Ring

Rolling Elements: Single Row Precision Ground

Needle

Bearing Material: Bearing Quality Steel

Seal Type: Metallic Shield

RS Series

(%)	8	.0		7			0.00-00.000	1000000	1100	11ft	77.1	nn-	100	
12	30-1	(m)##	- ilher		2000	121111	in instituti	ست			AND I	Marine Marine	A STATE OF THE PARTY OF THE PAR	
			79. 19862	00 17 111	0 ex 0 (1) 100 100 (1)		tolorio ari	Wi	l iden		lini	90		#
RS 6	_7500 19.058	+0/0004 +0/010	1.5000 38.115	+0/0005 +0/013	.8750 22.234	1.5000 38.115	1.5005 38.128	.0007 0.018	_1250 3.176	0313 0.794	5 000	3850 17 125	11500 51 ₁ 152	26 12
10,7	11749 23371	in Arron. The distance	1 78% 11 040	(1) (a)(2) (a)(-7)(1)	1 hek?5 504.5	(1554) (1554)	172m Grun	002s 2500h	(2%) 3.476	र्गाटक रूप संस्थान	1,000	9600 10770	The Hall	71
RS 8	1.0000 25.410	+0/0005 +0/013	1.8125 46.056	+0/0005 +0/013	1.0625 26.998	1.8125 46.056	1.8130 46.068	.0007 0.018	1250 3.176	0313 0.794	4 000	6170 27 444	18700 83 ₋ 178	42 19
4957	1 12% 20%	12.64	1392 to 12,379	104 (100) (05-10)	4 1992± 360 965±	11005 12-39	Kathin Sil Sile	ancon Social	3/1/M	(0052	5650	5600 56200	1004 41,004	101
RS 10	1.2500 31.763	+0/0005 +0/013	2.0625 52.408	+0/0006 +0/015	1.0625 26.998	2.0625 52.408	2.0630 52.421	.0007 0.018	1250 3.176	0313 0.794	3 300	6830 30 380	22400 99 635	49 22
P# 11	1 500°. 33, 10	-5-0035 10-5-3	131.00 58129	PCV-00028 4905-240	1 1231 983588	7.5000 627225	222000 33 538	000 0008	,1290 3,179	1000 588	2.570	774. 14.438	102500 100200	.85 .12
RS 14	1.7500 44.468	+0/0005 +0/013	2.7500 69.878	+0/0006 +0/015	1.1250 28.586	2.7500 69.878	2.7505 69.890	.0007 0.018	1250 3.176	0625 1.588	2 500	8330 37 052	31400 139 667	93 42
(1) (H 10);	2 1000 50 620	2 10 70 42 1 2	1-2170 52/59	+0 - 300.5 +0/-210	1 1977 30, 74	3,3400 32,750	3.2500 52506	000° 0.616	1200 3.176	1020 1583	3,026	5626 43.070	42200 187 703	90 90
RS 20	2.5000 63.525	+0/0006 +0/015	3.7500 95.288	+0/0008 +0/020	1.2500 31.763	3.7498 95.282	3.7507 95.305	.0010 0.025	1875 4.764	0938 2.382	1 700	11200 49 818	52900 235 299	1.79 81
ia V	2,750G (n.6%)	10 No	10.000 to 630	HQ1, 00009 HQ1, 00009	1,250° 31,76°	7,9950 10 (a)	1,750V 101,620	10010 SARS	1575 1714	.0632 2.546	Amilia	5950 41 14	907.722 207.722	300 01
RS 24	3.0000 76.230	+0/0006 +0/015	4.5000 114.345	+0/0008 +0/020	1.3750 34.939	4.4998 114.340	4.5007 114.363	.0010 0.025	1875 4.764	0938 2.382	1 400	14500 64 496	58100 258 429	2.88 1.31

^{*} For bearing properly filled with #1 grease reduce speed by 50%

Metric dimensions for reference only.

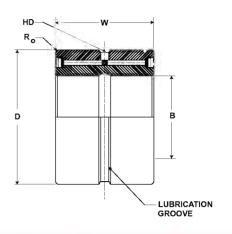
C-33

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

MULTI-ROL Bearings MGILL.

Basic Construction Type: Full Complement Machined


Race Needle Bearing and Non Separable Inner Ring

Rolling Elements: Double Row Precision

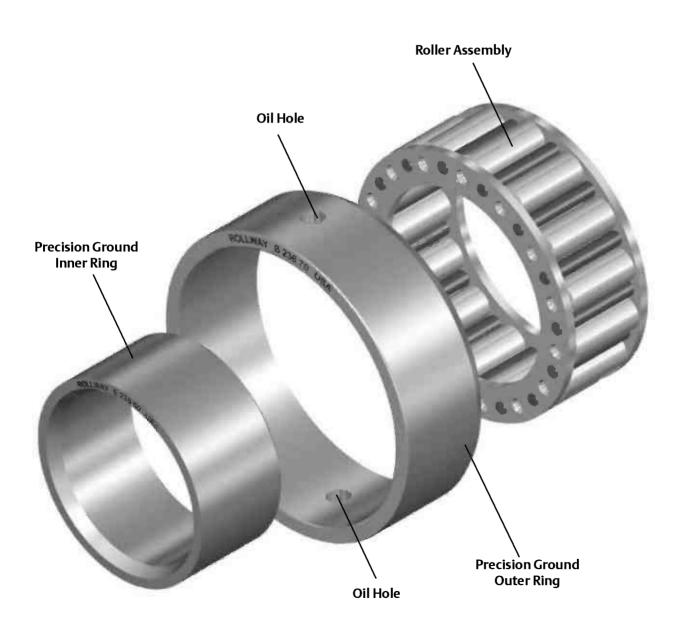
Ground Needle

Bearing Material: Bearing Quality Steel

Seal Type: Metallic Shield

RD Series

Part No.	1	В		D	W				HD	Ro	s. @ ₄	Desi	Desi	
Circula	Bore D	iameter	Outside	Diameter	Width	Housi	ng Bore Dia	ımeter	Redial Lub Hole Diameter	Max Hisg Radius to Clear	Limiting Speed (In Oil)*	Basic Dynamic Rating	Basic Static Rat <mark>i</mark> ng	Weight
Single Row		ch im		ch im	inch nun		inch mm		in m					16
	Nom	Tot	Nom	Tot	+0/-005 (+0/.13)	Rotating	Stationary	To	(Ref)	(Ref)	RPM	16/N	łb/N	kg
RD 10	1.2500 31.763	+0/0005 +0/013	2.0625 52.408	+0/0006 +0/015	2.2500 57.173	2.0625 52.408	2.0630 52.421	.0007 0.018	.1875 4.764	.0313 0.794	3,300	13600 60,493	54300 241,526	1.16 .53
RD 12	1.5000 38.115	+0/0005 +0/013	2.5000 63.525	+0/0006 +0/015	2.3750 60.349	2.5000 63.525	2.5005 63.538	.0007 0.018	.1875 4.764	.0625 1.588	2,900	15200 67,610	65700 292,234	1.83 .83
RD 14	1.7500 44.468	+0/0005 +0/013	2.7500 69.878	+0/0006 +0/015	2.3750 60.349	2.7500 69.878	2.7505 69.890	.0007 0.018	.1875 4.764	.0625 1.588	2,500	16400 72,947	75100 334,045	2.06 .93
RD 16	2.0000 50.820	+0/0005 +0/013	3.2500 82.583	+0/0006 +0/015	2.3750 60.349	3.2499 82.580	3.2505 82.595	.0007 0.018	.1875 4.764	.0625 1.588	2,000	18300 81,398	94000 418,112	3.09 1.40
RD 18	2.2500 57.173	+0/0005 +0/013	3.5000 88.935	+0/0008 +0/020	2.5000 63.525	3.4998 88.930	3.5007 88.953	.0010 0.025	.1875 4.764	.0625 1.588	1,800	19200 85,402	102600 456,365	3.57 1.62
RD 20	2.5000 63.525	+0/0006 +0/015	3.7500 95.288	+0/0008 +0/020	2.5000 63.525	3.7498 95.282	3.7507 95.305	.0010 0.025	.1875 4.764	.0938 2.382	1,700	20800 92,518	117000 520,416	3.8 1.72
RD 24	3.0000 76.230	+0/0006 +0/015	4.5000 114.345	+0/0008 +0/020	2.7500 69.878	4.4998 114.340	4.5007 114.363	.0010 0.025	.1875 4.764	.0938 2.382	1,400	29400 130,771	144500 642,736	6.14 2.78
RD 28	3.5000 88.935	+0/0008 +0/020	5.0000 127.050	+0/0010 +0/025	3.0000 76.230	5.0003 127.058	5.0011 127.078	.0015 0.038	.1875 4.764	.0938 2.382	1,250	34400 153,011	184900 822,435	7.54 3.42
RD 32	4.0000 101.640	+0/0008 +0/020	5.5000 139.755	+0/0010 +0/025	3.0000 76.230	5.5003 139.763	5.5011 139.783	.0015 0.038	.1875 4.764	.0938 2.382	1,100	34600 153,901	194600 865,581	8.29 3.76


 $^{^{\}ast}$ For bearing properly filled with #1 grease reduce speed by 50%

ROLLWAY Sournal Bearings

Rollway Journal Roller Bearings

Rollway Journal bearings feature through hardened bearing quality steel raceways, with an oil hole in the outer raceway, "trunion style" rollers, and a non-separable steel retainer (cage) assembly. The bearing design is well suited for high radial load, low speed applications. Rollway Journal bearings are available as components or complete assemblies and conform to industry dimensions and manufactured with Rollway quality standards. Depending on your preference, these bearings are available in a wide variety of sizes and options as illustrated on the pages to follow.

Features and Benefits

Precision Ground Races and Rollers

Races and Rollers are manufactured from high quality, bearing grade steel and are hardened to Rc 58 minimum.

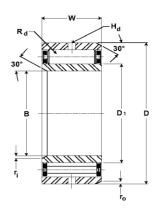
Roller Assembly

Roller assemblies have flush ground ends and heavy duty built-up retainers featuring steel stay rods rigidly held between stamped steel endplates.

Oil Holes

All outer rings are supplied with oil holes in the outer race to allow lubrication.

ROLLWAY. *Sournal Bearings*

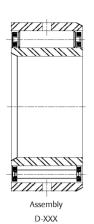

Basic Construction Type: Journal Roller Bearing

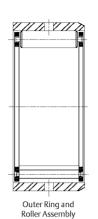
> **Rolling Elements:** Trunion Style Cylindrical

Bearing Material: Bearing Grade Quality Steel

Retainer Type: Steel Cage With Flush

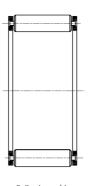
Ground Ends

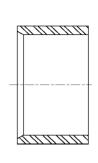



Journals

	В	D	W	Recommended	Shaft Diameter	Housing Bo	re Diameter					
Complete Assembly	Bore Diameter	Outside Diameter	Width	Max	Min	Max	Min					
Nomenclature	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm					
D-305-18	0.9843 25	2.441 62	1.125 28.58	0.9850 25.02	0.9845 25.01	2.4419 62.024	2.4409 61.999					
D-206-13	1.1811	2.441	0.813 20.64	1.1819 30.02	1.1814 30.01	2.4419 62.024	2.4409 61.999					
D-206-18	30	62	1.125 28.58	1.1819 30.02	1.1814 30.01	2.4419 62.024	2.4409 61.999					
D-207-15		2.835	0.938 23.81	1.3788 35.02	1.3783 35.01	2.8357 72.027	2.8346 71.999					
D-207-19	1.3779 35	72.00	1.188 30.16	1.3788 35.02	1.3783 35.01	2.8357 72.027	2.8346 71.999					
D-307		3.15 80	1.375 34.93	1.3788 35.02	1.3783 35.01	3.1508 80.030	3.1496 80.000					
D-208-16	1.5748	3.15	1 25.4	1.5758 40.03	1.5752 40.01	3.1508 80.030	3.1496 80.000					
D-208-22	40	80	1.375 34.93	1.5758 40.03	1.5752 40.01	3.1508 80.030	3.1496 80.000					
D-209-18		3.347	1.125 28.58	1.7728 45.03	1.7722 45.01	3.3478 85.034	3.3465 85.001					
D-209-25	1.7717 45	85	1.563 39.69	1.7728 45.03	1.7722 45.01	3.3478 85.034	3.3465 85.001					
D-309		3.937 100	1.563 39.69	1.7728 45.03	1.7722 45.01	3.9384 100.035	3.9369 99.997					
D-210-20			1.25 31.75	1.9697 50.03	1.9691 50.02	3.5446 90.033	3.5432 89.997					
D-210-28	1.9685 50	3.543 90	1.75 44.45	1.9697 50.03	1.9691 50.02	3.5446 90.033	3.5432 89.997					
D-210-56	50							3.5 88.90	1.9697 50.03	1.9691 50.02	3.5446 90.033	3.5432 89.997
D-211			1.313 33.34	2.1666 55.03	2.1660 55.02	3.9384 100.035	3.9369 99.997					
D-211-29	2.1654	3.937 100	1.813 46.04	2.1666 55.03	2.1660 55.02	3.9384 100.035	3.9369 99.997					
D-211-58	55		3.625 92.08	2.1666 55.03	2.1660 55.02	3.9384 100.035	3.9369 99.997					
D-311		4.724 120	1.938 49.21	2.1666 55.03	2.1660 55.02	4.726 120.040	4.7243 119.997					
D-212			1.438 36.51	2.3635 60.03	2.3628 60.02	4.3322 110.038	4.3306 109.997					
D-212-31	2.3622 60	4.331 110	1.938 49.21	2.3635 60.03	2.3628 60.02	4.3322 110.038	4.3306 109.997					
D-212-62			3.875 98.43	2.3635 60.03	2.3628 60.02	4.3322 110.038	4.3306 109.997					


For sealed bearings, Outside diameter may be slightly oversize due to seal press fit.
Journal bearings and manufactured to the ABMA RBEC-1 tolerance class.
Metric dimensions for reference only.
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.


Journal Bearings ROLLWAY®



B-XXX

Inner Ring

E-XXX-60

Roller Assembly WS-XXX

Journals

				B-7000						journais
66	7677			Hd		Components		Assembly	Assembly Basic Static	Assembly
Di	Rd		re	On Hole Dia	Coi	mponenet Nomencla	ture	Basic Dynamic Rating	Rating	weight
inch mm	inch	inch mm	inch mm	inch mm	Inner Ring	Outer Ring	Roller Assembly	lb/N	lb/N	lo ko
1.2500 31.75	0.4375 11.11	0.062 1.57	0.062 1.57	0.250 6.35	E-305-18-60	B-305-18-70	WS-305-18	8,000 35,900	12,200 54,200	1.0 0.5
1.5000 38.10	0.3125 7.94	0.062 1.57	0.062 1.57	0.265 6.73	E-206-13-60	B-206-13-70	WS-206-13	6,900 30,900	13,000 58,100	0.7 0.3
1.5000 38.10	0.3125 7.94	0.062 1.57	0.062 1.57	0.265 6.73	E-206-18-60	B-206-18-70	WS-206-18	10,000 44,400	20,800 92,700	1.0 0.5
1.7500 44.45	0.3750 9.53	0.062 1.57	0.062 1.57	0.250 6.35	E-207-15-60	B-207-15-70	WS-207-15	9,600 42,700	18,000 80,200	1.0 0.5
1.7500 44.45	0.3750 9.53	0.062 1.57	0.062 1.57	0.250 6.35	E-207-19-60	B-207-19-70	WS-207-19	12,400 55,100	24,900 111,100	1.3 0.6
1.7500 44.45	0.5000 12.75	0.062 1.57	0.078 1.98	0.250 6.35	E-307-60	B-307-70	WS-307	12,900 57,600	24,500 108,900	2.0 0.9
2.0000 50.8	0.3750 9.53	0.078 1.98	0.078 1.98	0.250 6.35	E-208-16-60	B-208-16-70	WS-208-16	10,000 44,600	19,300 85,800	1.5 0.7
2.0000 50.8	0.3750 9.53	0.078 1.98	0.078 1.98	0.250 6.35	E-208-22-60	B-208-22-70	WS-208-22	14,100 62,900	29,900 133,400	2.0 0.9
2.1870 55.55	0.3750 9.53	0.078 1.98	0.078 1.98	0.250 6.35	E-209-18-60	B-209-18-70	WS-209-18	12,600 56,000	26,500 117,900	1.8 0.8
2.1870 55.55	0.3750 9.53	0.078 1.98	0.078 1.98	0.250 6.35	E-209-25-60	B-209-25-70	WS-209-25	17,600 78,500	40,900 182,300	2.5 1.1
2.2490 57.12	0.6250 15.88	0.094 2.39	0.078 1.98	0.328 8.33	E-309-60	B-309-70	WS-309	20,200 90,200	35,500 158,200	3.6 1.6
2.3750 60.33	0.3750 9.53	0.078 1.98	0.078 1.98	0.312 7.92	E-210-20-60	B-210-20-70	WS-210-20	14,500 64,500	32,500 144,500	2.1 0.9
2.3750 60.33	0.3750 9.53	0.078 1.98	0.078 1.98	0.312 7.92	E-210-28-60	B-210-28-70	WS-210-28	20460 91011	49,400 219,900	3.0 1.4
2.3750 60.33	0.3750 9.53	0.078 1.98	0.078 1.98	0.312 7.92	E-210-56-60	B-210-56-70	WS-210-28 (X2)	35,400 157,600	102,400 455,800	5.9 2.7
2.6250 66.68	0.4375 11.11	0.078 1.98	0.078 1.98	0.312 7.92	E-211-60	B-211-70	WS-211	18,200 81,100	40,600 180,900	2.7 1.2
2.6250 66.68	0.4375 11.11	0.078 1.98	0.078 1.98	0.312 7.92	E-211-29-60	B-211-29-70	WS-211-29	25,200 112,100	61,600 274,100	3.9 1.8
2.6250 66.68	0.4375 11.11	0.078 1.98	0.078 1.98	0.312 7.92	E-211-58-60	B-211-58-70	WS-211-58	43,200 192,300	123,200 548,200	7.8 3.5
2.7500 69.85	0.6875 17.46	0.109 2.77	0.109 2.77	0.375 9.53	E-311-60	B-311-70	WS-311	31,400 139,700	62,500 278,000	6.6 3.0
2.8750 73.03	0.5000 12.75	0.094 2.39	0.094 2.39	0.312 7.92	E-212-60	B-212-70	WS-212	21,000 93,700	45,700 203,600	3.7 1.7
2.8750 73.03	0.5000 12.75	0.094 2.39	0.094 2.39	0.312 7.92	E-212-31-60	B-212-31-70	WS-212-31			5.0 2.0
2.8750 73.03	0.5000 12.75	0.094 2.39	0.094 2.39	0.328 8.33	E-212-62-60	B-212-62-70	WS-212-31 (X2)	48,900 217,700	135,400 602,200	9.9 4.5

ROLLWAY Sournal Bearings

Basic Construction Type: Journal Roller Bearing

Rolling Elements: Trunion Style Cylindrical

Rollers

Bearing Material: Bearing Grade Quality Steel

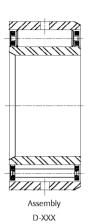
Retainer Type: Steel Cage With Flush

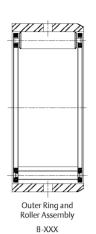
Ground Ends

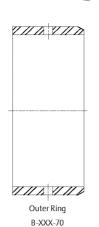
Journals (continued)

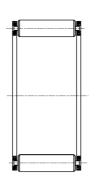
	В	D	W	Recommended	Shaft Diameter	Housing Bo	re Diameter
Complete Assembly	Bore Diameter	Outside Diameter	Width	Max	Min	Max	Min
Nomenclature	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm
D-213		4.7244	1.5 38.10	2.5605 65.04	2.5598 65.02	4.726 120.040	4.7243 119.997
D-213-33	2.5591	120	2.063 52.40	2.5605 65.04	2.5598 65.02	4.726 120.040	4.7243 119.997
D-313-35	65	5.5118	2.188 55.58	2.5605 65.04	2.5598 65.02	5.5135 140.043	5.5116 139.995
D-313		140	2.313 58.74	2.5605 65.04	2.5598 65.02	5.5135 140.043	5.5116 139.995
D-214-26			1.625 41.28	2.7574 70.04	2.7566 70.02	4.9229 125.042	4.9212 124.998
D-214-38	2.7559 70	4.921 125	2.375 60.33	2.7574 70.04	2.7566 70.02	4.9229 125.042	4.9212 124.998
D-214-76			4.75 120.65	2.7574 70.04	2.7566 70.02	4.9229 125.042	4.9212 124.998
D-215			1.625 41.28	2.9544 75.04	2.9536 75.02	5.1197 130.040	5.1179 129.995
D-215-28		5.118	1.75 44.45	2.9544 75.04	2.9536 75.02	5.1197 130.040	5.1179 129.995
D-215-42	2.9528 75	5.118	2.625 66.68	2.9544 75.04	2.9536 75.02	5.1197 130.040	5.1179 129.995
D-215-84			5.25 133.35	2.9544 75.04	2.9536 75.02	5.1197 130.040	5.1179 129.995
D-315-39		6.299 160	2.438 61.91	2.9544 75.04	2.9536 75.02	6.3011 160.048	6.299 159.995
D-216			1.75 44.45	3.1512 80.04	3.1504 80.02	5.5135 140.043	5.5116 139.995
D-216-29		5.512	1.813 46.04	3.1512 80.04	3.1504 80.02	5.5135 140.043	5.5116 139.995
D-216-42	3.1496 80	140	2.625 66.68	3.1512 80.04	3.1504 80.02	5.5135 140.043	5.5116 139.995
D-216-84			5.25 133.35	3.1512 80.04	3.1504 80.02	5.5135 140.043	5.5116 139.995
D-316		6.693 170	2.688 68.26	3.1512 80.04	3.1504 80.02	6.6948 170.048	6.6926 169.992
D-217		5,906	1.938 49.21	3.3482 85.04	3.3474 85.02	5.9073 150.045	5.9053 149.995
D-217-44	3.3465 85	150	2.75 69.85	3.3482 85.04	3.3474 85.02	5.9073 150.045	5.9053 149.995
D-317		7.087 180	2.875 73.03	3.3482 85.04	3.3474 85.02	7.0886 180.050	7.0863 179.992

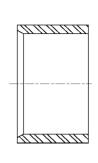
For sealed bearings, Outside diameter may be slightly oversize due to seal press fit.


Journal bearings and manufactured to the ABMA RBEC-1 tolerance class.


Metric dimensions for reference only.


Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.


For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

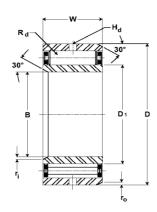

Journal Bearings ROLLWA4®

Roller Assembly Inner Ring
WS-XXX E-XXX-60

Journals (continued)

11660	1600	1,780	re	Hd	Components			Assembly Basic Dynamic	Assembly	Assembly weight
Di	Rei	*)		On Hole Dia	Соі	Componenet Nomenclature			Basic Static Rat <mark>i</mark> ng	
inch mm	inch mm	inch mm	inch mm	inch mm	Inner Ring	Outer Ring	Roller Assembly	lb/N	lb/N	kg kg
 3.1250 79.38	0.5000 12.75	0.109 2.77	0.109 2.77	0.375 9.53	E-213-60	B-213-70	WS-213	20,800 92,800	46,000 204,600	4.7 2.1
3.1250 79.38	0.5000 12.75	0.109 2.77	0.109 2.77	0.375 9.53	E-213-33-60	B-213-33-70	WS-213-33	28,700 127,700	69,400 308,800	6.4 2.9
3.2500 82.55	0.8125 20.64	0.125 3.18	0.125 3.18	0.437 11.11	E-313-35-60	B-313-35-70	WS-313-35	40,800 181,800	82,000 365,000	9.9 4.5
3.2500 82.55	0.8125 20.64	0.125 3.18	0.125 3.18	0.468 11.89	E-313-60	B-313-70	WS-313	42,900 190,900	87,300 388,500	10.0 4.5
3.3120 84.12	0.5000 12.75	0.109 2.77	0.109 2.77	0.375 9.53	E-214-26-60	B-214-26-70	WS-214-26	25,800 115,100	62,000 275,700	5.3 2.4
3.3120 84.12	0.5000 12.75	0.109 2.77	0.109 2.77	0.375 9.53	E-214-38-60	B-214-38-70	WS-214-38	37,400 166,500	99,600 443,300	7.6 3.5
3.3120 84.12	0.5000 12.75	0.109 2.77	0.109 2.77	0.375 9.53	E-214-76-60	B-214-76-70	WS-214-38 (X2)	64,200 285,500	199,300 886,600	15.0 7.0
3.5000 88.90	0.5000 12.75	0.109 2.77	0.109 2.77	0.375 9.53	E-215-60	B-215-70	WS-215	25,700 114,500	62,400 277,700	5.6 2.5
3.5000 88.90	0.5000 12.75	0.109 2.77	0.109 2.77	0.375 9.53	E-215-28-60	B-215-28-70	WS-215-28	27,700 123,400	68,700 305,600	6.0 2.7
3.5000 88.90	0.5000 12.75	0.109 2.77	0.109 2.77	0.375 9.53	E-215-42-60	B-215-42-70	WS-215-42	40,800 181,800	113,000 502,700	9.1 4.0
3.5000 88.90	0.5000 12.75	0.109 2.77	0.109 2.77	0.375 9.53	E-215-84-60	B-215-84-70	WS-215-42 (X2)	84,700 376,900	288,600 1,283,800	18.0 8.2
3.7500 95.25	0.9375 23.81	0.156 3.96	0.125 3.18	0.437 11.11	E-315-39-60	B-315-39-70	WS-315-39	50,200 223,500	101,300 450,700	14.0 6.4
3.7500 95.25	0.5625 14.29	0.125 3.18	0.125 3.18	0.438 11.13	E-216-60	B-216-70	WS-216	31,600 140,700	76,800 341,900	7.0 3.2
3.7500 95.25	0.5625 14.29	0.125 3.18	0.125 3.18	0.438 11.13	E-216-29-60	B-216-29-70	WS-216-29	52,700 234,400	79,200 352,500	7.6 3.5
3.7500 95.25	0.5625 14.29	0.125 3.18	0.125 3.18	0.438 11.13	E-216-42-60	B-216-42-70	WS-216-42	46,600 207,200	126,400 562,300	10.0 5.0
3.7500 95.25	0.5625 14.29	0.125 3.18	0.125 3.18	0.438 11.13	E-216-84-60	B-216-84-70	WS-216-42 (X2)	79,900 355,400	252,800 1,124,600	20.0 9.0
4.000 101.6	1.0000 25.40	0.156 3.96	0.125 3.18	0.438 11.13	E-316-60	B-316-70	WS-316	57,930 257,600	118,600 527,800	17.0 7.7
4.0000 101.6	0.6250 15.88	0.125 3.18	0.125 3.18	0.438 11.13	E-217-60	B-217-70	WS-217	34,100 151,700	80,000 355,900	9.0 4.1
4.0000 101.6	0.6250 15.88	0.125 3.18	0.125 3.18	0.438 11.13	E-217-44-60	B-217-44-70	WS-217-44	47,400 211,100	122,300 544,200	13.0 5.9
4.2500 107.95	1.0000 25.40	0.156 3.96	0.156 3.96	0.562 14.27	E-314-60	B-317-70	WS-317	57,900 257,900	120,000 533,800	21.0 9.5

ROLLWAY. *Sournal Bearings*

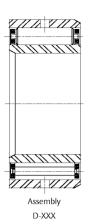

Basic Construction Type: Journal Roller Bearing

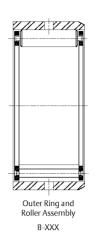
> **Rolling Elements:** Trunion Style Cylindrical

Bearing Material: Bearing Grade Quality Steel

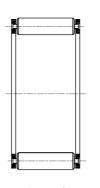
Retainer Type: Steel Cage With Flush

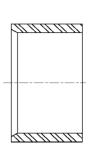
Ground Ends




Journals (continued)

	В D		w	Recommended Shaft Diameter		Housing Bore Diameter		
Complete Assembly	Bore Diameter	Outside Diameter	Width	Max	Min	Max	Min	
Nomenclature	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	
D-218	3.5433	6.299	2.063 52.39	3.5450 90.04	3.5442 90.02	6.3011 160.048	6.299 159.995	
D-218-45	90	160	2.8125 71.44	3.5450 90.04	3.5442 90.02	6.3011 160.048	6.299 159.995	
D-219		6.693	2.188 55.56	3.7420 95.05	3.7412 95.03	6.6948 170.048	6.6926 169.992	
D-219-48	3.7402	170	3.000 76.2	3.7420 95.05	3.7412 95.03	6.6948 170.048	6.6926 169.992	
D-319	95	7.874	3.063 77.79	3.7420 95.05	3.7412 95.03	7.8762 200.055	7.8737 199.992	
D-319-50		200	3.125 79.38	3.7420 95.05	3.7412 95.03	7.8762 200.055	7.8737 199.992	
D-220-37	3.9370 100		2.313 58.74	3.9389 100.05	3.9380 100.03	7.0886 180.050	7.0863 179.992	
D-220		7.087	2.375 60.33	3.9389 100.05	3.9380 100.03	7.0886 180.050	7.0863 179.992	
D-220-52		180	3.25 82.55	3.9389 100.05	3.9380 100.03	7.0886 180.050	7.0863 179.992	
D-220-104			6.5 165.10	3.9389 100.05	3.9380 100.03	7.0886 180.050	7.0863 179.992	
D-320		8.465 215	3.25 82.55	3.9389 100.05	3.9380 100.03	8.4669 215.059	8.4643 214.993	
D-222-41			2.563 65.09	4.3328 110.05	4.3318 110.03	7.8762 200.055	7.8737 199.992	
D-222		7.874	2.75 69.85	4.3328 110.05	4.3318 110.03	7.8762 200.055	7.8737 199.992	
D-222-56	4.3307	200	3.5 88.90	4.3328 110.05	4.3318 110.03	7.8762 200.055	7.8737 199.992	
D-222-112	110		7 177.80	4.3328 110.05	4.3318 110.03	7.8762 200.055	7.8737 199.992	
D-322		9.449	3.625 92.08	4.3328 110.05	4.3318 110.03	9.4512 240.060	9.4484 239.989	
D-322-60		240	3.75 95.25	4.3328 110.05	4.3318 110.03	9.4512 240.060	9.4484 239.989	
D-224-45			2.813 71.44	4.7266 120.06	4.7256 120.03	8.4669 215.059	8.4643 214.993	
D-224	4.7244	8.465 215	3.00 76.2	4.7266 120.06	4.7256 120.03	8.4669 215.059	8.4643 214.993	
D-224-62	120		3.875 98.425	4.7266 120.06	4.7256 120.03	8.4669 215.059	8.4643 214.993	
D-324		10.236 260	4.125 104.78	4.7266 120.06	4.7256 120.03	10.2388 260.066	10.2358 259.989	


For sealed bearings, Outside diameter may be slightly oversize due to seal press fit.
Journal bearings and manufactured to the ABMA RBEC-1 tolerance class.
Metric dimensions for reference only.
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.


Journal Bearings ROLLWA4®

Roller Assembly WS-XXX

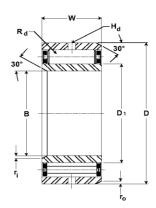
Inner Ring E-XXX-60

Journals (continued)

1960	2470	- H		Hd		Components		Assembly	Assembly	Assembly
Di	Rel	100	re	Oil Hole Dia	Componenet Nomenclature			Basic Dynamic Rating	Basic Static Rating	weight
inch mm	inch	inch mm	inch mm	inch mm	Inner Ring	Outer Ring	Roller Assembly	lb/N	lb/N	le kg
4.2480 107.90	0.6875 17.46	0.125 3.18	0.125 3.18	0.438 11.13	E-218-60	B-218-70	WS-218	37,900 168,500	87,600 389,700	11.0 5.0
4.2480 107.90	0.6875 17.46	0.125 3.18	0.125 3.18	0.438 11.13	E-218-45-60	B-218-45-70	WS-218-45	51,600 229,700	130,400 580,100	15.0 6.8
4.5000 114.30	0.7500 19.05	0.125 3.18	0.125 3.18	0.438 11.13	E-219-60	B-219-70	WS-219	46,500 206,900	109,700 488,300	15.0 6.8
4.5000 114.30	0.7500 19.05	0.125 3.18	0.125 3.18	0.438 11.13	E-219-48-60	B-219-48-70	WS-219-48	63,400 282,100	163,500 727,500	18.0 8.2
4.7500 120.65	1.1250 28.58	0.187 4.75	0.156 3.96	0.562 14.27	E-319-60	B-319-70	WS-319	66,000 293,800	135,500 602,900	28.0 12.7
4.7500 120.65	1.1250 28.58	0.187 4.75	0.156 3.96	0.562 14.27	E-319-50-60	B-319-50-70	WS-319-50	67,500 300,500	139,500 620,700	29.0 13.2
4.7500 120.65	0.7500 19.05	0.156 3.96	0.156 3.96	0.562 14.27	E-220-37-60	B-220-37-70	WS-220-37	49,000 218,000	118,000 529,100	16.0 7.3
4.7500 120.65	0.7500 19.05	0.156 3.96	0.156 3.96	0.562 14.27	E-220-60	B-220-70	WS-220	50,300 223,800	123,000 547,500	17.0 7.7
4.7500 120.65	0.7500 19.05	0.156 3.96	0.156 3.96	0.562 14.27	E-220-52-60	B-220-52-70	WS-220-52	68,000 302,700	181,300 806,800	23.0 10.5
4.7500 120.65	0.7500 19.05	0.156 3.96	0.156 3.96	0.562 14.27	E-220-104-60	B-220-104-70	WS-220-52 (X2)	116,600 519,000	362,700 1,613,700	45.0 20.5
5.0000 127.0	1.2500 31.75	0.187 4.75	0.187 4.75	0.562 14.27	E-320-60	B-320-70	WS-320	92,800 412,800	200,400 891,400	34.0 15.5
5.2500 133.35	0.8750 22.23	0.156 3.96	0.156 3.96	0.562 14.27	E-222-41-60	B-222-41-70	WS-222-41	59,800 266,300	142,800 635,500	22.0 10.0
5.2500 133.35	0.8750 22.23	0.156 3.96	0.156 3.96	0.562 14.27	E-222-60	B-222-70	WS-222	64,200 285,600	156,300 695,300	23.0 10.5
5.2500 133.35	0.8750 22.23	0.156 3.96	0.156 3.96	0.562 14.27	E-222-56-60	B-222-56-70	WS-222-56	80,900 359,900	210,500 936,300	30.0 13.6
5.2500 133.35	0.8750 22.23	0.156 3.96	0.156 3.96	0.562 14.27	E-222-112-60	B-222-112-70	WS-222-56 (X2)	138,700 617,100	421,000 1,872,700	59.0 26.8
5.5000 139.70	1.3750 34.93	0.219 5.56	0.219 5.56	0.562 14.27	E-322-60	B-322-70	WS-322	101,600 452,300	216,600 963,800	49.0 22.3
5.5000 139.70	1.3750 34.93	0.219 5.56	0.219 5.56	0.562 14.27	E-322-60-60	B-322-60-70	WS-322-60	105,000 467,400	226,020 1,005,300	51.0 23.2
5.6250 142.88	0.9375 23.81	0.156 3.96	0.187 4.75	0.562 14.27	E-224-45-60	B-224-45-70	WS-224-45	72,200 321,200	177,100 787,700	28.0 12.7
5.6250 142.88	0.9375 23.81	0.156 3.96	0.187 4.75	0.562 14.27	E-224-60	B-224-70	WS-224	76,700 341,400	191,500 852,200	29.0 13.2
5.6250 142.88	0.9375 23.81	0.156 3.96	0.187 4.75	0.562 14.27	E-224-62-60	B-224-62-70	WS-224-62	95,600 425,500	254,200 1,130,800	38.0 17.0
6.0620 153.97	1.3750 34.93	0.250 6.35	0.250 6.35	0.562 14.27	E-324-60	B-324-70	WS-324	123,400 549,000	283,600 1,261,700	67.0 30.0

ROLLWAY. ® Journal Bearings

Basic Construction Type: Journal Roller Bearing

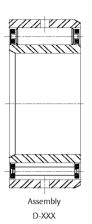

Rolling Elements: Trunion Style Cylindrical

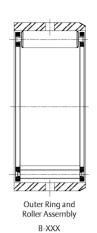
Rollers

Bearing Material: Bearing Grade Quality Steel

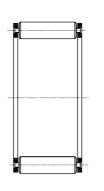
Retainer Type: Steel Cage With Flush

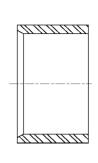
Ground Ends




Journals (continued)

	В	D	W	Recommended	Shaft Diameter	Housing Bo	re Diameter
Complete Assembly	Bore Diameter	Outside Diameter	Width	Max	Min	Max	Min
Nomenclature	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm
D-226			3.125 79.38	5.1204 130.06	5.1194 130.03	9.0574 230.058	9.0547 229.989
D-226-68	5.1181	9.055 230	4.25 107.95	5.1204 130.06	5.1194 130.03	9.0574 230.058	9.0547 229.989
D-226-136	130		8.5 215.90	5.1204 130.06	5.1194 130.03	9.0574 230.058	9.0547 229.989
D-326		11.024 280	4.375 111.13	5.1204 130.06	5.1194 130.03	11.0263 280.068	11.0231 279.987
D-228			3.25 82.55	5.5142 140.06	5.5131 140.03	9.845 250.063	9.8421 249.989
D-228-76	5.5118 140	9.843 250	4.75 120.65	5.5142 140.06	5.5131 140.03	9.845 250.063	9.8421 249.989
D-228-152			9.5 241.3	5.5142 140.06	5.5131 140.03	9.845 250.063	9.8421 249.989
D-230	5.9055	10.63	3.5 88.90	5.9080 150.06	5.9069 150.04	10.6326 270.068	10.6295 269.989
D-230-76	150	270	4.75 120.65	5.9080 150.06	5.9069 150.04	10.6326 270.068	10.6295 269.989
D-232			3.875 98.43	6.3019 160.07	6.3007 160.04	11.4201 290.071	11.4168 289.987
D-232-78	6.2992 160	11.417 290	4.875 123.83	6.3019 160.07	6.3007 160.04	11.4201 290.071	11.4168 289.987
D-232-156			9.75 247.65	6.3019 160.07	6.3007 160.04	11.4201 290.071	11.4168 289.987
D-234-86 6 6929	6.6929	12.205	5.375 136.53	6.6957 170.07	6.6944 170.04	12.2076 310.073	12.2042 309.987
D-234-172	170	310	10.75 273.05	6.6957 170.07	6.6944 170.04	12.2076 310.073	12.2042 309.987
D-236-94	7.0866 180	12.598 320	5.875 149.23	7.0895 180.07	7.0882 180.04	12.6013 320.073	12.5978 319.984
SD-240	7.8740	13.386	4.75 120.65	7.8770 200.08	7.8757 200.04	13.3888 340.076	13.3852 339.984
SD240-110	200	340	6.875 174.63	7.8770 200.08	7.8757 200.04	13.3888 340.076	13.3852 339.984
SD-244-110	8.6614 220	14.961 380	6.875 174.63	8.6644 220.08	8.6631 220.04	14.9637 380.078	14.9599 379.981


For sealed bearings, Outside diameter may be slightly oversize due to seal press fit. Journal bearings and manufactured to the ABMA RBEC-1 tolerance class.


Journal Bearings ROLLWA4®

Inner Ring

Roller Assembly WS-XXX

lournals (continued)

						journals (continued)						
	1000				Hd		Components		Assembly	Assembly	Assembly	
	Di	-	(#)	re	On Hole Dia	Componenet Nomenclature			Basic Dynamic Rating	Basic Static Rating	WHITE THE	
	inch mm	inch mm	inch mm	inch mm	inch mm	Inner Ring	Outer Ring	Roller Assembly	lb/N	lb/N	, S	
-	6.062 153.97	1.0000 25.40	0.156 3.96	0.187 4.75	0.562 14.27	E-226-60	B-226-70	WS-226	89,600 398,800	229,300 1,020,200	33.0 15.0	
	6.062 153.97	1.0000 25.40	0.156 3.96	0.187 4.75	0.562 14.27	E-226-68-60	B-226-68-70	WS-226-68	117,100 520,800	323,200 1,437,700	45.0 20.0	
	6.062 153.97	1.0000 25.40	0.156 3.96	0.187 4.75	0.562 14.27	E-226-136-60	B-226-136-70	WS-226-68 (X2)	200,700 893,000	646,400 2,875,500	90.0 41.0	
	6.5580 166.57	1.5000 38.10	0.250 6.35	0.250 6.35	0.562 14.27	E-326-60	B-326-70	WS-326	143,500 638,300	332,500 1,479,300	80.0 36.0	
	6.6250 168.28	1.0625 26.99	0.219 5.56	0.219 5.56	0.562 14.27	E-228-60	B-228-70	WS-228	99,000 440,500	256,400 1,140,600	43.0 20.0	
	6.6250 168.28	1.0625 26.99	0.219 5.56	0.219 5.56	0.562 14.27	E-228-76-60	B-228-76-70	WS-228-76	137,700 612,800	391,800 1,743,200	63.0 29.0	
	6.6250 168.28	1.0625 26.99	0.219 5.56	0.219 5.56	0.563 14.30	E-228-152-60	B-228-152-70	WS-228-76 (X2)	236,200 1,050,600	783,800 3,486,500	125.0 57.0	
	7.0620 179.37	1.1875 30.16	0.219 5.56	0.219 5.56	0.625 15.88	E-230-60	B-230-70	WS-230	128,500 571,700	341,200 1,517,700	52.0 24.0	
1	7.0620 179.37	1.1875 30.16	0.219 5.56	0.250 6.35	0.625 15.88	E-230-76-60	B-230-76-70	WS-230-76	169,800 755,500	488,290 2,172,000	70.0 32.0	
	7.6250 193.68	1.2500 31.75	0.250 6.35	0.250 6.35	0.625 15.88	E-232-60	B-232-70	WS-232	149,000 662,900	407,000 1,810,700	67.0 30.0	
	7.6250 193.68	1.2500 31.75	0.250 6.35	0.250 6.35	0.625 15.88	E-232-78-60	B-323-78-70	WS-232-78	183,300 815,500	531,300 2,363,600	85.0 39.0	
	7.6250 193.68	1.2500 31.75	0.250 6.35	0.250 6.35	0.625 15.88	E-232-156-60	B-232-156-70	WS-232-78 (X2)	314,300 1,398,200	1,062,700 4,727,300	169.0 77.0	
	8.0620 204.77	1.3750 34.93	0.250 6.35	0.250 6.35	0.687 17.45	E-234-86-60	B-234-86-70	WS-234-86	185,900 827,300	513,800 2,285,600	108.0 49.0	
	8.0625 204.79	1.3750 34.93	0.250 6.35	0.250 6.35	0.688 17.48	E-234-172-60	B-234-172-70	WS-234-86 (X2)	318,900 1,418,800	1,027,100 4,569,000	217.0 99.0	
	8.4680 215.09	1.3750 34.93	0.250 6.35	0.250 6.35	0.687 17.45	E-236-94-60	B-236-94-70	WS-236-94	220,500 980,800	649,700 2,890,200	125.0 57.0	
	9.2500 234.95	1.3750 34.93	0.250 6.35	0.250 6.35	0.687 17.45	SE-240-60	SB-240-70	SWS-240	187,840 835,500	540,900 2,406,400	132.0 60.0	
	9.2500 234.95	1.3750 34.93	0.250 6.35	0.250 6.35	0.687 17.45	SE-240-110-60	SB-240-110-70	SWS-240-110	261,900 1,165,000	842,100 3,746,100	190.0 86.0	
	10.4370 265.10	1.3750 34.93	0.250 6.35	0.250 6.35	0.687 17.45	SE-244-110-60	SB-244-110-70	SWS-244-110	272,700 1,213,200	888,900 3,954,400	137.0 62.0	

MGILL ROLLWAY Needle Bearings

Load Ratings and Life

Life Calculations

The L10 (rating) life for any given application and bearing selection can be calculated in terms of millions of revolutions by using the bearing Basic Dynamic Rating and applied radial load (or, equivalent radial load in the case of radial bearing applications having combined radial and thrust loads). The L10 life for any given application can be calculated in terms of hours, using the bearing Basic Dynamic Rating, applied load (or equivalent radial load) and suitable speed factors, by the following equation:

$$L_{10} = \left(\frac{C}{P}\right) x \frac{1,000,000}{60 x n} = \left(\frac{C}{P}\right)^{10/3} x \frac{16667}{n}$$

Where:

L₁₀ = The # of hours that 90% of identical bearings under ideal conditions will operate at a specific speed and condition before fatigue is expected to occur.

C = Basic Dynamic Rating (lbs) 1,000,000 Revolutions

P = Constant Equivalent Radial Load (lbs)

n = Speed(RPM)

Additionally, the ABMA provides application factors for all types of bearings which need to be considered to determine an adjusted Rated Life (Lna). L10 life rating is based on laboratory conditions yet other factors are encountered in actual bearing application that will reduce bearing life. Lna life rating takes into account reliability factors, material type, and operating conditions.

$$L_{na} = a_1 \times a_2 \times a_3 \times L_{10}$$

Where:

 L_{na} = Adjusted Rated Life.

 a₁ = Reliability Factor. Adjustment factor applied where estimated fatigue life is based on reliability other than 90% (See Table No 1).

Table No. 1 Life Adjustment Factor for Reliability

Reliability %	L _{na}	a ₁
90	L10	1
95	L5	0.62
96	L4	0.53
97	L3	0.44
98	L2	0.33
99	L1	0.21
50	L50	5

- $\mathbf{a_2}$ =Material Factor. Life adjustment for bearing race material. Power Transmission Solutions bearing races are manufactured from bearing quality steel. Therefore the $\mathbf{a_2}$ factor is 1.0.
 - a₃ = Life Adjustment Factor for Operating Conditions. This factor should take into account the adequacy of lubricant, presence of foreign matter, conditions causing changes in material properties, and unusual loading or mounting conditions. Assuming a properly selected and mounted bearing having adequate seals and lubricant operating below 250°F and tight fitted to the shaft, the a3 factor should be 1.0.

Load Ratings and Life Continued

Vibration and shock loading can act as an additional loading to the steady expected applied load. When shock or vibration is present, an a3 Life Adjustment Factor can be applied. Shock loading has many variables which often are not easily determined. Typically, it is best to rely on one's experience with the particular application. Consult Application Engineering for assistance with applications involving shock or vibration loading.

The a3 factor takes into account a wide range of application and mounting conditions as well as bearing features and design. Accurate determination of this factor is normally achieved through testing and in-field experience. Power Transmission Solutions offers a wide range of options which can maximize bearing performance. Consult Application Engineering for more information.

Variable Load Formula

Root mean load (RML) is to be used when a number of varying loads are applied to a bearing for varying time limits. Maximum loading still must be considered for bearing size selection.

$$RML^* = \sqrt[10/3]{\frac{(L_1^{10/3}N_1) + (L_2^{10/3}N_2) + (L_3^{10/3}N_3)}{100}}$$

wileie.

RML = Root Mean Load (lbs.)

 L_1 , L_2 , etc. = Load in pounds

 N_1 , N_2 , etc. = Percent of total time operated at loads L_1 , L_2 , etc.

Mean Speed Formula

The following formula is to be used when operating speed varies over time.

Mean Speed =
$$\frac{S_1 N_1 + S_2 N_2 + S_3 N_3}{100}$$

 S_1S_2 , etc = Speeds in RPM

N₁N₂, etc = Percentage of total time operated at speeds S₁S₂, etc

^{*} Apply RML to rating at mean speed to determine resultant life.

MGILL ROLLWAY Needle Bearings

Load Ratings and Life Continued

Bearing Life In Oscillating Applications

The equivalent rotative speed (ERS) is used in life calculations when the bearing does not make complete revolutions during operation. The ERS is then used as the bearing operating speed in the calculation of the L10 (Rating) Life. The formula is based on sufficient angular rotation to have roller paths overlap.

ERS = Equivalent Rotative Speed

N = Total number of degrees per minute through

which the bearing will rotate.

 $ERS = \frac{N}{360}$

In the above formula, allowance is made for the total number of stress applications on the weakest race per unit time, which, in turn, determines fatigue life and the speed factors. The theory behind fretting corrosion is best explained by the fact that the rolling elements in small angles of oscillation retrace a path over an unchanging area of the inner or outer races where the lubricant is prevented by inertia from flowing in behind the roller as the bearing oscillates in one direction. Upon reversal, this small area of rolling contact is traversed by the same roller in the dry state. The friction of the two unlubricated surfaces causes fretting corrosion and produces failures which are unpredictable from a normal life standpoint.

With a given bearing selected for an oscillating application, the best lubrication means is a light mineral oil under positive flow conditions. With a light oil, there is a tendency for all areas in the bearing load zone to be immersed in lubricant at all times. The full flow lubrication dictates that any oxidized material which may form is immediately carried away by the lubricant, and since these oxides are abrasive, further wear tends to be avoided. If grease lubrication must be used, it is best to consult with either the bearing manufacturer or the lubricant manufacturer to determine the best possible type of lubricant. Greases have been compounded to resist the detrimental effect of fretting corrosion for such applications.

Static Load Rating

The "static load rating" for rolling element bearings is that uniformly distributed static radial load acting on a non-rotating bearing, which produces a contact stress of 580,000 psi (roller bearings) or 607,000 psi (ball bearings) at the center of the most heavily loaded rolling element. At this stress level, plastic deformation begins to be significant. Experience has shown that the plastic deformation at this stress level can be tolerated in most bearing applications without impairment of subsequent bearing operation. In certain applications where subsequent rotation of the bearing is slow and where smoothness and friction requirements are not too exacting, a higher static load limit can be tolerated. Where extreme smoothness is required or friction requirements are critical, a lower static load limit may be necessary.

Minimum Bearing Load

Skidding, or sliding, of the rolling elements on the raceway instead of a true rolling motion can cause excessive wear. Applications with high speeds and light loading are particularly prone to skidding. As a general guideline, rolling element bearings should be radially loaded at least 2% of Basic Dynamic Rating. For applications where load is light relative to the bearings dynamic load rating, consult Application Engineering for assistance.

Load Ratings and Life Continued

Needle Roller Bearings Selection - New Applications:

Example #1:

To find theoretical L10 life of an MR 16 bearing operating at a speed of 500 RPM and under a load of 1000 lbs.

Basic Dynamic Rating of MR-16 = 8000 lbs. Use Formula:

$$L_{10} = \frac{16,666}{N} \left(\frac{BDR}{P} \right)^{10/3}$$

$$L_{10} = \frac{16,666}{500} \left(\frac{8000}{1000} \right)^{10/3}$$

$$L_{10} = 34,132 \text{ hours}$$

Example #2:

Find the Basic Dynamic Rating required for a CAGEROL® bearing operating at 1000 RPM, with a load of 700 pounds. The required L10 life will be 20,000 hours. Use the Formula:

BDR =
$$.054 \times P \times (L_{10} \times N)^{.3}$$

BDR =
$$.054 \times 700 \times (20,000 \times 1000)^{-3}$$

$$BDR = .054 \times 700 \times 155$$

MGILL ROLLWAY Needle Bearings

Needle Engineering Section

Type of Load

The load ratings in this catalog are based on uniform and steady loading. When the loading is of a shock nature and/or vibration is present, or the loading is indeterminate, a bearing of greater rating must be selected. If such conditions exist, it is advisable to use the application Type of Load Factor as shown in the table below.

Type of Load Factors

The actual bearing load should be multiplied by the appropriate load factor and the resultant value used to calculate the bearing life or to determine the required basic dynamic rating (BDR).

Type of Load	Factor C
Uniform and Constant	1.0
Light Shock	1.5
Moderate Shock	2.0
Heavy Shock	3.0

Matched Bearings (MR, GR, RS, RD series only)

Where bearings are mounted so that the distance between them is less than the width of one bearing, it is recommended under heavy loading conditions to provide some degree of diametral matching in order to prevent unequal sharing of the applied load. Matching procedures have been developed to provide super precision matching of bearings. Bearings matched in this category are identified by "-DS" suffix for super precision.

A. O.D. and I.D., where applicable, of matched bearings same diameters within 30% of the respective O.D. or I.D.

A. O.D. and I.D., where applicable, of matched bearings same diameters within 30% of the respective O.D. or I.D. tolerance.

- B. I.D. of rollers or diametral clearance, where applicable, of matched bearings same within 30% of the tolerance range.
- C. Radial runout of matched bearings same within 20% of the tolerance range.
- D. High point of radial runout marked on the face of each outer and inner ring.
- E. Matched bearings to be packaged as a unit.

Matching Factor	Matching Suffix
1 .37	None
1 .65	"-DS"

Multiply Matching Factor by rating of single bearing to obtain resultant rating for pair of bearings.

Needle Bearings ROLLWAY® MGILL®

Needle Engineering Section continued

Shaft Materials and Their Treatment

In order to obtain the performance built into needle and radial roller bearings when applied without inner races, it is important that the bearing user employ the best possible shaft material and heat treatment.

This is especially critical in cases of outer race rotation where the shaft becomes the weakest member of the bearing assembly.

Manufacturing simplicity as well as reduced operating clearances can be obtained by omission of inner races with their extra expense, as well as build-up of tolerances. This construction is employed frequently in the application of needle bearings and to a somewhat lesser degree in radial roller bearings.

With the conventional application using inner races, the selection of shaft material is principally a matter of manufacturing economy coupled with proper bending and tensile strength, and in most cases surface heat treatments of shafts are dispensed with. However, when the inner race is eliminated, the shaft then becomes an integral member of the bearing and the three following areas must be accurately and correctly covered for best bearing performance:

- 1. Shaft material selection.
- 2. Shaft heat treatment.
- 3. Shaft surface finish.

Under item 1, there are a number of satisfactory shaft materials which can be employed and they can be broken down into two groups as follows:

- 1. Thru-hardening or induction hardening material.
- 2. Case hardening material.

Where thru-hardening or induction hardening materials are employed, a sound material would be SAE 52100 steel, such as employed by the bearing manufacturers. This material may be induction zone hardened, or thru-hardened in accordance with the dictates of the application. However, as shaft material in the thru-hardened state, the high core hardness of the 52100 steel causes brittleness that may be objectionable.

Zone hardening or induction hardening that provides a tougher core is usually more satisfactory for shaft applications. Alternate materials, such as SAE 1050, SAE 1150 may be used, employing the induction or flame hardening process. While these steels will induction harden satisfactorily to give the proper hardness ranges, they will not offer the fatigue resistance of the higher alloy content steels.

Examples of higher alloy steels are SAE 4650, SAE 8650, etc. These materials do not require carburization for induction hardening. However, as mentioned above, the absence of excess carbides in the surface structure of the material after heat treatment reduces the fatigue life of the material correspondingly. Hardnesses in the range of 60 HRC should be maintained under all circumstances.

MGILL ROLLWAY Needle Bearings

Needle Engineering Section continued

For case hardening, any number of materials can be employed, ranging from the plain carbon SAE 1010 to 1020 up through SAE 4615, 4620, 8615 and 8620. Shafts can be completely carburized and case hardened or zone hardened by masking or copper plating areas desired left in soft state. A minimum hardness of 58 HRC should be employed. For the best quality of heat treatment, it is imperative that the hardening temperature in both the induction and thru-hardening process be held to rather close limits, in order to avoid the formation of retained austenite. In water quenching of induction hardened steels, the cracking of shafts after treatment should be avoided by immediate tempering. Contact Application Engineering for assistance in determining minimum required case depths.

A practical maximum surface finish for shafts being used as inner races would be 12 micro inches RA. Rougher surface finishes can be employed; however, the user will run the risk of more erratic performance due to the wearing in of the shaft as well as a lesser control of dimensional accuracy of the mounted bearing. All bearings wear in to a certain extent and the amount of "wear-in" depends directly upon the surface finish of the mating parts. The rougher the surface the greater the "wear-in" and the greater range of resultant clearance which would ensue.

MR and GR Series Bearing Lubrication

Sealed MR and GR series bearings are factory filled with an NLGI 1 lithium soap thickened grease suitable for operating temperatures of -20°F to +250°F. Unsealed MR, GR, RS, RD and MI inner rings are coated with a corrosion preventive oil. Consult Application Engineering regarding grease compatibility issues.

MR and GR series bearings have a lubrication hole and annular groove centered on the outside diameter to allow relubrication of the bearing through the housing member. The MI inner ring has a lubrication hole and annular groove centered in the bore diameter to allow relubrication of the bearing through the shaft member.

When sealed MR and GR series bearings are to be relubricated, it is recommended that the RS, SRS or RSS seal arrangement is used. These arrangements locate a seal lip outward and allows excess and used grease to vent during relubrication.

Frequency of lubrication depends primarily upon the speed of rotation of the bearing, the type of lubrication employed and the amount of contamination present in the application. For continuously rotating applications, it is necessary to either provide continuous oil lubrication or else frequent grease lubrication, depending upon the severity of service. Automatic lubrication devices are ideal for intermittent lubrication, since accurate metering of grease and consistent relubrication is maintained through the use of these devices. Best determination of relubrication interval can be made by testing or experience in the application. Contact Application Engineering for assistance in determining relubrication interval.

Mounting Details - Heavy-Duty Needle Roller Bearings Series McGill MR, GR, MI, RS, RD, and Rollway Journal Bearings

Proper mounting of CAGEROL® and GUIDEROL® heavy-duty needle roller bearings generally require a press fit of the ring rotating relative to the radial load. A close to loose fit is used for the ring stationary relative to the radial load. Specific shaft and housing diameters are listed in the respective series dimension tables.

Needle Bearings ROLLWAY® MGILL®

Needle Engineering Section continued

For Rollway Journal bearing applications, a rotating shaft is the predominant method of operation. Therefore, recommended shaft and housing tolerances are provided for applications with a rotating shaft only. For Journal applications which require a rotating housing, please consult Application Engineering for specific Journal bearing shaft and housing fits.

The following are some general guidelines and details to bear in mind when installing these bearing series:

1. Inspect housing and shaft.

- Clean, remove burrs and shaft edges.
- If any damage has occurred to the bearing seat in the housing or on the shaft, repair that damage to bring the seat surfaces back to its original condition.
- 2. Determine which member, shaft or housing, has an interference fit with the bearing.
 - In general, the ring rotating relative to the radial load has an interference fit.
 - Refer to dimension tables for specific shaft and housing diameters.
- 3. Install the bearing onto the press-fitted member by applying force against the bearing ring that is pressfitted.
 - For a press-fitted inner ring, apply the force required to assemble the bearing onto the shaft against the face of the bearing inner ring.
 - For a press-fitted outer ring, apply the force required to assemble the bearing into the housing against the face of the bearing outer ring.
 - Care should be exercised to assure that the bearing starts onto the press-fitted member as squarely as possible.
 - Use arbor press whenever possible.
 - Do not hammer on bearing ring face.
- 4. Inner rings press-fitted on the shaft may be more easily installed onto the shaft by heating the ring and causing it to shrink-fit.
 - Normally, heating the ring to 175°F to 212°F (70°C to 100°C) will be sufficient to allow the ring to slide over the interference fit shaft seat.
 - Heating the ring should be accomplished with an induction heater or in an oil bath. Never use a torch to heat a bearing for assembly purposes.
- 5. When outer rings are to be press-fitted into a housing, it is desirable to heat the housing to allow it shrink-fit onto the outer ring outside diameter.
 - Freezing the bearing to shrink it for easy assembly into a press-fitted housing is not recommended. Water condensation can form inside the bearing upon its return to room temperature, which can lead to corrosion. Exposure to extreme cold can also affect the metallurgical structure of the bearing.
- 6. After mounting is complete, the assembly should be inspected to insure that it rotates freely, without unusual drag or noise.

Spherical Roller

Unmounted bearing assembly consisting of through hardened inner and outer raceways with single spherical rolling elements separated by steel land riding retainer (cage) and available with several seal options. SPHERE-ROL® roller bearings provide an antifriction solution when supporting rotating shafts with combination radial and thrust loads.

Bearing Configurations

Sealed / unsealed, straight or tapered bore

Bore Diameter Size Range

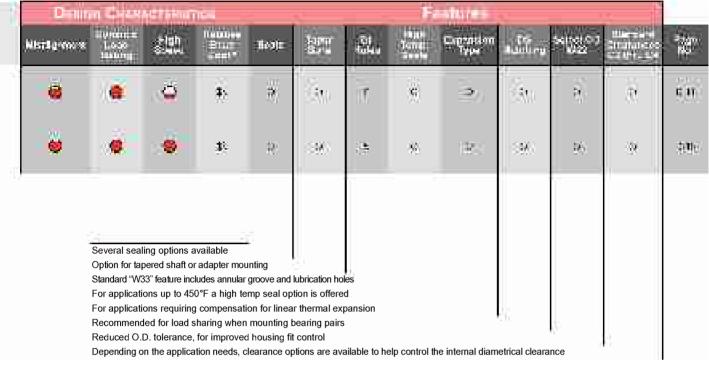
20 mm to 150 mm (.5906" to 5.9055")

Materials

Bearing Quality Steel

MGILL SPHERE-ROL® Spherical Bearings

Spherical Roller Selection Guide



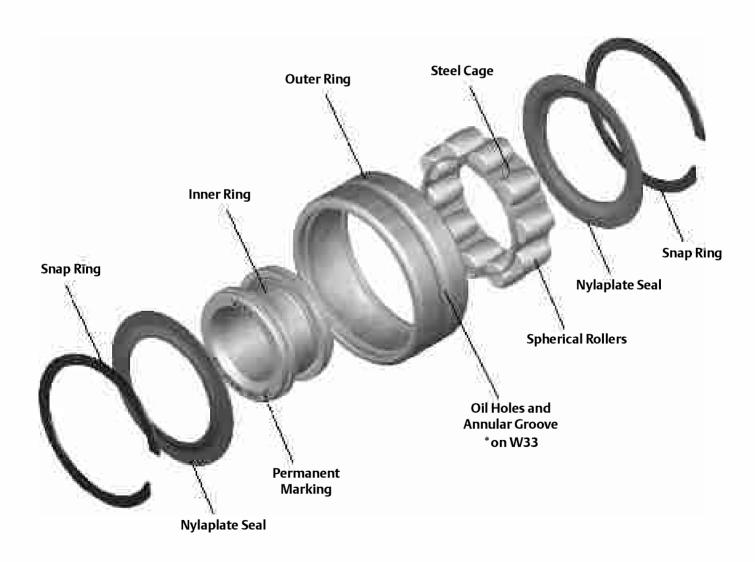
				5 _{mi} h	Allera
		Product Series	Abinta/Rote Constitute	H NORTH	linif Equit
cuese avi	0	2200 Ar	Bourna St., d Splan (") Tadya	27-195	2074-5:02]
SHERE PULL	0	284K 345.55	Controp Development of Server	WE-WE:	Bart 7579

^{*} For estimating purpose only, individually sizes may vary and are subject to change without notification

SPHERE-ROL® Spherical Bearings MG LL®

O = Optional

S = Standard


○ = Not Recommended

Poor Best

MCGILL. SPHERE-ROL® Spherical Bearings

McGill SPHERE-ROL® Spherical Bearings

McGill SPHERE-ROL® Bearings feature an optimal diameter of single row spherical rollers separated by a land riding steel retainer within a dimensionally interchangeable (ABMA/ISO specification) envelope. In addition, SPHERE-ROL® bearings feature NYLAPLATE®, NYLAPLATE high temperature and LAMBDA® seal options and misalignment capabilities, further differentiating SPHERE-ROL® bearings from other types. The bearing design and use of tapered bore with adapter option provide diametrical clearance control and installation ease. Depending on your preference, these bearings are available in a wide variety of sizes, clearances and sealing options as illustrated on the pages to follow.

SPHERE-ROL® Nomenclature

Prefix

SB - SPHERE-ROL Bearing

Series Identifier

22200

22300

Bore Size (In 5mm) Optional Tapered Bore Internal Clearances

None - Standard

C2 - Less Than Standard

C3 - Greater Than Standard

C4 - Greater Than C3

Optional Expansion Type Lubrication Feature standard Sealing Options (see below) Optional Grease Suffix

VA - High Temp. Grease

- Modification

Standard Bore

S - Nylaplate Seal One Side

SS - Nylaplate Seal Both Sides

TS - High Temp. Seal On: 5ide

TSS - High Temp. Seal Both Sides

YS - Lambda Seal One Side

YSS - Lambda Seal Both Sides

Tapered Bore

5 - Nylaplate Scal On Small End

551 - Nylapılate Scal On Large End

T5 - Lligh Temp. Seal On Small End

TSL - High Temp. Seal On Large End

YS - Lambda Scal On Small End

YSI - Lambda Seal On Large End

MCGILL. SPHERE-ROL® Spherical Bearings

Features and Benefits

Misalignment Capability

As a result of the design geometry, SPHERE-ROL® bearings offer up to $\pm 3^{\circ}$ misalignment in unsealed versions.

Annular Lubrication Groove and Holes

The groove provides a circumferential path to direct lubricant and to the two oil holes.

Spherical Roller

Precision spherical rollers provide high radial load capability, while providing the space necessary for seal options within a standard envelope dimension. The design of the roller provides a higher dynamic load rating and optimizes the number of maximum diameter rollers.

Inner Ring Raceway Flanges

Provide roller guidance and surface to support retainer. The raceway width, or distance between the two flanges, also helps define a designed endplay in the bearing. For applications requiring compensation for shaft growth due to linear thermal expansion, SPHERE-ROL bearings are available with increased internal endplay identified by the expansion type(E) option.

Steel Cage

The spacing provided by the heat treated steel cage contributes to the high speed capabilities and provides a lubricant reservoir within the bearing envelope.

Features and Benefits continued

Combination Load Capacity

The SPHERE-ROL® bearing design allows for high radial load capacity and the ability to accommodate a thrust load in combination with a radial load. Thrust load capability is proportional to the amount of radial load and pure thrust loads are not recommended. Typically a ratio less than .20 of axial to radial loads (Fa/Fr<.20) is appropriate for SPHERE-ROL bearings, equivalent load formulas specified in the Engineering Section of this catalog.

Factory Grease Fill

The sealed SPHERE-ROL bearings are factory lubricated with a medium temperature (-30° to 250°F, -34° to 121° C) Polyurea E.P. grease. Unsealed bearings packaged with light oil film as a rust preventative. Contact Application Engineering when application conditions require special lubricants.

Options

"S or SS" Nylaplate Seal

Combination labyrinth and contact seal is capable of 300° F maximum temperature. Bearing misalignment should not to exceed $\pm 2^\circ$ in operation for best seal performance. When ordering seals for tapered bore (-K option) bearing, indication of which side to be sealed must be provided. The "L" in the option suffix defines a seal installed on larger bore diameter side of the taper, no indication will default to seal installed on small bore side.

"TS or TSS" Nylaplate High Temperature Seal

Combination labyrinth and contact seal for operating temperatures up to 450° F. Bearing misalignment should not to exceed $\pm 2^{\circ}$ in operation for best seal performance. Bearings with this seal option will include a high temperature grease fill deisganted by the VA grease suffix in the part number When ordering seals for tapered bore (-K option) bearing, indication of which side to be sealed must be provided. The "L" in the option suffix defines a seal installed on larger bore diameter side of the taper, no indication will default to seal installed on small bore side.

MGILL. SPHERE-ROL® Spherical Bearings

Options continued

"YS or YSS" Lambda Seal

Utilizes a Nylaplate seal with an added contact seal for greater lip wiping seal function. Bearing misalignment should not exceed $\pm 1/2^\circ$ in operation for beast seal performance and maximum $\pm 1^\circ$. When ordering seals for tapered bore (-K option) bearing, indication of which side to be sealed must be provided. The "L" in the option suffix defines a seal installed on larger bore diameter side of the taper, no indication will default to seal installed on small bore side.

"E"Expansion –Type E

A special version of the SPHERE-ROL bearing can be provided to accommodate expansion (float) internally to the bearing. The bearing design allows the SPHERE-ROL bearing to be the only spherical roller to have this ability, but does have a 10% reduction in BDR. Typically, application requiring tolerance for linear shaft expansion will have an expansion (Float) and non-expansion (fixed) position as mounted on a common shaft. The expansion-type SPHERE-ROL® bearing will not operate satisfactorily if subjected to thrust loading. Therefore, the expansion-type SPHERE-ROL® bearing must not be used in "fixed" ("held") positions—it is for use only in "expansion" ("float") positions. It is recommended that the end-wise restraint of both race rings of the expansion-type bearing be provided, so that the expansion allowance intended to be available is not lost by error in installation

"K" Tapered bore bearing

SPHERE-ROL® bearings are available with tapered bore feature for applications utilizing tapered adapter sleeve mounting arrangements or tapered shaft seats. This feature facilitates the mounting of SPHERE-ROL® bearings and can be used to prevent the necessity for heating of bearings or to eliminate the need for complicated press fitting practices. Standard tapered adapter sleeves, as well as associated lock nuts and lock washers, are tabulated within the engineering section and are identifiable with the appropriate bearing by the suffix number. The separate items may be called out individually by their part number or the complete tapered bore bearing and associated hardware may be identified by the suffix letter "A" following the bearing number. The standard bore taper of these bearings is 1" in 12", on the diameter, and tapered bore bearings are themselves identified by the suffix letter "K" following the basic bearing number.

Options continued

Diametral Clearance

SPHERE-ROL® bearings are available in internal diametral clearance ranges identified as C2, Standard, C3 and C4. The internal diametral clearances are progressively less than the Standard, while C3 and C4 are progressively looser than Standard. Similarly, four internal clearance ranges are available for tapered bore SPHERE-ROL® bearings. Each of these ranges is somewhat looser than the corresponding cylindrical bore bearing internal diametral clearance range, because of the need to accommodate a somewhat tighter fit with the tapered bore mounting arrangement. The following two charts give the internal diametral clearance ranges normally available with SPHERE-ROL® bearings from McGill. Stock bearings having standard diametral clearance will not be identified by special marking; however, the C2, C3 and C4 clearances will be identified on the bearing inner ring face, following the basic bearing number.

"DS" Matched Bearings

When two SPHERE-ROL bearings are installed with the distance between both bearing less than the width of one bearing, it is recommended the bearings be diametrically matched to prevent unequal load sharing. The option, matches OD and ID tolerances, and Diametral Clearance with high point of runout indicated on the bearing faces. For more information and matching factors please review the engineering section for matched bearings.

Grease Options

When requested, standard bearings can be factory filled with customer specified lubricant or industry equivalent.

MGILL. SPHERE-ROL® Spherical Bearings

Basic Construction Type:

22200 Series Spherical

Bearing With Non-Separable

Inner Ring

Rolling Elements:

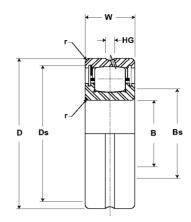
Separated Spherical Rolling

Elements

Bearing Material:

Bearing Quality Steel

Seal Type:


NYLAPLATE or LAMBDA

Lubrication:

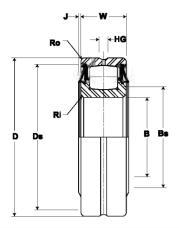
Sealed Bearings: Polyurea thickened NLGI 2 EP Grease.

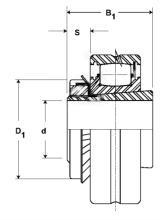
Unsealed Bearings: Corrosion

Preventive Oil

SB 22200

Part No.	1	В		D		W	86	100	HS	3/.	G		BDR	
Base Bearing	Bore D	iameter	Outside	Diameter	W	idth	Min Shoulder Diameter Inner	Min Shoulder Diameter Outer	Annular Lub Groove	Lambda Seal Minimum Clearance	Maximum radius or fillet to clear	Limiting Speed (In Oil)	Basic Dynamic Rating	Bearing Weight
Dase Dearing		ım ıch		ım ch		nm ich	m in	m ch		m ch	mm inch	RPM*	N/Ib	No.
	Nom.	Tot	Nom.	Tol	Nom	Tot	Bef	Hel	W35	Rof	Sef		and the same of	161
SB-22204	20.000	+0/010	47.000	+0/013	18.00	+0/13	25	41	3	3	1.0	11000	31,140	.15
3D-22204	0.7874	+0/0004	1.8504	+0/0005	.709	+0/005	1.0	1.6	.1	.1	.04	11000	7,000	.32
SB-22205	25.000	+0/010	52.000	+0/013	18.00	+0/13	30	46	5	3	1.0	9000	36,030	.18
3B-22203	0.9843	+0/0004	2.0472	+0/0005	.709	+0/005	1.2	1.8	.2	.1	.04	9000	8,100	.40
SB-22206	30.000	+0/010	62.000	+0/013	20.00	+0/13	36	56	5	3	1.0	8100	51,150	.29
3B-22200	1.1811	+0/0004	2.4409	+0/0005	.787	+0/005	1.4	2.2	.2	.1	.04	0100	11,500	.64
SB-22207	35.000	+0/013	72.000	+0/013	23.00	+0/13	41	61	5	3	1.0	6800	67,160	.43
3B-22201	1.378	+0/0005	2.8346	+0/0005	.906	+0/005	1.6	2.4	.2	.1	.04	0000	15,100	.95
SB-22208	40.000	+0/013	80.000	+0/013	23.00	+0/13	48	71	5	3	1.0	6000	74,730	.54
3B-22200	1.5748	+0/0005	3.1496	+0/0005	.906	+0/005	1.9	2.8	.2	.1	.04	0000	16,800	1.20
SB-22209	45.000	+0/013	85.000	+0/015	23.00	+0/13	53	74	5	3	1.0	5600	79,170	.59
3D-22209	1.7717	+0/0005	3.3465	+0/0006	.906	+0/005	2.1	2.9	.2	.1	.04	3000	17,800	1.30
SB-22210	50.000	+0/013	90.000	+0/015	23.00	+0/13	58	79	5	3	1.0	5250	83,180	.64
3B-22210	1.9685	+0/0005	3.5433	+0/0006	.906	+0/005	2.3	3.1	.2	.1	.04	3230	18,700	1.40
SB-22211	55.000	+0/015	100.000	+0/015	25.00	+0/15	64	89	5	3	1.5	4650	102,300	.86
3D-22211	2.1654	+0/0006	3.937	+0/0006	.984	+0/006	2.5	3.5	.2	.1	.06	4030	23,000	1.90
SB-22212	60.000	+0/015	110.000	+0/015	28.00	+0/15	71	99	5	3	1.5	4200	129,880	1.18
3D-22212	2.3622	+0/0006	4.3307	+0/0006	1.102	+0/006	2.8	3.9	.2	.1	.06	4200	29,200	2.60
SB-22213	65.000	+0/015	120.000	+0/015	31.00	+0/15	74	107	5	3	1.5	3800	157,900	1.54
00-22210	2.5591	+0/0006	4.7244	+0/0006	1.221	+0/006	2.9	4.2	.2	.1	.06	3000	35,500	3.40
SB-22214	70.000	+0/015	125.000	+0/020	31.00	+0/15	79	112	5	3	1.5	3650	159,680	1.63
00-22214	2.7559	+0/0006	4.9213	+0/0008	1.221	+0/006	3.1	4.4	.2	.1	.06	3030	35,900	3.60
SB-22215	75.000	+0/015	130.000	+0/020	31.00	+0/15	84	117	5	3	1.5	3500	167,240	1.77
OD-22210	2.9528	+0/-0006	5.1181	+0/-0008	1.221	+0/-060	3.3	4.6	.2	.1	.06	3300	37,600	3.90


Metric dimensions for reference only.


Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information \ on \ bearing \ capabilities \ outside \ of \ our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Add K to base number indicate K bore option
Add W22 for select OD
All bearings are supplied with W33 option unless otherwise specified
All bearings are supplied with W33 option unless otherwise specified
Refers to oil lubrication and moderate load, use 50% of value for grease lubrication.
Complete adapter number indicated adapter sleeve, locknut, and washer, for components refer to S=sleeve, N= lock Nut, W= lock washer
For Expansion type bearing add E suffix immediately after diametrical clearance specification per nomenclature diagram.
For Sealing options see page D-8
Outside diameter may be oversized, due to internal retaining ring

SPHERE-ROL® Spherical Bearings **MSGILL**®

SB 22200

																		ر	0 22	200
FirtHo		Straig	ht Bore	Intern	al Radi	al Clearar	се		Taper		e Interr ı 12" or			arance		Opt	ional Ada	pter Din	nension	S
Base	É	de	Stan	darif	•	ti .	cá	1		San	ded .	é	á	2	ś	Adapter	Adapter Shaft Dimension	81	196	BH
Bearing	1111				"	34	and the	- 1	W		-		"			No₌	mn inc			m ch
	1000	Max	Mins	Max	Min	Max M	m Max	Min	Max	Min	Max	Min	Max	Min	Max		(1861)	((200)	(R#1):	(Ref)
SB-2220	.0102	.20	32	.03	56	.0457	.0610	.0152	.02	254	.03	56	.04	157	.0610			_	_	_
OB-ZZZO	.0004	.00	80	.00	14	.0018	.0024	.0006	.00)10	.00	14	.00)18	.0024					
SB-2220	.0152	.02	254	.04		.0559	.0711	.0203		305	.04			559	.0762	SNW 05*	3.3	5.6	2.0	6.9
	.0006	.00		.00		.0022	.0028)12	.00)22	.0030		.75	1.27	.45	1.56
SB-2220	.0152	.03		.04		.0610	.0813			356	.05			660	.0864	SNW 06*	4.2	6.0	2.0	7.8
	.0006	.00		.00		.0024	.0032			014	.00)26	.0034		.94	1.36	.45	1.75
SB-2220	.0152	.03		.04		.0610	.0813			356	.05			60	.0864	SNW 07*	5.3	6.4	2.1	9.2
	.0006	.00		.00		.0024	.0032)14	.00)26	.0034		1.19	1.45	.48	2.06
SB-2220	.0203	.03		.05		.0762	.0813			157	.06			313	.1041	SNW 08*	5.8	6.7	2.2	10.0
	.0008	.00		.00:		.0030	.0032			018	.00			032	.0041		1.31	1.50	.50	2.25
SB-2220	.0203	.03		.05		.0762	.0813			157	.06			313	.1041	SNW 09*	6.4	7.0	2.2	11.3
	.0008	.00		.00:		.0030	.0032)18	.00)32	.0041		1.44	1.58	.50	2.53
SB-2221	.0254	.04 .00		.06		.0914	.1194	.0356		559 022	.07 .00			991 039	.0049	SNW 10*	7.5 1.69	7.9 1.77	2.5 .56	12.0 2.69
	.0254	.04		.06		.0030	.1194			559	.00			991	.1245		8.6	8.2	2.5	13.2
SB-2221	.0010	.00		.00		.0036	.0047)22	.00)39	.0049	SNW 11*	1.94	1.84	.56	2.97
	.0254		32	.06		.0914	.1194			559	.07			991	.1245		1.04	1.04	.00	2.01
SB-2221	.0010	.00		.00:		.0036	.0047	.0014)22	.00			39	.0049	-	-	-	-	-
	0305	.05		.08		.1118	.1448			711	.09			245	.1549		9.7	9.4	2.8	15.0
SB-2221	.0012	.00		.00:		.0044	.0057	.0018)28	.00)49	.0061	SNW 13	2.19	2.11	.63	3.38
	.0305	.05	608	.08	13	.1118	.1448	.0457	.07	711	.09	40	.12	245	.1549					
SB-2221	.0012	.00	20	.00	32	.0044	.0057	.0018	.00)28	.00	37	.00)49	.0061	-	-	-	-	-
OD 0004	.0305	.05	808	.08	13	.1118	.1448	.0457	.07	711	.09	40	.12	245	.1549	CNUM 454	10.9	10.2	3.0	17.3
SB-2221	.0012	.00	20	.00	32	.0044	.0057	.0018	.00)28	.00	37	.00)49	.0061	SNW 15*	2.44	2.30	.67	3.88

^{*} For sizes marked, standard ABMA locknuts and lockwashers will not clear the LAMBDA seal unless 1/16* thick spacer is used between the face of bearing and washer (or locknut).

MGILL. SPHERE-ROL® Spherical Bearings

Basic Construction Type:

22200 Series Spherical

Bearing With Non-Separable

Inner Ring

Rolling Elements:

Separated Spherical Rolling

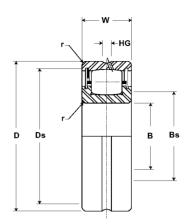
Elements

Bearing Material:

Bearing Quality Steel

Seal Type:

NYLAPLATE or LAMBDA


Lubrication:

Sealed Bearings: Polyurea

thickened NLGI 2 EP Grease.

Unsealed Bearings: Corrosion

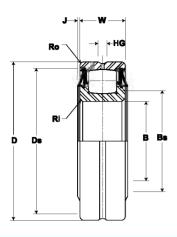
Preventive Oil

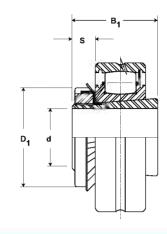
SB 22200 (continued)

00 22200	(
Part No.		В		D		W	84	100	He	ă.	6		BDR	
Base Bearing	Bore D)iameter	Outside	Outside Diameter		idth	Min Shoulder Diameter Inner	Min Shoulder Diameter Outer	Annular Lub Groove	Lambda Seal Minimum Clearance	Maximum radius or fillet to clear	Limiting Speed (In Oil)	Basic Dynamic Rating	Bearing Weight
Dase Dearing		nm ich		ım ch		nm ich	m			m ch	mm inch	DOW	44000	Apr.
	Nom	Tot	Nom	Tol	Nom	Tot	Bet	Bel	W35	Ref	Ref	RPM*	Mills	NG IB
SB-22216	80.000	+0/015	140.000	+0/020	33.00	+0/15	91	124	5	3	2.0	3250	188,600	2.09
SB-22210	3.1496	+0/0006	5.5118	+0/0008	1.299	+0/006	3.6	4.9	.2	.1	.08	3230	42,400	4.60
SB-22217	85.000	+0/020	150.000	+0/020	36.00	+0/20	97	135	5	3	2.0	3000	226,400	2.68
3D-22211	3.3465	+0/0008	5.9055	+0/0008	1.417	+0/008	3.8	5.3	.2	.1	.08	3000	50,900	5.90
SB-22218	90.000	+0/020	160.000	+0/025	40.00	+0/20	99	145	5	3	2.0	2800	263,320	3.40
3D-22210	3.5433	+0/0008	6.2992	+0/0010	1.575	+0/008	3.9	5.7	.2	.1	.08	2000	59,200	7.50
SB-22219	95.000	+0/020	170.000	+0/025	43.00	+0/20	107	155	8	3	2.0	2650	315,360	4.17
3B-22219	3.7402	+0/0008	6.6929	+0/0010	1.693	+0/008	4.2	6.1	.3	.1	.08	2030	70,900	9.20
SB-22220	100.000	+0/020	180.000	+0/025	46.00	+0/20	112	163	8	3	2.0	2500	345,610	5.03
3B-22220	3.937	+0/0008	7.0866	+0/0010	1.811	+0/008	4.4	6.4	.3	.1	.08	2500	77,700	11.10
SB-22222	110.000	+0/020	200.000	+0/030	53.00	+0/20	124	180	8	3	2.0	2200	444,800	7.21
3D-22222	4.3307	+0/0008	7.874	+0/0012	2.087	+0/008	4.9	7.1	.3	.1	.08	2200	100,000	15.90
SB-22224	120.000	+0/020	215.000	+0/030	58.00	+0/20	135	196	10	5	2.0	2050	533,760	8.98
3D-22224	4.7244	+0/0008	8.4646	+0/0012	2.284	+0/008	5.3	7.7	.4	.2	.08	2030	120,000	19.80
SB-22226	130.000	+0/025	230.000	+0/030	64.00	+0/25	150	211	10	5	2.5	1900	589,360	11.29
3D-22220	5.1181	+0/0010	9.0551	+0/0012	2.520	+0/010	5.9	8.3	.4	.2	.10	1300	132,500	24.80
SB-22228	140.000	+0/025	250.000	+0/030	68.00	+0/25	160	231	10	5	2.5	1750	707,680	14.19
3B-22220	5.5118	+0/0010	9.8425	+0/0012	2.677	+0/010	6.3	9.1	.4	.2	.10	1750	159,100	31.30
SB-22230	150.000	+0/025	270.000	+0/036	73.00	+0/25	170	246	13	5	2.5	1600	753,050	17.92
OD-22200	5.9055	+0/0010	10.6299	+0/0014	2.874	+0/010	6.7	9.7	.5	.2	.10	1000	169,300	39.50
SB-22236	180.000	+0/025	320.000	+0/041	86.00	+0/25	213	290	18	5	3.0	1350	1,024,820	21.92
00-22200	7.0866	+0/0010	12.5984	+0/0016	3.386	+0/010	8.4	11.4	.7	.2	.12	1000	230,400	48.34

Add K to base number to indicate K bore option

Add W22 for select OD


Add W22 for select OD
All bearings are supplied with W33 option unless otherwise specified
*Refers to oil lubrication and moderate load, use 50% of value for grease lubrication.
Complete adapter number indicated adapter sleeve, locknut, and washer, for components refer to S=sleeve, N=lock Nut, W=lock washer
For Expansion type bearing add E suffix immediately after diametrical clearance specification per nomenclature diagram.
For Sealing options see page D-8
Outside diameter may be oversized, due to internal retaining ring


Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

SPHERE-ROL® Spherical Bearings **MSGILL**®

SB 22200 (continued)

Hetifor		Straigh	ıt Bore I	Internal Rad	ial Clear	ance			Taper (e Interr 12" or		lial Clea eter)	arance		Opt	ional Ada	pter Din	nension	IS
Base	2	ŝ		ANT I	th	¢	1		le .	Sam	ibed	ć	9		M-	Adapter	Adapter Shaft Dimension	81	1	BH
Bearing	-				7.	- 411		- 1	Th.	a	II.	- 2	Ш	-	Ш	No	mn incl			m ch
	(600)	Max	Min: I	Max: Min	Max	Min	Max	Min	Max	Min	filme	Min	Max	Min	Max		(1301)	(Ref)	(Ref)	(Ref)
SB-22216	.0356	.063		.0991 .0039	.134 .005		.1803	.0508	.08 00.		.11 .00		.14 .00		.1905 .0075	SNW 16	12.0 2.69	10.6 2.38	3.0 .67	18.5 4.16
SB-22217	.0356	.063		.0991 .0039	.134 .005		.1803	.0508	.08 00.		.11		.14		.1905	SNW 17	13.1 2.94	11.0 2.48	3.1 .70	19.6 4.41
	.0356	.063	35	.0991	.134	16	.1803	.0508	.08	13	.11	18	.14	48	.1905		14.2	11.7	3.5	20.7
SB-22218	.0014	.002		.0039	.005		.0071	.0020	.00		.00	44	.00	57	.0075	SNW 18	3.19	2.64	.78	4.66
SB-22219	.0356	.063		.0991	.134		.1803	.0508	.08		.11		.14		.1905	_	-	_	-	-
	.0014	.002	25	.0039	.005	53	.0071	.0020	.00	32	.00	44	.00	57	.0075					
SB-22220	.0432	.078		.1219	.162	- 1	.2108	.0635	.09		.13		.17		.2261	SNW 20	15.3	12.8	3.7	23.1
	.0017	.003	31	.0048	.006	54	.0083	.0025	.00	39	.00		.00		.0089		3.44	2.88	.84	5.19
SB-22222	.0432	.078		.1219	.162		.2108	.0635	.09		.13		.17		.2261	SNW 22	17.5	14.2	4.0	25.4
	.0017	.003	31	.0048	.006	54	.0083	.0025	.00	39	.00		.00		.0089		3.94	3.20	.91	5.72
SB-22224	.0508	.096		.1448	.190	· I	.2413	.0762	.11		.16		.20	· ·	.2591	SNW 24	18.6	15.4	4.2	27.3
	.0020	.003	38	.0057	.007	5	.0095	.0030	.00	47	.00	63	.00		.0102		4.19	3.47	.94	6.13
SB-22226	.0508	.096		.1448	.190		.2413	.0762	.11		.16		.20		.2591	SNW 26	19.7	16.8	4.4	30.0
	.0020	.003	38	.0057	.007	5	.0095	.0030	.00	4/	.00		.00		.0102		4.44	3.77	1.00	6.75
SB-22228	.0610	.109		.1651	.221	- 1	.2794	.0864	.13		.18		.23		.2997	SNW 28	22.0	17.7	4.7	31.5
	.0024	.004	13	.0065	.008	57	.0110	.0034	.00	53	.00		.00		.0118		4.94	3.98	1.06	7.09
SB-22230	.0610	.109		.1651	.221		.2794	.0864	.13		.18		.23		.2997	SNW 30	23.1	18.8	5.0	34.2
	.0024	.004	13	.0065	.008	57	.0110	.0034	.00	ეკ	.00		.00		.0118		5.19	4.23	1.13	7.69
SB-22236	.0610	.109		.1651	.221		.2794	.0864	.13		.18		.23		.2997	SNW 36	28.6	22.5	5.6	40.3
	.0024	.004	13	.0065	.008	37	.0110	.0034	.00	53	.00	71	.00	91	.0118		6.44	5.05	1.25	9.06

MGILL SPHERE-ROL® Spherical Bearings

Basic Construction Type:

22300 Series Spherical

Bearing With Non-Separable

Inner Ring

Rolling Elements:

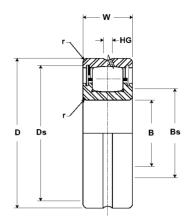
Separated Spherical Rolling

Elements

Bearing Material:

Bearing Quality Steel

Seal Type:


NYLAPLATE or LAMBDA

Lubrication:

Sealed Bearings: Polyurea thickened NLGI 2 EP Grease.

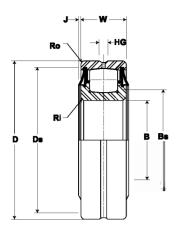
Unsealed Bearings: Corrosion

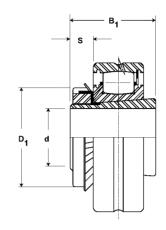
Preventive Oil

SB 22300

Part No.		В		D	140	N	66	103	HG	J.	Ē.	1 : :::	BDR	
Base Bearing	Bore D	iameter	Outside Diameter		Width		Min Shoulder Diameter Inner	Min Shoulder Diameter Outer	Annular Lub Groove	Lambda Seal Minimum Clearance	Maximum radius or fillet to clear	Limiting Speed (In Oil)	Basic Dynamic Rating	Bearing Weight
Dase Dearing		ım ıch	mm inch		mm inch		m in			mm inch		RPM*	N/Hb	0.0
	Nom.	Tot	Nom.	Tol	Nom	Tel	Bef	Hel	W35	Ref	Bef		1000	10
SB-22308	40.000	+0/013	90.000	+0/015	33.00	+0/13	48	79	5	2.3	1.5	5250	113,870	1.04
3B-22300	1.5748	+0/0005	3.5433	+0/0006	1.299	+0/005	1.9	3.1	.2	.09	.06	3230	25,600	2.30
SB-22309	45.000	+0/013	110.000	+0/015	36.00	+0/13	53	89	8	2.3	1.5	4650	133,880	1.41
3B-22309	1.7717	+0/0005	3.937	+0/0006	1.417	+0/005	2.1	3.5	.3	.09	.06	4030	30,100	3.10
SB-22310	50.000	+0/013	110.000	+0/015	40.00	+0/13	61	99	8	2.3	2.0	4200	166,360	1.86
3B-22310	1.9685	+0/0005	4.3307	+0/0006	1.575	+0/005	2.4	3.9	.3	.09	.08	4200	37,400	4.10
SB-22311	55.000	+0/013	120.000	+0/015	43.00	+0/15	66	109	8	3.3	2.0	3800	183,700	2.40
3B-22311	2.1654	+0/0005	4.7244	+0/0006	1.693	+0/006	2.6	4.3	.3	.13	.08	3600	41,300	5.30
SB-22312	60.000	+0/013	130.000	+0/020	46.00	+0/15	71	117	8	3.3	2.0	3500	243,310	2.99
3D-22312	2.3622	+0/0005	5.1181	+0/0008	1.811	+0/006	2.8	4.6	.3	.13	.08	3300	54,700	6.60
SB-22313	65.000	+0/013	140.000	+0/020	48.00	+0/15	76	124	8	3.3	2.0	3250	265,550	3.54
3D-22313	2.5591	+0/0005	5.5118	+0/0008	1.890	+0/006	3.0	4.9	.3	.13	.08	3230	59,700	7.80
SB-22314	70.000	+0/013	150.000	+0/020	51.00	+0/15	84	137	8	3.3	2.0	3000	304,240	4.31
3D-22314	2.7559	+0/0005	5.9055	+0/0008	2.008	+0/006	3.3	5.4	.3	.13	.08	3000	68,400	9.50
SB-22315	75.000	+0/013	160.000	+0/025	55.00	+0/15	86	137	8	3.3	2.0	2800	332,710	5.39
36-22313	2.9528	+0/0005	6.2992	+0/0010	2.165	+0/006	3.4	5.4	0.3	.13	.08	2000	74,800	11.90
SB-22316	80.000	+0/013	170.000	+0/025	58.00	+0/15	91	155	8	3.3	2.0	2650	344,720	6.30
00-22010	3.1496	+0/0005	6.6929	+0/0010	2.284	+0/006	3.6	6.1	.3	.13	.08	2000	77,500	13.90

Add K to base number indicate K bore option


Add N2 for select OD Add W22 for select OD Add W23 for select OD Albearings are supplied with W33 option unless otherwise specified


*Refers to oil lubrication and moderate load, use 50% of value for grease lubrication.

Complete adapter number indicated adapter sleeve, locknut, and washer, for components refer to S=sleeve, N= lock Nut, W= lock washer for Expansion type bearing add E suffix immediately after diametrical dearance specification per nomenclature diagram. For Sealing options see page D-8

Outside diameter may be oversized, due to internal retaining ring

SB 22300

	-11	W W		2114					atal II ao maio Marij						
h sa	1(5)	1000		##	964	33	- 11 -		- 11 -		App.	趣		HA.	iii
	1111/6	3 15	ah L	/// III		===				161 		- "		in in	V.
SB-22308	0203 0008	.0356 .0014	0559 0022			.0305 .0012	.0457 .0018	_0610 _0024	0813 0032	.1041	50	-51	5.	0.50	15
38-85%	8503 8608	615A H. P	250	± 47	12 A219	0805 18077	641.7 (600-	225C	0843 0627	. 641 2621	ENN 136	64 1770	2.00 2.00	12 38	11.5
SB-22310	0254 .0010	.0432 .0017	0660			.0356 .0014	.0559 .0022	.0762 .0030	0991 0039	.1245	131		-	(23)	
9E 226	02.14 00.10	0000 0000	200 200	50.00	Dec 11 Jan 1982	0076 0074	0019 0013	.2762 .238.	0031 9025	3-6 300-0	-5-50% 31LU	1,0 1,04	11.2 252	2.0	10.2 24.7
SB-22312	0254 0010	.0432 .0017	0660			.0356 .0014	.0559 .0022	_0762 0030	0991 0039	.1245 .0049	111		100		
99.326	6015 6012	A116 A226	364 308	9.00	11.13 LANGE 64	6457 6018	0744 0659	3840 1197	240 0040	040 0081	3MW 117	5.7 2.10	12.0	28 ≘2	10,0 138
SB-22314	0305 0012	.0508	081: 003:			.0457 .0018	.0711 .0028	0940 0037	1245 0049	.1549 .0061			=		-
18 529	A212	6136 6130	.564 264	1111		0457 0038	.6711 0039	1560	240 9042	. 646 MOM	SHOTE	10.0	13.7	30	(7.3 229
SB-22316	0356 0014	.0635 .0025	099			.0508 .0020	.0813 .0032	1118 0044	1448 0057	.1905	SNW 116	12.0 2.69	14.2 3.20	3.0 .67	18.5 4.16

MGILL. SPHERE-ROL® Spherical Bearings

Basic Construction Type:

22300 Series Spherical

Bearing With Non-Separable

Inner Ring

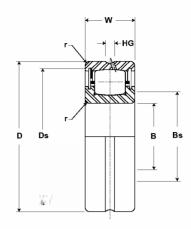
Rolling Elements:

Separated Spherical Rolling

Elements

Bearing Material:

Bearing Quality Steel

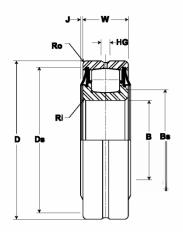

NYLAPLATE or LAMBDA **Seal Type:**

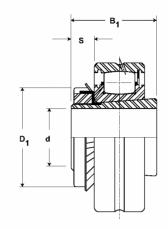
Lubrication:

Sealed Bearings: Polyurea thickened NLGI 2 EP Grease.

Unsealed Bearings: Corrosion

Preventive Oil


SB 22300 (continued)


Feder				No.			- 1				
	NUMBER OF STREET	Should Hinner	жыл						H - 1945-14		
30000		77	1000 1000 1000		One:	DOWN.	1,110	POL.		Mil	B
±8.725 7	80,000 H0A,000 83889 WW-9008	100.007 #00.026 7.0250 #04.0015	90.00 -01.20 2.80 - 400.00s	99 339	103	40.04	33 34	2.0	1500	421.010 35,160	7:30 10:30
SB-22318	90.000 +0/020 3.5433 +0/0008	190.000 +0/030 7.4803 +0/0012	64.00 +0/20 2.520 +0/008	104 4.1	173 6.8	10 4	3 3 13	25 10	2350	437 680 98 400	8.71 19.20
3 t -23	97,000 H07,720 87402 H04,0003	200.00T #01.000 = 874 #54.00 ±	07.00 =0.27 2.000 =0.200	112 4.4	165 3.1	30	44 5	2,2 16	2200	400.610 160.400	10-20 22-76
SB-22320	100.000 +0/020 3.937 +0/0008	215.000 +0/030 8.4646 +0/0012	73.00 +0/20 2.874 +0/008	117 4.6	196 7 7	10 4	4 8 19	2 5 10	2050	572 900 128 800	12.88 28.40
58-2202	410 500 HB 2753 43207 HB 405055	20007 10,750 5488 -0,0015	00.00 40.07 1190 -0.000	C.0	25J	() 2	15 -5	7.8 16	(1500)	000,858 181,205	1957 -271

Add K to base number indicate K bore option
Add W22 for select OD
All bearings are supplied with W33 option unless otherwise specified
Refers to oil lubrication and moderate load, use 50% of value for grease lubrication.
Complete adapter number indicated adapter sleeve, locknut, and washer, for components refer to S=sleeve, N= lock Nut, W= lock washer
For Expansion type bearing add E suffix immediately after diametrical clearance specification per nomenclature diagram.
For Springer outputs read page 18

For Sealing options see page D-8
Outside diameter may be oversized, due to internal retaining ring

SB 22300 (continued)

	- 1		Territor 2			L.			House,	•		10		7
-Ann	JIE	Gar G			- W.	10-0		ntël si	HI43 SH		100 111		==	
66-2910	,0006 ,0014	0000 0000	2001 2081	∴346 8038	350	0008 0000	9211 0032	1135 334	1445	200 SMALTE	130 204	14.7 3.61	3:1 20	150 641
SB-22318	0356 0014	.0635 .0025	0991 0039	1346 0053	.1803	.0508 .0020	.0813	1118 _0044	1448 0057	.1905 .0075 SNW 118	14.2 3.19	15.8 3.55	3.5 .78	20.7
SE-20140	2006 2014	00% 00%	-1001 -3082	. 246 6033	280	0006 0029	0.24%	1119	1445 6022	5%0 AC75	20	51,	Z.=.3	15
SB-22320	0432 0017	.0787 .0031	1219 0048	1626 0064	.2108	.0635 .0025	.0991 .0039	1346 0053	1753 0069	.2261 .0089 SNW 120	15.3 3.44	17.7 3.97	3.7 .84	23.1 5.19
68-20922	0072 0077	0207 0034	1215 2043	180 1854	2400 8080	0025 0025	0639-	1500 1350	0025	200 SMN 22	17.5 234	30 B 4,55	#B. 31	36.4 5.7±

Load Ratings and Life

Life Calculations

The L10 (rating) life for any given application and bearing selection can be calculated in terms of millions of revolutions by using the bearing Basic Dynamic Rating and applied radial load (or, equivalent radial load in the case of radial bearing applications having combined radial and thrust loads). The L10 life for any given application can be calculated in terms of hours, using the bearing Basic Dynamic Rating, applied load (or equivalent radial load) and suitable speed factors, by the following equation:

$$L_{10} = \left(\frac{C}{P}\right) x \frac{1,000,000}{60 x n} = \left(\frac{C}{P}\right)^{10/3} x \frac{16667}{n}$$

Where:

L₁₀ = The # of hours that 90% of identical bearings under ideal conditions will operate at a specific speed and condition before fatigue is expected to occur.

C = Basic Dynamic Rating (lbs) 1,000,000 Revolutions

P = Constant Equivalent Radial Load (lbs)

n = Speed(RPM)

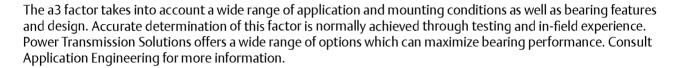
Additionally, the ABMA provides application factors for all types of bearings which need to be considered to determine an adjusted Rated Life (Lna). L10 life rating is based on laboratory conditions yet other factors are encountered in actual bearing application that will reduce bearing life. Lna life rating takes into account reliability factors, material type, and operating conditions.

$$L_{na} = a_1 \times a_2 \times a_3 \times L_{10}$$

Where:

 L_{na} = Adjusted Rated Life.

a₁ = Reliability Factor. Adjustment factor applied where estimated fatigue life is based on reliability other than 90% (See Table No 1).


Table No. 1 Life Adjustment Factor for Reliability

Reliability %	L _{na}	a ₁
90	L10	1
95	L5	0.62
96	L4	0.53
97	L3	0.44
98	L2	0.33
99	L1	0.21
50	L50	5

- $\mathbf{a_2}$ =Material Factor. Life adjustment for bearing race material. Power Transmission Solutions bearing races are manufactured from bearing quality steel. Therefore the $\mathbf{a_2}$ factor is 1.0.
 - a₃ = Life Adjustment Factor for Operating Conditions. This factor should take into account the adequacy of lubricant, presence of foreign matter, conditions causing changes in material properties, and unusual loading or mounting conditions. Assuming a properly selected and mounted bearing having adequate seals and lubricant operating below 250°F and tight fitted to the shaft, the a3 factor should be 1.0.

Load Ratings and Life Continued

Vibration and shock loading can act as an additional loading to the steady expected applied load. When shock or vibration is present, an a3 Life Adjustment Factor can be applied. Shock loading has many variables which often are not easily determined. Typically, it is best to rely on one's experience with the particular application. Consult Application Engineering for assistance with applications involving shock or vibration loading.

Combined Load – Single Row Spherical Roller Bearings

1. Calculate Fa/Fr.

When Fa/Fr O 0.12; P = VFr When Fa/Fr > 0.12; P = 0.4VFr + 5.0Fa

P = Equivalent radial load, lbs.

Fr = Applied radial load, lbs.

Fa = Applied thrust load, lbs.

V = Rotation factor

- = 1.0 for most applications
- = 1.2 for vibratory applications

For applications involving combination loads in which Fa/Fr > 0.20, consult Application Engineering.

2. Calculate the L10 life using the life equation on page D-19.

MGILL. SPHERE-ROL® Spherical Bearings

Load Ratings and Life Continued

Variable Load Formula

Root mean load (RML) is to be used when a number of varying loads are applied to a bearing for varying time limits. Maximum loading still must be considered for bearing size selection.

RML* =
$$\sqrt{\frac{(L_1^{10/3}N_1) + (L_2^{10/3}N_2) + (L_3^{10/3}N_3)}{100}}$$

RML = Root Mean Load (lbs.)

 L_1 , L_2 , etc. = Load in pounds

 N_1 , N_2 , etc. = Percent of total time operated at loads L_1 , L_2 , etc.

Mean Speed Formula

The following formula is to be used when operating speed varies over time.

Mean Speed =
$$\frac{S_1 N_1 + S_2 N_2 + S_3 N_3}{100}$$

 S_1S_2 , etc = Speeds in RPM

 $N_1 N_2$, etc = Percentage of total time operated at speeds S₁S₂, etc

Bearing Life In Oscillating Applications

The equivalent rotative speed (ERS) is used in life calculations when the bearing does not make complete revolutions during operation. The ERS is then used as the bearing operating speed in the calculation of the L10 (Rating) Life. The formula is based on sufficient angular rotation to have roller paths overlap.

ERS = Equivalent Rotative Speed

N = Total number of degrees per minute through

which the bearing will rotate. ERS = $\frac{N}{360}$

In the above formula, allowance is made for the total number of stress applications on the weakest race per unit time, which, in turn, determines fatique life and the speed factors. The theory behind fretting corrosion is best explained by the fact that the rolling elements in small angles of oscillation retrace a path over an unchanging area of the inner or outer races where the lubricant is prevented by inertia from flowing in behind the roller as the bearing oscillates in one direction. Upon reversal, this small area of rolling contact is traversed by the same roller in the dry state. The friction of the two unlubricated surfaces causes fretting corrosion and produces failures which are unpredictable from a normal life standpoint.

^{*} Apply RML to rating at mean speed to determine resultant life.

Load Ratings and Life Continued

With a given bearing selected for an oscillating application, the best lubrication means is a light mineral oil under positive flow conditions. With a light oil, there is a tendency for all areas in the bearing load zone to be immersed in lubricant at all times. The full flow lubrication dictates that any oxidized material which may form is immediately carried away by the lubricant, and since these oxides are abrasive, further wear tends to be avoided. If grease lubrication must be used, it is best to consult with either the bearing manufacturer or the lubricant manufacturer to determine the best possible type of lubricant. Greases have been compounded to resist the detrimental effect of fretting corrosion for such applications.

Minimum Bearing Load

Skidding, or sliding, of the rolling elements on the raceway instead of a true rolling motion can cause excessive wear. Applications with high speeds and light loading are particularly prone to skidding. As a general guideline, rolling element bearings should be radially loaded at least 2% of Basic Dynamic Rating. For applications where load is light relative to the bearings dynamic load rating, consult Application Engineering for assistance.

MGILL. SPHERE-ROL® Spherical Bearings

Spherical Engineering Section

Equivalent Loads

When SPHERE-ROL® bearings operate under conditions of combined radial and thrust loads, an equivalent radial load must be calculated to determine resultant bearing life. SPHERE-ROL® bearings are not recommended for applications involving pure thrust loads; however, combination loads may be carried in accordance with the following equivalent radial load formulae:

When
$$\frac{F_a}{F_r} \le 0.12$$
; P = VF_r

When $\frac{F_a}{F_r} < 0.12$; P = .4VF_r + 5.0 F_a

P = Equiv. radial load, lbs.

Fr = Applied radial load, lbs.

Fa = Applied thrust load, lbs.

V = Rotation factor

= 1.0 for most applications

= 1.2 for vibratory applications

For applications involving combination loads in which Fa/Fr > .20, consult Application Engineering.

Static Load Rating

The "static load rating" is that uniformly distributed static radial bearing load which produces a maximum contact stress of 580,000 PSI, acting at the center of contact of the most heavily loaded rolling element. At this stress level, plastic deformation begins (or begins to be significant). Experience has shown that the plastic deformation at this stress level can be tolerated in most bearing applications without impairment of subsequent bearing operation. In certain applications where subsequent rotation of the bearing is slow and where smoothness and friction requirements are not too exacting, a higher static load limit can be tolerated. Where extreme smoothness is required or friction requirements are critical, a lower static load limit may be necessary.

When static bearings are subjected to both radial and thrust loads, the equivalent static radial load is defined as:

PO = 0.5 Fr + 4.0 Fa or

PO = Fr whichever is greater.

Contact Application Engineering for specific static load ratings, and applications involving pure static thrust loads.

Matched Bearings

Where bearings are mounted so that the distance between them is less than the width of one bearing, it is recommended under heavy loading conditions to provide some degree of diametral matching in order to prevent unequal sharing of the applied load.

Matching procedures have been developed to provide super precision matching of bearings.

Bearings matched in this category are identified by "-DS" suffix for super precision.

A. O.D. and I.D., where applicable, of matched bearings same diameters within 30% of the respective O.D. or I.D. tolerance.

B. Diametral clearance, where applicable, of matched bearings same within 30% of the tolerance range.

C. Radial runout of matched bearings same within 20% of the tolerance range.

D. High point of radial runout marked on the face of each outer and inner ring.

E. Matched bearings are packaged as a unit.

Matching Factor	Matching Suffix		
1.55	None		
1.71	"-DS"		

Multiply Matching Factor by rating of single bearing to obtain resultant rating for pair of bearings.

Diametral Clearance

SPHERE-ROL® bearings are available in four internal diametral clearance ranges identified as C2, Standard, C3 and C4. The C2 internal diametral clearance is less than the Standard, while C3 and C4 are progressively looser than Standard.

Similarly, four internal clearance ranges are available for tapered bore SPHERE-ROL® bearings. Each of these ranges is somewhat looser than the corresponding cylindrical bore bearing internal diametral clearance range, because of the need to accommodate a somewhat tighter fit with the tapered bore mounting arrangement.

The two charts below give the internal diametral clearance ranges normally available with SPHERE-ROL® bearings

Bearings having standard diametral clearance will not be identified by special marking; however, the C2, C3 and C4 clearances will be identified on the bearing inner ring face, following the basic bearing number. Consult Customer Service for availability on non-standard diametral clearances.

Radial Clearance (inches) for "SB" Bearings with a Straight Bore

Basic Bore Diameter MM		Radial Clearance in Inches							
		C2		Standard		C3		C4	
Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
14	24	. 0004	. 0008	. 0008	. 0014	. 0014	. 0018	. 0018	0.002
24	30	. 0006	. 0010	. 0010	. 0016	. 0016	. 0022	. 0022	0.003
30	40	. 0006	. 0012	. 0012	. 0018	. 0018	. 0024	. 0024	0.003
40	50	. 0008	. 0014	. 0014	. 0022	. 0022	. 0030	. 0030	0.004
50	65	. 0010	. 0017	. 0017	. 0026	. 0026	. 0036	. 0036	0.005
65	80	. 0012	. 0020	. 0020	. 0032	. 0032	. 0044	. 0044	0.006
80	100	. 0014	. 0025	. 0025	. 0039	. 0039	. 0053	. 0053	0.007
100	120	. 0017	. 0031	. 0031	. 0048	. 0048	. 0064	. 0064	0.008
120	140	. 0020	. 0038	. 0038	. 0057	. 0057	. 0075	. 0075	0.010
140	160	. 0024	. 0043	. 0043	. 0065	. 0065	. 0087	. 0087	0.011
1600	180	. 0026	. 0047	. 0047	. 0071	. 0071	. 0095	. 0095	0.012

Radial Clearance (inches) for "SB" Bearings with a Tapered ("K" Type) Bore

Basic Bore Diameter MM		Radial Clearance in Inches							
		C2		Standard		C3		C4	
Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
14	24	. 0006	. 0010	. 0010	. 0014	. 0014	. 0018	. 0018	0.002
24	30	. 0008	. 0012	. 0012	. 0017	. 0017	. 0022	. 0022	0.003
30	40	. 0008	. 0014	. 0014	. 0020	. 0020	. 0026	. 0026	0.003
40	50	. 0012	. 0018	. 0018	. 0024	. 0024	. 0032	. 0032	0.004
50	65	. 0014	. 0022	. 0022	. 0030	. 0030	. 0039	. 0039	0.005
65	80	. 0018	. 0028	. 0028	. 0037	. 0037	. 0049	. 0049	0.006
80	100	. 0020	. 0032	. 0032	. 0044	. 0044	. 0057	. 0057	0.008
100	120	. 0025	. 0039	. 0039	. 0053	. 0053	. 0069	. 0069	0.009
120	140	. 0030	. 0047	. 0047	. 0063	. 0063	. 0081	. 0081	0.010
140	160	. 0034	. 0051	. 0051	. 0071	. 0071	. 0091	. 0091	0.012
1600	180	. 0037	. 0055	. 0055	. 0079	. 0079	. 0102	. 0102	0.013

Expansion-Type SPHERE-ROL® Bearings

A special version of the SPHERE-ROL® bearing can be provided for applications requiring the bearing to accommodate expansion (float) internally. This "expansion-type" SPHEREROL® bearing is specified and identified by adding the suffix letter "E" immediately following the diametral clearance specification. (For instance, SB-22319-C3E-W33.)

Most applications incorporating two bearings on a common shaft require that one of those bearings be "fixed" and that the other be free to "float," either in the housing seat bore or on the shaft seat. This float allowance, or expansion allowance, is required to compensate for variations in thermal expansion, or for linear dimension errors resulting from fabrication. In many cases, ordinary nonseparable ball or roller bearings are used for expansion but they are unsatisfactory because of housing or shaft seat diameter tolerances, the application of heavy loads or misalignment.

Self-aligning bearings are preferred and the expansion-type SPHERE-ROL® roller bearing is the only internally self-aligning bearings having the capability of accommodating expansion or float allowance internally.

This expansion-type SPHERE-ROL® bearing is dimensionally interchangeable, size for size, with "standard" spherical roller bearings; but, because of changes in internal geometry, it does provide substantial axial play of one race ring relative to the other. The expansion allowance in this type SPHERE-ROL® bearing is normally as much as the end play or expansion allowance that would be found in a non-locating cylindrical roller bearing.

The "E" type SPHERE-ROL® bearing is available with the same sealing advantages, diametral clearance values, tapered bore and outer ring relubrication features as standard bearings shown on page D-25. The basic dynamic rating of "E" type SPHERE-ROL® bearings is 10% less than standard SPHERE-ROL® bearings. Maximum seal misalignment is limited due to increased axial play in bearing.

The expansion-type SPHERE-ROL® bearing will not operate satisfactorily if subjected to thrust loading. Therefore, the expansion-type SPHERE-ROL® bearing must not be used in "fixed" ("held") positions—it is for use only in "expansion" ("float") positions. It is recommended that the end-wise restraint of both race rings of the expansion-type bearing be provided, so that the expansion allowance intended to be available is not lost by error in installation.

Expansion-type SPHERE-ROL® bearings are not normally available from stock. Consult Customer Service for availability.

Lubrication - SPHERE-ROL® Bearings

SPHERE-ROL® bearings as supplied are factory lubricated as follows. Consult Application Engineering regarding grease compatibility issues.

Lubricant	Bearing Type	Lubricant Temp. Limits (1)		
NYLAPLATE® (-S, -SS) LAMBDA® (-YS, -YSS)	NLGI #2 EP grease, polyurea thickened	-30° to +300°F (-34° to 149°C)		
High Temp. NYLAPLATE® (-TS, -TSS)	NLGI #2 high temp. grease, inorganic thickener	0° to +400°F (-18° to 204°C)		
Unsealed	None, bearing coated with corrosion preventive oil			

(1) Temperature limits are provided as a capability of the grease lubricant only. Satisfactory bearing performance at these temperature limits can be dependent on proper lubrication maintenance, internal clearance, bearing materials and installation. Consult Application Engineering for recommendations.

Lubrication Maintenance

For most applications, due to speed, contamination or temperature conditions, some lubrication interval will be required for sealed SPHERE-ROL® bearings. As such, the sealed SPHERE-ROL® bearing can not typically be applied as a maintenance-free bearing. The "-W33" lubrication groove and holes in the outer ring outside diameter provides a means to add fresh grease or oil as applicable to the bearing through the housing. NYLAPLATE® seals have a venting feature which allows excess or old grease to purge from the bearing.

Frequency of lubrication depends primarily upon the speed of rotation of the bearing, the type of lubrication employed, the amount of contamination present and the relationship of thrust to radial loading. For continuously rotating applications, it is necessary to either provide continuous oil lubrication or else periodic grease lubrication, depending upon the severity of service. Automatic lubrication devices are ideal for intermittent lubrication, since accurate metering of grease and consistent relubrication is maintained through the use of these devices.

Best determination of relubrication interval can be made by testing or experience in the application. Contact Application Engineering for assistance in determining relubrication interval.

Mounting Details - Spherical Roller Bearings Cylindrical Bore

Proper mounting of SPHERE-ROL® spherical roller bearings generally requires a press fit of the ring rotating relative to the radial load. A close to loose fit is used for the ring stationary relative to the radial load. Specific shaft and housing fit selection and respective diameters are listed in the tables below and following pages. The following are some general guidelines and details to bear in mind when installing this bearing series.

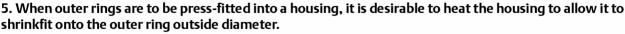
1. Inspect housing and shaft.

- Clean, remove burrs and sharp edges.
- If any damage has occurred to the bearing seat in the housing or on the shaft, repair that damage to bring the seat surface back to its original condition.
- Ground shaft finishes are normally suggested. Consult Application Engineering if machined finish is to be used.
- When stationary outer rings are required to float (move axially in the housing bore to compensate for expansion), a housing bore surface finish of 65 microinches Ra is recommended.

2. Determine which member, shaft or housing has an interference fit with the bearing.

- In general, the ring rotating relative to the radial load has an interference fit.
- Refer to Shaft and Housing seat fit tables for respective fits and tolerances. For applications not covered by these tables, consult Application Engineering for recommendations.

3. Install the bearing onto the press-fitted member by applying force against the bearing ring that is pressfitted.


- For a press-fitted inner ring, apply the force required to assemble the bearing onto the shaft against the face of the bearing inner ring.
- For a press-fitted outer ring, apply the force required to assemble the bearing into the housing against the face of the bearing outer ring.
- Care should be exercised to assure that the bearing starts onto the press-fitted member as squarely as possible.
- Use arbor press whenever possible.
- Do not hammer on bearing ring face.

4. Inner rings press-fitted on the shaft may be more easily installed by heating the ring and causing it to shrinkfit.

- Normally, heating the ring to 175°F to 212°F (79°C to 100°C) will be sufficient to allow the ring to slide over the interference fit shaft seat.
- Heating the ring should be accomplished with an induction heater or in a mineral oil bath. Never use a torch to heat a bearing for assembly purposes.
- Sealed bearings should not be heated in oil bath as the grease with which the bearings are filled may be
 affected.

• Freezing the bearing to shrink it for easy assembly into a press-fitted housing is not recommended. Water condensation can form inside the bearing upon its return to room temperature, which can lead to corrosion. Exposure to extreme cold can also affect the metallurgical structure of the bearing.

6. Proper caution should be exercised during installation to guard against axial preload of the bearing. This can be checked by:

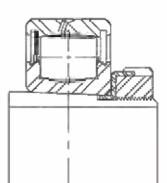
- Endplay Check for endwise "shake" which when present shows that the bearings as installed have endplay.
- Ease of Rotation Rotate assembly by hand. The bearing must be free from unusual drag or noises.

CAUTION - During installation, do not misalign NYLAPLATE® sealed bearing more than 3° and LAMBDA® sealed bearings more than 1° or seal(s) may be damaged.

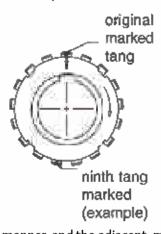
Mounting Details - Spherical Roller Bearings Tapered Bore

SPHERE-ROL® bearings are available with tapered bore feature for applications utilizing tapered adapter sleeve mounting arrangements or tapered shaft seats. This feature sometimes facilitates the mounting of SPHERE-ROL® bearings and can be used to prevent the necessity for heating of bearings or to eliminate the need for complicated press fitting practices.

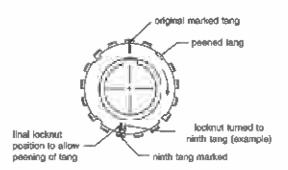
Standard tapered adapter sleeves, as well as associated lock nuts and lock washers, are tabulated on pages D-11 to D-18 and are identifiable with the appropriate bearing by the suffix number. The separate items may be called out individually by their part number or the complete tapered bore bearing and associated hardware may be identified by the suffix letter "A" following the bearing number. The standard bore taper of these bearings is 1" in 12", on the diameter, and tapered bore bearings are themselves identified by the suffix letter "K" following the basic bearing number.


In mounting, the bearing bore is forced against the taper of the split adapter sleeve or the tapered shaft seat by the action of a lock nut. A progressively tighter fit can be obtained by tightening the lock nut to increase the axial displacement of the bearing along the taper. Due to the need for greater take-up of internal clearance with this type of mounting, special internal clearances are provided. Care must be exercised to insure that the optimum take-up of internal clearance is followed. Too great a reduction of internal clearance will result in potential overheating of the bearing in many applications.

The mounting procedure for adapter mounted, tapered bore SPHERE-ROL® bearings does not require the use of feeler gauge or special gauging procedure. The basic principle of this measurement system is the use of the lock nut and lock washer as a protractor device. Because the lock nuts available for each basic bearing size are standard items, they are manufactured to specific thread pitches. Thus, the axial advancement for each revolution of the nut is predetermined, and the portions of revolutions of the lock nuts required to obtain the correct internal clearance reduction is also predetermined. Additionally, the standard lock washers have a specific number of tangs for each size, and these tangs can be used as the protractor for determining the correct portions of revolutions of the lock nuts. The basic procedure is as follows:


Spherical Engineering Section continued

1. To reduce friction and facilitate mounting, apply a medium weight oil to the bearing bore, the outside diameter of the adapter sleeve, all threads and the face of the lock nut.



2. Mount the bearing on the tapered seat with a snug fit between the adapter bore and the shaft seat, with the lock nut and lock washer mounted snugly against the face of the bearing inner ring. (A snug fit is obtained when the adapter sleeve no longer rotates when the lock nut is tightened.) At this point, no internal clearance has been removed from the bearing and any advancement of the lock nut will result in reduction of internal clearance due to interference between the bearing bore and tapered seat.

- 3. Mark a lock washer tang in any suitable manner, and the adjacent, mating area of the lock nut.
- 4. Count in the direction of tightening, a certain number of tangs, specified at the right.
- 5. Mark the specified lock washer tang.

MCGILL. SPHERE-ROL® Spherical Bearings

Spherical Engineering Section continued

- 7. If, at this point, none of the tangs line up directly with a corresponding slot in the lock nut OD, rotate the lock nut, in a tightening direction, the additional small amount required to line up the closest slot and tang.
- 8. The correct internal clearance has now been obtained and the lock washer tang can be peened into the slot of the lock nut, thereby locking the assembly.

The more common procedure used for determining the proper fit of spherical roller bearings on tapered seat is to measure the reduction of internal clearance of the bearing, upon mounting, through the use of feeler gauges or shim stock. This procedure can be utilized with the non-sealed SPHERE-ROL® bearing, if desired. The customer must initially measure and verify the clearance existing in the unmounted bearing, then press the bearing on the tapered seat until the specified amount of clearance has been removed, checking with the feeler gauges. The chart below gives the required diametral clearance reductions which should be used when the feeler gauging procedure is utilized.

Clearance reduction — (-K suffix)

Bearing Bore In Millimeters	Diametrical Clearance Reduction Inches	Lock Nut Turns Degrees	ABMA Lock Washer Number	Req'd No. of Lock Washer Tangs for Clearance Reduction
25	. 0009	277	W -05	10
30	. 0009	204	W -06	7
35	. 0009	204	W -07	9
40	. 0009	204	W -08	9
45	. 0010	215	W -09	10
50	. 0010	215	W -10	10
55	. 0010	215	W -11	10
60	. 0010	215	W -12	10
65	. 0010	215	W -13	11
70	. 0015	273	W -14	14
75	. 0015	146	W -15	8
80	. 0015	146	W -16	8
85	. 0015	146	W -17	8
90	. 0015	146	W -18	8
95	. 0015	146	W -19	8
100	. 0015	146	W -20	8
110	. 0020	177	W -22	9
120	. 0020	177	W -24	9
130	. 0025	207	W -26	11
140	. 0025	207	W -28	11
150	. 0030	238	W -30	13
180	. 0030	158	W -36	8

pherical Bearing Engineering see page D-23.								

Radial

Unmounted bearing assembly consisting of through hardened inner and outer raceways with cylindrical rolling elements separated by steel, brass or cast iron retainers (cage). The retainer can be land or roller riding depending on the type of inner and outer raceway flange configuration. Radial roller bearings provide an antifriction solution when supporting rotating shafts with radial loads.

Bearing Configurations

Separable Or Non-Separable Inner/Outer Raceway

Flange Styles

Single, Double, Loose Flange

Bore Diameter Size Range

30 mm to 440 mm (1.181" to 17.323")

Materials

Bearing Quality Steel

Radial Selection Guide

	li			FLANGE	PICTORAL			
	Cencriphon	Inner Race Seperable, both Directions	Inner race seperable, one direction	Two piece inner race, four flange design	Outer race seperable in both directions	Outer race seperable, one direction	Non seperable	Size Range
ISO	NU-xxx-E	Х						35mm - 140mm
Tru-Rol	E-xxx-U	Х						30mm - 280mm
Tru-Rol	E-xxx-B	Х						30mm - 160mm
Max	MUC-xxx	Х						140mm - 440mm
ISO	NJ-xxxx-E		Х					35mm - 140mm
Tru-Rol	L-xxx-U		Х					30mm - 300mm
Max	MUL-xxxx		Х					140mm - 440mm
Tru-Rol	U-xxxx-B						Х	30mm - 150mm

*For estimating purpose only, individually sizes may vary and are subject to change without notification

D	ESIGN CH	IARACTER	ISTICS			Fe	atures			4
Radia Load	Thrust Load	High Spend	Floiative Base Coor*	Stammer Shout Familier	Segmented Steel Retainer	Ten Pince Baren Flatzi cer	One Picen Brase Retainer	Full complement of Rollers / no retainer	Radial Clearances Greater/less then standard	Page No.
•	0		\$\$	Opt	Opt	S	Opt	N/A	Opt	E-16
	0	•	\$	Opt	S	Opt	Opt	N/A	Opt	E-16
	0	•	\$	Opt	S	Opt	Opt	N/A	Opt	E-16
a	0	•	\$\$	Opt	Opt	S	Opt	N/A	Opt	E-28
•	0	•	\$\$	Opt	Opt	S	Opt	N/A	Opt	E-16
•	0	•	\$	Opt	S	Opt	Opt	N/A	Opt	E-16
•	0	•	\$\$	Opt	Opt	S	Opt	N/A	Opt	E-28
	0	•	\$	Opt	S	Opt	N/A	N/A	Opt	E-16
			Low Speed							
			Medium Speed	1						
			Medium to Hig			l				
			Land Riding, F				I			
			Higher Capaci		peed			l		
			For Specific A	pplications					•	

Opt = Optional S = Standard

○ = Not Recommended

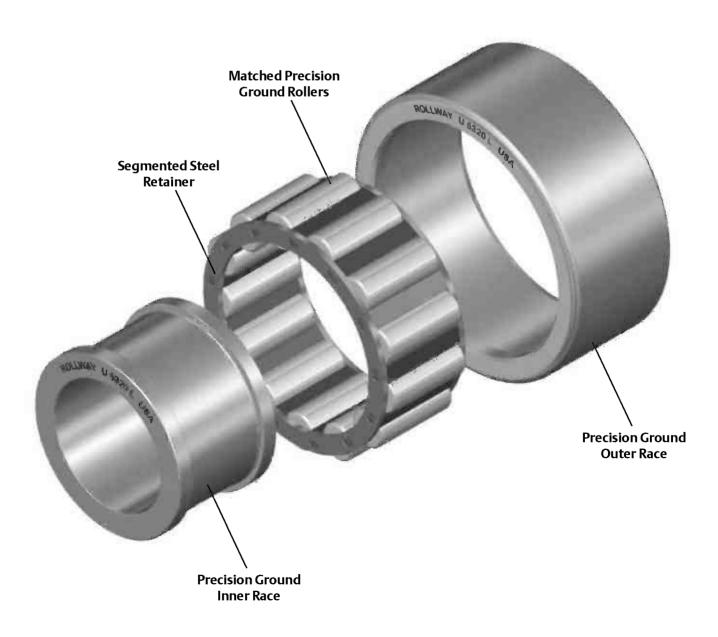
Radial Selection Guide

			ļ		FLANGE I	PICTORAL			
									_
_		Description	Inner Race Seperable, both Directions	Inner race seperable, one direction	Two piece inner race, four flange design	Outer race seperable in both directions	Outer race seperable, one direction	Non seperable	Size Range
	ISO	N-xxx-E				X			35mm - 140mm
	Tru-Rol	U-xxxx-E				X			30mm - 300mm
	Max	MCS-xxxx				X			140mm - 440mm
	Tru-Rol	U-xxxx-L					X		30mm - 300mm
	Max	ML-xxxx					X		140mm - 440mm
0	ISO	NUP-xxx-E			Х				35mm - 140mm
	Tru-Rol	LP-xxxx-U			X				30mm - 300mm
	Max	MU-xxxx			Х				140mm - 440mm

*For estimating purpose only, individually sizes may vary and are subject to change without notification

D	esign Ch	ARACTER	ISTICS			Fea	atures		Î	
Radia Load	Thrust Load	Higo Spenii	Floiative Base Cont	Situmpos Diesi Mateinar	Segmented Steel Retainer	Two Files Name Retainer	One Piers Bress Retainer	Full complement of Rollers / no retainer	Radial Clearances Greater/less then standard	Page No.
•	0		\$\$	Opt	Opt	S	Opt	N/A	Opt	E-16
•	0	•	\$	Opt	S	Opt	Opt	N/A	Opt	E-16
•	0	•	\$\$	Opt	Opt	S	Opt	N/A	Opt	E-28
•	0	•	\$	Opt	S	Opt	Opt	N/A	Opt	E-16
•	0	•	\$\$	Opt	Opt	S	Opt	N/A	Opt	E-28
•	•	•	\$\$	Opt	Opt	S	Opt	N/A	Opt	E-16
	•	•	\$	Opt	S	Opt	Opt	N/A	Opt	E-16
•	•	•	\$\$	Opt	Opt	S	Opt	N/A	Opt	E-28
Low Speed Medium Speed Medium to High Speed										
			Land Riding, H		ed.					
			For Specific A]	

Opt = Optional S = Standard


○ = Not Recommended

Poor ← → Best


ROLLWAY® Radial Bearings

Rollway Radial Roller Bearings

Rollway Radial bearings utilize crowned cylindrical rollers for more dynamic capacity and longer life than comparable ball bearings. These bearings also feature through hardened bearing quality steel raceways and a variety of retainer (cage) options depending on the load/speed requirements of the application (Rollway radial roller bearings are available with standard clearance, as well as clearance ranges greater and less than standard, in order to accomodate application requirements). Depending on your preference, these bearings are available in a wide variety of sizes and options as illustrated on the pages to follow.

Rollway Radial Roller Nomenclature TRU-ROL Numbering

Prefix

E - Inner Race Separable Both Directions.

L - Inner Race Separable One Direction.

LP - Two-Piece Inner Race, One Part Is Separable One Direction, The Other Is A Thrust PlateTo Form A Channeled Race Assembly.

U - Inner Race With Two Flanges, Non-Separable.

UM - Inner Race With Two Flanges, Non-Separable, Full Complement Of Rollers. **None** - No Inner Race Supplied.

Size Designator

Available Series; 1000, 1200, 1300, 5200, 5300 And 6200.

Suffix

E (EMR) - Outer Race Separa de **Enth** Directions.

L (LMR) - Outer Race Separable One Direction.
LP (LPMR) - Two-Piece Outer Record One Part Is
Separable One Direction, The Other A Thrust
Plate To Form A Channel de Race Assembly,
U (UMR) - Outer Race Will Two Flaters, Non-Separable.

B- Outer Race With Two Snicp Tings To Retain The Roller Set, Non-Separal II.

J - Outer Race With One Snap Fing And One Flange To Retain The Rollin 53 Scor Separable.

Prefix

Inner Race Description

Size Designator

Available Series

Suffix

Outer Race Description

Variation Code

Variation Codes Are Divided Into Two Categories; Special And Standard.

Variation Codes

Special variation codes

101 to 129 - are numerically assigned codes that designate the variation from standard (example 101 = 1st variation, 102 = 2nd variation, etc.). These bearing code numbers do not in any way reference the modification from standard. Application Engineering must be contacted for information concerning a particular modification.

Standard variation codes


001 to 099 and 130 to 199 - are code numbers representing standard modifications. The most popular are listed below:

- K Dver sized OD.
- 🕠 🕞 llway internal clearance Class 3.
- **005** Rallway internal clearance Class 5.
- 007 Rolley Internal clearance Class 7.
- បាច ប៊ុបនោះការ with SAE ring groove areuាៅ ប៊ុប
- 027 Outerrace with blind hole or locating

 #Ich in butter race.
- I Broached retainer.
- 199 Fraring with SAE Img groove on OD and snapring Lumbhed.

Rollway Radial Roller Nomenclature MAX Numbering

Prefix

Bearing Configuration Description

Size Designator

Available Series

Variation Code

Variation Codes Are Divided Into Two Categories; Special And Standard.

Prefix

ML - Bearing assembly with roller assembly retained in inner race, outer race separable one direction.

MCS - Bearing assembly with roller assembly retained in inner race, outer race separable both directions.

MN - Bearing assembly with roller assembly retained in inner race. Two-piece outer race, one part is separable one direction, the other is a thrust plate to form a channel race.

MS - Bearing assembly with roller assembly retained in inner race. Outer race with two snap rings to retain the roller set, non-separable.

M - Bearing assembly with roller assembly retained in inner race. Outer race with two and rings to retain the roller set, non-sep_nultile with a full complement of rollers.

MUC - Bearing assembly with **Interval** separable both directions. Ruller and Interval Inter

MUL - Bearing assembly with inner uptoseparable one direction. Rolling programs retained in outer race.

MR - Bearing with a two-piece inner race, one part is separable one direction, the other is an HJ ring to form a channel race. Outer race retains the roller assembly.

Size Designator

Available series; 100, 200, 300, 5000 and 5100.

Variation Codes

Special variation codes

101 to 199 - are numerically assigned codes that designate the numerical variation from standard was ample 101 = 1st variation.

107 - 7 - d variation, etc.). These bearing codes in the result of the standard of the result of

Littling in the contacted for information and in the contacted for information and in the contacted for information.

Standard variation codes

hor the 199 - e corle numbers representing the most popular are here!

- nn3 Kollwag and a said a sumnce Class 3.
- 005 Rollwag into male smarce Class 5.
- 1007 Kallenay Indo-call 1007 Ce Class 7.

Rollway Radial Roller Nomenclature ISO Numbering

Prefix

Bearing Configuration Description

Size Designator

Available Series

Variation Code

Variation Codes Are Divided Into Two Categories; Special And Standard.

Prefix

NU - Bearing assembly with inner race separable both directions. Roller assembly retained in outer race.

NUP - Bearing with a two piece inner race, one part is separable one direction, the other is a thrust plate to form a channeled race. Outer race retains the roller assembly.

NJ - Bearing assembly with inner race separable one direction. Roller assembly retained in outer race.

N - Bearing assembly with roller assembly retained in inner race. Outer race separable both directions.

Standard variation codes

Are code numbers representing standard modifications. The most popular are listed below:

- E Extra capacity design
- M Machined brass retainer
- C2 ABMA internal clearance symbol 2
- C3 ABMA internal clearance symbol 3
- C4 ABMA internal clearance symbol 4
- \$1 Bearing is stabilized for operation at 390°F

Size Designator

Available series; 200, 300_2200 i il.::1111.

Variation Codes Special variation codes

VAA - begins an alpha cock (- sign of line of

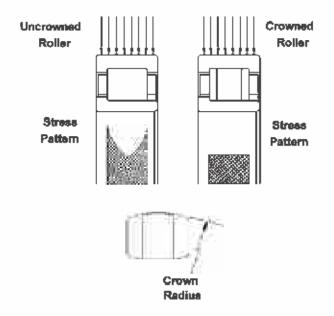
Features and Benefits

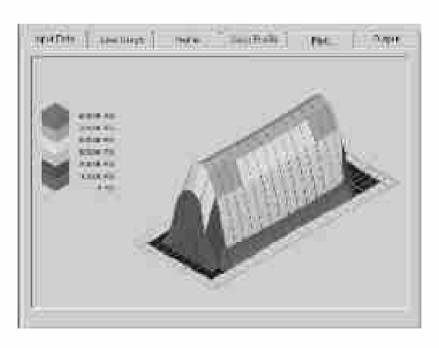
Unmounted Internal Clearances

Rollway's standard is C3, though other unmounted internal clearances are readily available.

Retainers

Standard retainer options include segmented steel or machined brass, which are detailed on the following pages.


Precision Ground Inner and Outer Races


Races are manufactured from through hardened bearing grade steel. Surfaces are precision ground to RBEC 1 and stabilized to 335°F.

Features and Benefits

Matched Precision Crowned Rollers

All radial rollers are crowned. Extra capacity bearing designs have larger rollers, maximizing the load carrying potential of the bearing's cross sectional area. Crowned rollers yield a more evenly distributed load pattern on the races, resulting in longer life. All Rollway cylindrical and tapered bearings feature crowned rollers.

ROLLWAY® Radial Bearings

Options

Stamped Steel Retainer

A one-piece, steel stamping. Supplied on some bearings with snap ring retention. (TRU-ROL numbering suffix of "R") Recommended for low speed operations.

- Stamped Steel
- Rides below pitch circle
- Low Speed
- Used only with Outer Race or Retaining rings
- Rollers guided by raceway flanges
- Well suited for volume production
- Inexpensive in comparison to other retainers

Segmented Steel Retainer

A built-up type of retainer utilizing steel segments rigidly held between stamped, steel end plates. This is the standard retainer supplied with commercial bearings identified with the TRU-ROL numbering system. Recommended for moderate speed applications.

- Formed steel segments held between two steel end plates
- Good roller guidance with minimizing friction
- Flexible accommodates different widths
- This retainer design is well adapted for volume production

Two-Piece Retainer

This type of retainer is fabricated from brass. This is the standard retainer supplied with Rollway bearings identified with the MAX numbering system, ISO numbering system, TRU-ROL numbering system when the "MR" suffix is used, and any bearing with bore size over 180mm. Recommended for moderate to high speed applications.

- Accurate roller guidance
- Machined Pockets to minimize skewing
- Typically made of brass, cast iron is available for applications where brass cannot be used
- Higher speed applications
- Recommended when torsional loading on retainer is severe.
- Available with most radial roller

Options continued

One-Piece Retainer

This land piloting retainer is fabricated from brass or steel with radial retention of the rollers provided by closing the roller "pocket" with small projections formed by mechanically upsetting the retainer material. This retainer design is typically made to order for high speed applications, though it is applicable for other applications. It should be noted that retainers may be designed for specific applications to enhance bearing performance. Please contact Application Engineering for more information.

- High speed applications
- Made of brass or silver plated steel
- Land riding, minimizing friction between the rollers and the retainer
- Special order only

Race and Roller Material

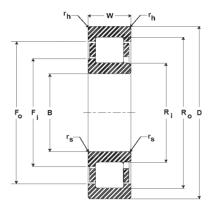
The races and rollers in standard Rollway bearings are made of high alloy, through-hardened and/or case-carburized steels that are stabilized for operation up to 250°F for case-carburized steel and 335°F for through-hardened steels. For operating temperatures in excess of 335°F, special materials and/or stabilization procedures are necessary.

Vacuum-degassed steels are used in standard bearings; however, consumable-electrode remelted steels (from either air CEVM or vacuum-melted electrodes VIMVAR) are available in all alloys and will be supplied upon request.

We also manufacture low quantities of bearing designs with M-50 tool steel for applications requiring high temperature hardness and average operating temperatures over 400°F but less than 800°F.

ROLLWAY. Radial Bearings

Basic Construction Type: Cylindrical Roller Bearing


Rolling Elements: Crowned Cylindrical Rollers

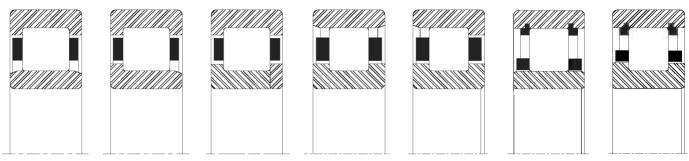
Bearing Material: Through Hardened Bearing

Grade Steel

Retainer Type: Stamped Steel, Segmented

Steel, Two Piece Brass, One Piece Land Riding Brass

Cylindrical Roller Bearings


U	D	W	Rs	Rh	(C)	Co	FI	FI	Fo	flo .	
Ban	Outside Diameter	Width	Co	rner*	Basic Oyrumic Rating	Basic Static Rating	Flange 0.0. Inher Race	O.D. Inner Race	Flange I D. Outer Race	I.D. Outer Race	Bearing Weight
mm inch	mm	mm inch	mm	men inch	Mills	Nills	mm inch	mm inch	mm inch	min	18
	62	16 .6299	1.0 .039	1.0 .039	31,942 7,130	31,002 6,920	41.3 1.626	38.0 1.490	51.2 2.030	54.0 2.126	0.2 0.4
30	2.4409	23.8 .9375	1.0 .039	1.0 .039	47,533 10,610	51,654 11,530	41.3 1.626	38.0 1.498	51.2 2.016	54.0 2.126	0.4 0.9
1.1811	72	19 .7480	1.5 .059	1.0 .039	44,486 9,930	42,605 9,510	44.6 1.756	40.7 1.602	56.9 2.239	60.4 2.378	0.5 1.1
	2.8346	30.2 1.1875	1.5 .059	1.0 .039	70,918 15,830	77,683 17,340	44.6 1.756	40.7 1.602	56.9 2.239	60.4 2.378	0.6 1.3
		17 .6693	1.0 .039	1.0 .039	38,304 8,550	37,094 8,280	48.0 1.890	44.0 1.732	59.4 2.340	62.4 2.457	0.3 0.7
	72 2.8346	27 1.0625	1.0 .039	1.0 .039	62,541 13,960	69,754 15,570	48.0 1.890	44.0 1.732	59.4 2.340	62.4 2.457	0.5 1.1
35		54 2.1250	1.0 .039	1.0 .039	107,206 23,930	139,462 31,130	48.0 1.890	44.0 1.732	59.4 2.340	62.4 2.457	1.0 2.2
1.3780	80 3.1496	21 .8268	1.5 .059	1.0	67,155 14,990	66,394 14,820	51.2 2.016	46.2 1.819	65.4 2.575	70.2 2.764	0.5 1.1
			1.5 .059	1.5 .059	58,150 12,980	59,584 13,300	51.1 2.012	46.8 1.844	64.2 2.526	67.9 2.673	0.5 1.1
		34.9 1.3750	1.5 .059	1.5 .059	87,898 19,620	101,427 22,640	51.1 2.012	46.8 1.844	64.2 2.526	67.9 2.673	0.9 2.0
	80 3.1496	18 .7087	1.5 .059	1.0	46,234 10,320	46,906 10,470	53.4 2.102	49.9 1.966	66.1 2.602	69.6 2.740	0.5 1.1
	3.1496	30 1.1875	1.5 .059	1.0	79,296 17,700	93,856 20,950	53.4 2.102	49.9 1.966	66.1 2.602	69.6 2.740	0.7 1.5
40 1.5748		23 .9055	1.5 .059	1.5 .059	82,880 18,500	81,581 18,210	57.7 2.272	52.0 2.047	74.4 2.929	80.0 3.150	0.7 1.5
	90 3.5433		1.5 .059	1.5	69,978 15,620	69,440 15,500	57.4 2.260	52.6 2.059	73.1 2.878	77.9 3.067	0.8 1.8
		36.5 1.4375	1.5 .059	1.5 .059	110,522 24,670	124,992 27,900	57.4 2.260	52.6 2.059	73.1 2.878	77.9 3.067	1.3 2.9
		19 .7480	1.5 .059	1.0 .039	63,571 14,190	67,469 15,060	59.1 2.327	54.5 2.146	72.1 2.839	76.5 3.012	0.6 1.3
	85 3.3465		1.5 .059	1.0	51,430 11,480	55,552 12,400	59.4 2.339	55.5 2.186	71.5 2.815	74.9 2.949	0.5 1.1
45 1.7717		30.2 1.1875	1.5 .059	1.0	82,029 18,310	101,248 22,600	59.4 2.339	55.5 2.186	71.5 2.815	74.9 2.949	0.8 1.8
' ' '	100	49.7 1.5625	2.0 .079	1.5 .059	136,998 30,580	163,878 36,580	64.8 2.551	59.4 2.337	81.3 3.201	86.1 3.390	1.7 3.7
	100 3.9370	25 .9843	1.5 .059	1.5 .059	100,262 22,380	102,592 22,900	64.6 2.543	58.5 2.303	82.5 3.248	88.5 3.484	1.0 2.2
		.9843	2.0 .079	1.5 .059	88,301 19,710	93,184 20,800	64.8 2.551	59.4 2.337	81.3 3.201	86.1 3.390	1.0 2.2

Radial Roller bearings and manufactured to the ABMA RBEC-1 tolerance class. Bearing manufactured to either RBEC-3, RBEC-5 or special tolerance classes are also available upon request. Unless otherwise specified all Rollway radial roller bearings are manufactured to ABMA's RBEC-1 precision class.

Metric dimensions for reference only.

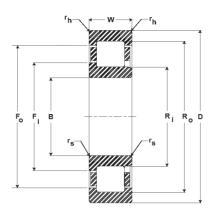
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120. For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

 $[\]ensuremath{^*} \text{rs}$ and rh are the maximum shaft and housing fillet radius that can be cleared.

	Inner Race Seperable Both Directions	Inner Race Separable One Direction	Two Piece Inner Race Four-Flange Design	Outer Race Separable Both Directions	Outer Race Separable One Direction	Inner Race Separable Both Directions	Non-Separable
	E 1206 U	L 1206 U	LP 1206 U	U 1206 E	U 1206 L	E 1206 B	U 1206 B
	E 5206 U	L 5206 U	LP 5206 U	U 5206 E	U 5206 L	E 5206 B	U 5206 B
	E 1306 U	L 1306 U	LP 1306 U	U 1306 E	U 1306 L	E 1306 B	U 1306 B
	E 5306 U	L 5306 U	LP 5306 U	U 5306 E	U 5306 L	E 5306 B	U 5306 B
Г	E 1207 U	L 1207 U	LP 1207 U	U 1207 E	U 1207 L	E 1207 B	U 1207 B
T	E 5207 U	L 5207 U	LP 5207 U	U 5207 E	U 5207 L	E 5207 B	U 5207 B
	E 6207 U	L 6207 U	LP 6207 U	U 6207 E	U 6207 L	E 6207 B	U 6207 B
Г	NU 307 U	NJ 307 E	NUP 307 E	N 307 E	-	-	-
	E 1307 U	L 1307 U	LP 1307 U	U 1307 E	U 1307 L	E 1307 B	U 1307 B
	E 5307 U	L 5307 U	LP 5307 U	U 5307 E	U 5307 L	E 5307 B	U 5307 B
	E 1208 U	L1208 U	LP1208 U	U 1208 E	U 1208 L	E1208 B	U 1208 B
	E 5208 U	L 5208 U	LP 5208 U	U 5208 E	U 5208 L	E 5208 B	U 5208 B
	NU 308 U	NJ 308 E	NUP 308 E	N 308 E	-	-	-
	E 1308 U	L 1308 U	LP 1308 U	U 1308 E	U 1308 L	E 1308 B	U 1308 B
	E 5308 U	L 5308 U	LP 5308 U	U 5308 E	U 5308 L	E 5308 B	U 5308 B
Г	NU 209 E	NJ 209 E	NUP 209 E	N 209 E	-	-	-
	E 1209 U	L 1209 U	LP 1209 U	U 1209 E	U 1209 L	E 1209 B	U 1209 B
	E 5209 U	L 2509 U	LP 2509 U	U 2509 E	U 2509 L	E 2509 B	U 2509 B
Г	E 5309 U	L 5309 U	LP 5309 U	U 5309 E	U 5309 L	E 5309 B	U 5309 B
	NU 309 E	NJ 309 E	NUP 309 E	N 309 E	-	-	-
	E 1309 U	L 1309 U	LP 1309 U	U 1309 E	U 1309 L	E 1309 B	U 1309 B

Basic Construction Type: Cylindrical Roller Bearing

> **Rolling Elements:** Crowned Cylindrical Rollers


> **Bearing Material:** Through Hardened Bearing

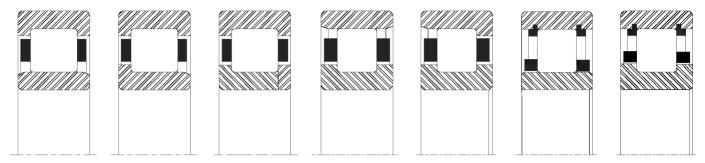
Grade Steel

Retainer Type: Stamped Steel, Segmented

Steel, Two Piece Brass, One

Piece Land Riding Brass

Cylindrical Roller Bearings


B.	Đ	W	Rs	Alth	10	Co	TH	- 10	Fo	11.5	
Ban	Outside Diameter	Width	Cor	ner*	Basic Oynamic Rating	Basic Static Rating	Flange O.D. Inner Race	O.D. Inner Race	Flange I.D. Outer Race	I.D. Guler Roce	Bearing Weight
mm inch	nm	inen Inch	mm inch	mm	Mills	Nills	(6m) inch	inch .	mm	min	18
		20	1.0 .039	1.0 .039	66,528 14,850	73,024 16,300	64.1 2.524	59.5 2.343	77.1 3.035	81.5 3.209	0.6 1.3
	90	.7874	1.5 .059	1.0 .039	52,416 11,700	58,957 13,160	64.4 2.535	60.5 2.382	76.6 3.015	79.5 3.130	0.6 1.3
	3.5433	30.2 1.1875	1.5 .059	1.0 .039	83,597 18,660	107,430 23,980	64.4 2.535	60.5 2.382	76.7 3.018	79.5 3.130	0.9 2.0
50		60.3 2.3750	1.5 .059	1.0 .039	143,360 32,000	214,861 47,960	64.4 2.535	60.5 2.382	76.7 3.018	79.5 3.130	1.7 3.7
1.9685			2.0 .079	2.0 .079	113,210 25,270	117,779 26,290	71.4 2.811	65.0 2.559	90.6 3.567	97.0 3.819	1.3 2.9
	110	27 1.0630	1.5 .059	1.5 .059	102,816 22,950	109,357 24,410	71.0 2.795	65.2 2.565	89.2 3.512	94.5 3.720	1.3 2.9
	4.3307	40 1.5748	1.5 .059	1.5 .059	165,760 37,000	192,326 42,930	71.4 2.811	65.2 2.565	89.2 3.512	97.0 3.819	1.9 4.2
		44.5 1.7475	1.5 .059	1.5 .059	161,683 36,090	195,731 43,690	71.0 2.795	65.0 2.559	89.2 3.512	94.5 3.720	2.3 5.1
		21	2.0 .079	1.5 .059	86,957 19,410	100,262 22,380	70.9 2.791	66.0 2.598	85.2 3.354	90.0 3.543	0.7 1.5
	100 3.9370	.8268	2.0 .079	1.5 .059	65,318 14,580	75,443 16,840	71.1 2.799	66.9 2.634	84.2 3.316	88.0 3.465	1.0 2.2
		33.3 1.3125	2.0 .079	2.0 .079	105,862 23,630	140,358 31,330	71.1 2.799	66.9 2.634	84.2 3.316	88.0 3.465	0.5 1.1
55 2.1654		29 1.1417	2.0 .079	2.0 .079	139,552 31,150	146,496 32,700	77.6 3.055	70.5 2.776	99.3 3.909	106.5 4.193	1.6 3.5
	120		2.0 .079	2.0 .079	116,301 25,960	123,738 27,620	77.9 3.067	71.4 2.812	97.8 3.851	103.6 4.079	1.6 3.5
	4.7244	43 1.6929	2.0 .079	2.0 .079	203,571 45,440	238,067 53,140	77.6 3.055	70.5 3.031	99.3 4.228	106.5 4.193	2.4 5.3
		49.2 1.9375	2.0 .079	2.0 .079	199,405 44,510	247,027 55,140	77.9 3.067	71.4 2.812	97.8 3.850	103.6 4.079	2.8 6.2
		22 .8661	1.5 .059	1.5 .059	97,126 21,680	107,251 23,940	77.7 3.059	72.0 2.835	94.4 3.717	100.0 3.937	1.0 2.2
	110 4.3307	.8661	2.0 .079	1.5 .059	80,819 18,040	89,958 20,080	76.9 3.028	72.4 2.850	93.2 3.670	97.7 3.846	1.0 2.2
	4.3307	36.5 1.4375	2.0 .079	1.5 .059	136,192 30,400	176,019 39,290	76.9 3.028	72.4 2.850	93.2 3.670	97.7 3.846	1.6 3.5
60		73 2.8750	2.0 .079	1.5 .059	233,498 52,120	351,994 78,570	76.9 3.028	72.4 2.850	93.2 3.670	97.7 3.846	3.1 6.8
2.3622		31	2.0 .079	2.0 .079	154,560 34,500	164,550 36,730	84.5 3.327	77.0 3.031	107.4 4.228	115.0 4.528	2.0 4.4
	130	1.2205	2.5 .098	2.0 .079	135,475 30,240	145,914 32,570	84.6 3.331	77.5 3.053	106.3 4.187	112.4 4.425	2.0 4.4
	5.1181	46 1.8110	2.0 .079	2.0 .079	227,629 50,810	270,682 60,420	84.5 3.327	77.0 3.031	107.4 4.228	115.0 4.528	2.5 5.5
		54 2.1250	2.5 .098	2.0 .079	239,411 53,440	303,341 67,710	84.6 3.331	77.5 3.053	106.3 4.190	112.4 4.425	3.9 8.6

Radial Roller bearings and manufactured to the ABMA RBEC-1 tolerance class. Bearing manufactured to either RBEC-3, RBEC-5 or special tolerance classes are also available upon request. Unless otherwise specified all Rollway radial roller bearings are manufactured to ABMA's RBEC-1 precision class.

Metric dimensions for reference only.

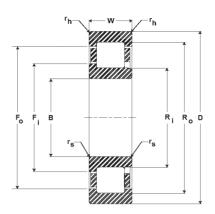
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120. For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

 $[\]ensuremath{^*}\text{rs}$ and rh are the maximum shaft and housing fillet radius that can be cleared.

Inner Race Seperable Both Directions	Inner Race Separable One Direction	Two Piece Inner Race Four-Flange Design	Outer Race Separable Both Directions	Outer Race Separable One Direction	Inner Race Separable Both Directions	Non-Separable
NU 210 E	NJ 201 E	NUP 201 E	N 201 E	-	-	-
E 1210 U	L 1210 U	LP 1210 U	U 1210 E	U 1210 L	E 1210 B	U 1210 B
E 5210 U	L 5210 U	LP 5210 U	U 5210 E	U 5210 L	E 5210 B	U 5210 B
E 6210 U	L 6210 U	LP 6210 U	U 6210 E	U 6210 L	E 6210 B	U 6210 B
NU 310 E	NJ 310 E	NUP 310 E	N 310 E	-	-	-
E 1310 U	L 1310 U	LP 1310 U	U 1310 E	U 1310 L	E 1310 B	U 1310 B
NU 2310 E	NJ 2310 E	NUP 2310 E	N 2310 E	-	-	-
E 5310 U	L 5310 U	LP 5310 U	U 5310 E	U 5310 L	E 5310 B	U 5310 B
NU 211 E	NJ 211 E	NUP 211 E	N 211 E	-	-	-
E 1211 U	L 1211 U	LP 1211 U	U 1211 E	U 1211 L	E 1211 B	U 1211 B
E 5211 U	L 5211 U	LP 5211 U	U 5211 E	U 5211 L	E 5211 B	U 5211 B
NU 311 E	NJ 311 E	NUP 311 E	N 311 E	-	-	-
E 1311 U	L 1311 U	LP 1311 U	U 1311 E	U 1311 L	E 1311 B	U 1311 B
NU 2311 E	NJ 2311 E	NUP 2311 E	N 2311 E	-	-	-
E 5311 U	L 5311 U	LP 5311 U	U 5311 E	U 5311 L	E 5311 B	U 5311 B
NU 212 E	NJ 212 E	NUP 212 E	N 212 E	-	-	-
E 1212 U	L 1212 U	LP 1212 U	U 1212 E	U 1212 L	E 1212 B	U 1212 B
E 5212 U	L 5212 U	LP 5212 U	U 5212 E	U 5212 L	E 5212 B	U 5212 B
E 6212 U	L 6212 U	LP 6212 U	U 6212 E	U 6212 L	E 6212 B	U 6212 B
NU 312 E	NJ 312 E	NUP 312 E	N 312 E	-	-	-
E 1312 U	L 1312 U	LP 1312 U	U 1312 E	U 1312 L	E 1312 B	U 1312 B
NU 2312 E	NJ 2312 E	NUP 2312 E	N 2312 E	-	-	-
E 5312 U	L 5312 U	LP 5312 U	U 5312 E	U 5312 L	E 5312 B	U 5312 B

Basic Construction Type: Cylindrical Roller Bearing

> **Rolling Elements:** Crowned Cylindrical Rollers


> **Bearing Material:** Through Hardened Bearing

Grade Steel

Retainer Type: Stamped Steel, Segmented

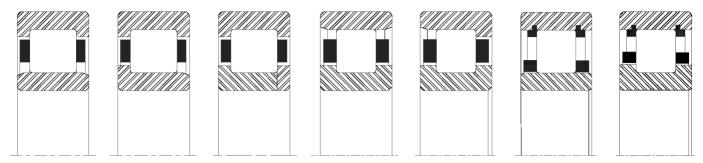
Steel, Two Piece Brass, One

Piece Land Riding Brass

Cylindrical Roller Bearings

Ш	D	W	Rs	AH	C	ß	FI	- (4)	Fo	No	
Ban	Outside Diamater	Width	Со	rner*	Basic Oylumic Ruting	Besic Static Rating	Flange O.D. Inner Race	O.D. Inner Race	Flange I.D. Outer Race	I.D. Outer Rece	Bearing Waight
mm inch	inch	inch	mm	inch	Mills	N/III	mm inch	mm inch	rnm inch	mm loch	體
			1.5	1.5	110,790	124,186	84.6	78.5	102.5	108.5	1.2
	100	23	.059	.059	24,730	27,720	3.331	3.090 80.4	4.035	4.272	2.6
	120 4.7244	.9055	2.5 .098	1.5 .059	93,453 20,860	111,642 24,920	85.3 3.358	3.166	101.2 3.986	105.7 4.161	1.2 2.6
	4.7244	38.1	2.5	1.5	93,453	111,642	85.3	80.4	101.2	105.7	2.4
		1.5000	.098	.059	20,860	24,920	3.358	3.166	3.986	4.161	5.3
65		110000	2.0	2.0	184,710	198,195	90.7	82.5	116.1	124.5	2.5
2.5591		33	.079	.079	41,230	44,240	3.571	3.248	4.571	4.902	5.5
		1.2992	2.5	2.0	160,026	175,078	90.7	83.7	114.7	120.2	2.5
	140		.098	.079	35,720	39,080	3.571	3.294	4.515	4.732	5.5
	5.5118	48 1.8898	2.0 .079	2.0 .079	251,910 56,230	295,366 65,930	90.7 3.571	82.5 3.248	116.1 4.571	124.5 4.902	3.6 7.9
		58.7	2.5	2.0	293,574	367,136	90.7	83.7	114.7	120.2	5.2
		2.3125	.098	.079	65,530	81,950	3.571	3.294	4.515	4.732	11.4
		2.0120	2.0	2.0	111,194	126,067	89.4	83.5	107.2	113.5	1.3
		24	.079	.079	24,820	28,140	3.520	3.287	4.291	4.469	2.9
		.9449	2.5	1.5	105,011	127,142	89.7	84.8	107.2	111.5	1.3
	125 4.9213		.098	.059	23,440	28,380	3.531	3.339	4.213	4.390	2.9
		31	1.5	1.5	111,194	126,067	89.4	83.5	107.2	113.5	1.5
		1.2205 39.7	.059 2.5	.059	24,820	28,140 240,128	3.520 89.7	3.287 84.8	4.213 106.7	4.469 111.5	3.3
		1.5625	.098	.059	172,211 38,440	53,600	3.531	3.339	4.201	4.390	4.8
70		79.4	2.5	1.5	295,232	480,211	89.7	84.8	106.7	111.5	4.4
2.7559		3.1250	.098	.059	65,900	107,190	3.531	3.339	4.201	4.390	9.7
		35	2.0	2.0	208,992	229,331	97.5	89.0	124.2	133.0	3.0
			.079	.079	46,650	51,190	3.839	3.504	4.890	5.236	6.6
		1.3780	3.2	2.0	193,760	219,699	97.3	89.2	122.2	129.3	3.0
	150		.126	.079	43,250	49,040	3.831	3.511	4.811	5.091	6.6
	5.9055	51	2.0	2.0	278,522	331,699	97.5	89.0	124.2	133.0	4.9
		2.0079 63.5	.079	.079	62,170 316,064	74,040 412,160	3.839 97.3	3.504 89.2	4.890 122.2	5.236 129.3	10.8 5.9
		2.5000	.126	.079	70,550	92,000	3.831	3.511	4.811	5.091	13.0
	115	20	2.0	1.0	61,958	79,117	89.2	85.2	101.0	104.9	0.8
	4.5276	0.7874	.079	.039	13,830	17,660	3.512	3.355	3.977	4.130	1.8
1 1			1.5	1.5	133,683	162,938	94.5	88.5	112.3	118.5	1.4
		25	.059	.059	29,840	36,370	3.720	3.484	4.420	4.665	3.1
		.9843	2.5	1.5	104,608	127,949	94.4	89.0	111.0	115.7	1.4
	130	31	.098	.059	23,350	28,560	3.717 94.5	3.504 88.5	4.369	4.555 118.5	3.1
	5.1181	1.2250	1.5 .059	1.5 .059	165,536 36,950	214,458 47,870	94.5 3.720	3.484	112.3 4.421	4.665	1.8 4.0
75		41.3	2.5	1.5	179,334	255,898	94.4	88.9	111.0	115.7	2.7
2.9528		1.6250	.098	.059	40.030	57,120	3.717	3.500	4.270	4.555	5.9
			2.0	2.0	245,146	271,354	104.2	95.0	133.4	143.0	3.6
		37	.079	.079	54,720	60,570	4.102	3.740	5.252	5.630	7.9
		1.4567	3.2	2.0	192,685	211,635	104.5	95.9	131.4	139.1	3.6
	160		.126	.079	43,010	47,240	4.114	3.776	5.172	5.476	7.9
	6.2992	55	2.0	2.0 .079	245,146	271,354	104.2	95.0	133.4	143.0	5.5
		2.1654 68.3	.079 3.2	2.0	54,720 369,914	60,570 489,485	4.102 104.5	3.740 95.9	5.252 131.4	5.630 139.1	12.1 7.3
		2.6875	.126	.079	82,570	109,260	4.114	3.776	5.180	5.476	16.1
		2.0070	1 .120	1 .013	02,070	103,200	4.114	0.770	0.100	0.470	10.1

Radial Roller bearings and manufactured to the ABMA RBEC-1 tolerance class. Bearing manufactured to either RBEC-3, RBEC-5 or special tolerance classes are also available upon request.


Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120. For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Unless otherwise specified all Rollway radial roller bearings are manufactured to ABMA's RBEC-1 precision class.

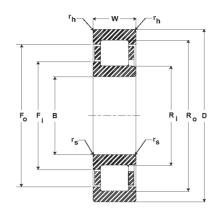
^{*}rs and rh are the maximum shaft and housing fillet radius that can be cleared.

Radial Bearings ROLLWAY

	Inner Race Seperable Both Directions	Inner Race Separable One Direction	Two Piece Inner Race Four-Flange Design	Outer Race Separable Both Directions	Outer Race Separable One Direction	Inner Race Separable Both Directions	Non-Separable
	NU 213 E	NJ 213 E	NUP 213 E	N 213 E	-	-	- 1
Ī	E 1213 U	L 1213 U	LP 1213 U	U 1213 E	U 1213 L	E 1213 B	U 1213 B
	E 5213 U	L 5213 U	LP 5213 U	U 5213 E	U 5213 L	E 5213 B	U 5213 B
Ī	NU 313 E	NJ 313 E	NUP 313 E	N 313 E	-	-	-
Ī	E 1313 U	L 1313 U	LP 1313 U	U 1313 E	U 1313 L	E 1313 B	U 1313 B
Ī	NU 2313 E	NJ 2313 E	NUP 2313 E	N 2313 E	-	-	-
Ī	E 5313 U	L 5313 U	LP 5313 U	U 5313 E	U 5313 L	E 5313 B	U 5313 B
Ī	NU 214 E	NJ 214 E	NUP 214 E	N 214 E	-	-	-
T	E 1214 U	L 1214 U	LP 1214 U	U 1214 E	U 1214 L	E 1214 B	U 1214 B
Ī	NU 2214 E	NJ 2214 E	NUP 2214 E	N 2214 E	-	-	-
Ī	E 5214 U	L 5214 U	LP 5214 U	U 5214 E	U 5214 L	E 5214 B	U 5214 B
Ī	E 6214 U	L 6214 U	LP 6214 U	U 6214 E	U 6214 L	E 6214 B	U 6214 B
Ī	NU 314 E	NJ 314 E	NUP 314 E	N 314 E	-	-	-
Ī	E 1314 U	L 1314 U	LP 1314 U	U 1314 E	U 1314 L	E 1314 B	U 1314 B
Ī	NU 2314 E	NJ 2314 E	NUP 2314 E	N 2314 E	-	-	-
Ī	E 5314 U	L 5314 U	LP 5314 U	U 5314 E	U 5314 L	E 5314 B	U 5314 B
Ī	E 1015 U	L 1015 U	LP 1015 U	U 1015 E	U 1015 L	E 1015 B	U 1015 B
Ī	NU 215 E	NJ 215 E	NUP 215 E	N 215 E	-	-	-
Ī	E 1215 U	L 1215 U	LP 1215 U	U 1215 E	U 1215 L	E 1215 B	U 1215 B
Ī	NU 2215 E	NJ 2215 E	NUP 2215 E	N 2215 E	-	-	-
T	E 5215 U	L 5215 U	LP 5215 U	U 5215 E	U 5215 L	E 5215 B	U 5215 B
Ī	NU 315 E	NJ 315 E	NUP 315 E	N 315 E	-	-	-
Ī	E 1315 U	L 1315 U	LP 1315 U	U 1315 E	U 1315 L	E 1315 B	U 1315 B
	NU 2315 E	NJ 2315 E	NUP 2315 E	N 2315 E	-	-	-
	E 5315 U	L 5315 U	LP 5315 U	U 5315 E	U 5315 L	E 5315 B	U 5315 B

Basic Construction Type: Cylindrical Roller Bearing

Rolling Elements: Crowned Cylindrical Rollers


Bearing Material: Through Hardened Bearing

Grade Steel

Retainer Type: Stamped Steel, Segmented

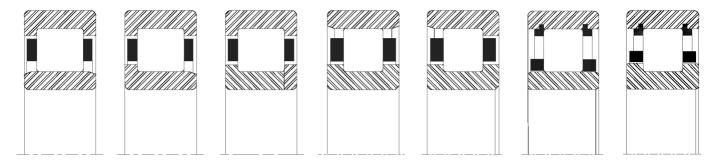
Steel, Two Piece Brass, One

Piece Land Riding Brass

Cylindrical Roller Bearings

ш	D	W	Rs	Rh	(C)	Co	- 11	PA PA	Fo	Ho	
Burn	Outside Diameter	Width	Co	rner*	Basic Oynumic Ruting	Besic Static Rating	Flange O.D. Inher Race	O.D. Inner Race	Flange I.D. Outer Race	I.D. Outer Rece	Bearing Waight
mm inch	mm inch	inch	mm	mm inch	FUIL	N/III	mm	mm linch	mm inch	mm loch	Mag III
			2.0	2.0	143,136	174,048	101.7	95.3	121.4	127.3	1.7
		26 1.0236	.079 2.5	.079 2.0	31,950 114.150	38,850 137,402	4.004 101.7	3.752 95.3	4.780 119.4	5.012 124.6	3.7 1.7
		1.0230	.098	.079	25,480	30,670	4.004	3.752	4.700	4.906	3.7
	140	33	2.0	2.0	190,355	251,104	101.7	95.3	121.4	127.3	2.3
	5.5118	1.2992	.079	.079	42,490	56,050	4.004	3.752	4.842	5.012	5.1
		44.5 1.7500	2.5 .098	2.0 .079	202,899 45,290	287,750 64,230	101.1 3.980	95.3 3.752	119.4 4.700	124.6 4.906	3.2 7.0
80		88.9	2.5	2.0	202,899	287,750	101.1	95.3	119.4	124.6	0.6
3.1496		3.5000	.098	.079	45,290	64,230	3.980	3.752	4.701	4.906	1.3
			2.0	2.0	264,410	295,456	110.6	101.0	141.0	151.0	4.3
		39 1.5354	.079	.079 2.0	59,020 231,123	65,950 262,214	4.354 110.7	3.976 101.6	5.551 139.2	5.945 147.3	9.5 4.4
	170	1.5554	.126	.079	51,590	58,530	4.358	4.001	5.480	5.799	9.7
	6.6929	58	2.1	2.1	364,672	446,656	110.6	101.0	141.0	151.0	6.7
		2.2835	.083	.083	81,400	99,700	4.354	3.976	5.551	5.945	14.7
		68.3 2.6875	3.2 .126	2.0 .079	404,096 90,200	537,779 120.040	110.7 4.358	101.6 4.001	139.2 5.480	147.3 5.799	8.2 18.0
	130	2.0075	2.0	1.5	90,200	122,259	100.8	96.3	113.9	118.7	1.1
	5.1181	.8661	.079	.059	20,120	27,290	3.969	3.792	4.501	4.673	2.4
		_	1.5	2.0	169,926	203,974	107.6	100.5	129.3	136.5	2.1
		28	.059	.079	37,930	45,530	4.236	3.957	5.091	5.374	4.6
	150	1.1024	3.2 .126	2.0 .079	139,059 31,040	169,971 37,940	108.5 4.272	102.0 4.016	128.4 5.056	134.1 5.280	2.1 4.6
	5.9055	36	2.0	2.0	220,506	285,107	107.6	100.5	129.3	136.5	2.9
		1.4173	.079	.079	49,220	63,640	4.236	3.957	5.091	5.374	6.4
85		49.2	3.2	2.0	250,701	362,611	108.5	102.0	128.4	134.1	4.0
3.3465		1.9375	.126 2.5	.079 2.5	55,960 284,346	80,940 321,126	4.272 118.0	4.016 108.0	5.056 149.6	5.280 160.0	8.8 5.1
		41	.098	.098	63,470	71,680	4.646	4.252	5.890	6.299	11.2
		1.6142	4.0	2.5	234,573	260,019	118.2	108.5	148.6	157.3	5.0
	180		.157	.098	52,360	58,040	4.654	4.272	5.850	6.193	11.0
	7.0866	60 2.3622	2.5 .098	2.5 .098	380,531 84,940	467,085	118.0	108.0 4.252	149.6 5.890	160.0 6.299	6.8 15.0
		73	4.0	2.5	450,016	104,260 600,813	4.646 118.2	108.5	148.6	157.3	9.5
		2.8750	.157	.098	100,450	134,110	4.654	4.272	5.850	6.193	20.9
			2.0	2.0	187,936	227,808	114.5	107.0	137.4	145.0	2.6
		30	.079	.079	41,950	50,850	4.508	4.213	5.409	5.709	5.7
	160	1.1811	3.2 .126	2.0 .079	163,072 36,400	200,570 44,770	114.2 4.496	107.2 4.220	135.9 5.350	142.1 5.594	2.7 5.9
	6.2992	40	2.0	2.0	248,237	325,830	114.2	107.0	137.4	145.0	3.4
		1.5748	.079	.079	55,410	72,730	4.496	4.213	5.409	5.709	7.5
		52.4	2.0	2.0	290,304	421,075	114.2	107.2	135.9	142.1	5.0
90 3.5433		2.0625	.079 2.5	.079 2.5	64,800 322,112	93,990 364,941	4.496 124.2	4.220 113.5	5.350 158.3	5.594 169.5	11.0 5.9
0.5455		43	.098	.098	71.900	81,460	4.890	4.469	6.232	6.673	13.0
		1.6929	4.0	2.5	295,366	344,064	123.4	114.0	156.2	165.3	5.9
	190		.157	.098	65,930	76,800	4.858	4.488	6.150	6.508	13.0
	7.4803	64	2.5	2.5	441,594	547,501	124.2	113.5	158.3	169.5	8.7
		2.5197 73	.098	.098	98,570 490,202	122,210 659,859	4.890 123.4	4.469 114.0	6.232 156.2	6.673 165.3	19.1 10.0
		2.8750	.098	.098	109,420	147,290	4.858	4.488	4.213	6.508	22.0

Radial Roller bearings and manufactured to the ABMA RBEC-1 tolerance class. Bearing manufactured to either RBEC-3, RBEC-5 or special tolerance classes are also available upon request.


Metric dimensions for reference only.

 $Not all \ parts \ are \ available \ from \ stock. \ Please \ contact \ customer \ service \ for \ availability \ (800) \ 626-2120.$

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

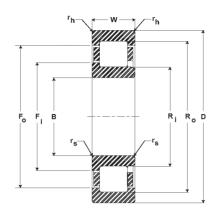
Unless otherwise specified all Rollway radial roller bearings are manufactured to ABMA's RBEC-1 precision class. *rs and rh are the maximum shaft and housing fillet radius that can be cleared.

Radial Bearings ROLLWAY.

Inner Race Seperable Both Directions	Inner Race Separable One Direction	Two Piece Inner Race Four-Flange Design	Outer Race Separable Both Directions	Outer Race Separable One Direction	Inner Race Separable Both Directions	Non-Separable
NU 216 E	NJ 216 E	NUP 216 E	N 216 E	-	-	-
E 1216 U	L 1216 U	LP 1216 U	U 1216 E	U 1216 L	E 1216 B	U 1216 B
NU 2216 E	NJ 2216 E	NUP 2216 E	N 2216 E	-	-	-
E 5216 U	L 5216 U	LP 5216 U	U 5216 E	U 5216 L	E 5216 B	U 5216 B
E 6216 U	L 6216 U	LP 6216 U	U 6216 E	U 6216 L	E 6216 B	U 6216 B
NU 316 E	NJ 316 E	NUP 316 E	N 316 E	-	-	-
E 1316 U	L 1316 U	LP 1316 U	U 1316 E	U 1316 L	E 1316 B	U 1316 B
NU 2316 E	NJ 2316 E	NUP 2316 E	N 2316 E	-	-	-
E 5316 U	L 5316 U	LP 5316 U	U 5316 E	U 5316 L	E 5316 B	U 5316 B
E 1017 U	L 1017 U	LP 1017 U	U 1017 E	U 1017 L	E 1017 B	U 1017 B
NU 217 E	NJ 217 E	NUP 217 E	N 217 E	-	-	-
E 1217 U	L 1217 U	LP 1217 U	U 1217 E	U 1217 L	E 1217 B	U 1217 B
NU 2217 E	NJ 2217 E	NUP 2217 E	N 2217 E	-	-	-
E 5217 U	L 5217 U	LP 5217 U	U 5217 E	U 5217 L	E 5217 B	U 5217 B
NU 317 E	NJ 317 E	NUP 317 E	N 317 E	-	-	-
E 1317 U	L 1317 U	LP 1317 U	U 1317 E	U 1317 L	E 1317 B	U 1317 B
NU 2317 E	NJ 2317 E	NUP 2317 E	N 2317 E	-	-	-
E 5317 U	L 5317 U	LP 5317 U	U 5317 E	U 5317 L	E 5317 B	U 5317 B
NU 218 E	NJ 218 E	NUP 218 E	N 218 E	-	-	-
E 1218 U	L 1218 U	LP 1218 U	U 1218 E	U 1218 L	E 1218 B	U 1218 B
NU 2218 E	NJ 2218 E	NUP 2218 E	N 2218 E	-	-	-
E 5218 U	L 5218 U	LP 5218 U	U 5218 E	U 5218 L	E 5218 B	U 5218 B
NU 318 E	NJ 318 E	NUP 318 E	N 318 E	-	-	-
E 1318 U	L 1318 U	LP 1318 U	U 1318 E	U 1318 L	E 1318 B	U 1318 B
NU 2318 E	NJ 2318 E	NUP 2318 E	N 2318 E	-	-	-
E 5318 U	L 5318 U	LP 5318 U	U 5318 E	U 5318 L	E 5318 B	U 5318 B

Basic Construction Type: Cylindrical Roller Bearing

> **Rolling Elements:** Crowned Cylindrical Rollers


> **Bearing Material:** Through Hardened Bearing

Grade Steel

Retainer Type: Stamped Steel, Segmented

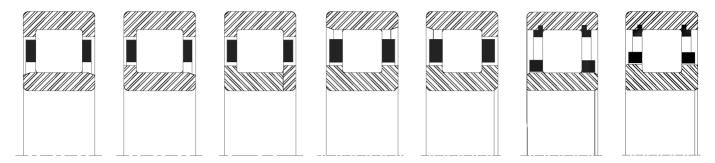
Steel, Two Piece Brass, One

Piece Land Riding Brass

Cylindrical Roller Bearings

B B	D	W	Rs	Rh	C	Co	TR.	(R)	Fo	Ba	-
Ban	Outside Diameter	Wiath	Со	rner*	Basic Oynamic Rating	Besic Static Rating	Flange O.D. Inner Race	G.D. Innet Race	Flange I.D. Outer Race	I.D. Outer Hone	Bearing Weight
mm inch	nim	mm inch	mm	inch	Mills	Nills	mm	mm	rnm Inch	mm	14d 10
	1110-000		2.0	2.0	215,309	257,914	120.7	112.5	146.1	154.5	3.1
		32	.079	.079	48,060	57,570	4.752	4.429	5.752	6.083	6.8
		1.2598	3.2	2.0	191,744	238,918	121.0	113.5	144.5	151.2	3.2
	.=0		.126	.079	42,800	53,330	4.764	4.469	5.689	5.953	7.0
	170 6.6929	43 1.6929	2.0 .079	2.0 .079	278,522 62,170	359,072 80,150	120.7 4.752	112.5 4.429	146.1 5.752	154.5 6.083	4.2 9.2
	6.6929	55.6	3.2	2.0	334,880	489,350	121.0	113.5	144.5	151.2	9.2
		2.1875	.126	.079	74,750	109,230	4.764	4.469	5.689	5.953	14.1
95		111.1	3.2	2.0	574,157	978,701	121.0	113.5	144.5	151.2	10.9
3.7402		4.3750	.126	.079	128,160	218,460	4.764	4.469	5.689	5.953	24.0
			3.0	2.5	340,883	398,182	132.2	121.5	166.3	177.5	6.9
		45	.118	.098	76,090	88,880	5.205	4.783	6.547	6.988	15.2
		1.7717	4.0	2.5	279,194	323,456	132.5	122.1	164.3	173.4	6.8
	200		.157	.098	62,320	72,200	5.217	4.807	6.468	6.827	15.0
	7.8740	67	3.0	2.5	467,264	597,363	132.2	121.5	166.3	177.5	11.2
		2.6378	.118	.098	104,300	133,340	5.205	4.783	6.547	6.988	24.6
		77.8 3.0625	4.0 .157	2.5 .098	463,322 103,420	620,301 138,460	132.5 5.217	122.1 4.807	164.3 6.469	173.4 6.827	13.6 29.9
		3.0625	2.0	2.0	243,309	297,114	127.5	119.0	154.2	163.0	4.9
		34	.079	.079	54,310	66,320	5.020	4.685	6.070	6.417	10.8
		1.3386	4.0	2.0	209,754	261,722	129.0	121.0	154.2	161.1	3.8
		1.0000	.157	.079	46,820	58,420	5.079	4.764	6.070	6.343	8.4
	180	46	2.0	2.0	324,218	429,766	127.5	119.0	154.2	163.0	5.5
	7.0866	1.8110	.079	.079	72,370	95,930	5.020	4.685	6.070	6.417	12.1
		60.3	4.0	2.0	377,306	556,774	129.0	121.0	154.2	161.1	7.3
		2.3750	.157	.079	84,220	124,280	5.079	4.764	6.070	6.343	16.1
100		120.7	4.0	2.0	646,912	1,113,594	129.0	121.0	154.2	161.1	10.9
3.9370		4.7500	.157	.079	144,400	248,570	5.079	4.764	6.070	6.343	24.0
			2.5	2.5	392,090	445,312	139.6	127.5	178.7	191.5	8.4
		47 1.8504	.098	.098 2.5	87,520 305.626	99,400 354,637	5.496	5.020 130.2	7.035 175.1	7.539 184.8	18.5 8.6
	215	1.8504	4.7 .185	.098	68,220	79,160	141.1 5.555	5.126	6.894	7.276	18.9
	8.4646	73	2.5	2.5	583,430	742,246	139.6	127.5	178.7	191.5	13.1
	0.4040	2.8740	.098	.098	130,230	165,680	5.496	5.020	7.035	7.539	28.8
		82.6	4.7	2.5	551,533	757,568	141.1	130.2	175.1	184.8	15.0
		3.2500	.185	.098	123,110	169,100	5.555	5.126	6.892	7.276	33.0
	160	26	2.5	2.0	132,742	189,504	124.5	119.2	140.6	145.8	1.9
l	6.2992	1.0236	.098	.079	29,630	42,300	4.902	4.693	5.535	5.740	4.2
l [36	4.0	2.0	236,275	300,474	134.9	126.5	161.0	168.5	4.5
	190	1.4173	.157	.079	52,740	67,070	5.311	4.980	6.339	6.634	9.9
	7.4803	65.1	4.0	2.0	442,221	672,672	134.9	126.5	161.0	168.5	9.1
105		2.5625	.157	.079	98,710	150,150	5.311	4.980	6.339	6.634	20.0
4.1339		49	4.7 .185	3.0 .118	439,757 98,160	502,790 112,230	146.6 5.772	132.9 5.232	187.4 7.378	200.9 7.909	9.5 20.9
	225	1.9291	.185 4.7	2.5	98,160 362,253	112,230 433,754	5.772 147.2	5.232 136.2	7.378 183.2	7.909 193.4	9.5
	8.8583	1.9291	185	.098	80,860	96,820	5.795	5.362	7.213	7.614	20.9
	0.0000	87.3	4.7	2.5	586,880	806,579	147.2	136.2	183.2	193.4	16.8
		3.4375	.185	.098	131,000	180,040	5.795	5.362	7.213	7.614	37.0

Radial Roller bearings and manufactured to the ABMA RBEC-1 tolerance class. Bearing manufactured to either RBEC-3, RBEC-5 or special tolerance classes are also available upon request.


 $Unless otherwise specified \ all \ Rollway \ radial \ roller \ bearings \ are \ manufactured \ to \ ABMA's \ RBEC-1 \ precision \ class.$

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120. For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

 $^{^{\}ast}$ rs and rh are the maximum shaft and housing fillet radius that can be cleared.

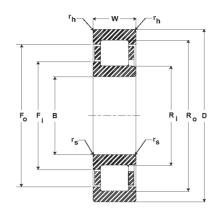
Radial Bearings ROLLWAY®

Inner Race Seperable Both Directions	Inner Race Separable One Direction	Two Piece Inner Race Four-Flange Design	Outer Race Separable Both Directions	Outer Race Separable One Direction	Inner Race Separable Both Directions	Non-Separable
NU 219 E	NJ 219 E	NUP 219 E	N 219 E	-	-	-
E 1219 U	L 1219 U	LP 1219 U	U 1219 E	U 1219 L	E 1219 B	U 1219 B
NU 2219 E	NJ 2219 E	NUP 2219 E	N 2219 E	-	-	-
E 5219 U	L 5219 U	LP 5219 U	U 5219 E	U 5219 L	E 5219 B	U 5219 B
E 6219 U	L 6219 U	LP 6219 U	U 6219 E	U 6219 L	E 6219 B	U 6219 B
NU 319 E	NJ 319 E	NUP 319 E	N 319 E	-	-	-
E 1319 U	L 1319 U	LP 1319 U	U 1319 E	U 1319 L	E 1319 B	U 1319 B
NU 2319 E	NJ 2319 E	NUP 2319 E	N 2319 E	-	-	-
E 5319 U	L 5319 U	LP 5319 U	U 5319 E	U 5319 L	E 5319 B	U 5319 B
NU 220 E	NJ 220 E	NUP 220 E	N 220 E	-	-	-
E 1220 U	L 1220 U	LP 1220 U	U 1220 E	U 1220 L	E 1220 B	U 1220 B
NU 2220 E	NJ 2220 E	NUP 2220 E	N 2220 E	-	-	-
E 5220 U	L 5220 U	LP 5220 U	U 5220 E	U 5220 L	E 5220 B	U 5220 B
E 6220 U	L 6220 U	LP 6220 U	U 6220 E	U 6220 L	E 6220 B	U 6220 B
NU 320 E	NJ 320 E	NUP 320 E	N 320 E	-	-	-
E 1320 U	L 1320 U	LP 1320 U	U 1320 E	U 1320 L	E 1320 B	U 1320 B
NU 2320 E	NJ 2320 E	NUP 2320 E	N 2320 E	-	-	-
E 5320 U	L 5320 U	LP 5320 U	U 5320 E	U 5320 L	E 5320 B	U 5320 B
E 1021 U	L 1021 U	LP 1021 U	U 1021 E	U 1021 L	E 1021 B	U 1021 B
E 1221 U	L 1221 U	LP 1221 U	U 1221 E	U 1221 L	E 1221 B	U 1221 B
E 5221 U	L 5221 U	LP 5221 U	U 5221 E	U 5221 L	E 5221 B	U 5221 B
NU 321 E	NJ 321 E	NUP 321 E	N 321 E	-	-	-
E 1321 U	L 1321 U	LP 1321 U	U 1321 E	U 1321 L	E 1321 B	E 1321 B
E 5321 U	L 5321 U	LP 5321 U	U 5321 E	U 5321 L	E 5321 B	E 5321 B

Radial Bearings

Basic Construction Type: Cylindrical Roller Bearing

> **Rolling Elements:** Crowned Cylindrical Rollers


> **Bearing Material:** Through Hardened Bearing

Grade Steel

Retainer Type: Stamped Steel, Segmented

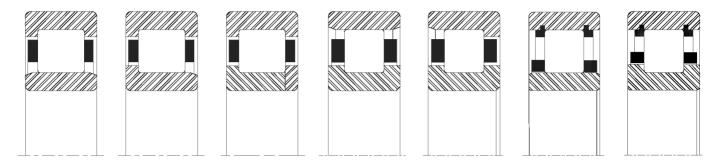
Steel, Two Piece Brass, One

Piece Land Riding Brass

Cylindrical Roller Bearings

ш	D	W	Rs	Rh	C	Co	H	180	Fo	Bo	
Bon	Outside Diamater	Width	Co	rner*	Basic Oynamic Ruting	Besic Static Rating	Flange O.D. Inner Flace	O.D. Inner Race	Flange I.D. Outer Race	LD. Outer Race	Bouring Weight
mm inch	nim inch	mm inch	mm	inch	74 Th	SUB	(nm inch	min	mm	mm	18
	170	28	2.5	2.0	160,115	230,586	130.8	125.3	149.0	154.7	2.3
	6.6929	1.1024	.098	.079	35,740	51,470	5.150	4.933	5.866	6.091	5.1
			2.0	2.0	298,547	376,320	141.7	132.5	170.9	180.5	5.1
		38	.079	.079	66,640	84,000	5.579	5.217	6.728	7.106	11.2
		1.4961	4.0	2.0	242,816	308,851	141.6	132.9	168.4	176.1	5.5
	200		.157	.079	54,200	68,940	5.575	5.232	6.630	6.933	12.1
	7.8740	53	2.0	2.0	389,984	530,566	141.7	132.5	170.9	180.5	7.0
		2.0866	.079	.079	87,050	118,430	5.579	5.217	6.728	7.106	15.4
110		69.9	4.0	2.0	440,966	665,011	141.6	132.9	168.4	176.1	10.5
4.3307		2.7500	.157	.079	98,430	148,440	5.575	5.232	6.636	6.933	23.1
		50	2.5 .098	2.5	440,563	510,138	155.8	143.0	197.4	211.0	11.2
		1.9685		.098	98,340	113,870 499,565	6.134 157.5	5.630 145.3	7.772 195.4	8.307 206.3	24.6
	240	1.9685	4.7 .185	.098	410,502 91,630	499,565 111,510	6.201		7.693	8.122	11.4 25.1
	9.4488	80	2.5	2.5	652,333	844,973	155.8	5.720 143.0	197.4	211.0	17.9
	9.4466	3.1496	.098	.098	145,610	188,610	6.134	5.630	7.772	8.307	39.4
		92.1	4.7	2.5	765,274	1,112,698	157.5	145.3	195.4	206.3	23.2
		3.6250	.185	.098	170.820	248,370	6.201	5.720	7.692	8.122	51.0
		3.0230	4.7	2.5	435,635	515,782	162.3	149.6	202.7	215.5	9.3
115	250	53	.185	.098	97,240	115,130	6.390	5.890	7.980	8.484	20.5
4.5275	9.8425	2.0866	4.7	2.5	435,635	515,782	162.3	149.6	202.7	215.5	12.7
1.0270	0.0120	2.0000	.185	.098	97.240	115,130	6.390	5.890	7.980	8.484	27.9
		28	3.2	2.0	153,798	223,059	141.2	135.2	158.9	164.5	2.5
	180	1.1024	.126	.079	34,330	49,790	5.559	5.323	6.256	6.476	5.5
	7.0866	46	3.2	2.0	241,875	399,347	141.2	135.3	158.9	164.5	4.2
		1.8110	.126	.079	53,990	89,140	5.559	5.328	6.256	6.476	9.2
1 1			2.0	2.0	345,901	441,101	153.4	143.5	185.1	195.5	6.4
		40	.079	.079	77,210	98,460	6.039	5.650	7.287	7.697	14.1
		1.5748	4.7	2.0	286,227	376,634	154.3	145.1	182.7	190.9	6.4
	215		.185	.079	63,890	84,070	6.075	5.713	7.193	7.516	14.1
	8.4646	58	2.0	2.0	481,555	674,957	153.4	143.5	185.1	195.5	18.6
120		2.2835	.079	.079	107,490	150,660	6.039	5.650	7.287	7.697	40.9
4.7244		76.2	4.7	2.0	557,357	887,309	154.3	145.1	182.7	190.9	11.8
		3.0000	.185	.079	124,410	198,060	6.075	5.713	7.194	7.516	26.0
			2.5	2.5	539,258	630,067	168.7	154.0	214.8	230.0	14.4
		55	.098	.098	120,370	140,640	6.642	6.063	8.457	9.055	31.7
	-00	2.1654	6.4	2.5	435,277	520,262	170.2	157.0	211.2	223.0	14.5
	260		.252	.098	97,160	116,130	6.701	6.181	8.315	8.780	31.9
	10.2362	86	2.5	2.5	804,966	1,054,637	168.7	154.0	214.8	230.0	22.3
		3.3858	.098	.098	179,680	235,410	6.642	6.063	8.457	9.055	49.1
		104.8	6.4	2.5	852,858	1,235,315	170.2	157.0	211.2	223.0	29.3
		4.1250	.252	.098	190,370	275,740	6.701	6.181	8.256	8.780	64.5

Radial Roller bearings and manufactured to the ABMA RBEC-1 tolerance class. Bearing manufactured to either RBEC-3, RBEC-5 or special tolerance classes are also available upon request.


Unless otherwise specified all Rollway radial roller bearings are manufactured to ABMA's RBEC-1 precision class.

*rs and rh are the maximum shaft and housing fillet radius that can be cleared.

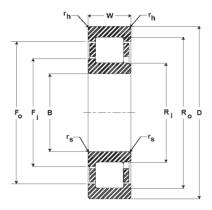
Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120. For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Radial Bearings ROLLWAY.

Inner Race Seperable Both Directions	Inner Race Separable One Direction	Two Piece Inner Race Four-Flange Design	Outer Race Separable Both Directions	Outer Race Separable One Direction	Inner Race Separable Both Directions	Non-Separable
E 1022 U	L 1022 U	LP 1022 U	U 1022 E	U 1022 L	E 1022 B	U 1022 B
NU 222 E	NJ 222 E	NUP 222 E	N 222 E	-	-	-
E 1222 U	L 1222 U	LP 1222 U	U 1222 E	U 1222 L	E 1222 B	E 1222 B
NU 2222 E	NJ 2222 E	NUP 2222 E	N 2222 E	-	-	-
E 5222 U	L 5222 U	LP 5222 U	U 5222 E	U 5222 L	E 5222 B	E 5222 B
NU 322 E	NJ 322 E	NUP 322 E	N 322 E	-	-	-
E 1322 U	L 1322 U	LP 1322 U	U 1322 E	U 1322 L	E 1322 B	E 1322 B
NU 2322 E	NJ 2322 E	NUP 2322 E	N 2322 E	-	-	-
E 5322 U	L 5322 U	LP 5322 U	U 5322 E	U 5322 L	E 5322 B	E 5322 B
NU 323	NJ 323	NUP 323	N 323	-	-	-
E 1323 U	L 1323 U	LP 1323 U	U 1323 E	U 1323 L	E 1323 B	E 1323 B
E 1024 U	L 1024 U	LP 1024 U	U 1024 E	U 1024 L	E 1024 B	U 1014 B
E 5024 U	L 5024 U	LP 5024 U	U 5024 E	U 5024 L	E 5024 B	E 5024 B
NU 224 E	NJ 224 E	NUP 224 E	N 224 E	-	-	-
E 1224 U	L 1224 U	LP 1224 U	U 1224 E	U 1224 L	E 1224 B	E 1224 B
NU 2224 E	NJ 2224 E	NUP 2224 E	N 2224 E	-	-	-
E 5224 U	L 5224 U	LP 5224 U	U 5224 E	U 5224 L	E 5224 B	E 5224 B
NU 324 E	NJ 324 E	NUP 324 E	N 324 E	-	-	-
E 1324 U	L 1324 U	LP 1324 U	U 1324 E	U 1324 L	E 1324 B	E 1324 B
NU 2324 E	NJ 2324 E	NUP 2324 E	N 2324 E	-	-	-
E 5324 U	L 5324 U	LP 5324 U	U 5324 E	U 5324 L	E 5324 B	E 5324 B

Basic Construction Type: Cylindrical Roller Bearing


> **Rolling Elements:** Crowned Cylindrical Rollers

Bearing Material: Through Hardened Bearing

Grade Steel

Retainer Type: Stamped Steel, Segmented

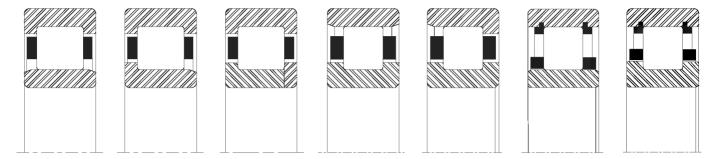
Steel, Two Piece Brass, One Piece Land Riding Brass

Cylindrical Roller Bearings

· B	D	W	Rs	AH	C	Ğ	11	- 10	Fo	No	
Bon	Outside Diameter	Width	Co	rner*	Basic Oynumic Ruting	Basic Statto Rating	Flange O.D. Inher Race	O.D. Inner Race	Flange I.D. Outer Race	I.D. Outer Rece	Bearing Weight
mm inch	non-	mm Inch	mm	mm inch	NAME:	Wills	(6m) inch	min	mm	mm	kg ID
at Sup	THE SAME	33	3.2	2.0	204,960	295.098	154.2	147.6	175.5	182.5	3.9
	200	1.2992	.126	.079	45.750	65,870	6.071	5.811	6.909	7.185	8.6
	7.8740	52	3.2	2.0	348,454	583,789	154.2	147.6	175.5	182.5	5.9
1 1		2.0472	.126	.079	77,780	130,310	6.071	5.811	6.909	7.185	13.0
		40	4.7	2.5	307,104	402,125	164.7	155.0	195.2	203.8	7.3
	230	1.5748	.185	.098	68,550	89,760	6.484	6.102	7.685	8.024	16.1
130	9.0551	79 3.1250	4.7 .185	2.5 .098	659,635 147,240	1,074,662 239,880	164.7 6.484	155.0 6.102	195.2 7.685	203.8 8.024	11.4 25.1
5.1181		3.1230	4.0	3.2	594,854	704,525	183.0	167.0	231.0	247.0	17.6
] 3.1101]		58	.157	.126	132,780	157,260	7.205	6.575	9.094	9.724	38.7
		2.2835	6.4	3.2	500,730	601,216	184.9	170.5	229.8	242.7	17.7
	280		.252	.126	111,770	134,200	7.280	6.713	9.047	9.555	38.9
	11.0236	93	4.0	3.2	884,218	1,172,819	183.0	167.0	231.0	247.0	29.2
		3.6615	.157	.126	197,370	261,790	7.205	6.575	9.094	9.724	64.2
		111.1	6.4	3.2	996,800	1,456,896	184.9	170.5	229.8	242.7	35.5
		4.3750	.252	.126	222,500	325,200	7.280	6.713	9.047	9.555	78.1
	210	33 1.2992	4.0 .157	2.0	196,941 43,960	284,704 63,550	164.3 6.469	157.6 6.205	185.6 7.307	192.4 7.575	4.1 9.0
	8.2677	53	4.0	2.0	334,835	563,226	164.3	157.6	185.6	192.4	9.5
	0.2077	2.0866	.157	.079	74,740	125,720	6.469	6.205	7.307	7.575	20.9
l †		36	2.0	2.0	199.046	274,310	169.4	161.9	192.9	200.0	7.7
	220	1.4173	.079	.079	44,430	61,230	6.669	6.374	7.594	7.874	16.9
	8.6614	63.5	2.0	2.0	412,339	699,552	169.4	161.9	192.0	200.0	10.0
		2.5000	.079	.079	92,040	156,150	6.669	6.374	7.560	7.874	22.0
		42	4.7	2.5	344,646	451,898	179.1	168.5	211.8	221.5	9.1
140	250	1.6535	.185	.098	76,930	100,870	7.051	6.634	8.339	8.720	20.0
5.5118	9.8425	82.6	4.7	2.5 .098	674,419	1,069,152 238,650	179.1	168.5	211.8	221.5	19.1
l +		3.2500	.185 4.0	4.0	150,540 629,082	769,485	7.051 196.0	6.634 180.0	8.339 247.2	8.720 260.0	42.0 21.6
		62	.157	.157	140,420	171,760	7.717	7.087	9.732	10.236	47.5
		2.4409	7.9	3.2	558,880	678,630	197.0	181.7	244.3	258.0	21.8
	300		.311	.126	124,750	151,480	7.756	7.154	9.618	10.157	48.0
	11.8110	102	4.0	4.0	935,110	1,280,922	196.0	180.0	247.2	260.0	39.7
		4.0157	.157	.157	208,730	285,920	7.717	7.087	9.732	10.236	87.3
		114.3	7.9	3.2	1,140,205	1,701,907	197.0	181.7	244.3	258.0	42.7
		4.5000	.311	.126	254,510	379,890	7.756	7.154	9.618	10.157	93.9
	225 8.8583	56 2.2047	4.0 .157	2.0 .079	390,387 87,140	667,206 148,930	176.2 6.937	168.7 6.642	198.9 7.831	206.3 8.122	7.7 16.9
l ł	0.0000	38	2.0	2.0	203,840	288,960	182.4	174.6	205.6	212.7	7.0
	235	1.4961	.079	.079	45,500	64,500	7.181	6.875	8.095	8.374	15.4
	9.2520	66.7	2.0	2.0	434,650	765,005	182.4	174.6	205.6	212.7	12.3
		2.6250	.079	.079	97,020	170,760	7.181	6.875	8.095	8.374	27.1
1 1			2.5	2.5	407,814	523,936	191.6	179.4	228.5	239.7	12.3
		45	.098	.098	91,030	116,950	7.543	7.063	8.996	9.437	27.1
150		1.7717	6.4	2.5	402,842	519,053	193.0	181.6	231.1	241.7	11.8
5.9055	270	- 00.0	.252	.098	89,920	115,860	7.598	7.150	9.100	9.516	26.0
	10.6299	88.9	6.4	2.5	878,797	1,414,829	193.0	181.6	231.1	241.7	24.1
		3.5000 177.8	.252 6.4	.098	196,160 1,506,669	315,810 2,829,658	7.598 193.0	7.150 181.6	9.100 231.1	9.516 241.7	53.0 44.5
		7.0000	.252	.098	336,310	631,620	7.598	7.150	9.100	9.516	97.9
t		65	3.0	3.0	791,034	976,147	192.8	190.0	264.4	280.0	27.3
	320	2.5591	.118	.118	176,570	217,890	7.591	7.480	10.410	11.024	60.1
	12.5984	123.8	7.9	3.2	1,355,110	1,969,542	208.5	190.9	263.3	279.1	52.7
1		4.8750	.311	.126	302,480	439,630	8.209	7.516	10.366	10.988	115.9

Radial Roller bearings and manufactured to the ABMA RBEC-1 tolerance class. Bearing manufactured to either RBEC-3, RBEC-5 or special tolerance classes are also available upon request.

Unless otherwise specified all Rollway radial roller bearings are manufactured to ABMA's RBEC-1 precision class.


Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

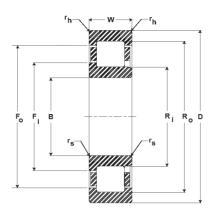
 $^{^{\}ast}$ rs and rh are the maximum shaft and housing fillet radius that can be cleared.

Radial Bearings ROLLWAY.

Inner Race Seperable Both Directions	Inner Race Separable One Direction	Two Piece Inner Race Four-Flange Design	Outer Race Separable Both Directions	Outer Race Separable One Direction	Inner Race Separable Both Directions	Non-Separable
E 1026 U	L 1026 U	LP 1026 U	U 1026 E	U 1026 L	E 1026 B	U 1026 B
E 5026 U	L 5026 U	LP 5026 U	U 5026 E	U 5026 L	E 5026 B	U 5026 B
E 1226 U	L 1226 U	LP 1226 U	U 1226 E	U 1226 L	E 1226 B	E 1226 B
E 5226 U	L 5226 U	LP 5226 U	U 5226 E	U 5226 L	E 5226 B	E 5226 B
NU 326 E	NJ 326 E	NUP 326 E	N 326 E	-	-	-
E 1326 U	L 1326 U	LP 1326 U	U 1326 E	U 1326 L	E 1326 B	U 1326 B
NU 2326 E	NJ 2326 E	NUP 2326 E	N 2326 E	-	-	-
E 5326 U	L 5326 U	LP 5326 U	U 5326 E	U 5326 L	E 5326 B	U 5326 B
E 1028 U	L 1028 U	LP 1028 U	U 1028 E	U 1028 L	E 1028 B	U 1028 B
E 5028 U	L 5028 U	LP 5028 U	U 5028 E	U 5028 L	E 5028 B	U 5028 B
MUC 128	MUL 128	MU 128	MCS 128	ML 128	-	-
MUC 5128	MUL 5128	MU 5128	MCS 5128	ML 5128	-	-
E 1228 U	L 1228 U	LP 1228 U	U 1228 E	U 1228 L	E 1228 B	E 1228 B
E 5228 U	L 5228 U	LP 5228 U	U 5228 E	U 5228 L	E 5228 B	E 5228 B
NU 328 E	NJ 328 E	NUP 328 E	N 328 E	-	-	-
E 1328 U	L 1328 U	LP 1328 U	U 1328 E	U 1328 L	E 1328 B	U 1328 B
NU 2328 E	NJ 2328 E	NUP 2328 E	N 2328 E	-	-	-
E 5328 U	L 5328 U	LP 5328 U	U 5328 E	U 5328 L	E 5328 B	U 5328 B
E 5030 U	L 5030 U	LP 5030 U	U 5030 E	U 5030 L	E 5030 B	U 5030 B
MUC 130	MUL 130	MU 130	MCS 130	ML 130	-	-
MUC 5130	MUL 5130	MU 5130	MCS 5130	ML 5130	-	-
MUC 230	MUL 230	MU 230	MCS 230	ML 230	-	-
E 1230 U	L 1230 U	LP 1230 U	U 1230 E	U 1230 L	E 1230 B	U 1230 B
E 5230 U	L 5230 U	LP 5230 U	U 5230 E	U 5230 L	E 5230 B	U 5230 B
E 6230 U	L 6230 U	LP 6230 U	U 6230 E	U 6230 L	E 6230 B	U 6230 B
MUC 330	MUL 330	MU 330	MCS 330	ML 330	-	-
E 5330 U	L 5330 U	LP 5330 U	U 5330 E	U 5330 L	E 5330 B	U 5330 B

Basic Construction Type: Cylindrical Roller Bearing

> **Rolling Elements:** Crowned Cylindrical Rollers


> Through Hardened Bearing **Bearing Material:**

Grade Steel

Retainer Type: Stamped Steel, Segmented

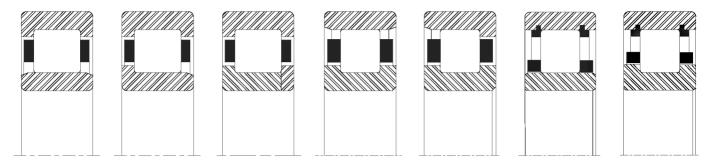
Steel, Two Piece Brass, One

Piece Land Riding Brass

Cylindrical Roller Bearings

В	D	W	Rs	Rh	(C)	Co	- 11	RI .	Fo	Ho	
Ban	Outside Diamater	Wiatris	Со	rner*	Basic Oylumic Ruting	Besic Static Rating	Flange O.D. Inher Race	O.D. Inner Race	Flange I.D. Outer Race	I.D. Outer Rece	Bearing Watgot
mm inch	mm	inch.	mm inch	inch	Mali	With	non inch	inch.	inch	min loch	體
1		38	4.0	2.0	258,272	396,480	188.8	181.2	212.7	219.3	5.9
	240 9.4488	1.4961 60	.157 4.0	.079 2.0	57,650 433.619	88,500 771,814	7.433 188.8	7.134 181.2	8.374 212.7	8.634 219.3	13.0
	3.4400	2.3622	.157	.079	96,790	172,280	7.433	7.134	8.374	8.634	22.0
		40	2.0	2.0	231,750	327,578	192.3	184.2	218.3	225.4	8.2
	250	1.5748	.079	.079	51,730	73,120	7.571	7.250	8.594	8.874	18.0
	9.8425	73 2.8750	2.0 .079	2.0 .079	498,669 111,310	877,408 195,850	192.3 7.571	184.2 7.250	218.3 8.594	225.4 8.874	14.5 31.9
H		2.0750	2.5	2.5	449,882	586,387	206.0	193.7	245.2	257.2	15.5
160		48	.098	.098	100,420	130,890	8.110	7.626	9.654	10.126	34.1
6.2992		1.8898	6.4	2.5	434,067	560,179	205.9	193.9	243.8	257.4	14.1
	290 11.4173	98.4	.252 6.4	.098	96,890 932,154	125,040 1,496,454	8.106 205.9	7.634 193.9	9.598 243.8	10.134 257.4	31.0 30.9
	11.41/3	3.8750	.252	.098	208,070	334,030	8.106	7.634	9.598	10.134	68.0
		196.9	6.4	2.5	1,598,150	2,992,864	205.9	193.9	243.8	257.4	57.3
		7.7500	.252	.098	356,730	668,050	8.106	7.634	9.598	10.134	126.1
	0.40		9.5	3.2	719,622	887,846	223.5	205.9	278.3	294.1	30.9
	340 13.3858	68 2.6772	3.0	3.0	160,630 815,629	198,180 995,456	8.799 220.5	8.106 203.2	10.957 283.7	11.579 298.5	68.0 32.7
	13.3000	2.0772	.118	.118	182,060	222,200	8.681	8.000	11.169	11.752	71.9
		42	4.7	2.0	348,230	547,232	202.1	194.9	227.1	238.1	8.6
	260	1.6535	.185	.079	77,730	122,150	7.957	7.673	8.941	9.374	18.9
	10.2362	67	4.7	2.0	555,117	996,621	202.1	194.9	227.1	238.1	12.3
1 +		2.6378 76.2	.185 2.5	.079 2.5	123,910 296,755	222,460 415,386	7.957 203.2	7.673 193.7	8.941 231.8	9.374 241.3	27.1 16.8
	265	3.0000	.098	.098	66.240	92,720	8.000	7.626	9.125	9.500	37.0
	10.4331	42	2.5	2.5	594,630	1,015,123	203.2	193.7	231.8	241.3	9.5
170		1.6535	.098	.098	132,730	226,590	8.000	7.626	9.125	9.500	20.9
6.6929	240	52 2.0472	6.4	3.2	515,827	678,899	219.1	205.5	261.5	273.6	17.7
	310 12.2047	104.8	.252 6.4	.126	115,140 1,058,131	151,540 1,709,882	8.626 219.1	8.091 205.5	10.295 261.5	10.772 273.6	38.9 37.7
	12.2047	4.1250	.252	.126	236.190	381,670	8.626	8.091	10.295	10.772	82.9
1 1		72	3.0	3.0	815,494	1,009,344	235.0	219.1	298.5	314.3	37.7
	360	2.8346	.118	.118	182,030	225,300	9.252	8.626	11.752	12.374	82.9
	14.1732	139.7 5.5000	9.5 .374	3.2 .126	1,653,568 369,100	2,473,811 552,190	236.0 9.291	216.7 8.531	295.7 11.642	313.3 12.335	75.0 165.0
		46	4.7	2.0	430,886	674,061	215.3	205.6	244.6	254.4	10.9
		1.8110	.185	.079	96,180	150,460	8.476	8.094	9.630	10.016	24.0
		74	4.7	2.0	681,139	1,214,483	215.3	205.6	244.6	254.4	12.3
	280	2.9134	.185	.079	152,040	271,090	8.476	8.094	9.630	10.016	27.1
	11.0236	44 1.7323	2.5 .098	2.5 .098	337,075 75,240	476,269 106,310	214.4 8.441	204.8 8.062	245.9 9.680	255.6 10.063	11.0 24.2
		82.6	2.5	2.5	698.925	1.229.715	214.4	204.8	245.9	255.6	20.5
180		3.2500	.098	.098	156,010	274,490	8.441	8.062	9.680	10.063	45.1
7.0866			3.0	3.0	483,482	667,475	235.0	222.3	274.1	285.8	17.7
		52	.118	.118	107,920	148,990	9.252	8.752	10.791	11.252	38.9
	320	2.0472	6.4 .252	3.2 .126	513,811 114,690	683,738 152,620	229.9 9.051	216.3 8.516	272.3 10.720	284.4 11.197	19.3 42.5
	12.5984	108	6.4	3.2	1,053,965	1,722,112	229.9	216.3	272.3	284.4	40.5
		4.2500	.252	.126	235,260	384,400	9.051	8.516	10.720	11.197	89.1
		75	3.0	3.0	857,920	1,092,134	250.8	231.6	309.9	327.0	43.6
		2.9528	.118	.118	191,500	243,780	9.874	9.120	12.200	12.874	95.9

Radial Roller bearings and manufactured to the ABMA RBEC-1 tolerance class. Bearing manufactured to either RBEC-3, RBEC-5 or special tolerance classes are also available upon request.


Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Unless otherwise specified all Rollway radial roller bearings are manufactured to ABMA's RBEC-1 precision class.

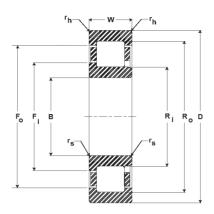
^{*}rs and rh are the maximum shaft and housing fillet radius that can be cleared. Metric dimensions for reference only.

Radial Bearings ROLLWAY.

Inner Race Seperable Both Directions	Inner Race Separable One Direction	Two Piece Inner Race Four-Flange Design	Outer Race Separable Both Directions	Outer Race Separable One Direction	Inner Race Separable Both Directions	Non-Separable
E 1032 U	L 1032 U	LP 1032 U	U 1032 E	U 1032 L	E 1032 B	U 1032 B
E 5032 U	L 5032 U	LP 5032 U	U 5032 E	U 5032 L	E 5332 B	U 5332 B
MUC 132	MUL 132	MU 132	MCS 132	ML 132	-	-
MUC 5132	MUL 5132	MU 5132	MCS 5132	ML 5132	-	-
MUC 232	MUL 232	MU 232	MCS 232	ML 232	-	-
E 1232 U	L 1232 U	LP 1232 U	U 1232 E	U 1232 L	E 1232 B	U 1232 B
E 5232 U	L 5232 U	LP 5232 U	U 5232 E	U 5232 L	E 5232 B	U 5330 B
E 6232 U	L 6232 U	LP 6232 U	U 6232 E	U 6232 L	E 6232 B	U 6232 B
E 1332 U	L 1332 U	LP 1332 U	U 1332 E	U 1332 L	E 1332 B	U 1332 B
MUC 332	MUL 332	MU 332	MCS 332	ML 332	-	-
E 1034 U	L 1034 U	LP 1034 U	U 1034 E	U 1034 L	E 1034 B	U 1034 B
E 5034 U	L 5034 U	LP 5034 U	U 5034 E	U 5034 L	E 5034 B	U 5034 B
MUC 5134	MUL 5134	MU 5134	MCS 5134	ML 5134	-	-
MUC 134	MUL 134	MU 134	MCS 134	ML 134	-	-
E 1234 U	L 1234 U	LP 1234 U	U 1234 E	U 1234 L	E 1234 B	U 1234 B
E 5234 U	L 5234 U	LP 5234 U	U 5234 E	U 5234 L	E 5234 B	U 5234 B
MUC 334	MUL 334	MU 334	MCS 334	ML 334	-	-
E 5334 U	L 5334 U	LP 5334 U	U 5334 E	U 5334 L	E 5334 B	U 5334 B
E 1036 U	L 1036 U	LP 1036 U	U 1036 E	U 1036 L	E 1036 B	U 1036 B
E 5036 U	L 5036 U	LP 5036 U	U 5036 E	U 5036 L	E 5036 B	U 5036 B
MUC 136	MUL 136	MU 136	MCS 136	ML 136	-	-
MUC 5136	MUL 5136	MU 5136	MCS 5136	ML 5136	-	-
MUC 236	MUL 236	MU 236	MCS 236	ML 236	-	-
E 1236 U	L 1236 U	LP 1236 U	U 1236 E	U 1236 L	E 1236 B	U 1236 B
E 5236 U	L 5236 U	LP 5236 U	U 5236 E	U 5236 L	E 5236 B	U 5236 B
MUC 336	MUL 336	MU 336	MCS 336	ML 336	-	-

Basic Construction Type: Cylindrical Roller Bearing

> **Rolling Elements:** Crowned Cylindrical Rollers


> **Bearing Material:** Through Hardened Bearing

Grade Steel

Retainer Type: Stamped Steel, Segmented

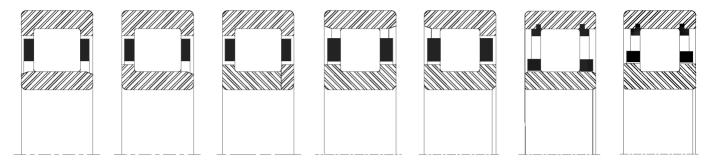
Steel, Two Piece Brass, One

Piece Land Riding Brass

Cylindrical Roller Bearings

B	D	W	Rs	Rh	C	Ğ	Fi	- 14	Fo	No	
Bare	Outside Diameter	Width	Coi	ner*	Basic Oynumic Ruting	Besic Static Rating	Flange O.D. Inner Race	O.D. Inner Race	Flange I.D. Outer Race	I.D. Outer Rece	Bearing Weight
mm inch	inch	inch	inch	inch	Mills	N/III	inch	min	(mm) (note)	mm loch	10
		46	4.7	2.5	428,422	677,376	226.9	215.6	26.3	264.4	10.9
	290	1.8110	.185	.098	95,630	151,200	8.933	8.488	1.035	10.409	24.0
	11.4173	7 5 2.9528	4.7 .185	2.5 .098	677,197	1,220,486	226.9 8.933	215.6 8.488	26.3 1.035	264.4 10.409	19.1 42.0
l +	300	85.7	2.5	2.5	151,160 742,022	272,430 1,341,805	229.2	219.0	259.7	269.9	23.6
190	11.8110	3.3750	.098	.098	165,630	299,510	9.024	8.623	10.225	10.626	51.9
7.4803	300	46	2.5	2.5	357,907	525 414	229.2	219.0	259.7	269.9	14.1
/000	11.8110	1.8110	.098	.098	79,890	117,280 2,111,245 471,260	9.024	8.623	10.225	10.626	31.0
l t	340	114.3	7.9	3.2	1,253,862	2.111.245	243.3	228.9	288.2	301.0	45.0
	13.3858	4.5000	.311	.126	279,880	471,260	9.579	9.012	11.346	11.850	99.0
1 [400	78	4.0	4.0	925,120	1,168,653	262.9	244.5	303.4	346.1	50.0
	15.7480	3.0709	.157	.157	206,500	260.860	10.350	9.626	11.945	13.626	110.0
	310	82	4.7	2.0	783,731	1,384,947	238.6	227.7	271.6	282.3	23.2
↓	12.2047	3.2283	.185	.079	174,940	309,140 628,365	9.394	8.965 231.8	10.693	11.114	51.0
		48	2.5	2.5	431,917	628,365	243.5	231.8	278.9	288.9	17.5
	320	1.8898	.098	.098	96,410	140,260	9.587	9.126	10.980	11.374	38.5
000	12.5984	88.9 3.5000	2.5 .098	2.5 .098	850,214 189,780	1,501,069	243.5 9.587	231.8	278.9 10.980	288.9	30.5 67.1
200 7.8740		58	7.9	3.2	622,810	335,060 838,701	9.587 257.4	9.126 242.2	304.9	11.374 318.5	25.9
7.6740	360	2.2835	.311	.126	139,020	187,210	10.134	0.535	12.004	12.539	57.0
	14.1732	120.7	7.9	3.2	1,344,358	2,255,546	257.4	9.535 242.2	304.9	318.5	55.9
	14.1702	4.7500	.311	.126	300,080	503,470	10.134	9.535	12.004	12.539	123.0
l t	420	165.1	4.0	4.0	2,114,336	3 434 726	280.5	260.4	346.1	362.0	121.8
	16.5354	6.5000	.157	.157	471,950	766,680	11.043	10.252	13.626	14.252	268.0
		50	2.5	2.5	515,738	746,234	257.0	244.5	295.1	308.0	20.9
	340	1.9685	.098	.098	115,120	766,680 746,234 166,570	10.118	244.5 9.626	11.618	12.126	46.0
	13.3858	95.3	2.5	2.5	963,379	1 1 666 426	257.0	244.5	295.1	308.0	37.7
↓		3.7500	.098	.098	215,040	371,970 945,370	10.118	9.626	11.618	12.126	82.9
210		62	3.0	3.0	672,000	945,370	276.5	260.4	323.9	336.6	31.4
8.2677	380	2.4409	.118	.118	150,000	211,020 2,663,091	10.886	10.252	12.752	13.252	69.1
	14.9606	127 5.0000	9.5 .374	3.2 .126	1,573,107 351,140	2,663,091	270.1 10.634	253.6 9.984	320.2 12.606	336.2 13.236	72.5 159.5
l F	440	84	4.0	4.0	1,095,987	594,440 1,434,675 320,240 1,750,470	287.8	269.9	359.9	377.8	66.8
	17.3228	3.3071	.157	.157	244,640	320.240	11.331	10.626	14.169	14.874	147.0
	340	75	6.4	2.5	940,352	1 750 470	262.8	251.4	297.3	308.6	30.9
	13.3858	2.9578	.252	.098	209,900	390,730	10.346	9.898	11.705	12.150	68.0
l t	350	98	2.5	2.5	1,031,296	1 841 370	265.4	254.0	307.0	317.5	37.7
	13.7796	3.8750	.098	.098	230,200	411,020	10.449	10.000	12.085	12.500	82.9
220			3.0	3.0	749,190	411,020 1,041,421	286.5	269.9	336.6	352.4	36.4
8.6614		65	.118	.118	167,230	232,460	11.280	10.626	13.252	13.874	80.1
	400	2.5591	9.5	3.2	835,565	1,137,830	283.2	265.5	342.4	354.4	37.7
	15.7480		.374	.126	186,510	253,980	11.150	10.453	13.480	13.953	82.9
		133.4	9.5	3.2	1,721,126	2,881,222	283.2	265.5	342.4	354.4	77.2
		5.2500	.374	.126	384,180	643,130	11.150	10.453	13.480	13.953	169.8
	070	53	2.5	2.5	603,590	878,886	280.2	266.7	323.9	336.6	25.5
230	370 14.5669	2.0866 101.6	.098 2.5	.098	134,730 1,095,002	196,180 1,890,157	11.031 280.2	10.500 266.7	12.752 323.9	13.252 336.6	56.1 44.1
9.0551	14.5009	4.0000	.098	.098	1,095,002	1,890,157 421,910	11.031	10.500	12.752	13.252	97.0
3.0001	420	69	3.0	3.0	831,578	1,147,776	299.6	282.6	354.5	371.5	43.2
	16.5354	2.7165	.118	.118	185,620	256,200	11.795	11.126	13.957	14.626	95.0
$\overline{}$	10.0004	2.7100			100,020	200,200	111.750	111.120	10.557	17.020	30.0

Radial Roller bearings and manufactured to the ABMA RBEC-1 tolerance class. Bearing manufactured to either RBEC-3, RBEC-5 or special tolerance classes are also available upon request.


Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120. For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Unless otherwise specified all Rollway radial roller bearings are manufactured to ABMA's RBEC-1 precision class.

^{*}rs and rh are the maximum shaft and housing fillet radius that can be cleared.

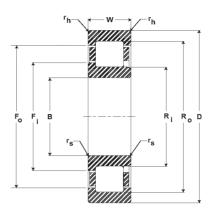
Radial Bearings ROLLWAY

Inner Race Seperable Both Directions	Inner Race Separable One Direction	Two Piece Inner Race Four-Flange Design	Outer Race Separable Both Directions	Outer Race Separable One Direction	Inner Race Separable Both Directions	Non-Separable
E 1038 U	L 1038 U	LP 1038 U	U 1038 E	U 1038 L	E 1038 B	U 1038 B
E 5038 U	L 5038 U	LP 5038 U	U 5038 E	U 5038 L	E 5038 B	U 5038 B
MUC 5138	MUL 5138	MU 5138	MCS 5138	ML 5138	-	-
MUC 138	MUL 138	MU 138	MCS 138	ML 138	-	-
E 5238 U	L 5238 U	LP 5238 U	U 5238 E	U 5238 L	E 5238 B	U 5238 B
MUC 338	MUL 338	MU 338	MCS 338	ML 338	-	-
E 5040 U	L 5040 U	LP 5040 U	U 5040 E	U 5040 L	E 5040 B	U 5040 B
MUC 140	MUL 140	MU 140	MCS 140	ML 140	-	-
MUC 5140	MUL 5140	MU 5140	MCS 5140	ML 5140	-	-
E 1240 U	L 1240 U	LP 1240 U	U 1240 E	U 1240 L	E 1240 B	U 1240 B
E 5240 U	L 5240 U	LP 5240 U	U 5240 E	U 5240 L	E 5240 B	U 5240 B
E 5340 U	L 5340 U	LP 5340 U	U 5340 E	U 5340 L	E 5340 B	U 5340 B
MUC 142	MUL 142	MU 142	MCS 142	ML 142	-	-
MUC 5142	MUL 5142	MU 5142	MCS 5142	ML 5142	-	-
MUC 242	MUL 242	MU 242	MCS 242	ML 242	-	-
E 5242 U	L 5242 U	LP 5242 U	U 5242 E	U 5242 L	E 5242 B	U 5242 B
MUC 342	MUL 342	MU 342	MCS 342	ML 342	-	-
E 5044 U	L 5044 U	LP 5044 U	U 5044 E	U 5044 L	E 5044 B	U 5044 B
MUC 5144	MUL 5144	MU 5144	MCS 5144	ML 5144	-	-
MUC 244	MUL 244	MU 244	MCS 244	ML 244	-	-
E 1244 U	L 1244 U	LP 1244 U	U 1244 E	U 1244 L	E 1244 B	U 1244 B
E 5244 U	L 5244 U	LP 5244 U	U 5244 E	U 5244 L	E 5244 B	U 5244 B
MUC 146	MUL 146	MU 146	MCS 146	ML 146	-	-
MUC 5146	MUL 5146	MU 5146	MCS 5146	ML 5146	-	-
MUC 246	MUL 246	MU 246	MCS 246	ML 246	-	-

?OLLWAY® Radial Bearings

Basic Construction Type: Cylindrical Roller Bearing

> **Rolling Elements:** Crowned Cylindrical Rollers


> **Bearing Material:** Through Hardened Bearing

Grade Steel

Retainer Type: Stamped Steel, Segmented

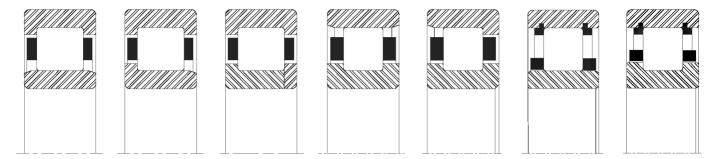
Steel, Two Piece Brass, One

Piece Land Riding Brass

Cylindrical Roller Bearings

8	D	W	Rs	Ph	C	Co	FI	和	Fo	Bo	
Bon	Outside Diameter	Width	Со	Corner*		Basic Static Rating	Flange O.D. Inner Race	G.D. Inner Race	Flange I.D. Outer Race	I.D. Outer Nace	Bearing Weight
mm inch	inch	mm inch	mm	mm inch	Mills	Nills	mm	mm	mm	mm	kg ID
		55	2.5	2.5	694,355	1,003,162	291.6	277.8	342.4	354.0	30.7
240 9.4488	390	2.1654	.098	.098	154,990	223,920	11.480	10.937	13.480	13.937	67.5
	15.3545	108	2.5	2.5	1,209,734	2,048,122	291.6	277.8	342.4	354.0	52.7
		4.2500	.098	.098	270,030	457,170	11.480	10.937	13.480	13.937	115.9
	440 17.3228	72	3.0	3.0	931,347	1,283,878	309.1	293.7	373.6	388.9	50.0
		2.8346	.118	.118	207,890	286,580	12.169	11.563	14.709	15.311	110.0
		146.1	9.5	3.2	2,192,243	3,694,746	311.6	291.2	374.9	393.1	103.0
		5.7500	.374	.126	489,340	824,720	12.268	11.465	14.760	15.476	226.6
	500	95	4.0	4.0	1,335,488	1,780,621	328.4	308.0	408.3	428.6	95.0
	19.6850	3.7402	.157	.157	298,100	397,460	12.929	12.126	16.075	16.874	209.0
250 9.8425	410	57	3.0	3.0	715,187	1,060,237	308.7	293.7	354.1	369.9	32.3
		2.2441	.118	.118	159,640	236,660	12.154	11.563	13.942	14.563	71.1
	16.1419	111.1	3.0	3.0	1,290,733	2,264,998	308.7	293.7	354.1	369.9	60.9
		4.3750	.118	.118	288,110	505,580	12.154	11.563	13.942	14.563	134.0
	520	196.9	4.0	4.0	2,748,973	4,581,472	354.3	330.2	431.8	450.9	224.8
	20.4724	7.7500	.157	.157	613,610	1,022,650	13.949	13.000	17.000	17.752	494.6
260 10.2362	430	59	3.0	3.0	736,109	1,116,685	322.8	308.0	372.4	384.2	38.2
		2.3228	.118	.118	164,310	249,260	12.709	12.126	14.661	15.126	84.0
	16.9291	114.3	3.0	3.0	1,374,061	2,491,328	322.8	308.0	372.4	384.2	69.5
		4.5000	.118	.118	306,710	556,100	12.709	12.126	14.661	15.126	152.9
	480	158.8	4.0	4.0	2,104,480	3,593,274	336.7	320.7	406.1	422.3	136.0
	18.8976	6.2500	.157	.157	469,750	802,070	13.256	12.626	15.988	16.626	299.2
	540	102	5.0	5.0	1,546,810	2,138,886	365.3	342.9	445.8	469.9	130.5
	21.2598	4.0157	.197	.197	345,270	477,430	14.382	13.500	17.551	18.500	287.1
280 11.0236	460	123.8	3.0	3.0	1,589,683	2,906,400	346.6	330.2	398.8	412.8	82.3
	18.1102	4.8750	.118	.118	354,840	648,750	13.646	13.000	15.701	16.252	181.1
	500	165.1	9.5	4.0	2,845,696	4,978,714	355.6	333.0	427.2	447.3	146.8
	19.6850	6.5000	.374	.157	635,200	1,111,320	14.000	13.110	16.819	17.610	323.0
	580	215.9	12.7	5.0	4,261,197	6,441,344	368.0	339.9	487.4	517.7	278.1
	22.8346	8.5000	.500	.197	951,160	1,437,800	14.488	13.382	19.189	20.382	611.8
300 11.8110	480	127	8.0	3.2	1,720,006	3,094,246	360.7	344.5	419.0	433.4	65.5
	18.8970	5.0000	.315	.126	383,930	690,680	14.201	13.563	16.496	17.063	144.1
	540	85	12.7	4.0	1,710,240	2,178,758	366.6	343.8	470.3	496.2	86.3
	21.2590	3.3465	.500	.157	381,750	486,330	14.433	13.535	18.516	19.535	189.9
320 12.5984	500 19.6850	71 2.7953	3.0	3.0	982,778	1,531,712	381.3 15.012	363.5	437.1	452.4	64.5
		130.2	.118	.118 3.0	219,370	341,900		14.311 363.5	17.209	17.811 452.4	141.9
			4.0	.118	1,768,928 394,850	3,261,082	381.3		437.1		99.5
240	530	5.1250	.157	.118		727,920	15.012	14.311	17.209	17.811	218.9
340		133.4	-	-	1,452,819	2,892,198	415.4	399.3	462.6	475.5	110.0
13.3850	20.8661 610	5.2500			324,290	645,580	16.354 469.9	15.720 453.7	18.213 532.8	18.720 549.0	242.0
425	610 24.0157	146 .1 5.7500	-	-	2,086,560	4,106,054					154.5 339.9
16.7480 440	24.0157 660	5.7500 158.8			465,750	916,530 4,490,528	18.500 520.8	17.862 503.7	20.976 582.8	21.614 599.0	339.9 191.8
			-	-	2,180,819						
17.3228	25.9843	6.2500			486,790	1,002,350	20.504	19.831	22.945	23.583	422.0

Radial Roller bearings and manufactured to the ABMA RBEC-1 tolerance class. Bearing manufactured to either RBEC-3, RBEC-5 or special tolerance classes are also available upon request.


Metric dimensions for reference only

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120. For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Unless otherwise specified all Rollway radial roller bearings are manufactured to ABMA's RBEC-1 precision class.

^{*}rs and rh are the maximum shaft and housing fillet radius that can be cleared.

Radial Bearings ROLLWAY.

Cylindrical Roller Bearings

Inner Race Seperable Both Directions	Inner Race Separable One Direction	Two Piece Inner Race Four-Flange Design	Outer Race Separable Both Directions	Outer Race Separable One Direction	Inner Race Separable Both Directions	Non-Separable
MUC 148	MUL 148	MU 148	MCS 148	ML 148	-	-
MUC 5148	MUL 5148	MU 5148	MCS 5148	ML 5148	-	-
MUC 248	MUL 248	MU 248	MCS 248	ML 248	-	-
E 5248 U	L 5248 U	LP 5248 U	U 5248 E	U 5248 L	E 5248 B	U 5248 B
MUC 348	MUL 348	MU 348	MCS 348	ML 348	-	-
MUC 150	MUL 150	MU 150	MCS 150	ML 150	-	-
MUC 5150	MUL 5150	MU 5150	MCS 5150	ML 5150	-	-
E 5350 U	L 5350 U	LP 5350 U	U 5350 E	U 5350 L	E 5350 B	U 5350 B
MUC 152	MUL 152	MU 152	MCS 152	ML 152	-	-
MUC 5152	MUL 5152	MU 5152	MCS 5152	ML 5152	-	-
E 5252 U	L 5252 U	LP 5252 U	U 5252 E	U 5252 L	E 5252 B	U 5252 B
MUC 352	MUL 352	MU 352	MCS 352	ML 352	-	-
MUC 5156	MUL 5156	MU 5156	MCS 5156	ML 5156	-	-
E 5256 U	L 5256 U	LP 5256 U	U 5256 E	U 5256 L	E 5256 B	U 5256 B
E 5356 U	L 5356 U	LP 5356 U	U 5356 E	U 5356 L	E 5356 B	U 5356 B
MUC 5160	MUL 5160	MU 5160	MCS 5160	ML 5160	-	-
E 1260 U	L 1260 U	LP 1260 U	U 1260 E	U 1260 L	E 1260 B	U 1260 B
MUC 164	MUL 164	MU 164	MCS 164	ML 164	-	-
MUC 5164	MUL 5164	MU 5164	MCS 5164	ML 5164	-	-
MUC 5168	MUL 5168	MU 5168	MCS 5168	ML 5168	-	-
MUC 5180	MUL 5180	MU 5180	MCS 5180	ML 5180	-	-
MUC 5188	MUL 5188	MU 5188	MCS 5188	ML 5188	-	-

Load Ratings and Life

Life Calculations

The L10 (rating) life for any given application and bearing selection can be calculated in terms of millions of revolutions by using the bearing Basic Dynamic Rating and applied radial load (or, equivalent radial load in the case of radial bearing applications having combined radial and thrust loads). The L10 life for any given application can be calculated in terms of hours, using the bearing Basic Dynamic Rating, applied load (or equivalent radial load) and suitable speed factors, by the following equation:

$$L_{10} = \left(\frac{C}{P}\right)^{10/3} \frac{1,000,000}{60 \text{ x n}} = \left(\frac{C}{P}\right)^{10/3} \frac{16667}{n}$$

Where:

L₁₀ = The # of hours that 90% of identical bearings under ideal conditions will operate at a specific speed and condition before fatigue is expected to occur.

C = Basic Dynamic Rating (lbs) 1,000,000 Revolutions

P = Constant Equivalent Radial Load (lbs)

n = Speed(RPM)

Additionally, the ABMA provides application factors for all types of bearings which need to be considered to determine an adjusted Rated Life (Lna). L10 life rating is based on laboratory conditions yet other factors are encountered in actual bearing application that will reduce bearing life. Lna life rating takes into account reliability factors, material type, and operating conditions.

$$L_{na} = a_1 \times a_2 \times a_3 \times L_{10}$$

Where:

 L_{na} = Adjusted Rated Life.

a₁ = Reliability Factor. Adjustment factor applied where estimated fatigue life is based on reliability other than 90% (See Table No 1).

Table No	. 1	Life	۸۸	illetment	Factor	for	Reliabilit	
rable ivo). I	Lile	Αa	Justment	ractor	IOL	Renabilit	٧

Reliability %	L _{na}	a ,
90	L10	1
95	L5	0.62
96	L4	0.53
97	L3	0.44
98	L2	0.33
99	L1	0.21
50	L50	5

- **a**₂ =Material Factor. Life adjustment for bearing race material. Power Transmission Solutions bearing races are manufactured from bearing quality steel. Therefore the a₂ factor is 1.0.
 - a₃ = Life Adjustment Factor for Operating Conditions. This factor should take into account the adequacy of lubricant, presence of foreign matter, conditions causing changes in material properties, and unusual loading or mounting conditions. Assuming a properly selected and mounted bearing having adequate seals and lubricant operating below 250°F and tight fitted to the shaft, the a3 factor should be 1.0.

Load Ratings and Life Continued

Vibration and shock loading can act as an additional loading to the steady expected applied load. When shock or vibration is present, an a3 Life Adjustment Factor can be applied. Shock loading has many variables which often are not easily determined. Typically, it is best to rely on one's experience with the particular application. Consult Application Engineering for assistance with applications involving shock or vibration loading.

The a3 factor takes into account a wide range of application and mounting conditions as well as bearing features and design. Accurate determination of this factor is normally achieved through testing and in-field experience. Power Transmission Solutions offers a wide range of options which can maximize bearing performance. Consult Application Engineering for more information.

Operating Conditions Factor

The life of a bearing is dependent on the operating conditions of the application. Lubrication, effects of the external environment, shaft and housing geometry and mounting, all have an affect on the actual bearing life. To determine a more realistic life calculation, the Operating Conditions Factor (F) can be included into the L_{10} life equation. The actual values determination will be based on experience of the designer and the expected operating conditions.

Using the Operating Conditions Factor (F) in the life equation, L₁₀ life in hours now becomes:

$$L_{10} = F \times \left[\left(\frac{C}{P} \right)^{3.33} \times \frac{16667}{n} \right]$$

Proper selection of the F factor demands intimate knowledge of the application. Where little is known of the application, it is recommended that F = 1 be selected. As a guide in selecting a realistic value for F, Rollway suggests use of the following, cumulative, individual sub-factors, f, to arrive at the over-all factor, F, thus:

$$F = f_1 X f_2 X f_3 X f_4 \dots$$

The table below defines the application parameters and values recommended for derivation of the individual sub-factors.

Radial Bearing Factors

Factor	Application Condition	Factor Estimates		
		Poor	Excellent	
f_1	Lubricant viscosity suitability @ bearing operating temperature (see Lubrication)	.5	1.0	
f_2	External environment and provisions for isolation	.5	1.0	
f_3	Operational conditions of shaft and housing squareness & rigidity	.5	1.0	
f ₄	Machine usage; conventional rotating machinery = 1.0 reciprocating machinery = .55 impact-inducing machinery = .25	.25	1.0	
f _s	Thrust load accompanying radial load; below permissible thrust load = 1.0 at or near permissible thrust load = .8 exceeding permissible thrust load by 25% = .5	.5	1.0	

Thrust Bearing Factors

Factor	Application Condition	Factor Estimates		
		Poor	Excellent	
f ₁	Lubricant viscosity suitability @ bearing operating temperature (see Lubrication)	.5	1.0	
f_2	External environment and provisions for isolation	.5	1.0	
f_3	Operational conditions of shaft and housing squareness & rigidity	.5	1.0	
f ₄	Bearing thrust plate backing system full backing vs partial backing	.5	1.0	

ROLLWAY® Radial Bearings

Load Ratings and Life Continued

Variable Load Formula

Root mean load (RML) is to be used when a number of varying loads are applied to a bearing for varying time limits. Maximum loading still must be considered for bearing size selection.

$$RML^* = \sqrt[10/3]{\frac{(L_1^{10/3}N_1) + (L_2^{10/3}N_2) + (L_3^{10/3}N_3)}{100}}$$

Where:

RML = Root Mean Load (lbs.)

 L_1 , L_2 , etc. = Load in pounds

 N_1 , N_2 , etc. = Percent of total time operated at loads L_1 , L_2 , etc.

Mean Speed Formula

The following formula is to be used when operating speed varies over time.

Mean Speed =
$$\frac{S_1 N_1 + S_2 N_2 + S_3 N_3}{100}$$

 S_1S_2 , etc = Speeds in RPM

N₁N₂, etc = Percentage of total time operated at speeds S₁S₂, etc

Bearing Life In Oscillating Applications

The equivalent rotative speed (ERS) is used in life calculations when the bearing does not make complete revolutions during operation. The ERS is then used as the bearing operating speed in the calculation of the L10 (Rating) Life. The formula is based on sufficient angular rotation to have roller paths overlap.

ERS = Equivalent Rotative Speed

N = Total number of degrees per minute through

which the bearing will rotate.

 $ERS = \frac{N}{360}$

In the above formula, allowance is made for the total number of stress applications on the weakest race per unit time, which, in turn, determines fatigue life and the speed factors. The theory behind fretting corrosion is best explained by the fact that the rolling elements in small angles of oscillation retrace a path over an unchanging area of the inner or outer races where the lubricant is prevented by inertia from flowing in behind the roller as the bearing oscillates in one direction. Upon reversal, this small area of rolling contact is traversed by the same roller in the dry state. The friction of the two unlubricated surfaces causes fretting corrosion and produces failures which are unpredictable from a normal life standpoint.

^{*} Apply RML to rating at mean speed to determine resultant life.

Load Ratings and Life Continued

With a given bearing selected for an oscillating application, the best lubrication means is a light mineral oil under positive flow conditions. With a light oil, there is a tendency for all areas in the bearing load zone to be immersed in lubricant at all times. The full flow lubrication dictates that any oxidized material which may form is immediately carried away by the lubricant, and since these oxides are abrasive, further wear tends to be avoided. If grease lubrication must be used, it is best to consult with either the bearing manufacturer or the lubricant manufacturer to determine the best possible type of lubricant. Greases have been compounded to resist the detrimental effect of fretting corrosion for such applications.

Static Load Rating

The "static load rating" for rolling element bearings is that uniformly distributed static radial load acting on a non-rotating bearing, which produces a contact stress of 580,000 psi (roller bearings) or 607,000 psi (ball bearings) at the center of the most heavily loaded rolling element. At this stress level, plastic deformation begins to be significant. Experience has shown that the plastic deformation at this stress level can be tolerated in most bearing applications without impairment of subsequent bearing operation. In certain applications where subsequent rotation of the bearing is slow and where smoothness and friction requirements are not too exacting, a higher static load limit can be tolerated. Where extreme smoothness is required or friction requirements are critical, a lower static load limit may be necessary.

Minimum Bearing Load

Skidding, or sliding, of the rolling elements on the raceway instead of a true rolling motion can cause excessive wear. Applications with high speeds and light loading are particularly prone to skidding. As a general guideline, rolling element bearings should be radially loaded at least 2% of Basic Dynamic Rating. For applications where load is light relative to the bearings dynamic load rating, consult Application Engineering for assistance.

High Steady Loads and Shock Loads

Bearing basic dynamic capacity and basic static capacity are determined through a consideration of entirely different factors. The prime consideration for dynamic capacity is the magnitude of the stressed volume of metal and the probability that it will endure a given number of loading cycles. For static capacity, the prime consideration is the influence of the elastic limit and rupture limit as manifested by the extent of the permanent deformations that occur. In view of the seemingly great difference in bases for consideration of dynamic and static capacities, it might be concluded that they bear no relation to one another. Such is not always the case when considering very high steady loads or shock loads present in a rotating bearing. The extent to which these loads approach (or exceed) the basic static capacity will determine the validity of the use of the life formula. More explicitly, when the following relationship exists, ordinary means may be used in determining bearing life.

$$\frac{C_o}{f_s P_o} \ge \frac{C/P}{\left(\frac{n}{331/3}\right)^{0.30}}$$
 Where

Where: C_0 = Bearing basic static capacity-lbs

 P_0 = Value of the radial load or maximum shock load-lbs

f_s = Safety factor for high radial or shock loads (dependent on duration of peak load and type of bearing service demanded throughout life of bearing in given application)

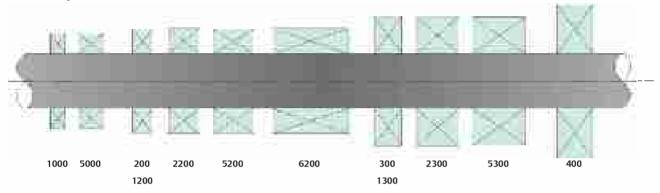
 $f_s = 0.5$ for occasional high steady load but no shock

f_s = 1.0 for continuous high steady load but no shock

 $f_s = 2.0$ for maximum shock loads and/or where very smooth subsequent bearing operation is required

C,P = As previously defined

n = Rotational speed - rpm


A warning note on use of the above relation: even when the solution indicates that conventional means may be used in estimating bearing life, such a fatigue life forecast becomes invalid where less-than-optimum lubrication permits shock loads to induce fretting wear (false brinelling).

Radial Engineering Section

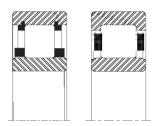
Rollway cylindrical radial roller bearings are available in a vast variety of sizes and configurations ranging from standard cataloged, 45mm ID bearings to 1,016mm outside diameter, special engineered bearings.

The ABMA has established standard design criteria for radial roller bearings. It has defined standard series for the roller bearings by identifying the outside diameter and width for a given bore diameter. The illustration below demonstrates the differences in cross section for the given series.

Rollway Series Codes

The races and rollers in standard Rollway bearings are made of vacuum-degassed, high alloy, through-hardened and/or case-carburized steels that are stabilized for operation up to 250°F for case-carburized steel and 335°F for through-hardened steels. For operating temperatures in excess of 335°F, special materials and/or stabilization procedures are necessary.

All Rollway bearings are made with crowned rollers, which satisfy the general requirements for modified-line contact, in accordance with ABMA definitions. The Rollway crowning technique is a highly developed technology including analytical, experimental, processing and quality control techniques to ensure the following:


- 1. A minimization of end effects and stress concentrations under design load conditions.
- 2. Detailed understanding and the necessary controls for demanding applications where reliability and higher theoretical capacities are essential.

Vacuum-degassed steels are used in standard bearings; however, consumable-electrode remelted steels (from either air CEVM or vacuum-melted electrodes VIMVAR) are available in all alloys and will be supplied upon request. We also manufacture low quantities of bearing designs with M-50 tool steel for applications requiring high temperature hardness and average operating temperatures over 400°F but less than 800°F.

Designs

Rollway cylindrical radial roller bearings are available in a vast variety of sizes and configurations. The different bearing configurations are described on page E-5 and listed in the bearing product table starting on page E-15. Over the years, the Rollway product offering has increased. Each new product line has its own numbering system, resulting in the current offering of multiple nomenclatures. The three basic numbering systems are Tru-Rol, MAX, and ISO. These three nomenclature systems are defined on the following charts:

Rollway cylindrical radial roller bearings are available in a vast variety of sizes and configurations ranging from standard cataloged, 45mm ID bearings to 1,016mm outside diameter, special engineered bearings. This section of the catalog covers Rollway cylindrical radial roller bearing configurations, part numbering, material, retainer design and limiting speeds.

Configuration and Numbering System Inner Race Separable, Both Directions

Number Systems

F-####-U

E-####-B

MUC-####

NU-###

Two-flange (or retaining rings) outer race, straight inner race, separable bearing. For applications where axial float in both directions is desired. Roller assembly remains with the outer race.

Inner Race Separable, One Direction

Number Systems

L-####-U

MUL-####

NJ-###

Two-flange outer race, one-flange inner race, separable bearing. For applications where axial float in one direction and axial retention in the other direction is desired. Roller assembly remains with the outer race. Will carry light thrust loads in one axial direction.

Two Piece Inner Race, Four-Flange Design

Number Systems

LP-####-U

MU-####

NUP-###

Two-flange outer race, two-flange inner race with one flange plate, separable bearing. For applications where axial retention in both directions is desired. Roller assembly remains with the outer race. Will carry light thrust loads in both axial directions.

Outer Race Separable Both Directions

Number Systems

U-####-E

MCS-####

N-###

Straight outer race, two-flange inner race, separable bearing. For applications where axial float is desired. Roller assembly remains with the inner race.

ROLLWAY® Radial Bearings

Radial Engineering Section continued

Outer Race Separable One Direction

Number Systems

U-####-L

ML-####

One-flange outer race, two-flange inner race, separable bearing. For applications where axial float in one direction and axial retention in the other directions is desired. Roller assembly remains with the inner race.

Will carry light thrust loads in one direction.

Two-Piece Outer Race Four-Flange Design

Number Systems

U-####-LP

MN-####

Two-flange outer race with one flange plate, two-flange inner race, separable bearing. For applications where axial retention in both directions is desired. Roller assembly remains with the inner race. Will carry light thrust loads in both axial directions.

Non-Separable

Number Systems

U-####-B

MS-####

Or when supplied with a full complement of rollers.

Number Systems

UM-####-B

M-####

Two snap-ring flange outer race, two-flange inner race, non-separable bearing. No axial retainer of outer race is required when inner race is properly mounted on shaft. Will not carry thrust loads.

Precision and Tolerancing

Standard catalog, radial roller bearings and manufactured to the ABMA RBEC-1 tolerance class. Many applications may require greater precision than standard because of high rotational speeds or other exacting requirements. Bearings manufactured to either RBEC-3, RBEC-5 or special tolerance classes are also available upon request."

Standard Tolerances RBEC-1

Bore Diameter		Bore To	lerance	Width Tolerance		
over	incl	high (+)	low (-)	high (+)	low (-)	
inch	inch	inch	inch	inch	inch	
mm	mm	mm	mm	mm	mm	
0.0000	1.1810	0.0000	0.0004	0.0000	0.0047	
	30	0.0000	0.0102	0.0000	0.1194	
1.1810	1.9685	0.0000	0.0005	0.0000	0.0047	
30	50	0.0000	0.0127	0.0000	0.1194	
1.9685	3.1496	0.0000	0.0006	0.0000	0.0059	
50	80	0.0000	0.0152	0.0000	0.1499	
3.1496	4.7244	0.0000	0.0008	0.0000	0.0079	
80	120	0.0000	0.0203	0.0000	0.2007	
4.7244	7.0866	0.0000	0.0010	0.0000	0.0098	
120	180	0.0000	0.0254	0.0000	0.2489	
7.0866	9.8425	0.0000	0.0012	0.0000	0.0118	
180	250	0.0000	0.0305	0.0000	0.2997	
9.8425	12.4016	0.0000	0.0014	0.0000	0.0138	
250	315	0.0000	0.0356	0.0000	0.3505	
12.4016	15.7480	0.0000	0.0016	0.0000	0.0157	
315	400	0.0000	0.0406	0.0000	0.3988	
15.7480	19.6850	0.0000	0.0018	0.0000	0.0177	
400	500	0.0000	0.0457	0.0000	0.4496	
19.6850	24.8031	0.0000	0.0020	0.0000	0.0197	
500	630	0.0000	0.0508	0.0000	0.5004	
24.8031	31.4961	0.0000	0.0030	0.0000	0.0295	
630	800	0.0000	0.0762	0.0000	0.7493	

Outside	Diameter	Outside Diam	eter Tolerance
over	incl	high (+)	low (-)
inch	inch	inch	inch
mm	mm	mm	mm
1.1810	1.9685	0.0000	0.0005
30	50	0.0000	0.0127
1.9685	3.1496	0.0000	0.0005
50	80	0.0000	0.0127
3.1496	4.7244	0.0000	0.0006
80	120	0.0000	0.0152
4.7244	5.9055	0.0000	0.0007
120	150	0.0000	0.0178
5.9055	7.0866	0.0000	0.0010
150	180	0.0000	0.0254
7.0866	9.8425	0.0000	0.0012
180	250	0.0000	0.0305
9.8425	12.4016	0.0000	0.0014
250	315	0.0000	0.0356
12.4016	15.7480	0.0000	0.0016
315	400	0.0000	0.0406
15.7480	19.6850	0.0000	0.0018
400	500	0.0000	0.0457
19.6850	24.8031	0.0000	0.0020
500	630	0.0000	0.0508
24.8031	31.4961	0.0000	0.0030
630	800	0.0000	0.0762
31.4961	39.3701	0.0000	0.0039
800	1,000	0.0000	0.0991
39.3701	49.2126	0.0000	0.0049
1,000	1,250	0.0000	0.1245

Standard Tolerances RBEC-3

Bore D	iameter	Bore To	lerance	Width Tolerance	
over	incl	high (+)	low (-)	high (+)	low (-)
inch	inch	inch	inch	inch	inch
mm	mm	mm	mm	mm	mm
0.0000	1.1810	0.0000	0.00030	0.0000	0.0047
0	30	0.0000	0.00762	0.0000	0.1194
1.1810	1.9685	0.0000	0.00040	0.0000	0.0047
30	50	0.0000	0.01016	0.0000	0.1194
1.9685	3.1496	0.0000	0.00045	0.0000	0.0059
50	80	0.0000	0.01143	0.0000	0.1499
3.1496	4.7244	0.0000	0.00060	0.0000	0.0079
80	120	0.0000	0.01524	0.0000	0.2007
4.7244	7.0866	0.0000	0.00070	0.0000	0.0098
120	180	0.0000	0.01778	0.0000	0.2489
7.0866	9.8425	0.0000	0.00085	0.0000	0.0118
180	250	0.0000	0.02159	0.0000	0.2997
9.8425	12.4016	0.0000	0.00100	0.0000	0.0138
250	315	0.0000	0.02540	0.0000	0.3505
12.4016	15.7480	0.0000	0.00120	0.0000	0.0157
315	400	0.0000	0.03048	0.0000	0.3988
15.7480	19.6850	0.0000	0.00140	0.0000	0.0177
400	500	0.0000	0.03556	0.0000	0.4496
19.6850	24.8031	0.0000	0.00600	0.0000	0.0197
500	630	0.0000	0.15240	0.0000	0.5004

Outside	Diameter	Outside Diameter Tolerance			
over	incl	high (+)	low (-)		
inch	inch	inch	inch		
mm	mm	mm	mm		
1.1811	1.9685	0.0000	0.00035		
30	50	0.0000	0.00889		
1.9685	3.1496	0.0000	0.00045		
50	80	0.0000	0.01143		
3.1496	4.7244	0.0000	0.00050		
80	120	0.0000	0.01270		
4.7244	5.9055	0.0000	0.00060		
120	150	0.0000	0.01524		
5.9055	7.0866	0.0000	0.00070		
150	180	0.0000	0.01778		
7.0866	9.8425	0.0000	0.00080		
180	250	0.0000	0.02032		
9.8425	12.4016	0.0000	0.00100		
250	315	0.0000	0.02540		
12.4016	15.7480	0.0000	0.00110		
315	400	0.0000	0.02794		
15.7480	19.6850	0.0000	0.00130		
400	500	0.0000	0.03302		
19.6850	24.8031	0.0000	0.00150		
500	630	0.0000	0.03810		
24.8031	31.4961	0.0000	0.00180		
630	800	0.0000	0.04572		

Standard Tolerances RBEC-5

Bore D	iameter	Bore To	olerance	Width Tolerance		
over	incl	high (+)	low (-)	high (+)	low (-)	
inch	inch	inch	inch	inch	inch	
mm	mm	mm	mm	mm	mm	
0.0000	1.1810	0.0000	0.00025	0.0000	0.0047	
0	30	0.0000	0.00635	0.0000	0.1194	
1.1810	1.9685	0.0000	0.00030	0.0000	0.0047	
30	50	0.0000	0.00762	0.0000	0.1194	
1.9685	3.1496	0.0000	0.00035	0.0000	0.0059	
50	80	0.0000	0.00889	0.0000	0.1499	
3.1496	4.7244	0.0000	0.00040	0.0000	0.0079	
80	120	0.0000	0.01016	0.0000	0.2007	
4.7244	7.0866	0.0000	0.00050	0.0000	0.0098	
120	180	0.0000	0.01270	0.0000	0.2489	
7.0866	9.8425	0.0000	0.00065	0.0000	0.0118	
180	250	0.0000	0.01651	0.0000	0.2997	
9.8425	12.4016	0.0000	0.00070	0.0000	0.0138	
250	315	0.0000	0.01778	0.0000	0.3505	
12.4016	15.7480	0.0000	0.00090	0.0000	0.0157	
315	400	0.0000	0.02286	0.0000	0.3988	

Outside	Diameter	Outside Diameter Tolerance			
over	over incl		low (-)		
inch	inch	inch	inch		
mm	mm	mm	mm		
1.1811	1.9685	0.0000	0.00030		
30	50	0.0000	0.00762		
1.9685	3.1496	0.0000	0.00035		
50	80	0.0000	0.00889		
3.1496	4.7244	0.0000	0.00040		
80	120	0.0000	0.01016		
4.7244	5.9055	0.0000	0.00045		
120	150	0.0000	0.01143		
5.9055	7.0866	0.0000	0.00050		
150	180	0.0000	0.01270		
7.0866	9.8425	0.0000	0.00060		
180	250	0.0000	0.01524		
9.8425	12.4016	0.0000	0.00070		
250	315	0.0000	0.01778		
12.4016	15.7480	0.0000	0.00080		
315	400	0.0000	0.02032		
15.7480	19.6850	0.0000	0.00090		
400	500	0.0000	0.02286		
19.6850	24.8031	0.0000	0.00110		
500	630	0.0000	0.02794		

Internal Clearance

Unmounted internal radial clearance may be determined by two methods:

- 1. Dimensionally from the geometry of the bearing
- 2. By an inspection gaging procedure prescribed in the ABMA Standards handbook

Dimensionally, internal radial clearance is equal to the bore of the outer race minus the sum of the inner race OD and two roller diameters. The gaging procedure specifies that one of the bearing races be fixed horizontally on a flat plate. A specified radial load is then applied to the unsupported race, alternately, in diametrically opposing directions. The internal radial clearance is the total displacement of the unsupported race.

The sole reason for manufacturing bearings with differing internal radial clearance is to give the designer a means to achieve predetermined clearance in the mounted revolving bearing. In determining this final running clearance it is necessary to take into consideration, in addition to the effects of shaft, housing interference fits and surface finish, the desire to meet one or more of the following conditions:

- 1. Optimum load distribution through the rollers to result in maximum life
- 2. Minimum bearing operating temperature
- 3. Minimum bearing torque
- 4. Minimum bearing noise level

The group classification of unmounted radial internal clearance should be specified only after a complete analysis of the resultant clearance of the mounted and operating bearing. The commonly available unmounted internal clearances of Rollway bearings are shown in the following tables. In general, Rollway standard internal clearances for the Tru-Rol and Max numbering systems are equivalent to the ISO C3 clearance.

Radial Bearing Unmounted Internal Clearance

Clearance Codes Used on Bearings With Tru-Rol and Max Numbering Systems

Bearing	Bore Dia		.00		0.5			007			009	
Over	Up to & include	U	03	U	05	006-51	tandard	U	J <i>7</i>	U	J9	
inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	
0.0000	0.5 9 06 15	0.0003 0.0076	0.0011 0.0279	0.0009 0.0229	0.0017 0.0432	0.0010 0.0254	0.0018 0.0457	0.0011 0.0279	0.0019 0.0483	-	-	
0.5906	0.6693	0.0004	0.0012	0.0009	0.0017	0.0010	0.0018	0.0012	0.0020	-	_	
15 0.6693	17 0.7874	0.0102 0.0005	0.0305 0.0013	0.0229 0.0010	0.0432 0.0018	0.0254 0.0012	0.0457 0.0020	0.0305 0.0014	0.0508 0.0022	_	_	
17 0.7874	20 0.9843	0.0127 0.0005	0.0330 0.0015	0.0254 0.0011	0.0457 0.0021	0.0305 0.0013	0.0508 0.0023	0.0356 0.0015	0.0559 0.0025	0.0024	0.0034	
20 0.9843	25 1.1811	0.0127 0.0006	0.0381 0.0016	0.0279 0.0013	0.0533 0.0023	0.0330 0.0015	0.0584 0.0025	0.0381 0.0017	0.0635 0.0027	0.0610 0.0027	0.0864	
25	30	0.0152	0.0406	0.0330	0.0584	0.0381	0.0635	0.0432	0.0686	0.0686	0.0037 0.0940	
1.1811 3 0	1.3780 35	0.0007 0.0178	0.0017 0.0432	0.0015 0.0381	0.0025 0.0635	0.0017 0.0432	0.0027 0.0686	0.0019 0.0483	0.0029 0.0737	0.0030 0.0762	0.0040 0.1016	
1.3 7 80 35	1.5748 40	0.0008 0.0203	0.0018 0.0457	0.0016 0.0406	0.0026 0.0660	0.0018 0.0457	0.0028 0.0711	0.0020 0.0508	0.0030 0.0762	0.0032 0.0813	0.0042 0.1067	
1.5748 40	1.7 7 17 45	0.0008 0.0203	0.0020 0.0508	0.0017 0.0432	0.0029 0.0737	0.0020 0.0508	0.0032 0.0813	0.0022 0.0559	0.0034 0.0864	0.0036 0.0914	0.0048 0.1219	
1.7 7 17	1.9685	0.0009	0.0021	0.0017	0.0029	0.0020	0.0032	0.0023	0.0035	0.0036	0.0048	
45 1. 9 685	50 2.1654	0.0229 0.0010	0.0533 0.0022	0.0432 0.0019	0.0737 0.0031	0.0508 0.0022	0.0813 0.0034	0.0584 0.0025	0.0889 0.0037	0.0914 0.0039	0.1219 0.0051	
50 2.1654	55 2.3622	0.0254 0.0011	0.0559 0.0023	0.0483 0.0022	0.0787 0.0034	0.0559 0.0025	0.0864 0.0037	0.0635 0.0028	0.0940 0.0040	0.0991 0.0044	0.1295	
55	60	0.0279	0.0584	0.0559	0.0864	0.0635	0.0940	0.0711	0.1016	0.1118	0.0056 0.1422	
2.3622 60	2.5197 64	0.0012 0.0305	0.0024 0.0610	0.0023 0.0584	0.0035 0.0889	0.0025 0.0635	0.0037 0.0940	0.0029 0.0737	0.0041 0.1041	0.0046 0.1168	0.0058 0.1473	
2.5197 64	2.7559 70	0.0012 0.0305	0.0026 0.0660	0.0024 0.0610	0.0038 0.0965	0.0027 0.0686	0.0041 0.1041	0.0030 0.0762	0.0044 0.1118	0.0048 0.1219	0.0062 0.1575	
2.7559 70	2.9528 75	0.0013 0.0330	0.0027 0.0686	0.0026 0.0660	0.0040 0.1016	0.0030 0.0762	0.0044 0.1118	0.0033 0.0838	0.0047 0.1194	0.0052	0.0066 0.1676	
2.9528	3.1496	0.0014	0.0028	0.0026	0.0040	0.0030	0.0044	0.0034	0.0048	0.1321 0.0052	0.0066	
75 3.1496	80 3.3465	0.0356 0.0014	0.0711 0.0030	0.0660 0.0028	0.1016 0.0044	0.0762 0.0032	0.1118 0.0048	0.0864 0.0036	0.1219 0.0052	0.1321 0.0056	0.1676 0.0072	
80 3.3465	8 5 3.5433	0.0356 0.0014	0.0762 0.0030	0.0711 0.0028	0.1118 0.0044	0.0813 0.0032	0.1219 0.0048	0.0914 0.0036	0.1321 0.0052	0.1422 0.0056	0.0072 0.1829 0.0072	
85	90	0.0356	0.0762	0.0711	0.1118	0.0813	0.1219	0.0914	0.1321	0.1422	0.1829	
3.5433 90	3.7402 9 5	0.0016 0.0406	0.0032 0.0813	0.0030 0.0762	0.0046 0.1168	0.0034 0.0864	0.0050 0.1270	0.0038 0.0965	0.0054 0.1372	0.0059 0.1499	0.0075 0.1905	
3.7402 9 5	3.9 3 70 1 00	0.0016 0.0406	0.0032 0.0813	0.0031 0.0787	0.0047 0.1194	0.0035 0.0889	0.0051 0.1295	0.0039 0.0991	0.0055 0.1397	0.0061 0.1549	0.0077 0.1956	
3.9 3 70 1 00	4.1 3 39 1 0 5	0.0017 0.0432	0.0035 0.0889	0.0032 0.0813	0.0050 0.1270	0.0037 0.0940	0.0055 0.1397	0.0041 0.1041	0.0059 0.1499	0.0064 0.1626	0.0082 0.2083	
4.1 3 39	4.3307	0.0017	0.0035	0.0033	0.0051	0.0038	0.0056	0.0043	0.0061	0.0066	0.0084	
105 4.3307	110 4.72 4 4	0.0432 0.0019	0.0889 0.0037	0.0838 0.0036	0.1295 0.0054	0.0965 0.0041	0.1422 0.0059	0.1092 0.0046	0.1549 0.0064	0.1676 0.0071	0.2134 0.0089 0.2261	
110 4.7244	12 0 5.1181	0.0483 0.0020	0.0940 0.0040	0.0914 0.0039	0.1372 0.0059	0.1041 0.0044	0.1499 0.0064	0.1168 0.0049	0.1626 0.0069	0.1803 0.0076	0.2261 0.0096	
12 0 5.1181	130 5.5118	0.0508 0.0022	0.1016 0.0042	0.0991 0.0042	0.1499 0.0062	0.1118 0.0048	0.1626 0.0068	0.1245 0.0054	0.1753 0.0074	0.1930 0.0083	0.2438 0.0103	
130	140	0.0559	0.1067	0.1067	0.1575	0.1219	0.1727	0.1372	0.1880	0.2108	0.2616	
5.5118 140	5.9055 150	0.0023 0.0584	0.0045 0.1143	0.0045 0.1143	0.0067 0.1702	0.0051 0.1295	0.0073 0.1854	0.0057 0.1448	0.0079 0.2007	0.0088 0.2235	0.0110 0.2794	
5.9055 150	6.2992 160	0.0025 0.0635	0.0047 0.1194	0.0048 0.1219	0.0070 0.1778	0.0054 0.1372	0.0076 0.1930	0.0060 0.1524	0.0082 0.2083	0.0093 0.2362	0.0115 0.2921	
6.2992 160	6.6929 170	0.0027 0.0686	0.0049 0.1245	0.0050 0.1270	0.0072 0.1829	0.0057 0.1448	0.0079 0.2007	0.0064 0.1626	0.0086 0.2184	0.0097 0.2464	0.0119 0.3023	
6.6929	7.0866	0.0028	0.0052	0.0053	0.0077	0.0060	0.0084	0.0067	0.0091	0.0130	0.0127	
170 7.0866	180 7.4803	0.0711 0.0030	0.1321 0.0054	0.1346 0.0056	0.1956 0.0080	0.1524 0.0063	0.2134 0.0087	0.1702 0.0072	0.2311 0.0096	0.3302 0.0110	0.3226 0.0134	
180 7.4803	190 7.8740	0.0762 0.0032	0.1372 0.0058	0.1422 0.0059	0.2032 0.0085	0.1600 0.0067	0.2210 0.0093	0.1829 0.0075	0.2438 0.0101	0.2794 0.0115	0.3404 0.0141	
190 7.8740	200	0.0813 0.0035	0.1473 0.0061	0.1499 0.0063	0.2159 0.0089	0.1702 0.0072	0.2362 0.0098	0.1905 0.0080	0.2565	0.2921	0.3581	
200	8. 66 14 220	0.0889	0.1549	0.1600	0.2261	0.1829	0.2489	0.2032	0.0106 0.2692	-	-	
8. 66 14 220	9.4488 240	0.0038 0.0965	0.0066 0.1676	0.0070 0.1778	0.0098 0.2489	0.0078 0.1981	0.0106 0.2692	0.0087 0.2210	0.0115 0.2921	-	-	
9.4488 240	10.2362 260	0.0042 0.1067	0.0070 0.1778	0.0076 0.1930	0.0104 0.2642	0.0085 0.2159	0.0113 0.2870	0.0096 0.2438	0.0124 0.3150	-	-	
10.2362	11.0236	0.0045	0.0075	0.0080	0.0110	0.0090	0.0120	0.0101	0.0131	-	-	
260 11.0236	280 11.8110	0.1143 0.0049	0.1905 0.0079	0.2032 0.0085	0.2794 0.0115	0.2286 0.0097	0.3048 0.0127	0.2565 0.0109	0.3327 0.0139	_	_	
280 11.8110	300 12.5984	0.1245 0.0053	0.2007 0.0083	0.2159 0.0093	0.2921 0.0123	0.2464 0.0105	0.3226 0.0135	0.2769 0.0117	0.3531 0.0147	-		
300	320	0.1346	0.2108	0.2362	0.3124	0.2667	0.3429	0.2972	0.3734	-	-	

Radial Bearing Unmounted Internal Clearance

Clearance Codes Used on Bearings With ISO Numbering Systems

Bearing	Bore Dia										
Over	Up to & include	· ·	2	C0 Sta	andard	C	3	ď	24	C	5
inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
0.0000	0.3937	0.0000	0.0012	0.0004	0.0016	0.0010	0.0022	0.0014	0.0026	0.0022	0.0033
	10	0.0000	0.0305	0.0102	0.0406	0.0254	0.0559	0.0356	0.0660	0.0559	0.0838
0.3937	0.7087	0.0000	0.0012	0.0004	0.0016	0.0010	0.0022	0.0014	0.0026	0.0022	0.0033
10	18	0.0000	0.0305	0.0102	0.0406	0.0254	0.0559	0.0356	0.0660	0.0559	0.0838
0.7087	0.9449	0.0000	0.0012	0.0004	0.0016	0.0010	0.0022	0.0014	0.0026	0.0022	0.0033
18	24	0.0000	0.0305	0.0102	0.0406	0.0254	0.0559	0.0356	0.0660	0.0559	0.0838
0.9449	1.1811	0.0000	0.0012	0.0004	0.0018	0.0012	0.0026	0.0016	0.0028	0.0024	0.0037
24	30	0.0000	0.0305	0.0102	0.0457	0.0305	0.0660	0.0406	0.0711	0.0610	0.0940
1.1811	1.5748	0.0000	0.0014	0.0006	0.0020	0.0014	0.0028	0.0018	0.0032	0.0028	0.0041
30	40	0.0000	0.0356	0.0152	0.0508	0.0356	0.0711	0.0457	0.0813	0.0711	0.1041
1.5748	1.9685	0.0002	0.0016	0.0008	0.0022	0.0016	0.0030	0.0022	0.0035	0.0033	0.0047
40	50	0.0051	0.0406	0.0203	0.0559	0.0406	0.0762	0.0559	0.0889	0.0838	0.1194
1.9685	2.5591	0.0002	0.0018	0.0008	0.0026	0.0018	0.0035	0.0026	0.0041	0.0039	0.0055
50	65	0.0051	0.0457	0.0203	0.0660	0.0457	0.0889	0.0660	0.1041	0.0991	0.1397
2.5591	3.1496	0.0002	0.0022	0.0010	0.0030	0.0022	0.0041	0.0030	0.0049	0.0045	0.0065
65	80	0.0051	0.0559	0.0254	0.0762	0.0559	0.1041	0.0762	0.1245	0.1143	0.1651
3.1496	3.9370	0.0004	0.0024	0.0012	0.0032	0.0026	0.0045	0.0035	0.0055	0.0057	0.0077
80	100	0.0102	0.0610	0.0305	0.0813	0.0660	0.1143	0.0889	0.1397	0.1448	0.1956
3.9370	4.7244	0.0004	0.0026	0.0014	0.0035	0.0032	0.0053	0.0041	0.0063	0.0065	0.0087
100	120	0.0102	0.0660	0.0356	0.0889	0.0813	0.1346	0.1041	0.1600	0.1651	0.2210
4.7244	5.5118	0.0004	0.0030	0.0016	0.0041	0.0035	0.0061	0.0045	0.0071	0.0073	0.0098
120	140	0.0102	0.0762	0.0406	0.1041	0.0889	0.1549	0.1143	0.1803	0.1854	0.2489
5.5118	6.2992	0.0006	0.0032	0.0020	0.0045	0.0039	0.0065	0.0051	0.0077	0.0083	0.0108
140	160	0.0152	0.0813	0.0508	0.1143	0.0991	0.1651	0.1295	0.1956	0.2108	0.2743
6.2992	7.0866	0.0008	0.0034	0.0024	0.0049	0.0043	0.0069	0.0059	0.0085	0.0093	0.0118
160	180	0.0203	0.0864	0.0610	0.1245	0.1092	0.1753	0.1499	0.2159	0.2362	0.2997
7.0866	7.8740	0.0010	0.0037	0.0026	0.0053	0.0049	0.0077	0.0065	0.0092	0.0102	0.0123
180	200	0.0254	0.0940	0.0660	0.1346	0.1245	0.1956	0.1651	0.2337	0.2591	0.3124
7.8740	8.8583	0.0012	0.0041	0.0030	0.0059	0.0055	0.0085	0.0071	0.0100	0.0014	0.0144
200	225	0.0305	0.1041	0.0762	0.1499	0.1397	0.2159	0.1803	0.2540	0.0356	0.3658
8.8583	9.8425	0.0016	0.0045	0.0035	0.0065	0.0061	0.0090	0.0081	0.0110	0.0126	0.0156
225	250	0.0406	0.1143	0.0889	0.1651	0.1549	0.2286	0.2057	0.2794	0.3200	0.3962
9.8425	11.0236	0.0018	0.0049	0.0039	0.0071	0.0069	0.0100	0.0090	0.0122	0.0140	0.0171
250	280	0.0457	0.1245	0.0991	0.1803	0.1753	0.2540	0.2286	0.3099	0.3556	0.4343
11.0236	12.4016	0.0020	0.0052	0.0043	0.0077	0.0077	0.0110	0.0100	0.0134	0.0157	0.0191
280	315	0.0508	0.1321	0.1092	0.1956	0.1956	0.2794	0.2540	0.3404	0.3988	0.4851
12.4016	13.9764	0.0022	0.0057	0.0049	0.0085	0.0085	0.0120	0.0110	0.0146	0.0173	0.0209
315	355	0.0559	0.1448	0.1245	0.2159	0.2159	0.3048	0.2794	0.3708	0.4394	0.5309
13.9764	15.7480	0.0026	0.0063	0.0055	0.0093	0.0096	0.0134	0.0126	0.0163	0.0197	0.0234
355	400	0.0660	0.1600	0.1397	0.2362	0.2438	0.3404	0.3200	0.4140	0.5004	0.5944
15.7480	17.7165	0.0028	0.0075	0.0061	0.0108	0.0106	0.0153	0.0140	0.0179	0.0219	0.0266
400	450	0.0711	0.1905	0.1549	0.2743	0.2692	0.3886	0.3556	0.4547	0.5563	0.6756
17.7165	19.6850	0.0033	0.0081	0.0071	0.0118	0.0118	0.0165	0.0155	0.0202	0.0244	0.0291
450	500	0.0838	0.2057	0.1803	0.2997	0.2997	0.4191	0.3937	0.5131	0.6198	0.7391

The resultant bearing internal radial clearance after mounting and with the bearing in operation will differ from the unmounted clearance due to:

- 1. The press fit between the shaft and inner race and/or a press fit between the housing and outer race, each resulting in an internal clearance reduction.
- 2. An increase in the temperature of the inner race over that of the outer race, which will result in a reduction of internal clearance. Conversely, an increase in temperature of the outer race over that of the inner race may result in increased internal clearance.

The formula for the resultant internal clearance of the bearing after mounting and in operation is:

$$Sr = [S0 - (S1 \pm S2 - S3 \pm Sx)] \ge 0$$

Where:

Sr = Resultant clearance - .0001 in.

S0 = Initial (unmounted) clearance

S1 = Clearance reduction due to interference fits

S2 = Clearance reduction, or increase, due to race temperature differential

S3 = Clearance increase due to load

Sx = Clearance reduction, or increase, due to high rotational speed or any other effects

Determination of terms S1 through Sx is described in the following paragraphs.

The clearance reduction due to fit is the sum of the effective inner race expansion, a, and the effective outer race contraction, b, under given press fit conditions (shaft and housing fits).

$$S1 = a + b (.0001")$$

Where a and b are as follows:

- a. a = expansion of the inner race is estimated; (interference fit) X.75
- b. b = contraction of the outer race is estimated; (interference fit) X .85

And assumes the application has

- 1. solid shaft
- 2. rigid housing

In the case of a hollow shaft, and/or flexible housing, Application Engineering should be consulted for resultant fits.

Operating conditions normally will not be so unusual that other clearance effects (Sx) must be considered. However, unusual cases do occur. It is suggested that Application Engineering be consulted when conditions may exist which warrant consideration of clearance changes (Sx) that are not covered by terms S1, S2, and S3.

Limiting Speed

The limiting speed of a roller bearing is the rotational speed at which it may be operated based on geometry, retainer construction, lubricant and lubrication method without incurring a temperature rise within the bearing which would cause lubricant breakdown, softening of components, or seizure. The criterion used is the dn value where d equals the bearing pitch diameter (mm) and n equals the bearing rotation speed (rpm). The dn numbers applying to specific retainers are provided in the table below. To calculate the bearing limiting speed, one can divide the dn number by the bearing pitch diameter in mm to obtain the bearing limiting speed in rpm. This dn number provides the suggested safe limiting speeds for cylindrical radial roller bearings with various types of retainer construction based on recirculating oil lubrication with a lubricant of adequate viscosity.

Rollway Limiting Speed Factors

Retainer Type	dn Factor
Full roller complement	240000
Stamped Steel	380000
Segmented Steel	700000
Two-Piece Brass	700000
One-Piece Land Riding	1400000

In the selection of a retainer design for obtaining the highest practical roller bearing operating speed, it is often necessary to consider other factors than speed alone. For example, a two-piece drilled retainer might be selected over a segmented retainer where the torsional loading on the retainer is severe even though the segmented type appears adequate with respect to speed. It should be noted that suggested limiting speeds are provided for the standard roller-riding retainers (segmented, two-piece drilled and window-type stamped steel) and one-piece land riding retainers. Special retainer designs for each of these types permit higher operating speeds and are available upon request.

When using the table above, the following guidelines should be followed:

- For grease lubricant applications, use 80% of the calculated limiting speed.
- For air-oil mist lubricant applications, use 150% of the calculated limiting speed.
- For fixed volume of non-recirculated oil, use 85% of the calculated limiting speed.
- For double width and multi-row designs, use 67% of the calculated limiting speed.

Radial Bearing Axial Load Capacity

Cylindrical roller bearings that contain flanges on both the inner and outer rings are able to support axial loads in addition to radial loads. The axial load capability is determined through a consideration of the sliding friction and resultant wear taking place between the roller ends and flange faces. The factors having the greatest effect on this sliding friction are the bearing lubrication, operating temperature, and heat dissipation from the bearing.

Radial dynamic capacity is determined through a consideration of the fatigue strength of the bearing material. Thrust capacity is determined through a consideration of the sliding friction and resultant wear taking place between the roller ends and flange faces. Heat generated by the sliding friction must be effectively dissipated throughout the bearing components and by the lubricant in order to maintain thermal equilibrium at a reasonable temperature. The advantage of the cylindrical roller bearing under combined radial and thrust loads is apparent when it is observed that the radial load and the thrust load are taken by two different surfaces. In view of this, there should be no reduction in expected life, which is determined solely by the existing radial load, when thrust load are taken by the bearing.

Thrust capacity is dependent upon bearing design and application characteristics. Bearing design characteristics include:

- a. Apparent contact area between rollers ends and mating flange surfaces.
- b. Surface finish of the mating surfaces.
- c. Geometry of the mating surfaces.
- d. Internal radial clearance and axial clearance of the roller in the roller track.

Application characteristics are a function of:

- a. Sliding velocity at the contact surfaces (rpm and bearing size)
- b. Quality and quantity of the lubricant and effectiveness of the lubrication system.
- c. Type and duration of thrust loads.
- d. Influence of the shaft and housing in heat dissipation
- e. Operating temperatures.

A radial bearing should not be used in applications where there are essentially large thrust loads with no significant radial loads. In most applications, machine masses are of sufficient magnitude to apply a substantial radial load on the bearing without external radial forces. In these cases there will be sufficient radial load to allow satisfactory operation under substantial thrust loads. As a general rule, Rollway radial bearing thrust capacity is 10% of the published radial bearing dynamic rating.

Lubrication

In general, the required viscosity for the lubricant on cylindrical radial bearings is 110 SSU at operating temperature. For further information in regards to bearing lubrication, please refer to page A-17 of this catalog.

Thrust

Unmounted bearing assembly consisting of through hardened housing and shaft plate (raceways) with cylindrical or tapered rolling elements separated by a centrifugally cast brass retainer (cage). Thrust bearings are ideal for applications with loads parallel to the shaft.

Bearing Configurations

Single Or Multistage

Rolling Element Styles

Cylindrical Or Tapered

Bore Diameter Size Range

1" To 18" (25.4 mm To 457 mm)

Materials

Bearing Quality Steel

Thrust Selection Guide

	Туре	Description	Size Range
	Тххх	Cylindrical Roller Thrust	6" - 34"
	Atxxx	Aligning Cylindrical Roller Thrust	6" - 35"
	T-xxx	Tapered Roller Thrust	8" - 33"
	T-xxxx-F	T-flat Tapered Roller Thrust	10.5" - 34"
	T-xxxx-FS	Aligning T-Flat Tapered Roller Thrust	19" - 34"
0	CTxxx	Crane Hook Thrust	3" - 18.5"
	WCTxxx	Crane Hook Thrust w/ Fitting	3" - 18.5"

 $^{^{}st}$ For estimating purpose only, individually sizes may vary and are subject to change without notification

Thrust Bearings ROLLWAY®

		FEAT	URES					
Static Load	Dynamic Load	Reversing Load	Higher Speed	Horizontal Instal la tion	Relative Base Cost *	Self A igning	Grease Fitting	Page No.
•	0	0		•	\$			F-13
•	0	0	0	0	\$\$	S		F-17
•	•	0		•	\$\$			F-27
•	•	0		•	\$\$			F-29
•	•	0		•	\$\$	S		F-30
•	0	0	0	0	\$\$		S	F-21
•	0	0	0	0	\$\$			F-21

O = Optional

S = Standard

○ = Not Recommended

 \bigcirc \bigcirc \bigcirc \bigcirc

Poor ← → Best

ROLLWAY® Thrust Bearings

Thrust Selection Guide

	3ps	desimin'	his Shiga
	Trs 2000	2-Strate Tand My Throat	##. 3#
0	/W/V ocas	Compatibution later	300 NO.
	1800 Millioner	d Supe hard: n . tares	****
The same of the sa	Type TR-F econ	# Stript Tood In These:	** e
	(Martin	of lyinge transfers, larger	AMOUT.

 $^{^{*}}$ For estimating purpose only, individually sizes may vary and are subject to change without notification

Thrust Bearings ROLLWA4®

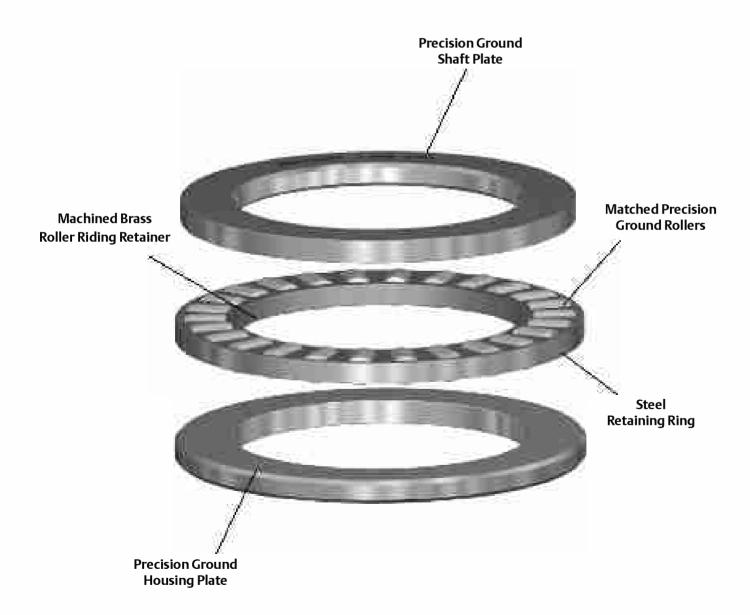
	Thr
1	
1	

	D	esign Cha	RACTERISTIC	cs			FEATURES		F 90
Static Load	Dynamic Load	Reversing Load	Higher Speed	Horizontal Installation	Relative Base Cost *	Self Aligning	Grease Fitting	Oil Holes / Pathway	Page No.
0	•	0	•		\$\$\$			S	F-35
•	•	0	0	•	\$\$\$			S	F-36
0	•	0	•	•	\$\$\$			S	F-37
•	•	0	•	•	\$\$\$			S	F-38
•	•	0	•	•	\$\$\$			s	F-39
			Misalignment Ca	apability					
			External Greasi	ng			l		

O = Optional

Relubrication and Long Bearing Life

S = Standard


○ = Not Recommended

Rollway Cylindrical Thrust Bearings

Rollway Cylindrical Thrust bearings utilize crowned cylindrical rolling elements separated by a machined brass roller riding retainer (cage) contained within precision ground shaft and housing plates. These bearings are intended for axial loads (load parallel to the axis of rotation) and are designed as medium or heavy duty series. Either series is available in three configuration types including double acting, self aligning and the most widely used "single acting" variety. Depending on your preference, these bearings are available in a wide variety of sizes and options as illustrated on the pages to follow.

Cylindrical roller thrust Inch series bearings are divided into two basic classes: medium (600 series) and heavy (700 series). The medium series has a smaller cross section and the retainer typically has only one roller per roller pocket. The heavy series has a larger cross section and the retainer typically has more than one roller per roller pocket.

Cylindrical Thrust Nomenclature

Type Designator

Bearing Configuration Description

Size Designator

Reference Catalog For Sizes.

Variation Code

Variation Codes Are Divided Into Two Categories: Special And Standard.

Type Designator

T - Single acting thrust

AT - Single acting thrust - aligning type.

DT - Double acting thrust

DAT - Double acting thrust - aligning type.

BSDT - Double acting thrust - simplified design

CT - Single acting thrust - special design for crane hook applications with weathershed

WCT - Single acting thrust - special design for crane hook applications with weathershed and grease fitting

Size Designator

Reference catalog for sizes.

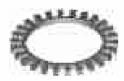
Variation Codes Special variation codes

Standard variation codes

216 to 239 and 255 to 299 - 216 to 239 and 255 to 299 are code numbers representing standard modifications with the most popular listed below:

- **059** Brass retainer this code is obsolete, all standard thrust bearings are supplied with centrifugally cast brass retainers
- **210** Roller assembly supplied with hardened steel outer ring
- 216 Standard bearing supplied without shaft plate
- 219 Tandem bearing design (typically these have been replaced with TAB to TAC bearings)
- 221 Lindard bearing with a brass
 thing prosed in bore for horizontal shaft
- 226 Standard bearing supplied with two
- **229** 5ame as 219

Features and Benefits


Precision Ground Shaft Plate

Bore is precision ground for a line to loose fit on shaft. The O.D. has a turned finish and is smaller than the housing plate's O.D. Shaft Plates are manufactured to conform to ABMA size and tolerance specifications.

Matched Precision Ground Rollers

Rollers are manufactured from Through Hardened Bearing Grade Steel. The surfaces are ground, superfinished, and matched to .0001". The ends of the rollers have a large machined radius designed to reduce friction between the roller and the retaining ring. The larger diameter bearings use multiple rollers per pocket to minimize slippage. All rolling elements are precision ground to provide even distribution of load over the contact surfaces. The rollers are all crowned thus permitting unmodified use of the ABMA's capacity formula. Roller crowning reduces the edge stresses between the roller and the thrust plates.

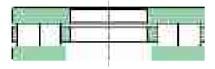
Machined Brass Roller Riding Retainer

Rollway thrust bearing retainers are machined from centrifugally cast brass. The retainers for all cylindrical roller thrust bearings are designed to be roller riding. The contoured roller pockets are accurately machined at right angles to the thrust force, which will be applied to the bearing. The rollers are retained in the assembly by a steel ring pinned to the outside diameter of the retainer.

Precision Ground Housing Plate

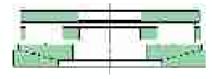
O.D. is precision ground for a line to loose fit in housing bore. The I.D. has a turned finish and is larger than the shaft plate's I.D. Housing Plates are manufactured to conform to ABMA size and tolerance specifications. All thrust plates are accurately ground for flatness and parallelism of the roller riding and backing surfaces. The contact surfaces of the plates are super-finished to provide for long life. Locating diameters are ground to obtain an accurate fit on the shaft or in the housing.

Cylindrical Thrust Bearings ROLLWAY®


Options

Materials

The plates and rollers are made from either through-hardened or carburizing grade steel with hardness to Rockwell (Rc) 58-63. Upon request we can manufacture these components from CEVM or VIMVAR grades of material and M-50 tool steel for high temperature applications.



Types and Styles

Inch Series — Single Acting

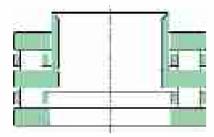
The single acting bearing is the most popular thrust bearing of the inch series. The bearing is often referred to as a "three piece thrust bearing". One of the thrust plates is stationary with respect to the shaft and is ground in the bore for an accurate fit on the shaft. The roller assembly is located by the shaft and its inside diameter is machined to provide the correct operating clearance. The second thrust plate is stationary with the housing and is ground on the outside diameter for an accurate fit in the housing. The non-locating diameters of both thrust plates are specially designed to allow lubricant flow. The sizes range from 1 to 22 inches I.D. and 2.125 to 34 inches O.D. with dynamic capacities from 10,000 lbs to 1,620,000 lbs. These bearings are used in a variety of applications such as extruder gear drives, pumps, crane hook swivels and machine tools.

"AT" Aligning Type

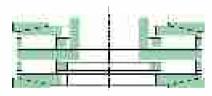
The aligning style design replaces the housing plate with aligning plates. The aligning plates are matched plates, one convex and one concave, that will correct for 3° initial static misalignment. These aligning plates are not designed for applications requiring dynamic aligning capabilities. They are designed to correct an initial misalignment prior to full loading. The concave plate (housing plate) is precision ground but not hardened.

The standard "AT" type is recommended for vertical shaft applications. Where the alignment feature is required in some horizontal shaft applications, the convex aligning plate may ride on the shaft and the plate should be modified to provide a satisfactory bearing surface in the bore. This is usually achieved by the installation of a brass bushing into the bore of the plate.

Types and Styles continued



Crane Hook Thrust Bearings


Crane hook bearings are similar to the single acting inch series but are specifically designed for crane hooks or similar applications where heavy thrust loads and low speeds of rotation are encountered. Crane hook bearings are simply single acting thrust bearings supplied with a weathershed. The weathershed is a steel band pressed on to the rotating plate extending to the middle of the stationary plate forming a shield to help protect the roller assembly.

The weathersheds are supplied with or without grease fittings. This type of bearing undergoes static loading in normal applications. Our static capacities are based on a total permanent deformation of .0002 inch per inch of roller diameter and are not the ABMA basic capacity.

"DT" Double Acting Thrust

The "DT" type thrust bearing is a double acting thrust bearing that will withstand reversal in the direction of the load at normal speeds of rotation. The center thrust plate and sleeve must be keyed to the shaft or clamped tightly between the shaft shoulders to prevent rotation of the center plate relative to the shaft. The two outer thrust plates are stationary with respect to the housing. There are two roller assemblies on either side of the center thrust plate. The center plate drives the roller assembly corresponding to the direction of the thrust load.

"DAT" Aligning, Double Acting Thrust

This bearing is basically a combination of the "DT" type and the "AT" type. The bearing is designed to take reversals in thrust load and correct for initial static misalignment up to 3°.

Cylindrical Thrust Bearings ROLLWAY®

Types and Styles continued

"SDT" Simplified Double Acting Thrust

This bearing is similar in concept to the "DT" double acting type except the design has been simplified to only one roller assembly and two thrust plates. With the load in one direction, one of the thrust plates is stationary with respect to the housing and the other thrust plate rotates. When the direction of the load is reversed, the stationary plate rotates and the rotating plate becomes the stationary plate.

To provide necessary clearance for this action, the inner and outer spacer sleeves are made wider than the combined thickness of the thrust plates and roller assembly. This bearing is recommended for applications where the direction of the thrust load changes when the bearing is stationary or rotating at slow speed.

Basic Construction Type: Standard Cylindrical Roller

Thrust Or Aligning Type

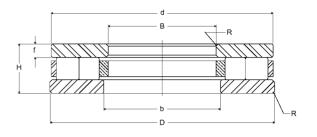
Bearing

Rolling Elements: Crowned Cylindrical Rollers

With Sphered Ends

Bearing Material: Through Hardened Or Case

Carburized Bearing Grade


Steel

Medium Duty (600), Heavy Series:

Duty (700), Or Metric

Retainer Types: Machined Brass With Steel

Retaining Ring

Cylindrical Roller Thrust Bearings

	7.7		1001	- 170	1000		150			
	U,		H	b	d	W I	R	Graning	С	B
Part No.	Dire	Dinnesie:	Height.	Int	ternal Dimensi	ons	Dint Files	William	Basic Dynamic Rating	Saurij
	Torris Milit	langly (HH)	OLOH MEN	=uF			Spills Sills	ki	lb/N	may
T601	1.000	2.125	0.812	1.130	2.000	.220	.031	.5	10,550	18,760
	25.40	53.98	20.62	28.70	50.80	5.59	.79	.2	47,260	84,040
T602	1.062	2.125	0.812	1.130	2.000	.220	.031	.5	10,550	18,760
	26.97	53.98	20.62	28.70	50.80	5.59	.79	.2	47,260	8 4,040
T603	1.125	2.250	0.812	1.250	2.150	.220	.031	.6	12,140	25,540
	28.58	57.15	20.62	31.75	54.61	5.59	.79	.3	54,390	114,420
T604	1.187	2.250	0.812	1.250	2.150	.220	.031	.6	12,140	25,540
	30.15	57.15	20.62	31.75	54.61	5.59	.79	.3	54,390	114,420
T605	1.250	2.375	0.812	1.430	2.310	.220	.031	.6	13,280	28,380
	31.75	60.33	20.62	36.32	58.67	5.59	.79	.3	59,490	127,140
T606	1.312	2.375	0.812	1.430	2.310	.220	.031	.6	13,280	28,380
	33.32	60.33	20.62	36.32	58.67	5.59	.79	.3	59,490	127,140
T607	1.375	2.875	0.812	1.630	2.790	.220	.031	1.0	17,470	47,800
	34.93	73.03	20.62	41.40	70.87	5.59	.79	.4	78,270	214,140
T608	1.437	2.875	0.812	1.630	2.790	.220	.031	1.0	17,470	47,800
	36.50	73.03	20.62	41.40	70.87	5.59	.79	.4	78,270	214,140
T609	1.500	3.000	0.812	1.750	2.900	.220	.031	1.0	18,730	52,140
	38.10	76.20	20.62	44.45	73.66	5.59	.79	.4	83,910	233,590
T610	1.562	3.000	0.812	1.750	2.900	.220	.031	1.0	18,730	52,140
	39.67	76.20	20.62	44.45	73.66	5.59	.79	.4	83,910	233,590
T611	1.625	3.250	1.000	1.880	3.150	.250	.062	1.5	25,620	67,380
	41.28	82.55	25.40	47.75	80.01	6.35	1.57	.7	114,780	301,860
T612	1.687	3.250	1.000	1.880	3.150	.250	.062	1.5	25,620	67,380
	42.85	82.55	25.40	47.75	80.01	6.35	1.57	.7	114,780	301,860
T613	1.750	3.375	1.000	2.030	3.300	.250	.062	1.6	27,670	74,120
	44.45	85.73	25.40	51.56	83.82	6.35	1.57	.7	123,960	332,060
T614	1.812	3.375	1.000	2.030	3.300	.250	.062	1.6	27,670	74,120
	46.02	85.73	25.40	51.56	83.82	6.35	1.57	.7	123,960	332,060
T615	1.875	3.500	1.000	2.130	3.410	.250	.062	1.7	27,760	74,120
	47.63	88.90	25.40	54.10	86.61	6.35	1.57	.8	124,360	332,060
T616	1.937	3.500	1.000	2.130	3.410	.250	.062	1.6	27,760	74,120
	49.20	88.90	25.40	54.10	86.61	6.35	1.57	.7	124,360	332,060
T617	2.000	3.625	1.000	2.190	3.500	.250	.062	1.7	27,870	74,120
	50.80	92.08	25.40	55.63	88.90	6.35	1.57	.8	124,860	332,060
T618	2.125	3.750	1.000	2.380	3.650	.250	.062	1.8	28,740	80,850
	53.98	95.25	25.40	60.45	92.71	6.35	1.57	.8	128,760	362,210
T619	2.250	3.875	1.000	2.440	3.750	.250	.062	1.9	32,030	87,590
	57.15	98.43	25.40	61.98	95.25	6.35	1.57	.9	143,490	392,400

Metric dimensions for reference only.
For tolerances see pages F-41 to F-42.
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Cylindrical Thrust Bearings

Basic Construction Type: Standard Cylindrical Roller

Thrust Or Aligning Type

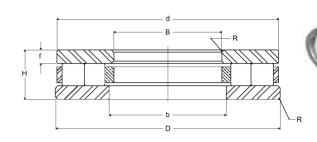
Bearing

Rolling Elements: Crowned Cylindrical Rollers

With Sphered Ends

Bearing Material: Through Hardened Or Case

Carburized Bearing Grade


Steel

Series: Medium Duty (600), Heavy

Duty (700), Or Metric

Retainer Types: Machined Brass With Steel

Retaining Ring

Cylindrical Roller Thrust Bearings

							<u> </u>			
	В	D	#)	F.	101	9	R	Bearing	С	Go
Part No.	Bore	Outnide Diameter	Height	Int	ternal Dimensio	ons	Housing & Shaft Fillet	Weight	Basic Dynamic Rating	Basic Static Retiring
	inch	inch.	inch	inch.	inch mm	inch mm	inch	ID No.	lb/N	History
T620	2.375	4.000	1.000	2.630	3.900	.250	.062	2.0	32,250	87,590
	60.33	101.60	25.40	66.80	99.06	6.35	1.57	.9	144,480	392,400
T621	2.500	4.125	1.000	2.670	4.000	.250	.062	2.1	34,180	94,330
	63.50	104.78	25.40	67.82	101.60	6.35	1.57	1.0	153,130	422,600
T622	2.625	4.343	1.000	2.880	4.220	.250	.062	2.3	36,150	101,070
	66.68	110.31	25.40	73.15	107.19	6.35	1.57	1.0	161,950	4 52,790
T623	2. 7 50	4.468	1.000	3.060	4.340	.250	.062	2.4	38,350	107,800
	69.85	113.49	25.40	77.72	110.24	6.35	1.57	1.1	171,810	482,940
T624	3.000	4.718	1.000	3.250	4.590	.250	.062	2.6	40,510	114,540
	76.20	119.84	25.40	8 2.55	116.59	6.35	1.57	1.2	181,480	513,140
T625	3.250	4.968	1.000	3.500	4.840	.250	.062	2.7	40,770	114,540
	8 2.55	126.19	25.40	8 8.90	122.94	6.35	1.57	1.2	182,650	513,140
T626	3.500	5.218	1.000	3.750	5.090	.250	.062	2.9	44,350	128,020
	8 8.90	132.54	25.40	95.25	129.29	6.35	1.57	1.3	198,690	573,530
T727	2.000	6.000	1.375	2.250	5.880	.380	.062	8.6	77 500	295,900
	50.80	15 2 .40	34.93	57.15	149.35	9.65	1.57	3.9	347 200	1,325,630
T728	2.000	7.000	1.375	2.250	6.880	.380	.062	11.7	105,600	363,600
	50.80	177.80	34.93	57.15	174.75	9.65	1.57	5.3	473,090	1,628,930
T729	2.000	8.000	1.375	2.250	7.880	.380	.062	16.0	111,900	460,200
	50.80	203.20	34.93	57.15	200.15	9.65	1.57	7.3	501,310	2,061,700
T730	3.000	6.000	1.375	3.250	5.880	.380	.062	7.3	82 ₀ 200	268,000
	76.20	152.40	34.93	8 2.55	149.35	9.65	1.57	3.3	368 ₀ 260	1,200,640
T731	3.000	7.000	1.375	3.250	6.880	.380	.062	10.8	98 ₈ 800	365,800
	76.20	177.80	34.93	8 2.55	174.75	9.65	1.57	4.9	442 ₆ 20	1,638,780
T732	3.000	8.000	1.375	3.250	7.880	.380	.062	14.7	126 ₂ 200	494,500
	76.20	203.20	34.93	8 2.55	200.15	9.65	1.57	6.7	565 ₃ 80	2,215,360
T733	3.000	9.000	1.375	3.250	8.880	.380	.062	19.2	147,500	642,800
	76.20	228.60	34.93	8 2.55	225.55	9.65	1.57	8.7	660,800	2,879,740
T734	4.000	7.000	1.750	4.250	6.880	.500	.062	11.4	111,100	320,500
	101.60	177.80	44.45	107.95	174.75	12.70	1.57	5.2	497,730	1,435,840
T735	4.000	8.000	1.750	4.250	7.880	.500	.062	16.6	132,200	454,200
	101.60	203.20	44.45	107.95	200.15	12.70	1.57	7.6	592,260	2,034,820
T736	4.000	9.000	1. 7 50	4.250	8.880	.500	.062	22.4	158,400	658,100
	101.60	228.60	4 4.45	107.95	225.55	12.70	1.57	10.2	709,630	2,948,290
T737	4.000	10.000	1.750	4.250	9.880	.500	.062	29.0	192,200	777,800
	101.60	254.00	44.45	107.95	250.95	12.70	1.57	13.2	861,060	3,484,540

Basic Construction Type: Standard Cylindrical Roller

Thrust Or Aligning Type

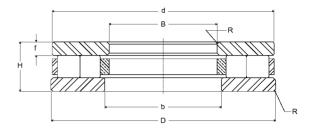
Bearing

Rolling Elements: Crowned Cylindrical Rollers

With Sphered Ends

Bearing Material: Through Hardened Or Case

Carburized Bearing Grade


Steel

Medium Duty (600), Heavy Series:

Duty (700), Or Metric

Retainer Types: Machined Brass With Steel

Retaining Ring

Cylindrical Roller Thrust Bearings (continued)

				`						
	U	.0	H	b	d	f	R	Genting	С	(a)
Part No.	Dive	Distances:	Height	Int	ternal Dimensio	ons	Holonog I. Brint Fillet	Weight	Basic Dynamic Rating	Haracanina Saliriji
	lucia min	angly mm	300	=:::F		in l		kg	lb/N	mess
T738	5.000	8.000	1.750	5.250	7.880	.500	.062	13.5	111,000	419,400
	127.00	203.20	44.45	133.35	200.15	12.70	1.57	6.1	497,280	1,878,910
T739	5.000	9.000	1.750	5.250	8.880	.500	.062	19.5	162,000	631,800
	127.00	228.60	44.45	133.35	225.55	12.70	1.57	8.8	725,760	2,830,460
T740	5.000	10.000	2.000	5.250	9.880	.560	.125	30.0	205,100	703,300
	127.00	254.00	50.80	133.35	250.95	14.22	3.18	13.6	918,850	3,150,780
T741	5.000	11.000	2.000	5.250	10.880	.560	.125	38.0	231,200	870,900
	127.00	279.40	50.80	133.35	276.35	14.22	3.18	17.2	1,035,780	3,901,630
T742	5.000	12.000	2.000	5.250	11.880	.560	.125	47.0	276,100	1,144,000
	127.00	304.80	50.80	133.35	301.75	14.22	3.18	21.3	1,236,930	5,125,120
T743	6.000	9.000	2.000	6.380	8.750	.560	.125	18.0	130,600	450,100
	152.40	228.60	50.80	162.05	222.25	14.22	3.18	8.1	58 5 ,090	2,016,450
T744	6.000	10.000	2.000	6.380	9.750	.560	.125	25.0	190,300	648,600
	152.40	254.00	50.80	162.05	247.65	14.22	3.18	11.3	852,540	2,905,730
T745	6.000	11.000	2.000	6.380	10.750	.560	.125	34.0	233,400	929,900
	152.40	279.40	50.80	162.05	273.05	14.22	3.18	15.4	1,045,630	4,165,950
T746	6.000	12.000	2.000	6.380	11.750	.560	.125	42.0	267,000	1,097,100
	152.40	304.80	50.80	162.05	298.45	14.22	3.18	19.1	1,196,160	4,915,010
T747	7.000	10.000	2.000	7.380	9.750	.560	.125	20.0	154,500	550,100
	177.80	254.00	50.80	187.45	247.65	14.22	3.18	4.1	692,160	2,464,450
T748	7.000	11.000	2.000	7.380	10.750	.560	.125	28.0	213,600	790,800
	177.80	279.40	50.80	187.45	273.05	14.22	3.18	12.7	956,930	3,542,780
T749	7.000	12.000	2.000	7.380	11.750	.560	.125	40.0	251,600	1,022,900
	177.80	304.80	50.80	187.45	298.45	14.22	3.18	18.1	1,127,170	4,582,590
T750	7.000	14.000	3.000	7.380	13.750	.880	.250	88.0	436,200	1,598,200
	177.80	355.60	76.20	187.45	349.25	22.35	6.35	39.9	1,954,180	7,159,940
T751	8.000	12.000	3.000	8.380	11.750	.880	.250	48.0	258,000	945,400
	203.20	304.80	76.20	212.85	298.45	22.35	6.35	21.7	1,155,840	4,235,390
T752	7.000	14.000	3.000	8.380	13.750	.880	.250	78.0	397,500	1,487,900
	177.80	355.60	76.20	212.85	349.25	22.35	6.35	35.4	1,780,800	6,665,790
T753	7.000	16.000	3.000	8.380	15.750	.880	.250	114.0	516,400	2,072,500
	177.80	406.40	76.20	212.85	400.05	22.35	6.35	51.7	2,313,470	9,284,800
T754	10.000	16.000	3.000	10.380	15.750	.880	.250	88.0	437,800	1,747,200
	254.00	406.40	76.20	263.65	400.05	22.35	6.35	39.9	1,961,340	7,827,460
T755	10.000	18.000	3.750	10.380	17.750	1.130	.250	168.0	614,200	2,697,600
	254.00	457.20	95.25	263.65	450.85	28.70	6.35	76.2	2,751,620	12,085,250
T756	10.000	20.000	3.750	10.380	19.750	1.130	.250	225.0	766,000	3,250,900
	254.00	508.00	95.25	263.65	501.65	28.70	6.35	102.1	3,431,680	14,564,030

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Cylindrical Thrust Bearings

Basic Construction Type: Standard Cylindrical Roller

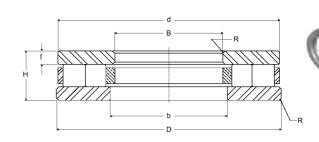
Thrust Or Aligning Type

Bearing

Rolling Elements: Crowned Cylindrical Rollers

With Sphered Ends

Bearing Material: Through Hardened Or Case


Carburized Bearing Grade

Steel

Series: Medium Duty (600), Heavy

Duty (700), Or Metric

Retainer Types: Centrifugally Cast Brass

Cylindrical Roller Thrust Bearings (continued)

					,				J \	
	8	D	#)	E .		- 8	-	Bearing	С	Go
Part No.	Bere	Outnide Diameter	Height	Int	ternal Dimensi	ons	Housing & Shaft Fillet	Weight	Basic Dynamic Rating	Basic Static Rating
	inch	inch	inch	inch.	inco	inch mm	inch	ID NO	lb/N	IBN
T757	12.000	18.000	3.750	12.500	17.750	1.130	.250	134.0	469,200	2,031,900
	304.80	457.20	95.25	317.50	450.85	28.70	6.35	60.8	2,102,020	9,102,910
T758	12.000	20.000	4.500	12.500	19.750	1.380	.250	222.0	724,600	2,937,800
	304.80	508.00	114.30	317.50	501.65	35.05	6.35	100.0	3,246,210	13,161,340
T759	12.000	24.000	4.500	12.500	23.750	1.380	.250	372.0	1,045,900	4,688,000
	304.80	609.60	114.30	317.50	603.25	35.05	6.35	168.7	4,685,630	21,002,240
T760	14.000	20.000	3 .750	14.500	19.750	1.130	.250	152.0	540,000	2,385,200
	355.60	508.00	95.25	368.30	501.65	28.70	6.35	68.9	2,419,200	10,685,700
T761	14.000	22.000	3 .750	14.500	21.750	1.130	.250	215.0	732,000	3,339,900
	355.60	558.80	95.25	368.30	552.45	28.70	6.35	97.5	3,279,360	14,962,750
T762	14.000	24.000	3.750	14.500	23.750	1.130	.250	285.0	858,100	4,280,300
	355.60	609.60	95.25	368.30	603.25	28.70	6.35	129.2	3,844,290	19,175,740
T763	16.000	22.000	4.500	16.500	21.500	1.380	.250	205.0	609,800	2,362,800
	406.40	558.80	114.30	419.10	546.10	35.05	6.35	92.9	2,731,900	10,585,340
T764	16.000	24.000	4.500	16.500	23.500	1.380	.250	290.0	878,700	3,819,100
	406.40	609.60	114.30	419.10	596.90	35.05	6.35	131.5	3,936,580	17,109,570
T765	16.000	26.000	4.500	16.500	25.500	1.380	.250	238.0	1,041,500	4,916,300
	406.40	660.40	114.30	419.10	647.70	35.05	6.35	107.9	4,665,920	22,025,020
T766	18.000	26.000	5.000	18.750	25.500	1.500	.250	35 0 .0	945,500	3,937,500
	457.20	660.40	127.00	476.25	647.70	38.10	6.35	158.7	4,235,840	17,640,000
T767	18.000	28.000	5.000	18.750	27.500	1.500	.250	460.0	1,571,600	5,393,500
	457.20	711.20	127.00	476.25	698.50	38.10	6.35	208.6	7,040,770	24,162,880
T768	18.000	30.000	5.500	18.750	29.500	1.500	.250	630.0	1,571,600	6,753,800
	457.20	762.00	139.70	476.25	749.30	38.10	6.35	285.7	7,040,770	30,257,020
T769	20.000	28.000	5.500	21.250	27.500	1.500	.250	420.0	1,091,700	4,407,200
	508.00	711.20	139.70	539.75	698.50	38.10	6.35	190.5	4,890,820	19,744,260
T770	20.000	30.000	5.500	21.250	29.500	1.500	.250	550.0	1,544,800	6,885,500
	508.00	762.00	139.70	539.75	749.30	38.10	6.35	249.5	6,920,700	30,847,040
T771	20.000	32.000	6.000	21.250	31.500	1.750	.250	750.0	1,712,000	7,850,000
	508.00	812.80	152.40	539.75	800.10	44.45	6.35	340.2	7,669,760	35,168,000
T772	22.000	30.000	5.500	23.250	29.500	1.500	.250	450.0	1,161,900	4,774,500
	558.80	762.00	139.70	590.55	749.30	38.10	6.35	204.1	5,205,310	21,389,760
T773	22.000	32.000	5.500	23.250	31.500	1.500	.250	590.0	1,431,000	6,153,200
	558.80	812.80	139.70	590.55	800.10	38.10	6.35	267.6	6,410,880	27,566,340
T744	22.000	34.000	6.000	23.250	33.500	1.750	.250	800.0	1,742,200	7,981,700
	558.80	863.60	152.40	590.55	850.90	44.45	6.35	362.8	7,805,060	35,758,020

Basic Construction Type: Standard Cylindrical Roller

Thrust Or Aligning Type

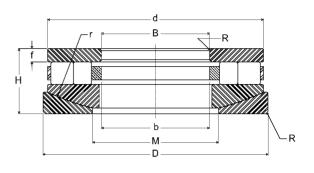
Bearing

Rolling Elements: Crowned Cylindrical Rollers

With Sphered Ends

Bearing Material: Through Hardened Or Case

Carburized Bearing Grade


Steel

Series: Medium Duty (600), Heavy

Duty (700), Or Metric

Retainer Types: Machined Brass With Steel

Retaining Ring

Self Aligning Cylindrical Roller Thrust Bearings

	<u> </u>	,										
	В	D	Ħ	18	4	19	100	3	R	Bearing	С	Go
Part No.	Bote	Outnide Diameter	Height		Inte	ernal Dimens	ions		Housing & Shaft Fillet		Basic Dynamic Rating	Banic State Rating
	inch min	inch m/m	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	lb kg	lb/N	Ib/N
AT601	1.000	2.250	1.062	1.130	2.000	.220	1.310	1.500	.031	.7	10,550	18,760
	25.40	57.15	26.97	28.70	50.80	5.59	33.27	38.10	.79	.3	47,260	8 4,040
AT602	1.062	2.250	1.062	1.130	2.000	.220	1.310	1.500	.031	.7	10,550	18,760
	26.97	57.15	26.97	28.70	50.80	5.59	33.27	38.10	.79	.3	47,260	8 4,040
AT603	1.125	2.375	1.062	1,250	2.150	.220	1.440	1.750	.031	.8	12,140	25,540
	28.58	60.33	26.97	31.75	54.61	5.59	36.58	44.45	.79	.4	54,390	114,420
AT604	1.187	2.375	1.062	1,250	2.150	.220	1.440	1.750	.031	.70	12,140	25,540
	30.15	60.33	26.97	31.75	54.61	5.59	36.58	44.45	.79	.3	54,390	114,420
AT605	1.250	2.500	1.062	1.380	2.310	.220	1.500	1.875	.031	.8	13,280	28,380
	31.75	63.50	26.97	35.05	58.67	5.59	38.10	47.63	.79	.4	59,490	127,140
AT606	1,312	2.500	1.062	1.380	2.310	.220	1,630	1.875	.031	.8	13,280	28,380
	33.32	63.50	26.97	35.05	58.67	5.59	41.40	47.63	.79	.4	59,490	127,140
AT607	1.375	3.000	1.062	1.500	2.790	.220	1.810	2.750	.031	1.3	17,470	47,800
	34.93	76.20	26.97	38.10	7 0.87	5.59	45.97	69.85	.79	.6	78,270	214,140
AT608	1.437	3.000	1.062	1.500	2.790	.220	1.810	2,750	.031	1.3	17,470	47,800
	36.50	76.20	26.97	38.10	7 0.87	5.59	45.97	69.85	.79	.6	78,270	214,140
AT609	1.500	3.125	1.062	1,630	2.900	.220	1.880	3.000	.031	1.4	18,730	52,140
	38.10	79.38	26.97	41.40	73.66	5.59	47.75	76.20	.79	.6	8 3,910	233,590
AT610	1.562	3.125	1.062	1.630	2.900	.220	1.880	3.000	.031	1.4	18,730	52,140
	39.67	79.38	26.97	41.40	7 3.66	5.59	47.75	76.20	.79	.6	8 3,910	233,590
AT611	1.625	3.375	1.312	1.750	3.150	.250	2.000	3.000	.062	2	25,620	67,380
	41.28	85.73	33.32	44.45	80.01	6.35	50.80	76.20	1.57	.9	114,780	301,860
AT612	1.687	3.375	1.312	1.750	3.150	.250	2.000	3.000	.062	2	25,620	67,380
	42.85	85.73	33.32	44.45	80.01	6.35	50.80	76.20	1.57	.9	114,780	301,860
AT613	1.750	3.500	1.312	1.880	3.300	.250	2.060	3.250	.062	2	27,670	74,120
	44.45	88.90	33.32	47.75	83.82	6.35	52.32	82.55	1.57	.9	123,960	332,060
AT614	1.812	3.500	1.312	1.880	3.300	.250	2.060	3.250	.062	2	27,670	74,120
	46.02	88.90	33.32	47.75	83.82	6.35	52.32	82.55	1.57	.9	123,960	332,060
AT615	1.875	3.625	1.312	2.000	3.410	.250	2.250	3.250	.062	2.2	27,760	74,120
	47.63	92.08	33.32	50.80	86.61	6.35	57.15	82.55	1.57	1.0	124,360	332,060
AT616	1.937	3.625	1.312	2.000	3.410	.250	2.250	3.250	.062	2.2	27,760	74,120
	49.20	92.08	33.32	50.80	86.61	6.35	57.15	82.55	1.57	1.0	124,360	332,060
AT617	2,000	3.750	1.312	2.060	3.500	.250	2.480	3.250	.062	2.3	27,870	74,120
	50.80	95.25	33.32	52.32	88.90	6.35	62.99	82.55	1.57	1.0	124,860	332,060
AT618	2.125	3.875	1.312	2.190	3 .650	.250	2.500	3.500	.062	2.3	28,740	80,850
	53.98	98.43	33.32	55.63	92.71	6.35	63.50	88.90	1.57	1.0	128,760	362,210
AT619	2.250	4.000	1,312	2.310	3 .750	.250	2.690	3.500	.062	2.5	32,030	87,590
	57.15	101.60	33.32	58.67	95.25	6.35	68.33	88.90	1.57	1.1	143,490	392,400

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on \textbf{b} earing \ capa \textbf{b} \textbf{i} lities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Cylindrical Thrust Bearings

Basic Construction Type: Standard Cylindrical Roller

Thrust Or Aligning Type

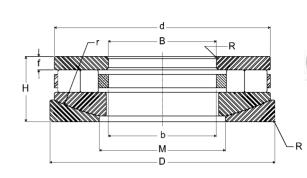
Bearing

Rolling Elements: Crowned Cylindrical Rollers

With Sphered Ends

Bearing Material: Through Hardened Or Case

Carburized Bearing Grade


Steel

Series: Medium Duty (600), Heavy

Duty (700), Or Metric

Retainer Types: Machined Brass With Steel

Retaining Ring

Self Aligning Cylindrical Roller Thrust Bearings

	В	D	細	b	d	(f)	(m)	T.	R	Bearing	С	a
Part No.	hose	Carpollo Diominio	Halphi	Internal Dimensions						Weight	Basic Dynamic Rating	Harring Maring
	inen	ir C		multi	Timore interior	100	TC III	inar Mar	iron Hali	lb kg	lb/N	E
AT620	2.375	4.125	1.312	2.440	3.900	.250	2.880	3.500	.062	2.6	32,250	87,590
	60.33	104.78	33.32	61.98	99.06	6.35	73.15	88.90	1.57	1.2	144,480	392,400
AT621	2.500	4.250	1.312	2.560	4.000	.250	2.880	4.000	.062	2.7	34,180	94,330
	63.50	107.95	33.32	65.02	101.60	6.35	73.15	101.60	1.57	1.2	153,130	422,600
AT622	2.625	4.530	1.312	2.690	4.220	.250	3.130	3.750	.062	3	36,150	101,070
	66.68	115.06	33.32	68.33	107.19	6.35	79.50	95.25	1.57	1.4	161,950	452,790
AT623	2.750	4.655	1.312	2.810	4.340	.250	3.130	4.250	.062	3. 2	38,350	107,800
	69.85	118.24	33.32	71.37	110.24	6.35	79.50	107.95	1.57	1.5	171,810	482,940
AT624	3.000	4.968	1.312	3.060	4.590	.250	3.500	4.500	.062	3.4	40,510	114,540
	76.20	126.19	33.32	77.72	116.59	6.35	8 8.90	114.30	1.57	1.5	181,480	513,140
AT625	3.250	5.218	1.312	3.340	4.840	.250	3.810	4.750	.062	3.6	40,770	114,540
	8 2.55	132.54	33.32	84.84	122.94	6.35	96.77	120.65	1.57	1.6	182,650	513,140
AT626	3.500	5.468	1.312	3.590	5.090	.250	4.060	5.000	.062	3.8	44,350	128,020
	8 8.90	138.89	33.32	91.19	129.29	6.35	103.12	127.00	1.57	1.7	198,690	573,530
AT727	2.000	6.312	1.182	2.060	5.880	.380	3.380	7.500	.062	11.5	77,500	295,900
	50.80	160.32	30.02	52.32	149.35	9.65	85.85	190.50	1.57	5.2	347,200	1,325,630
AT728	2.000	7.312	1.182	2.060	6.880	.380	4.250	9.500	.062	15.8	105,600	363,600
	50.80	185.72	30.02	52.32	174.75	9.65	107.95	241.30	1.57	7.2	473,090	1,628,930
AT729	2.000	8.312	1.182	2.060	7.880	.380	5.000	12.000	.062	21.5	111,900	460,200
	50.80	211.12	30.02	52.32	200.15	9.65	127.00	304.80	1.57	9.7	501,310	2,061,700
AT730	3.000	6.312	1.182	3.060	5.880	.380	4.000	6.000	.062	9	82,200	268,000
	76.20	160.32	30.02	77.72	149.35	9.65	101.60	152.40	1.57	4.1	368,260	1,200,640
AT731	3.000	7.312	1.182	3.060	6.880	,380	4.380	9.500	.062	14	98,800	365,800
	76.20	185.72	30.02	77.72	174.75	9.65	111.25	241.30	1.57	6.4	442,620	1,638,780
AT732	3.000	8.312	1.182	3.060	7.880	.380	5.250	12.000	.062	20	12 6,200	494,500
	76.20	211.12	30.02	77.72	200.15	9.65	133.35	304.80	1.57	9.1	565,380	2,215,360
AT733	3.000	9.312	1.182	3.060	8.880	.380	6.250	14.000	.062	26	147,500	642,800
	76.20	236.52	30.02	77.72	225.55	9.65	158.75	355.60	1.57	11.8	660,800	2,879,740
AT734	4.000	7.375	2.312	4.090	6.880	.500	5.000	6.375	.062	15	111,100	320,500
	101.60	187.33	58.72	103.89	174.75	12.70	127.00	161.93	1.57	6.8	497,730	1,435,840
AT735	4. 0 00	8.375	2.312	4.090	7.880	.500	5.250	8.500	.062	22	132,200	454,200
	101.60	212.73	58.72	103.89	200.15	12.70	133.35	215.90	1.57	9.9	592,260	2,034,820
AT736	4.000	9.375	2.312	4.090	8.880	.500	5.880	10.000	.062	30	158,400	658,100
	101.60	23 8 .13	58.72	103.89	225.55	12.70	149.35	254.00	1.57	13.6	709,630	2,948,290
AT737	4. 0 00	10.500	2.312	4.090	9.880	.500	6.500	14.000	.062	39	192,200	777,800
	101.60	266.70	58.72	103.89	250.95	12.70	165.10	355.60	1.57	17.7	861,060	3,484,540

Basic Construction Type: Standard Cylindrical Roller

Thrust Or Aligning Type

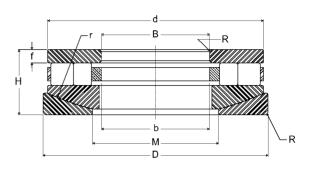
Bearing

Rolling Elements: Crowned Cylindrical Rollers

With Sphered Ends

Bearing Material: Through Hardened Or Case

Carburized Bearing Grade


Steel

Medium Duty (600), Heavy Series:

Duty (700), Or Metric

Machined Brass With Steel **Retainer Types:**

Retaining Ring

Self Aligning Cylindrical Roller Thrust Bearings (continued)

	В	0.	1	- 6	a	19	-		*	Bearing	O	G
Part No.	Bore	Outnide Diameter	Height		ernal Dimens	ions	Housing & Shaft Fillet	Weight	Basic Dynamic Rating	Banic Stati Rating		
	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	inch mm	lb kg	lb/N	Ib/N
AT738	5.000	8.500	2 .3 1 2	5.130	7.880	.500	6.000	7.375	.062	18	111,000	419,400
	127.00	215.90	58.72	130.30	200.15	12.70	152.40	187.33	1.57	8.1	497,280	1,878,910
AT739	5.000	9.500	2 .3 1 2	5.130	8.880	.500	6.130	10.500	.062	26	162 ,0 0 0	631,800
	127.00	241.30	58.72	130.30	225.55	12.70	155.70	266.70	1.57	11.8	725,760	2,830,460
AT740	5.000	10.500	2.625	5.130	9.880	.560	6.250	12.750	.125	39	205,100	703,300
	127.00	266.70	66.68	130.30	250.95	14.22	158.75	323.85	3.18	17.6	918,850	3,150,780
AT741	5.000	11.500	2.6 2 5	5.130	10.880	.560	7.000	16.000	.125	50	231,20 0	870,900
	127.00	292.10	66.68	130.30	276.35	1 4 .22	177.80	406.40	3.18	22.7	1,035,780	3,901,630
AT742	5.000	12.500	2.625	5.130	11.880	.560	7.250	19.750	.125	63	276,100	1,144,000
	127.00	317.50	66.68	130.30	301.75	14.22	184.15	501.65	3.18	28.6	1,236,930	5,125,120
AT743	6.000	9.500	2.6 2 5	6.130	8.750	.560	7.250	6,750	.125	23	130,600	450,100
	152.40	241.30	66.68	155.70	222.25	1 4 .22	184.15	171.45	3.18	10.4	585,090	2,016,450
AT744	6.000 152.40	10.500 266.70	2 .625 66.68	6.130 155.70	9.750 247.65	.560 1 4 .22	7.380 187.45	9.500 241.30	.125 3.18	33 14.9	190,300 852,540	648,600 2,905,730
AT745	6.000	11.500	2.6 2 5	6.130	10.750	.560	7.380	13,500	.125	44	233,400	929,900
	152.40	292.10	66.68	155.70	273.05	14.22	187.45	342.90	3.18	19.9	1,045,630	4,165,950
AT746	6.000	12.500	2.625	6.130	11.750	.560	7.500	17.000	.125	57	267,000	1,097,100
	152.40	317.50	66.68	155.70	298.45	1 4 .22	190.50	431.80	3.18	25.8	1,196,160	4,915,010
AT747	7.000	10.500	2.625	7.130	9.750	.560	8.130	8.125	.125	26	154,500	550,100
	177.80	266.70	66.68	181.10	247.65	1 4 .22	206.50	206.38	3.18	11.7	692,160	2,464,450
AT748	7.000	11.500	2.6 2 5	7.130	10. 7 50	.560	8.250	11.500	.125	37	213,600	790,800
	177.80	292.10	66.68	181.10	273.05	14.22	209.55	292.10	3.18	16.7	956,930	3,542,780
AT749	7.000	12.500	2.625	7.130	11.750	.560	8.250	15.375	.125	50	251,600	1,022,900
	177.80	317.50	66.68	181.10	298.45	1 4 .22	209.55	390.53	3.18	22.7	1,127,170	4,582,590
AT750	7.000	14.750	4.000	7.190	13.750	.880	9.000	15.375	.250	118	436,200	1,598,200
	177.80	374.65	101.60	182.63	349.25	22.35	228.60	390.53	6.35	53.5	1,954,180	7,159,940
AT751	8.000	12.750	4.000	8.190	11.750	.880	9.380	8.500	.250	63	258,000	945,400
	203.20	323.85	101.60	208.03	298.45	22.35	238.25	215.90	6.35	28.6	1,155,840	4,235,390
AT752	8.000	14.750	4.000	8.190	13.750	.880	10.380	12.000	.250	106	397,500	1,487,900
	203.20	374.65	101.60	208.03	349.25	22.35	263.65	304.80	6.35	48.1	1,780,800	6,665,790
AT753	8.000	16.875	4.000	8.250	15.750	.880	10.500	19.500	.250	154	516,400	2,072,500
	203.20	428.63	101.60	209.55	400.05	22.35	266.70	495.30	6.35	69.6	2,313,470	9,284,800
AT754	10.000	16.875	4.000	10.250	17.750	.880	11.500	16.750	.250	120	437,800	1,747,200
	254.00	428.63	101.60	260.35	450.85	22.35	292.10	425.45	6.35	54.4	1,961,340	7,827,460
AT755	10.000	18.875	5.000	10.250	17.750	1.130	12.000	20.000	.250	225	614,200	2,697,600
	254.00	479.43	127.00	260.35	450.85	28.70	304.80	508.00	6.35	102.1	2,751,620	12,085,250
AT756	10.000	20.875	5.000	10.250	19.750	1.130	13.250	24.000	.250	300	766,0 00	3,250,900
	254.00	530.23	127.00	260.35	501.65	28.70	336.55	609.60	6.35	136.1	3,431,680	14,564,030

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Cylindrical Thrust Bearings

Basic Construction Type: Standard Cylindrical Roller

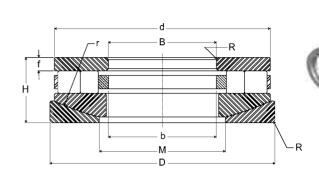
Thrust Or Aligning Type

Bearing

Rolling Elements: Crowned Cylindrical Rollers

With Sphered Ends

Bearing Material: Through Hardened Or Case


Carburized Bearing Grade Steel

Series: Medium Duty (600), Heavy

Duty (700), Or Metric

Machined Brass With Steel **Retainer Types:**

Retaining Ring

Self Aligning Cylindrical Roller Thrust Bearings (continued)

										, J \ /		
	B	D	A ST	ь	d	1	(1)		R	Bearing	С	Gb
Part No.	Bore	Outside Diameter	Height		ernal Dimens	sions	Housing & Shaft Fillet	Weight	Basic Dynamic Rating	Basic Static Rating		
	inch mm	inch mm	inch mm.	inch mm	inch mm	lnch mm	inch mm	inch mm	insh mm	lb kg	lb/N	Ib/N
AT757	12.000	18.875	5.000	12.250	17.750	1.130	13.630	15.375	.250	180	469,200	2,031,900
	304.80	479.43	127.00	3 11.15	450.85	28.70	346.20	390.53	6.35	81.6	2,102,020	9,102,910
AT758	12.0 0 0	20.875	6.000	12,250	19.750	1.380	13.880	20.000	.250	300	724,600	2,937,800
	3 04.80	530.23	15 2 .40	3 11.15	501.65	35.05	352.55	508.00	6.35	136.1	3,246,210	13,161,340
AT759	12.000	24.875	6.000	12,250	23.750	1.380	16.000	28.500	.250	510	1,045,900	4,688,000
	304.80	631.83	152.40	3 11.15	603.25	35.05	406.40	723.90	6.35	231.3	4,685,630	21,002,240
AT760	14.000	20.875	4.875	14.250	19.750	1.130	15.500	19.500	.250	200	540,000	2,385,200
	3 55.60	530.23	123.83	3 61.95	501.65	28.70	393.70	495.30	6.35	90.7	2,419,200	10,685,700
AT761	14.000	22.875	4.875	14.250	21.750	1.130	15.500	28.500	.250	280	732,000	3,339,900
	355.60	581.03	123.83	3 61.95	552.45	28.70	393.70	723.90	6.35	127.0	3,279,360	14,962,750
AT762	14.000	24.875	4,875	14.250	23.750	1.130	16.380	36.125	.250	370	858,100	4,280,300
	3 55.60	631.83	123.83	3 61.95	603.25	28.70	416.05	917.58	6.35	167.8	3,844,290	19,175,740
AT763	16.000	22.855	6.000	16.250	21.500	1.380	17.500	17.500	.250	270	609,800	2,362,800
	406.40	580.52	15 2 .40	412.75	546.10	35.05	444.50	444.50	6.35	122.5	2,731,900	10,585,340
AT764	16.000	25,000	6.000	16.250	23.500	1.380	18.000	23.500	.250	385	878,700	3,819,100
	406.40	635.00	15 2 .40	412.75	596.90	35.05	457.20	596.90	6.35	174.6	3,936,580	17,109,570
AT765	16.000	27.000	6.000	16.250	25.500	1.380	18.500	29.625	.250	510	1,041,500	4,916,300
	406.40	685.80	15 2 .40	412.75	647.70	35.05	469.90	752.48	6.35	231.3	4,665,920	22,025,020
AT766	18.000	27.000	6.750	18.380	25.500	1.500	19.500	23.500	.250	470	945,500	3,937,500
	457.20	685.80	171.45	466.85	647.70	38.10	495.30	596.90	6.35	213.2	4,235,840	17,640,000
AT767	18.000	29.000	6.750	18.380	27.500	1.500	20.000	29.625	.250	620	1,185,800	5,393,500
	457.20	736.60	171.45	466.85	698.50	38.10	508.00	752.48	6.35	281.2	5,312,380	24,162,880
AT768	18.000	31.000	7.250	18.380	29.500	1.500	20.630	36.125	.250	840	1,571,600	6,753,800
	457.20	787.40	184.15	466.85	749.30	38.10	524.00	917.58	6.35	381.0	7,040,770	30,257,020
AT769	20.000	29.000	7.500	20.380	27.500	1.500	21.500	27.500	.250	787	1,091,700	4,407,200
	508.00	736.60	190.50	517.65	698.50	38.10	546.10	698.50	6.35	356.9	4,890,820	19,744,260
AT770	20.000	31.000	7.500	20.380	27.500	1.500	21.500	27.500	.250	550	1,544,800	6,885,500
	508.00	787.40	190.50	517.65	698.50	38.10	546.10	698.50	6.35	249.5	6,920,700	30,847,040
AT771	20.000	33.000	8.000	20.380	31.500	1.750	23.000	33.000	.250	940	1,714,000	7,850,000
	508.00	838.20	203.20	517.65	800.10	44.45	584.20	838.20	6.35	426.4	7,678,720	35,168,000
AT772	22.0 0 0	31.000	7.500	22.380	29.500	1.500	23.000	24.625	.250	450	1,162,000	4,774,500
	558.80	787.40	190.50	568.45	749.30	38.10	584.20	625.48	6.35	204.1	5,205,760	21,389,760
AT773	22.0 0 0	33,000	7. 5 00	22.380	31.500	1.500	13.620	37.000	.250	621	1,431,000	6,153,200
	558.80	838.20	190.50	568.45	800.10	38.10	345.95	939.80	6.35	281.7	6,410,880	27,566,340
AT774	22.0 0 0	35.000	8.000	22.380	33.500	1.750	24.880	37.000	.250	792	1,742,000	7,982,000
	558.80	889.00	203.20	568.45	850.90	44.45	631.95	939.80	6.35	359.2	7,804,160	35,759,360

Basic Construction Type: Standard Cylindrical Roller

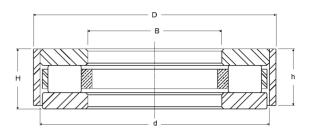
Thrust Bearing

Rolling Elements: Crowned Cylindrical Rollers

With Sphered Ends

Bearing Material: Through Hardened Or Case

Carburized Bearing Grade


Stee

Series With Or Without Grease

Fitting

Retainer Types: Machined Brass With Steel

Retaining Ring

Crane Hook Thrust Bearings

Part No.		Designed	(8)	ſ)	Н	O.	(8)	Bearing	Basic Static	
Tur	. 140.	Hook Shank	Bore	Outside Diameter		Height	Internal D	imensions	Weight	Rating	
Grease	Fitting	inoh	inch	inch mm	inch	inch	inch	inch	lb.	lb/N	
None	Installed:	AMIT)	(1111)	GT	WCT	(Min)	(11111)	71100	140		
CT-11	WCT-11	1.625 41.28	1.640 41.66	3.093 78.56	3.343 84.91	.812 20.62	2.95 74.9	.69 17.5	1.4 .6	36,890 165,270	
CT-16	WCT-16	1.938 49.21	1.952 49.58	3.468 88.09	3.593 91.26	.812 20.62	3.22 81.8	.69 17.5	1.4 .6	65,310 292,590	
CT-17	WCT-17	2.000 50.80	2.015 51.18	3.937 100.00	4.000 101.60	1.000 25.40	3.60 91.4	.88 22.4	2.6 1.2	73,210 327,980	
CT-19	WCT-19	2.250 57.15	2.265 57.53	4.000 101.60	4.250 107.95	1.000 25.40	3.86 98.0	.88 22.4	2.3 1.0	72,970 326,910	
CT-20-C	WCT-20-C	2.250 57.15	2.265 57.53	4.250 107.95	4.375 111.13	1.000 25.40	3.98 101.1	.88 22.4	2.7 1.2	88,600 396,930	
CT-23	WCT-23	2.750 69.85	2.765 70.23	4.750 120.65	4.843 123.01	1.000 25.40	4.45 113.0	.88 22.4	3.1 1.4	93,820 420,310	
CT-24-A	WCT-24-A	2.750 69.85	2.765 70.23	4.875 123.83	5.156 130.96	1.250 31.75	4.76 120.9	1.13 28.7	4.3 1.9	121,300 543,420	
CT-27-A	WCT-27-A	3.250 82.55	3.265 82.93	6.125 155.58	6.250 158.75	1.500 38.10	5.85 148.6	1.38 35.1	8.2 3.7	180,810 810,030	
CT-27-C	WCT-27-C	3.250 82.55	3.265 82.93	6.187 157.15	6.375 161.93	1.750 44.45	5.97 151.6	1.63 41.4	9.0 4.1	212,960 954,060	
CT-27-B	WCT-27-B	3.500 88.90	3.515 89.28	6.156 156.36	6.375 161.93	1.625 41.28	5.97 151.6	1.50 38.1	8.5 3.8	203,410 911,280	
CT-28-A	WCT-28-A	3.500 88.90	3.515 89.28	6.750 171.45	6.937 176.20	1.625 41.28	6.54 166.1	1.50 38.1	11 4.9	245,110 1,098,090	
CT-30-B	WCT-30-B	3.563 90.49	3.577 90.86	6.375 161.93	6.375 161.93	1.375 34.93	5.97 151.6	1.25 31.8	8.2 3.7	207,000 927,360	
CT-34-A	WCT-34-A	3.750 95.25	3.765 95.63	7.125 180.98	7.250 184.15	1.875 47.63	6.86 174.2	1.75 44.5	15 6.8	288,080 1,290,600	
CT-35-A	WCT-35-A	4.250 107.95	4.265 108.33	8.171 207.54	8.375 212.73	2.000 50.80	7.97 202.4	1.88 47.8	20 9.1	369,200 1,654,020	

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Cylindrical Thrust Bearings

Basic Construction Type: Standard Cylindrical Roller

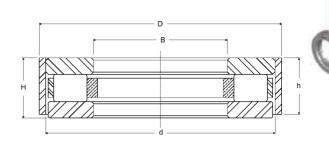
Thrust Bearing

Rolling Elements: Crowned Cylindrical Rollers

With Sphered Ends

Bearing Material: Through Hardened Or Case

Carburized Bearing Grade


Steel

Series With Or Without Grease

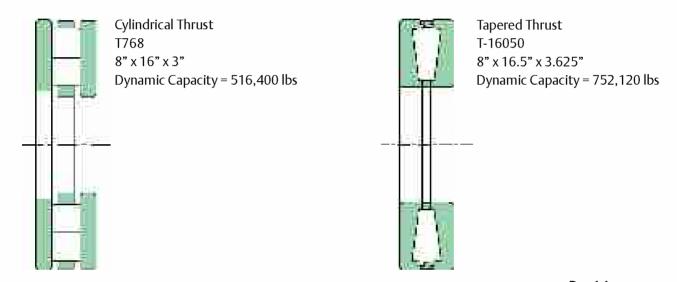
Fitting

Retainer Types: Machined Brass With Steel

Retaining Ring

Crane Hook Thrust Bearings

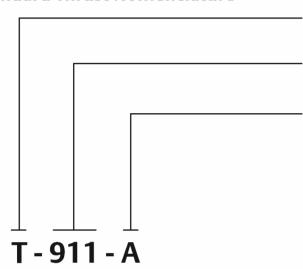
Part	: No.	Designed	U)	186	3 /	6	Bearing Weight	Basic Static	
Fait	. No.	Hook Shank	Hore	Outside	Diameter	Height	Internal D	Internal Dimensions		Rating	
Grease	Fitting	linch	inch:	men	mm	inch	inch	inch	ь	lb/N	
None:	Installed	l mm	1000	CT	WCT	mm	enes.	(980)	la Va	ID/N	
CT-38-A	WCT-38-A	4.500 114.30	4.515 114.68	8.125 206.38	8.312 211.12	2.000 50.80	7.91 200.9	1.88 47.8	20 9.1	390,910 1,751,280	
CT-39-A	WCT-39-A	5.000 127.00	5.015 127.38	9.156 232.56	9.375 238.13	2.250 57.15	8.97 227.8	2.13 54.1	28 12.7	628,470 2,815,550	
CT-44-A	WCT-44-A	5.500 139.70	5.515 140.08	10.500 266.70	10.500 266.70	2.500 63.50	10.10 256.5	2.38 60.5	41 18.6	633,000 2,835,840	
CT-45-A	WCT-45-A	6.000 152.40	6.015 152.78	11.156 283.36	11.375 288.93	3.000 76.20	10.97 278.6	2.75 69.9	55 24.9	923,160 4,135,760	
CT-45-B	WCT-45-B	5.563 141.29	5.577 141.66	11.500 292.10	11.500 292.10	2.000 50.80	10.97 278.6	1.88 47.6	42 19.1	858,000 3,843,840	
CT-48	WCT-48	7.000 177.80	7.015 178.18	11.500 292.10	11.500 292.10	2.000 50.80	10.97 278.6	1.75 44.5	58 26.3	699,000 3,131,520	
CT-49-A	WCT-49-A	6.813 173.04	6.827 173.41	12.750 323.85	12.750 323.85	2.500 63.50	12.34 313.4	2.38 60.5	61 27.7	1,004,880 4,501,860	
CT-51	WCT-51	7.875 200.03	7.890 200.41	12.375 314.33	12.375 314.33	3.000 76.20	11.91 302.4	2.75 69.9	73 33.1	904,500 4,052,160	
CT-52	WCT-52	8.438 214.31	8.454 214.73	14.500 368.30	14.500 368.30	3.000 76.20	13.91 353.2	2.75 69.9	80 36.3	1,170,000 5,241,600	
CT-53	WCT-53	8.875 225.43	8.890 225.81	16.500 419.10	16.500 419.10	3.000 76.20	15.90 403.9	2.75 69.9	111 50.3	2,075,000 9,296,000	
CT-54	WCT-54	9.313 236.54	9.327 236.91	16.500 419.10	16.500 419.10	3.000 76.20	15.91 404.1	2.75 69.9	106 48.1	1,812,000 8,117,760	
CT-55	WCT-55	9.625 244.48	9.640 244.86	18.500 469.90	18.500 469.90	3.750 95.25	17.91 454.9	3.38 85.7	210 95.3	2,269,000 10,165,120	


ROLLWAY. Thrust Bearings

Rollway Tapered Thrust Bearings

Rollway Tapered Thrust bearings utilize crowned tapered rolling elements separated by a machined brass roller riding retainer (cage) contained within precision ground shaft and housing plates. Inherent to the design, the self centering action of the tapered rollers provide "true rolling motion". These attributes counteract the natural gravitational forces on the roller assembly when subjected to horizontal applications. Tapered thrust bearings are intended for high axial loads (load parallel to the axis of rotation). There are 3 types of Tapered Thrust bearings available, TTHD, TTVF, and Self Aligning TTVF. Depending on your preference, these bearings are available in a wide variety of sizes and options as illustrated on the pages to follow.

For a given shaft size and approximate envelope, the tapered thrust bearing's dynamic capacity is considerably greater than a cylindrical roller bearing.

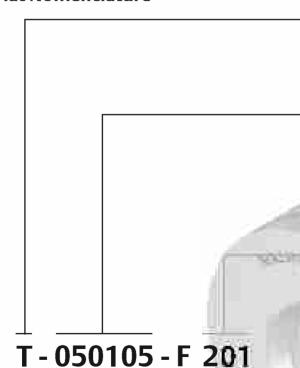


Tapered Thrust Nomenclature

Standard Thrust Nomenclature

Type Designator

T - TTHD Style Thrust


Size Designator

Reference Catalog For Sizes.

Variation Code

- A Variation From Standard Consult Catalog Or Application Engineering
- F Full Complement Of Rollers
- V Bearing Plates And Rollers Made From VIMVAR Or CEVM Steel

T-Flat Nomenclature

Type Designator

T-F - TTVF Style

T-FS - TTVF Style With 2 Piece Aligning Plate

Size Designator

Bearing Bore And Outside Diameter Size. The First Three Digits Are The Bore Size And The Second Three Digits Are The O.D Size. Example: 050105 Refers The A.5 Inch Bore And 10.5 Inch O.D.

Variation Code

201 To 215 Are Numerically Assigned Codes That Designate The Variation From Standard (Example 201 = 1st Variation, 202 - 2nd Variation, Etc.). These Rearing Code Numbers Do Not Reference The Modification From Standard. Application Engineering Must Be Contacted For Information Concerning A Particular Modification.

ROLLWAY. Thrust Bearings

The second

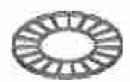
Features and Benefits

Superior Performance in Horizontal Shaft Applications

Tapered thrust bearings have been found to have superior performance in horizontal shaft applications. The self centering action of the rollers helps counteract the gravitational effect of the roller assembly, thus reducing the possibility of the roller assembly contacting the shaft.

Steel

The plates and rollers are made from case hardened carburizing bearing grade steel. Upon request we can manufacture the components from CEVM or VIMVAR grades of material.


Precision Ground Inner and Outer Plates

All thrust plates are accurately ground for flatness and parallelism of roller riding and backing surfaces. Locating diameters are ground to obtain an accurate fit on the shaft or in the housing. The surfaces of the plates are ground to provide a long operating life. The guide rib on the tapered plates is spherically ground to match the roller and reduce friction. All tapered thrust plates are designed to be used with a full complement of rollers, which makes it possible to supply this version for any size. Rollway tapered thrust pates are manufactured from Carburizing Bearing Grade Steel. The surfaces are precision ground to ABMA standards. Unlike the cylindrical thrust, these plates can be used as either the shaft or housing plate.

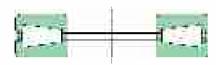
Precision Ground Tapered Rollers

All rolling elements are precision ground and graded to provide an even distribution of load over the contact surfaces. Rollers are crowned for optimum contact stress patterns by reducing the end stress between the roller and the thrust plates. The large ends of the rollers are spherically ground. This provides controlled contact between the rollers and the guide rib, thus enhancing the flow of lubricant. These rollers are manufactured from Carburizing Bearing Grade Steel.

Machined Brass Retainer

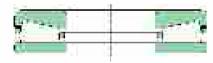
The TTHD taper thrust bearing retainers are machined from a single piece of centrifugally cast brass. The retainer is designed to pilot on the thrust plates' flanges. The roller pockets are accurately machined at right angles to the thrust force which will be applied to the bearing. By virtue of their design, tapered thrust bearings provide true rolling motion when compared to cylindrical thrust bearings whose rollers tend to have a minimal amount of slippage due to the fundamental design.

Features and Benefits continued



Pin through Steel Type Retainer – T-Flat Type

The T-Flat retainers are "pin through" style (pins extend through the center of the roller). The retainer consists of two steel rings through which the hardened steel pins are secured. An alternate design is a retainer machined from a single piece of centrifugally cast brass with each roller retained by two pins.


Types and Styles

Standard Tapered Thrust Style

Rollway tapered thrust bearings (TTHD Style) are engineered for applications that are under the harshest industrial conditions. These bearings feature tapered rollers positioned between two plates with tapered raceways.

The tapered thrust differs significantly from the cylindrical roller thrust as there is true rolling motion with the vertex of the conical sections intersecting the bearing axis. When the bearing is loaded, the rollers exhibit an outward force that is countered by the plate's outer guide rib. The large spherical end of the roller is counter bored to help improve lubrication between the roller and guide rib. By virtue of the additional contact surface these bearings will have a higher dynamic capacity than a similar sized, cylindrical roller thrust bearing.

T-Flat Style

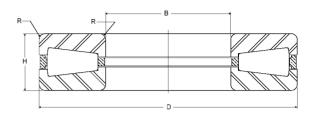
The T-Flat is similar to the TTHD style except one plate is flat. The guide rib on the one tapered raceway resists the induced radial force component caused by the inclined plane while the flat plate allows radial displacement without adversely affecting bearing operation. Maximum capacity is achieved through close spacing of rollers through the use of a steel, pin type retainer.

ROLLWAY® Thrust Bearings

Basic Construction Type: Standard Tapered Roller

(TTHD Style)

Rolling Elements: Crowned Tapered Rollers


With Sphered Ends

Bearing Material: Case Carburized Bearing

Grade Steel

Retainer Types: Machined Brass Or Pin

Through Steel Type

Tapered Thrust Bearings

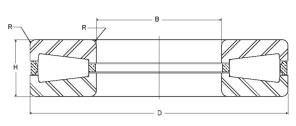
	В	D	Н	R		С	Co
Part No.	Bore	Outside Diameter	Height	Housing & Shaft Fillet	Bearing Weight	Basic Dynamic Rating	Basic Static Rating
	inch mm	inch mm	inch mm	inch mm	lb kg	lb/N	lb/N
T-411	4.000 101.60	8.500 215.90	1.813 46.05	.13 3.3	9.1	219,100 981,570	762,700 3,416,900
T-411F	4.000	8.500	1.813	.13	20	268,000	988,000
	101.60	215.90	46.05	3.3	9.1	1,200,640	4,426,240
T-441	4.400	8.800	2.200	.13	25	234,000	822,000
	111.76	223.52	55.88	3.3	11.3	1,048,320	3,682,560
T-451	4.500	9.875	2.125	.16	31	305,000	1,096,000
	114.30	250.83	53.98	4.1	14.1	1,366,400	4,910,080
T-520	5.000	9.875	2.188	.19	31	328,000	1,094,000
	127.00	250.83	55.56	4.8	14.1	1,469,440	4,901,120
T-511	5.000	10.500	2.313	.19	37	322,500	1,232,570
	127.00	266.70	58.75	4.8	16.7	1,444,800	5,521,910
T-511A	5.063	10.500	2.313	.19	37	322,500	1,232,570
	128.60	266.70	58.75	4.8	16.7	1,444,800	5,521,910
T-511F	5.063	10.500	2.313	.19	37	408,000	1,687,000
	128.60	266.70	58.75	4.8	16.7	1,827,840	7,557,760
T-611	6.000	12.500	2.750	.25	66	455,125	1,672,410
	152.40	317.50	69.85	6.4	29.9	2,038,960	7,492,400
T-651	6.500	12.250	3.500	.25	71	375,000	1,472,000
	165.10	311.15	88.90	6.4	32.2	1,680,000	6,594,560
T-661	6.625	12.000	2.750	.25	56	382,620	1,323,000
	168.28	304.80	69.85	6.4	25.4	1,714,140	5,927,040
T-691	6.875	14.125	2.313	.25	93	539,980	2,023,000
	174.63	358.78	58.75	6.4	42.2	2,419,110	9,063,040
T-711	7.000	14.500	2.313	.31	109	601,700	2,101,000
	177.80	368.30	58.75	7.9	49.4	2,695,620	9,412,480
T-711F	7.000	14.500	2.313	.31	96	611,000	2,936,000
	177.80	368.30	58.75	7.9	43.5	2,737,280	13,153,280
T-709	7.000	17.000	4.000	.13	241	229,000	3,245,000
	177.80	431.80	101.60	3.3	109.3	1,025,920	14,537,600

Thrust Bearings $ROLLWAH_{\it @}$

Basic Construction Type: Standard Tapered Roller

(TTHD Style)

Rolling Elements: Crowned Tapered Rollers


With Sphered Ends

Bearing Material: Case Carburized Bearing

Grade Steel

Retainer Types: Machined Brass Or Pin

Through Steel Type

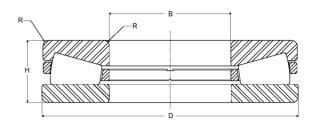
Tapered Thrust Bearings

ř	В	D	Н	R		С	Co
Part No.	Bore	Outside Diameter	Height	Housing & Shaft Fillet	Bearing Weight	Basic Dynamic Rating	Basic Static Rating
	inch mm	inch mm	inch mm	inch mm	lb kg	lb/N	lb/N
T-7519	7.480	14.000	2.922	.25	76	490,000	1,893,000
	190.00	355.60	74.22	6.4	34.5	2,195,2 0 0	8,480,640
T-811	8.000	16.500	3.625	.38	132	752,120	2,879,160
	203.20	419.10	92.08	9.7	59.8	3,369,5 0 0	12,898,640
T-9020	9.000	17.000	3.495	.38	136	744,400	2,883,000
	228.60	431.80	88.77	9.7	61.7	3,334,910	12,915,840
T-911	9.000	19.000	4.125	.44	237	991,250	3,796,762
	228.60	482.60	104.78	11.2	107.5	4,440,8 0 0	17,009,490
T-911A	9.250	19.000	4.125	.44	232	991,250	3,796,762
	234.95	482.60	104.78	11.2	105.2	4,440,800	17,009,490
T-921	9.250	21.500	5.000	.44	351	1,361,600	5,346,100
	234.95	546.10	127.00	11.2	159.2	6,099,970	23,950,530
T-537504	9.500	19.500	5.000	.44	287	1,050,000	3,900,000
	241.30	495.30	127.00	11.2	130.2	4,704,000	17,472,000
T-1011	10.000	21.125	4.625	.44	320	1,230,400	4,874,000
	254.00	536.58	117.48	11.2	145.1	5,512,190	21,835,520
T-539210	10.750	21.750	5.250	.44	364	1,257,000	4,800,000
	273.05	552.45	133.35	11.2	165.1	5,631,360	21,504,000
T-539211	10.750	23.750	5.750	.44	496	1,522,000	6,003,000
	273.05	603.25	146.05	11.2	224.9	6,818,560	26,893,440
T-1120	11.000	23.750	5.375	.44	490	1,573,660	6,286,210
	279.40	603.25	136.53	11.2	222.2	7,050,000	28,162,220
T-16021	16.000	28.000	5.750	.38	575	1,746,000	6,726,000
	406.40	711.20	146.05	9.7	260.8	7,822,080	30,132,480
T-16050	16.000	33.000	7.000	.50	1,165	2,877,500	11,295,180
	406.40	838.20	177.80	12.7	528.4	12,891,200	50,602,410

ROLLWAY® Thrust Bearings

Basic Construction Type: T-Flat (TTVF Style)

Rolling Elements: Crowned Tapered Rollers


With Sphered Ends

Bearing Material: Case Carburized Bearing

Grade Steel

Retainer Types: Machined Brass Or Pin

Through Steel Type

T-Flat Tapered Thrust Bearings

	В	D	Н	R		С	Co
Part No.	Bore	Outside Diameter	Height	Height Housing & Shaft Fillet		Basic Dynamic Rating	Basic Static Rating
	inch mm	inch mm	inch mm	inch mm	lb kg	lb/N	lb/N
T-050105-F	5.000	10.500	2.313	.14	41	292,000	594,000
	127.00	266.70	58.74	3.6	18.6	1,308,160	2,661,120
T-059118-F	5.904	11.800	3.531	.12	79	487,000	1,833,000
	149.95	299.72	89.69	3.0	35.8	2,181,760	8,211,840
T-070145-F	7.000	14.000	3.250	.24	109	612,000	2,764,000
	177.80	355.60	82.55	6.1	49.4	2,741,760	12,382,720
T-090190-F	9.000	19.000	5.750	.25	300	1,326,800	2,473,000
	228.60	482.60	146.05	6.4	136.1	5,944,060	11,079,040
T-095230-F	9.500	23.000	6.000	.25	488	1,887,600	8,504,000
	241.30	584.20	152.40	6.4	221.3	8,456,450	38,097,920
T-100200-F	10.000	20.000	4.250	.19	218	1,332,000	5,070,000
	254.00	508.00	107.95	4.8	98.8	5,967,360	22,713,600
T-101215-F	10.000	21.500	6.500	.25	501	1,777,000	3,352,000
	254.00	546.10	165.10	6.4	227.2	7,960,960	15,016,960
T-110237-F	11.000	23.750	5.375	.19	508	1,760,000	4,000,000
	279.40	603.25	136.53	4.8	230.4	7,884,800	17,920,000
T-120240-F	12.000	24.000	4.500	.25	421	1,660,000	3,994,000
	304.80	609.60	114.30	6.4	190.9	7,436,800	17,893,120
T-120265-F	12.000	26.500	6.750	.30	767	2,470,000	10,100,000
	304.80	673.10	171.45	7.6	347.9	11,065,600	45,248,000
T-140260-F	14.000	26.000	9.125	.31	790	2,219,000	4,467,000
	355.60	660.40	231.78	7.9	358.3	9,941,120	20,012,160
T-170340-F	17.000	34.000	9.000	.38	1,708	4,010,000	8,500,000
	431.80	863.60	228.60	9.7	774.7	17,964,800	38,080,000

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

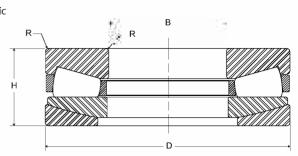
Thrust Bearings ROLLWAY®

Basic Construction Type: T-Flat Alignin

T-Flat Aligning Type Bearing (TTVFStyle), 3 Degrees Static

Misalignment

Rolling Elements: Crowned Tapered Rollers


With Sphered Ends

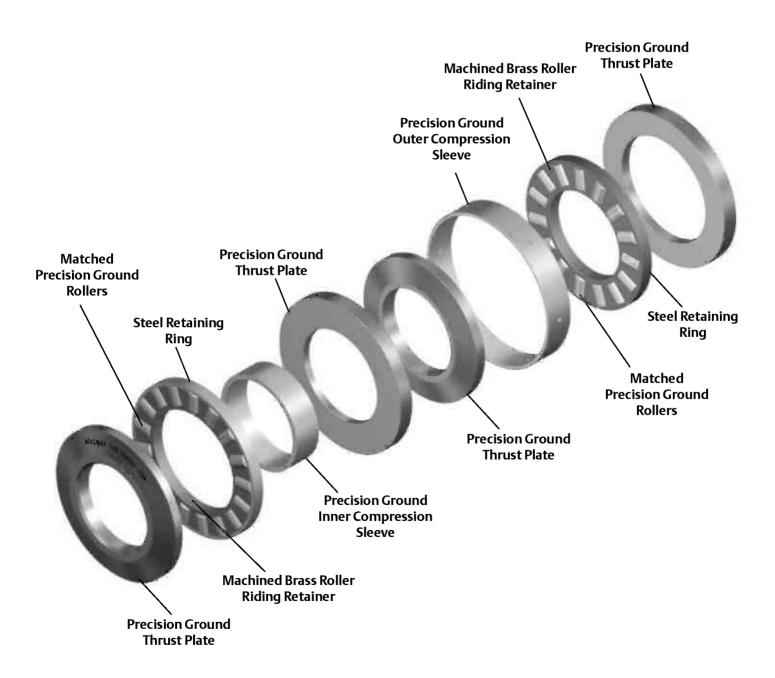
Bearing Material: Case Carburized Bearing

Grade Steel

Retainer Types: Machined Brass Or Pin

Through Steel Type

T-Flat Self Aligning Thrust Bearings


						J J	
		TT.	, , ,				- ×
jų/au.	UMA:	out at Summe	10000	Promote Break Prom	Blane III tookkini	Alim Dynamic Felice	Rain bert Balang
	Çe	(mark)	120	###/		XW)	(11)
T-095192-FS	9.500 241.30	19.250 488.95	6.000 152.40	36 9_1	315 142.8	1_120 000 5 017 600	2 240 000 10 035 200
Tribli-0F8	12 000 700 (8)	\$4578 500.00	\$27.7 \$27.90	35 EA	017 2120	££50,000 1,000,000	4.0 (5,586 F 36(1,05)
T-140260-FS	14.000 355.60	26.000 660.40	10.000 254.00	_40 10.2	900 408.2	2 490 000 11 155 200	4 180 000 18 726 400

ROLLWAY. Tandem Thrust Bearings

Rollway Tandem Thrust Bearings

Rollway Tandem Thrust bearings are also known as "multi-stage thrust" bearings. Tandem Thrust bearings are comprised of "stages" which include precision ground and matched thrust plates and compression sleeves separated by cylindrical roller assemblies. This design enables the Tandem Thrust bearings to provide a solution in a radial restricted envelope. The bearings are available in multiple stages, 2-8 to accommodate your design requirements. Depending on your preference, these bearings are available in a wide variety of sizes and options as illustrated on the pages to follow.

Tandem Thrust Bearings ROLLWAY®

Features and Benefits

Minimal Backing Support Requirements

The tandem thrust design permits the use of minimal shaft and housing shoulders required by some applications. The cantilevering action of the thrust plates and use of compression sleeves enable these bearings to be used effectively where only minimal shaft and housing shoulder exist.

Space Saving Design

The use of a tandem thrust bearing enables the designer to create a gearbox with high thrust capacity within a small space. The end result is a gearbox with a smaller footprint. The drawings below are a comparison of three different thrust bearings with similar dynamic capacity. This illustrates the dramatic reduction in outside diameter associated with the tandem thrust bearings.


T752 Cylindrical Thrust
Dynamic Capacity=375,500 lbs
O.D.=14"

T-511 Tapered Thrust
Dynamic Capacity=322,500 lbs
O.D.=10.5"

TMF-030127-201 6-Stage Tandem Thrust Dynamic Capacity=329,900 lbs O.D.=5"

ROLLWAY. Tandem Thrust Bearings

Features and Benefits continued

Matched Precision Ground Rollers

Rollers are manufactured from Carburized Bearing Grade Steel. The surfaces are ground and superfinished. The outside diameters are heavily crowned. The ends have a large machined radius designed to reduce friction between the roller and the retaining ring. The larger bearings use multiple rollers per pocket to minimize slippage.

Machined Brass Roller Riding Retainer

Retainers are manufactured from brass. The roller slots are accurately machined to provide smooth operation of the roller assembly. The rollers are retained by a steel band placed over the outside diameter of the retainer.

Precision Ground Inner and Plates

Plates are manufactured from Carburizing Bearing Grade Steel. The surfaces are precision ground and superfinished.

Precision Ground Inner and Outer Compression Sleeves

Compression Sleeves are manufactured from various materials designed to provide controlled deflection. These components are match ground with the plates.

Tandem Thrust Bearings ROLLWAY®

Custom Capabilities

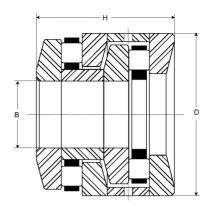
Detailed Drawings are available on the listed Tandem Thrust bearing designs. Upon request for a specific part number, a drawing will be sent containing the information in the following drawing along with the rated dynamic capacity. Shaft and housing fits are also available upon request.

New designs can be engineered and produced in small volumes for example combination radial and thrust bearings, concave and convex designs, screw down thrust, etc.. Contact Application Engineering for assistance in developing a tandem bearing design that will satisfy your application requirements. Based on your design envelope, loads, speeds and desired life, our engineers will design a tandem thrust bearing for your application. Let our Application Engineering Staff help you.

ROLLWAY. Tandem Thrust Bearings

Basic Construction Type: Multi Stage Cylindrical Roller

Thrust Bearing


Rolling Elements: Crowned Cylindrical Rollers

Bearing Material: Through Hardened Or Case Carburized Bearing Grade

Steel

Series: 2, 3, 4, 6, Or 8 Stages

Retainer Types: Machined Brass

2 Stage

Part No. TAB-017043-201 TAB-027047-203	Bore inch mm	O.D.	Height	Basic Dynamic Rating	Bearing Weight
		*			
		inch mm	inch mm	lb N	lb kg
TAD 027047 202	1.7500	4.3765	3.8750	79,000	11.0
	44.450	111.163	98.425	353,920	4.9
IAB-027047-203	2.7570	4.7035	2.6250	75,100	6.8
	70.028	119.469	66.675	336,450	3.1
TAB-030066-201	3.0000	6.6265	3.6250	141,000	22.0
	76.200	168.313	92.075	631,680	9.9
TAB-040082-201	4.0000 101.600	8.2515 209.588	7.0620 179.375	236.000	44 19.9
TAB-040100	4.0000	10.0000	5.5620 141.275	1,057,280 376,000	84
TAB-050090-202	101.600 5.0000	254.000 9.0000	141.275 5.3120 134.925	1,684,480 272,000	38.1 52 23.6
	127.000	228.600	134.925	1,218,560	23.6
	6.0000	11.0000	7.2500	427,000	109
TAB-060110-280	152.400	279.400	184.150	1,912,960	49.4
TAB-060120-201	6.0000	12.0000	6.2500	454,700	118
	152.400	304.800	158.750	2,037,060	53.5
TAB-060140-201	6.0000	14.0000	6.8120	619,000	192
	152.400	355.600	173.025	2,773,120	87.1
TAB-062120-201	6.2500	12.0000	5.0000	440,000	93
	158.750	304.800	127.000	1,971,200	42.2
TAB-070140-204	7.0000	14.0000	7.1250	605,000	184
	177.800	355.600	180.975	2,710,400	83.4
TAB-070140-205	7.0000	14.0000	7.7500	713,000	200
	177.800	355.600	196.850	3,194,240	90.7
TAB-070160-201	7.0000	16.0000	9.0000	925,000	328
	177.800	406.400	228.600	4,144,000	148.8
TAB-072160-202	7.2500	16.0000	9.0000	897,500	202
	184.150	406.400	228.600	4,020,800	91.6
TAB-080160-201	8.0000	16.0000	7.5000	775,000	254
	203.200	406.400	190.500	3,472,000	115.2
TAB-080172-201	8.0000	17.2460	9.7500	1,009,000	332
	203.200	438.048	247.650	4,520,320	150.6
TAB-090190-202	9.0000	19.0000	9.5000	1,240,000	468
	228.600	482.600	241.300	5,555,200	212.3
TAB-092169-203	9.2500	16.9390	7.7500	970,000	261
	234.950	430.251	196.850	4,345,600	118.4
TAB-100180	10.0000	18.0000	10.5000	1,078,000	425
	254.000	457.200	266.700	4,829,440	192.7
TAB-100200-202	10.0000	20.0000	8.5000	1,120,000	449
	254.000	508.000	215.900	5,017,600	203.6
TAB-100200-204	10.0000	20.0000	11.7500	1,458,000	621
	254.000	508.000	298.450	6,531,840	281.7
TAB-101215-204	10.1000	21.5025	12.8750	1,987,000	817
	256.540	546.164	327.025	8,901,760	370.7
TAB-120240-209	12.0000	24.0000	12.5000	2,320,000	1,050
	304.800	609.600	317.500	10,393,600	476.3
TAB-140260-201	14.0000	26.0000	13.6870	2,565,000	1,150
	355.600	660.400	347.650	11,491,200	521.6
TAB-140280-201	14.0000	28.0000	13.2500	2,469,000	1,370
	355.600	711.200	336.550	11,061,120	621.4
TAB-170340-201	17.0000	34.0000	17.6880	3,800,000	2,800
	431.800	863.600	449.275	17,024,000	1,270.1
TAB-220420-201	22.0000	42.0000	18.8750	4,810,000	4,920
	558.800	1,066.800	479.425	21,548,800	2,231.7

Metric dimensions for reference only.

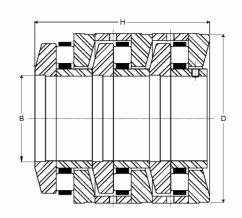
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Basic Construction Type: Multi Stage Cylindrical Roller

Thrust Bearing

Rolling Elements: Crowned Cylindrical Rollers


Bearing Material: Through Hardened Or Case

Carburized Bearing Grade

Steel

2, 3, 4, 6, Or 8 Stages Series:

Retainer Types: Machined Brass

	- Car	3		Buni, Opportie Petitig	Emp Market
The No.	liefe	-201	i in giệt	The market of the later of the	A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T
3//4/////	388	180	ingh.	W	W
IAI III 1008, 100	1.3509 57.485	3450K	107.259 4.30.m	100 MC	(P
TAC-022094-201	2.1654	9.4488	9.4488	66 700	113
	55.001	240.000	240.000	298 820	51.3
(40,40,28800)	3.90%;	%:35W	#Oneste	156,190	10
	28.90%;	**125%	min floc	#27,490	45
TAC-030066-204	3.0000	6.6265	5.6000	160 800	33
	76.200	168.313	142.240	720 380	14.9
Total maker	4/300C	10.0250	8 Jusp	-108,000	120
	1/21/300	394.050	200 375	2,001,840	55.1
TAC-101215-203	10.1000	21.5025	19.2500	2,572 000	1 050
	256.540	546.164	488.950	11 522,560	476.2
T/G127240-237	24556	04.0250	21,2560	\$466.000	1,506
	864516	00≨.530	536,760	5,276,800	8 11.5
TAC-170340-204	17.0000	34.0000	25.5200	5 220 000	3 399
	431.800	863.600	648.208	23 385 600	1 541.7

ROLLWAY® Tandem Thrust Bearings

Basic Construction Type: Multi Stage Cylindrical Roller

Thrust Bearing

Rolling Elements: Crowned Cylindrical Rollers

Bearing Material: Through Hardened Or Case Carburized Bearing Grade

Steel

2, 3, 4, 6, Or 8 Stages Series:

Retainer Types: Machined Brass

The La		0	in the state of th	Dept Dynamic Batha	i ⊨ory Arigon	
Thatia =	Halli Valor	TWi	wh/	100		
DACHE TOOL 150	2190.00	3380	4077000	90000	8.h	
	2490.00	8461	0777000	->00000	3.8	
TMD-040127	1.5748	5.0000	6.9685	201 500	27	
	40.000	127.000	177.000	902 720	12.2	
INLO TESSEE	5,7712	#1985	5.9088	1m.500	30	
	-4,0388	H8377	108.8%	856.680	9.1	
TAD-030082	3.0000	8.2500	10.0000	496 000	35	
	76.200	209.550	254.000	2 222 080	15.8	
TAE 000120-201	50005	12.57%	12 3047	\$52,000	250	
	150-000	556.56	106,095	9.6,000	18 A	

Basic Construction Type: Multi Stage Cylindrical Roller

Thrust Bearing

Rolling Elements: Crowned Cylindrical Rollers

Bearing Material: Through Hardened Or Case

Carburized Bearing Grade

Steel

2, 3, 4, 6, Or 8 Stages Series:

Retainer Types: Machined Brass

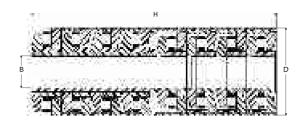
7.0	I II	3	Name of the last	Ben bymet Brita	n (Sangarajan
The Ma	Viii)	144	32.11 110.1	di i	N
KT-1071@:	2 - 2013 25 - 484	3-1001 34000	9°60a0	100.0%	10 22
TAF-011028	1.1024 28.001	2.7559 70.000	5.5118 140.000	89,700 401,860	6 2 7
009-010-23-20 ²	1.187 30:362	51100 -27.000	71-1034 382-001	324.500 1 417/150	44
TAF-017063	1.7000 43.180	6.2500 158.750	10.9750 278.765	413 _, 200 1 851 140	72 32.6
ToF :10013	1,5540 46,100	5.0460 57.019	EUT06 204,600	366,000 005,050	52 25.5

ROLLWAY® Tandem Thrust Bearings

Basic Construction Type: Multi Stage Cylindrical Roller

Thrust Bearing

Rolling Elements: Crowned Cylindrical Rollers


Bearing Material: Through Hardened Or Case

Carburized Bearing Grade

Steel

Series: 2, 3, 4, 6, Or 8 Stages

Retainer Types: Machined Brass

515 5	n Jier	0	0 I I I I I I I I I I I I I I I I I I I		n Reining William
THIN :	Hill Har	William Co.	mw.	7.00	#
nor investment	C.0056	(NOME)	#\(1\)\(\hat{n}\).	- 9"4, 50	7+
	<20001	(NOME)	_2xx\(5\)\(\hat{n}\)	!!TapAB	(X tr
TMH-023092	0.9055	3.6220	12.0079	246,000	27
	23.000	91.999	305.001	1,102 080	12.2
TK1-090,12*	1.7901	50002	4,3576	#24,150	31
	55.030	127,000	372,50	1,54 Ti,	30
TMH-040170	1.5748	6.6929	19.2910	661 800	123
	40.000	170.000	489.991	2 964 860	55.8

ROLLWAY. Thrust Bearings

Load Ratings and Life

Life Calculations

The L10 (rating) life for any given application and bearing selection can be calculated in terms of millions of revolutions by using the bearing Basic Dynamic Rating and applied thrust load. The L10 life for any given application can be calculated in terms of hours, using the bearing Basic Dynamic Rating, applied load and suitable speed factors, by the following equation:

For thrust cylindrical roller and thrust tapered roller bearings:

$$L_{10} = \left(\frac{C}{P}\right)^{10/3} \frac{1,000,000}{60 \text{ x n}} = \left(\frac{C}{P}\right)^{10/3} \frac{16667}{n}$$

Where:

L₁₀ = The # of hours that 90% of identical bearings under ideal conditions will operate at a specific speed and condition before fatigue is expected to occur.

C = Basic Dynamic Rating (lbs) 1,000,000 Revolutions

P = Constant Equivalent Load (lbs)

n = Speed(RPM)

Additionally, the ABMA provides application factors for all types of bearings which need to be considered to determine an adjusted Rated Life (Lna). L10 life rating is based on laboratory conditions yet other factors are encountered in actual bearing application that will reduce bearing life. Lna life rating takes into account reliability factors, material type, and operating conditions.

$$L_{na} = a_1 \times a_2 \times a_3 \times L_{10}$$

Where:

 L_{na} = Adjusted Rated Life.

a₁ = Reliability Factor. Adjustment factor applied where estimated fatigue life is based on reliability other than 90% (See Table No 1).

a₂ = Material Factor. Life adjustment for bearing race material. Power Transmission Solutions bearing races

Table No. 1 Life Adjustment Factor for Reliability

Reliability %	L _{na}	a ₁
90	L10	1
95	L5	0.62
96	L4	0.53
97	L3	0.44
98	L2	0.33
99	L1	0.21
50	L50	5

are manufactured from bearing quality steel. Therefore the a_2 factor is 1.0.

a₃ = Life Adjustment Factor for Operating Conditions. This factor should take into account the adequacy of lubricant, presence of foreign matter, conditions causing changes in material properties, and unusual loading or mounting conditions. Assuming a properly selected and mounted bearing having adequate seals and lubricant operating below 250°F and tight fitted to the shaft, the a3 factor should be 1.0.

Load Ratings and Life Continued

Vibration and shock loading can act as an additional loading to the steady expected applied load. When shock or vibration is present, an a3 Life Adjustment Factor can be applied. Shock loading has many variables which often are not easily determined. Typically, it is best to rely on one's experience with the particular application. Consult Application Engineering for assistance with applications involving shock or vibration loading.

The a3 factor takes into account a wide range of application and mounting conditions as well as bearing features and design. Accurate determination of this factor is normally achieved through testing and in-field experience. Power Transmission Solutions offers a wide range of options which can maximize bearing performance. Consult Application Engineering for more information.

Variable Load Formula

Root mean load (RML) is to be used when a number of varying loads are applied to a bearing for varying time limits. Maximum loading still must be considered for bearing size selection.

$$RML^* = \sqrt[10/3]{\frac{(L_1^{10/3}N_1) + (L_2^{10/3}N_2) + (L_3^{10/3}N_3)}{100}}$$

Where:

RML = Root Mean Load (lbs.)

 L_1 , L_2 , etc. = Load in pounds

 N_1 , N_2 , etc. = Percent of total time operated at loads L_1 , L_2 , etc.

Mean Speed Formula

The following formula is to be used when operating speed varies over time.

Mean Speed =
$$\frac{S_1 N_1 + S_2 N_2 + S_3 N_3}{100}$$

 S_1S_2 , etc = Speeds in RPM

N₁N₂, etc = Percentage of total time operated at speeds S₁S₂, etc

^{*} Apply RML to rating at mean speed to determine resultant life.

ROLLWAY. Thrust Bearings

Load Ratings and Life Continued

Bearing Life In Oscillating Applications

The equivalent rotative speed (ERS) is used in life calculations when the bearing does not make complete revolutions during operation. The ERS is then used as the bearing operating speed in the calculation of the L10 (Rating) Life. The formula is based on sufficient angular rotation to have roller paths overlap.

ERS = Equivalent Rotative Speed

N = Total number of degrees per minute through

which the bearing will rotate.

 $ERS = \frac{N}{360}$

In the above formula, allowance is made for the total number of stress applications on the weakest race per unit time, which, in turn, determines fatigue life and the speed factors. The theory behind fretting corrosion is best explained by the fact that the rolling elements in small angles of oscillation retrace a path over an unchanging area of the inner or outer races where the lubricant is prevented by inertia from flowing in behind the roller as the bearing oscillates in one direction. Upon reversal, this small area of rolling contact is traversed by the same roller in the dry state. The friction of the two unlubricated surfaces causes fretting corrosion and produces failures which are unpredictable from a normal life standpoint.

With a given bearing selected for an oscillating application, the best lubrication means is a light mineral oil under positive flow conditions. With a light oil, there is a tendency for all areas in the bearing load zone to be immersed in lubricant at all times. The full flow lubrication dictates that any oxidized material which may form is immediately carried away by the lubricant, and since these oxides are abrasive, further wear tends to be avoided. If grease lubrication must be used, it is best to consult with either the bearing manufacturer or the lubricant manufacturer to determine the best possible type of lubricant. Greases have been compounded to resist the detrimental effect of fretting corrosion for such applications.

Static Load Rating

The "static load rating" for rolling element bearings is that uniformly distributed static radial load acting on a non-rotating bearing, which produces a contact stress of 580,000 psi (roller bearings) or 630,000 psi (ball bearings) at the center of the most heavily loaded rolling element. At this stress level, plastic deformation begins to be significant. Experience has shown that the plastic deformation at this stress level can be tolerated in most bearing applications without impairment of subsequent bearing operation. In certain applications where subsequent rotation of the bearing is slow and where smoothness and friction requirements are not too exacting, a higher static load limit can be tolerated. Where extreme smoothness is required or friction requirements are critical, a lower static load limit may be necessary.

Minimum Bearing Load

Skidding, or sliding, of the rolling elements on the raceway instead of a true rolling motion can cause excessive wear. Applications with high speeds and light loading are particularly prone to skidding. As a general guideline, rolling element bearings should be radially loaded at least 2% of Basic Dynamic Rating. For applications where load is light relative to the bearings dynamic load rating, consult Application Engineering for assistance.

Thrust Engineering Section

Rollway cylindrical roller thrust bearings are designed to support thrust loads (loads parallel to the axis of rotation) at relatively high speeds. Cylindrical roller thrust bearings are relatively stiff, require a minimum amount of axial space, and handle shock loading relatively well. Rollway manufactures four different styles of cylindrical roller thrust bearings:

- 1. Single Acting Supports thrust or axial load in one direction.
- 2. Aligning Accepts an initial static misalignment of nor more than 3 degrees.
- 3. Double Acting Supports thrust or axial load in two directions.
- 4. Crane Hook Thrust A shielded cylindrical roller thrust bearing that supports thrust or axial load in one direction.

Rollway tapered thrust bearings (TTHD and TTVF) are engineered for applications that contain high thrust loads and heavy shock loads. These bearings feature tapered or conical rollers positioned between two plates with tapered raceways. The tapered thrust bearing allows for true rolling motion with the vertex of the conical sections intersecting the bearing axis. The large end of each tapered roller is spherically ground. When the bearing is under load, this curvature guides the rollers accurately. The large spherical end of the roller is counterbored to improve lubrication between the roller and guide rib. By virtue of the additional contact surface, these bearings will have a higher dynamic rating than a similar sized cylindrical roller thrust bearing. Furthermore, they have superior performance in horizontal shaft applications. The self-centering action of the rollers counteract the gravitational effect of the roller assembly reducing the effects of the roller assembly contacting the shaft.

The tapered thrust bearings of the TTVF style are similar to the TTHD tapered thrust style except one thrust plate is flat. The guide rib on the one tapered raceway resists the induced radial force component caused by the inclined plane while the flat plate allows radial displacement without adversely affecting bearing operation. Maximum capacity is achieved through close spacing of the rollers through the use of a steel, hardened pin type retainer.

Rollway tandem thrust bearings, also referred to as multi-stage thrust bearings, were originally designed and patented by Rollway. The bearing consists of a series of thrust plates and roller assemblies with compression sleeves separating the stages. The design of the bearing sleeves and precision match grinding of the components allow the load to be equally applied through the stages of the bearing.

The tandem design allows the use of a high capacity bearing in a small area. Popular applications for this bearing type are rotary swivels, single screw extruders, and twin screw extruders. The tandem bearing allows for the increased output of machines without increasing the size of the gearbox. Rollway manufactures tandem bearings in two, three, four, six, and eight stages. Both inch and metric series sizes are available. Bore sizes range from about 1 to 22 inches with corresponding outside diameter ranging from 3.5 to 42 inches. Rollway tandem thrust bearings are supplied to original equipment manufacturers and the aftermarket.

Operating Conditions Factor

The life of a bearing is dependent on the operating conditions of the application. Lubrication, effects of the external environment, shaft and housing geometry and mounting, all have an effect on the actual bearing life. To determine a more realistic life calculation, the Operating Conditions Factor (F) can be included into the L_{10} life equation. The actual values determination will be based on experience of the designer and the expected operating conditions.

Using the Operating Conditions Factor (F) in the life equation, L₁₀ life in hours now becomes:

$$L_{10} = F \times \left[\left(\frac{C}{P} \right)^{3.33} \times \frac{16667}{n} \right]$$

ROLLWAY® Thrust Bearings

Thrust Engineering Section continued

Proper selection of the F factor demands intimate knowledge of the application. Where little is known of the application, it is recommended that F = 1 be selected. As a guide in selecting a realistic value for F, Rollway suggests use of the following, cumulative, individual sub-factors, f, to arrive at the over-all factor, F, thus:

 $F = f_1 X f_2 X f_3 X f_4 \dots$

The table below defines the application parameters and values recommended for derivation of the individual sub-factors.

Thrust Bearing Factors

Factor	Application Condition		Factor Estimates	
			Excellent	
f ₁	Lubricant viscosity suitability @ bearing operating temperature (see Lubrication)	.5	1.0	
f ₂	External environment and provisions for isolation	.5	1.0	
f ₃	Operational conditions of shaft and housing squareness & rigidity	.5	1.0	
f ₄	Bearing thrust plate backing system full backing vs partial backing	.5	1.0	

Cylindrical Roller Thrust Shaft Plate

The bore of the shaft plate is precision ground for a line to loose fit on in relation to the shaft outside diameter. The shaft plate outside diameter has a turned finish and is smaller than the housing plate's outside diameter. The plate is is made from either through-hardened or carburizing grade steel with hardness to Rockwell (Rc) 58-63. Upon request we can manufacture these components from either CEVM or VIMVAR grades of material or M- 50 tool steel for high temperature applications.

All thrust plates are accurately ground for flatness and parallelism of the roller riding and backing surfaces. The roller contacting surfaces of the plates are superfinished to provide for long life. Locating diameters are ground to obtain an accurate fit on the shaft.

Cylindrical Roller Thrust Housing Plate

The outside diameter of the housing plate is precision ground for a line to loose fit in housing bore. The inside diameter has a turned finish and is larger than the shaft plate's inside diameter. The plate is made from either through-hardened or carburizing grade steel with hardness to Rockwell (Rc) 58-63. Upon request we can manufacture these components from either CEVM or VIMVAR grades of material or M-50 tool steel for high temperature applications.

All thrust plates are accurately ground for flatness and parallelism of the roller riding and backing surfaces. The roller contacting surfaces of the plates are superfinished to provide for long life. Locating diameters are ground to obtain an accurate fit in the housing.

Cylindrical Roller Thrust Roller Assembly

The roller assembly contains a machined brass roller-riding cage. Rollway thrust bearing retainers are machined from centrifugally cast brass. The retainers for all cylindrical roller thrust bearings are designed to be roller riding. The contoured roller pockets are accurately machined at right angles to the thrust force, which will be applied to the bearing. The rollers are retained in the assembly by a steel ring pinned to the outside diameter of the retainer.

The rollers in the roller assembly are matched to have outside diameters within .0001 inches. It should be noted that the Rollway design has a sphered roller end, which rides against the steel retaining ring for reduced wear. (The center of the contact point has zero velocity vs. the higher velocity that results from a flat ended roller contacting the ring.) The rollers used in cylindrical thrust roller bearings are also crowned. For the benefits of crowning please refer to page F-9.

Tapered Thrust Bearing Plates

The tapered thrust plates and rollers are made from carburizing grade steel surface hardened to HRc 58 minimum. Other material grades such as CEVM or VIMVAR are available upon request. All thrust plates are accurately ground for flatness and parallelism of the roller riding and backing surfaces. Locating plate diameters are surface ground to obtain an accurate fit on the shaft or in the housing. The tapered roller contacting surfaces are ground to ensure satisfactory bearing operating life.

Tapered Thrust Bearing Rollers

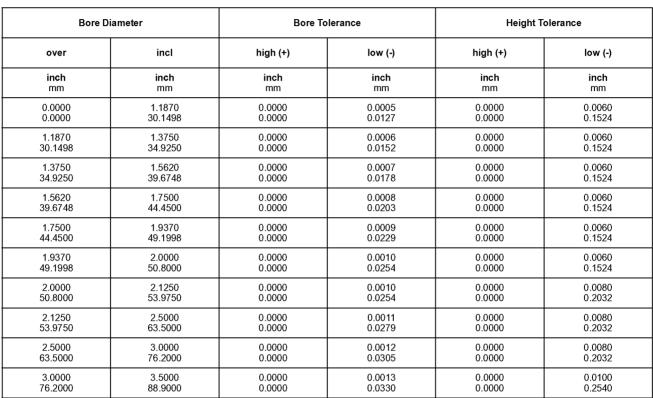
The tapered rolling elements are precision ground to provide an even load over the contact surfaces. The rollers are crowned for optimum stress patterns. The large end of the rollers are spherically ground providing controlled contact between the rollers and the guide rib.

Tapered Thrust Bearing Retainer

The tapered thrust bearing retainers are of two designs. The first design is a machined retainer from a single piece of centrifugally cast brass. The second design is a a two-piece retainer made from hardened steel rings.

Tolerances

Rollway thrust bearings are produced to standard tolerances as listed in the following tables. Thrust bearings are available to increased accuracy upon request. Cylindrical roller thrust bearings contain rollers having a diameter variation of .0001 inches maximum per bearing.



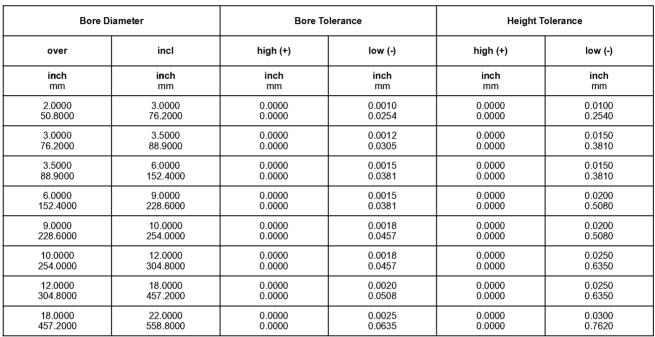
600 Series, Single Direction, Flat Seats

Bore Diameter		Bore Tolerance		Height Tolerance	
over	incl	high (+)	low (-)	high (+)	low (-)
inch	inch	inch	inch	inch	inch
mm	mm	mm	mm	mm	mm
0.0000	1.1870	0.0000	0.0005	0.0000	0.0060
0.0000	30.1498	0.0000	0.0127	0.0000	0.1524
1.1870	1.3750	0.0000	0.0006	0.0000	0.0060
30.1498	34.9250	0.0000	0.0152	0.0000	0.1524
1.3750	1.5620	0.0000	0.0007	0.0000	0.0060
34.9250	39.6748	0.0000	0.0178	0.0000	0.1524
1.5620	1.7500	0.0000	0.0008	0.0000	0.0060
39.6748	44.4500	0.0000	0.0203	0.0000	0.1524
1.7500	1.9370	0.0000	0.0009	0.0000	0.0060
44.4500	49.1998	0.0000	0.0229	0.0000	0.1524
1.9370	2.0000	0.0000	0.0010	0.0000	0.0060
49.1998	50.8000	0.0000	0.0254	0.0000	0.1524
2.0000	2.1250	0.0000	0.0010	0.0000	0.0080
50.8000	53.9750	0.0000	0.0254	0.0000	0.2032
2.1250	2.5000	0.0000	0.0011	0.0000	0.0080
53.9750	63.5000	0.0000	0.0279	0.0000	0.2032
2.5000	3.0000	0.0000	0.0012	0.0000	0.0080
63.5000	76.2000	0.0000	0.0305	0.0000	0.2032
3.0000	3.5000	0.0000	0.0013	0.0000	0.0100
76.2000	88.9000	0.0000	0.0330	0.0000	0.2540

Outside Diameter		Outside Diameter Tolerance	
over	over incl		low (-)
inch	inch	inch	inch
mm	mm	mm	mm
0.0000	2.8750	0.0005	0.0000
0.0000	73.0250	0.0127	0.0000
2.8750	3.3750	0.0007	0.0000
73.0250	85.7250	0.0178	0.0000
3.3750	3.7500	0.0009	0.0000
85.7250	95.2500	0.0229	0.0000
3.7500	4.1250	0.0011	0.0000
95.2500	104.7750	0.0279	0.0000
4.1250	4.7180	0.0013	0.0000
104.7750	119.8372	0.0330	0.0000
4.7180	5.0000	0.0015	0.0000
119.8372	127.0000	0.0381	0.0000

600 Series, Single Direction, Aligning Seat With Aligning Washers

Outside Diameter		Outside Diameter Tolerance	
over	over incl		low (-)
inch	inch	inch	inch
mm	mm	mm	mm
0.0000	3.0000	0.0007	0.0000
0.0000	76.2000	0.0178	0.0000
3.0000	3.3750	0.0009	0.0000
76.2000	85.7250	0.0229	0.0000
3.3750	3.6250	0.0011	0.0000
85.7250	92.0750	0.0279	0.0000
3.6250	3.8750	0.0013	0.0000
92.0750	98.4250	0.0330	0.0000
3.8750	4.5312	0.0015	0.0000
98.4250	115.0925	0.0381	0.0000
4.5312	5.0000	0.0017	0.0000
115.0925	127.0000	0.0432	0.0000



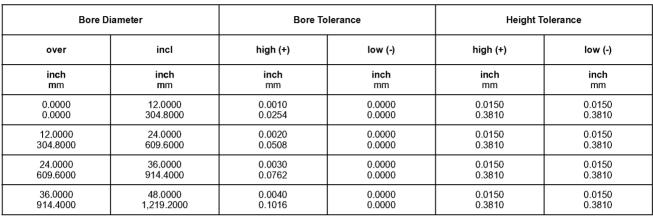
700 Series, Single Direction, Flat Seats

Bore Diameter		Bore Tolerance		Height Tolerance	
over	incl	high (+)	low (-)	high (+)	low (-)
inch	inch	inch	inch	inch	inch
mm	mm	mm	mm	mm	mm
2.0000	3.0000	0.0000	0.0010	0.0000	0.0080
50.8000	76.2000	0.0000	0.0254	0.0000	0.2032
3.0000	3.5000	0.0000	0.0012	0.0000	0.0100
76.2000	88.9000	0.0000	0.0305	0.0000	0.2540
3.5000	6.0000	0.0000	0.0015	0.0000	0.0100
88.9000	152.4000	0.0000	0.0381	0.0000	0.2540
6.0000	9.0000	0.0000	0.0015	0.0000	0.0150
152.4000	228.6000	0.0000	0.0381	0.0000	0.3810
9.0000	10.0000	0.0000	0.0018	0.0000	0.0150
228.6000	254.0000	0.0000	0.0457	0.0000	0.3810
10.0000	12.0000	0.0000	0.0018	0.0000	0.0200
254.0000	304.8000	0.0000	0.0457	0.0000	0.5080
12.0000	18.0000	0.0000	0.0020	0.0000	0.0200
304.8000	457.2000	0.0000	0.0508	0.0000	0.5080
18.0000	22.0000	0.0000	0.0025	0.0000	0.0250
457.2000	558.8000	0.0000	0.0635	0.0000	0.6350
22.0000	30.0000	0.0000	0.0030	0.0000	0.0250
558.8000	762.0000	0.0000	0.0762	0.0000	0.6350

Outside Diameter		Outside Diameter Tolerance	
over	over incl		low (-)
inch	inch	inch	inch
mm	mm	mm	mm
5.0000	10.0000	0.0015	0.0000
127.0000	254.0000	0.0381	0.0000
10.0000	18.0000	0.0020	0.0000
254.0000	457.2000	0.0508	0.0000
18.0000	26.0000	0.0025	0.0000
457.2000	660.4000	0.0635	0.0000
26.0000	34.0000	0.0030	0.0000
660.4000	863.6000	0.0762	0.0000
34.0000	44.0000	0.0040	0.0000
863.6000	1,117.6000	0.1016	0.0000

700 Series, Single Direction, Aligning Seat With Aligning Washers

Outside	Diameter	Outside Diame	eter Tolerance
over	over incl		low (-)
inch	inch	inch	inch
mm	mm	mm	mm
5.0000	10.0000	0.0019	0.0000
127.0000	254.0000	0.0483	0.0000
10.0000	18.0000	0.0021	0.0000
254.0000	457.2000	0.0533	0.0000
18.0000	26.0000	0.0023	0.0000
457.2000	660.4000	0.0584	0.0000
26.0000	34.0000	0.0025	0.0000
660.4000	863.6000	0.0635	0.0000
34.0000	44.0000	0.0030	0.0000
863.6000	1,117.6000	0.0762	0.0000



Crane Hook

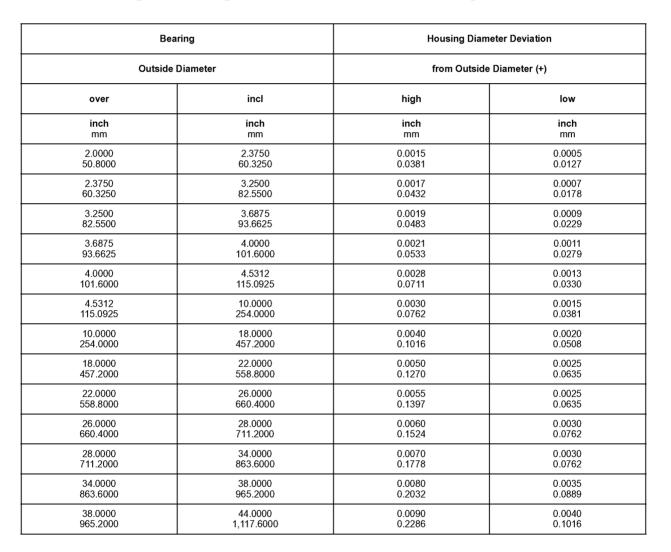
Bore Diameter		Bore Tolerance		Height Tolerance	
over	incl	high (+)	low (-)	high (+)	low (-)
inch	inch	inch	inch	inch	inch
mm	mm	mm	mm	mm	mm
0.0000	2.0156	0.0100	0.0000	0.0000	0.0080
0.0000	51.1962	0.2540	0.0000	0.0000	0.2032
2.0156	3.0156	0.0100	0.0020	0.0000	0.0100
51.1962	76.5962	0.2540	0.0508	0.0000	0.2540
3.0156	6 .0156	0.0150	0.0020	0.0000	0.0150
76.5962	152.7962	0.3810	0.0508	0.0000	0.3810
6 .0156	10.1560	0.0150	0.0050	0.0000	0.0200
152.7962	257.9624	0.3810	0.1270	0.0000	0.5080

Outside Diameter		Outside Diameter Tolerance	
over	over incl		low (-)
inch	inch	inch	inch
mm	mm	mm	mm
2.5000	4.0000	0.0050	0.0050
63.5000	101.6000	0.1270	0.1270
4.0000	6.0000	0.0060	0.0060
101.6000	152.4000	0.1524	0.1524
6.0000	10.0000	0.0100	0.0100
152.4000	254.0000	0.2540	0.2540
10.0000	34.0000	0.0120	0.0120
254.0000	863.6000	0.3048	0.3048

Tapered Roller Thrust

Outside Diameter		Outside Diameter Tolerance	
over	over incl		low (-)
inch	inch	inch	inch
mm	mm	mm	mm
0.0000	12.0000	0.0010	0.0000
0.0000	304.8000	0.0254	0.0000
12.0000	24.0000	0.0020	0.0000
304.8000	609.6000	0.0508	0.0000
24.0000	36.0000	0.0030	0.0000
609.6000	914.4000	0.0762	0.0000
36.0000	48.0000	0.0040	0.0000
914.4000	1,219.2000	0.1016	0.0000

Thrust Bearing Mounting


Suitable tolerances for the shaft and housings of the 600 and 700 series thrust bearings and the tapered thrust bearings are listed in the following tables. These tolerances will provide satisfactory radial guidance for the cylindrical and/or tapered thrust bearings. For further information on bearing mounting and installation, refer to page F-56 of this catalog

Cylindrical Thrust Thrust Bearing Mounting Practice – Shaft and Housing Fits

Be	Bearing		ter Deviation
Bore Diameter		from Bore Diameter (-)	
over	incl	high	low
inch	inch	inch	inch
mm	mm	mm	mm
0.0000	1.1250	0.0005	0.0015
0.0000	28.5750	0.0127	0.0381
1.1250	1.3125	0.0006	0.0016
28.5750	33.3375	0.0152	0.0406
1.3125	1.5000	0.0007	0.0017
33.3375	38.1000	0.0178	0.0432
1.5000	1.6875	0.0008	0.0018
38.1000	42.8625	0.0203	0.0457
1.6875	1.8750	0.0009	0.0019
42.8625	47.6250	0.0229	0.0483
1.8750	2.1250	0.0010	0.0020
47.6250	53.9750	0.0254	0.0508
2.1250	2.5000	0.0011	0.0021
53.9750	63.5000	0.0279	0.0533
2.5000	3.0000	0.0012	0.0022
63.5000	76.2000	0.0305	0.0559
3.0000	3.5000	0.0013	0.0023
76.2000	88.9000	0.0330	0.0584
3.5000	7.0000	0.0015	0.0025
88.9000	177.8000	0.0381	0.0635
7.0000	9.0000	0.0015	0.0030
177.8000	228.6000	0.0381	0.0762
9.0000	12.0000	0.0018	0.0033
228.6000	304.8000	0.0457	0.0838
12.0000	15.0000	0.0020	0.0035
304.8000	381.0000	0.0508	0.0889
15.0000	19.0000	0.0020	0.0040
381.0000	482.6000	0.0508	0.1016
19.0000	23.0000	0.0025	0.0045
482.6000	584.2000	0.0635	0.1143
23.0000	30.0000	0.0030	0.0055
584.2000	762.0000	0.0762	0.1397

Cylindrical Thrust Thrust Bearing Mounting Practice – Shaft and Housing Fits continued

Tapered Thrust Thrust Bearing Mounting Practice – Shaft and Housing Fits

Bearing Bore Diameter		Spring Loaded Shaft Diameter Deviation		
		from Bore Diameter (-)		
over	incl	high	low	
inch	inch	inch	inch	
mm	mm	mm	mm	
0.0000	6.8750	0.0000	0.0010	
0.0000	174.6250	0.0000	0.0254	
6.8750	7.9999	0.0000	0.0010	
174.6250	203.1975	0.0000	0.0254	
7.9999	12.0000	0.0000	0.0015	
203.1975	304.8000	0.0000	0.0381	
12.0000	24.0000	0.0000	0.0020	
304.8000	609.6000	0.0000	0.0508	
24.0000	36.0000	0.0000	0.0025	
609.6000	914.4000	0.0000	0.0635	
36.0000	48.0000	0.0000	0.0030	
914.4000	1,219.2000	0.0000	0.0762	

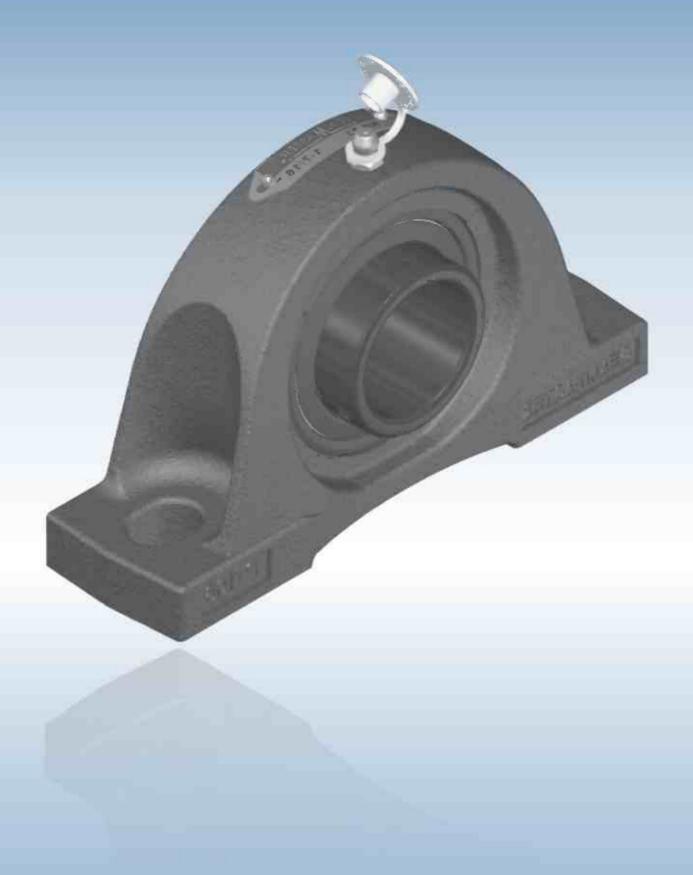
Bearing		Housing Diameter Deviation	
Outside Diameter		from Outside Diameter (+)	
over	incl	high	low
inch	inch	inch	inch
mm	mm	mm	mm
0.0000	10.5000	0.0025	0.0010
0.0000	266.7000	0.0635	0.0254
10.5000	13.0000	0.0030	0.0010
266.7000	330.2000	0.0762	0.0254
13.0000	20.0000	0.0040	0.0020
330.2000	508.0000	0.1016	0.0508
20.0000	25.0000	0.0045	0.0020
508.0000	635.0000	0.1143	0.0508
25.0000	30.0000	0.0060	0.0030
635.0000	762.0000	0.1524	0.0762
30.0000	35.0000	0.0070	0.0030
762.0000	889.0000	0.1778	0.0762

When mounting thrust bearings, there exists the possibility of a slight press fit due to the acceptable tolerances of the bearing bore and outside diameters. Under no circumstances should a press fit exceeding the limits shown be used with the thrust plates, as any expansion or contraction in the plates due to fit could result in a misalignment in the plates and subsequent limited bearing life.

Cylindrical and tapered roller thrust bearings require the support surfaces in the housing and the shaft to be at right angles to the shaft axis within .0005 inch per inch of diameter. For example, a four inch diameter shaft should be square to the shaft shoulder within .002 inches. The support surfaces should also provide for continuous support for the bearing thrust plates across the extent of the raceways. As a general rule, the minimum shaft shoulder and maximum housing shoulder should be as follows:

- Shaft shoulder at a minimum should be equal to the outside diameter of the shaft plate.
- Housing shoulder must have a maximum diameter to not exceed the inside diameter of the housing plate.

The tapered thrust bearing plates are manufactured with the same inside diameter and outside diameter on both plates. Applications using these bearings must be designed with ample clearance between the outside diameter of the shaft plate and the housing. Clearance must also be designed between the inside diameter of the housing plate and the shaft. It is recommended to provide for clearances of approximately .030 inches.


Tandem thrust bearings are designed to allow for the use of minimal shaft and housing shoulders. The cantilevering action of the thrust plates use of compression sleeves enable these bearings to be used effectively where only minimal shaft and housing shoulders exist.

Tandem Thrust Bearing Minimum Load

Tandem thrust bearings are designed to be used in horizontal shaft applications such as an extruder gear drive, and it is essential that a sufficient thrust load is applied to prevent roller skid. The minimum load required for tandem thrust bearings is expressed as a ratio of the bearing's dynamic rating (C) to the applied load (P). For ideal bearing operation, the C/P ratio should be less than 8. Bearing loads creating a C/P ratio greater than 12 must be avoided.

Lubrication

The required viscosity for the lubricant on cylindrical thrust bearings is 125 SSU at operating temperature. The required viscosity for the lubricant on tapered thrust bearings is 160 SSU at operating temperature. The required viscosity for the lubricant on tandem thrust bearings is 160 SSU at operating temperature. For further information in regards to thrust bearing lubrication please refer to page A-17 of this catalog.

Mounted Ball Bearings

Modular bearing assembly consisting of sealed and lubricated inch or metric ball bearing contained within a variety of housings types, locking mechanisms, mounting styles, and housing materials. Mounted ball bearings provide an antifriction solution when supporting rotating shafts with radial loads.

Housing Styles

Pillow Block, Flanges, Take Up Assemblies

Locking Styles

Setscrew, Double Setscrew, Concentric And Eccentric

Bore Diameter Size Range

½" To 4 15/16" And 20 mm To 100 mm

Housing Materials

Cast & Ductile Iron, Stamped Steel

					L оск Т үре			
Brand	Image	Series	Housing Style	Duty	Setscrew	Concentric	Double Setscrew	
	4	NP	Two Bolt Pillow Block - High Base	Standard	NP	NP-T	NPD	
		NPL	Two Bolt Pillow Block - Low Base	Standard	NPL	NPL-T		
	4	SP	Two Bolt Pillow Block - Heavy Duty	Standard	SP	SP-T	SPD	
		MP	Two Bolt Pillow Block - High Base	Medium	MP	MP-T	MPD	
	4	MFP	Four Bolt Pillow Block - High Base	Medium	MFP		MFPD	
	•	MSPD	Two Bolt Pillow Block - Heavy Duty	Medium			MSPD	
Sealmaster	4	MSFPD	Four Bolt Pillow Block - Heavy Duty	Medium			MSFPD	
	4	SPM	Two Bolt Pillow Block - Heavy Duty	Medium	SPM			
		ТВ	Tapped Base Pillow Block	Standard	ТВ	ТВ-Т		
		SF	Four Bolt Flange	Standard	SF	SF-T		
		MSF	Four Bolt Flange	Medium	MSF	MSF-T		
		SFT	Two Bolt Flange	Standard	SFT	SFT-T		
	0	MSFT	Two Bolt Flange	Medium	MSFT	MSFT-T		

			Size F	RANGE		
Housing Material	Standard Seal	Seal Options	Inch	Metric	Section Name	Pages
			1/2" - 2 15/16"	20mm - 75mm		G-31 to G-33
			1/2" - 2 11/16"	20mm - 60mm		G-34 to G-35
			13/16" - 3 7/16"	36mm - 80mm		G-36 to G-38
			15/16" - 4"	25mm - 100mm		G-39 to G-41
			1 15/16" - 5"	50mm - 100mm		G-42 to G-43
		Contact	1 11/16" - 4 15/16"	N/A	Performance Mounted Ball Bearings	G-44
Cast Iron	Felt		1 15/16" - 4 15/16"	N/A		G-45
			1 3/16" - 2 1/2"	N/A		G-46
			1/2" - 2"	20mm - 50mm		G-47 to G-48
			1/2" - 2 15/16"	20mm - 75mm		G-49 to G-50
			15/16" - 4 15/16"	25mm - 100mm		G-51 to G-52
			1/2" - 2 3/16"	20mm - 55mm		G-53 to G-54
			15/16" - 2"	25mm - 50mm		G-55 to G-56

			-		L оск Т үре			
Brand	Image	Series	Housing Style	Duty	Setscrew	Concentric	Double Setscrew	
		FB	Flange Bracket	Standard	FB	FB-T		
		SFC	Piloted Flange Cartridge	Standard	SFC	SFC-T		
		MFC	Piloted Flange Cartridge	Medium	MFC	MFC-T	MFCD	
		SEHB	Hanger Bearing External Lube	Varies	SEHB	SEHB-T	SEHBD	
	6	SCHB	Hanger Bearing Internal Lube	Varies	SCHB			
Sealmaster		SC	Cylindrical Cartridge	Standard	SC	SC-T		
Seamaster		MSC	Cylindrical Cartridge	Medium	MSC	MSC-T		
		ST	Wide Slot Take Up	Standard	ST	ST-T		
		MST	Wide Slot Take Up	Medium	MST	MST-T		
		STH	Center Pull Take Up Frame	Standard	STH			
		MSTH	Center Pull Take Up Frame	Medium	MSTH			
	A	NPG	Top Mount Take Up Frame	Standard	NPG			

	Size Range			RANGE		
Housing Material	Standard Seal	Seal Options	Inch	Metric	Section Name	Pages
			1/2" - 2"	20mm - 50mm		G-57 to G-58
Cast Iron			1 1/8" - 3 3/16"	30mm - 80mm		G-59 to G-60
			15/16" - 4"	25mm - 100mm		G-61 to G-63
Ductile Iron		Contact	15/16" - 4"	25mm - 100mm		G-64 to G-66
Ductile Holl	Felt		15/16" - 4"	25mm - 100mm	Performance Mounted Ball Bearings	G-67
			1/2" - 2 15/16"	20mm - 75mm		G-68 to G-69
Cast Iron			15/16" - 4"	25mm - 100mm		G-70 to G-71
Gast Holl			1/2" - 3 7/16"	20mm - 80mm		G-72 to G-73
			15/16" - 4"	25mm - 100mm		G-74 to G-75
			7/8" - 2 15/16"	25mm - 75mm		G-76 to G-78
N/A	N/A	N/A	1 11/16" - 2 1/2"	N/A		G-79
			7/8" - 2 3/16"	25mm - 55mm		G-80 to G-82

						L оск Түре			
Brand	Image	Series	Housing Style	Duty	Setscrew	Concentric	Double Setscrew		
	-	SPG	Top Mount Take Up Frame	Standard	SPG				
		TFT-T	Two Bolt Flange	Standard		TFT-T			
		SRF	Rubber Mounted Flange	Light	SRF				
		SRP	Rubber Mounted Pillow Block	Light	SRP				
		SRC	Rubber Mounted Cartridge	Light	SRC				
		RB	Rubber Mount Insert	Light	RB				
Sealmaster		AR-2	Expansion Insert	Standard	AR-2	AR-2-T			
		AR-3	Expansion Insert	Medium	AR-3	AR-3-T			
		2-	Insert	Standard	2-	2-T	2-D		
		3-	Insert	Medium	3-	3-T	3-D		
		ER	Cylindrical O.D. Insert	Standard	ER	ER-T			
		NPMH	Pillow Block	Standard	NPMH	NPMH-T			
		ТВМН	Tapped Base Pillow Block	Standard	ТВМН	ТВМН-Т			

			SIZE F	RANGE		
Housing Material	Standard Seal	Seal Options	Inch	Metric	Section Name	Pages
N/A	N/A	N/A	2 1/4" - 2 15/16"	60mm - 75mm		G-82
Ductile Iron			15/16" - 1 7/16"	N/A		G-83
Stamped Steel			1/2" - 1 1/4"	N/A		G-84
Stamped Steel			1/2" - 1 1/4"	N/A		G-85
Rubber		Contact	1/2" - 1 1/4"	N/A	Performance Mounted Ball Bearings	G-86
N/A			1/2" - 1 1/4"	N/A		G-87
Brass	Felt		1/2"-3 1/2"	20mm - 90mm		G-88 to G-89
			15/16" - 4"	25mm - 100mm		G-90 to G-91
			1/2" - 3 1/2"	20mm - 90mm		G-92 to G-94
N/A			15/16" - 4 15/16"	25mm - 100mm		G-95 to G-97
			1/2" - 4"	20mm - 80mm	Performance Cylindrical O.D. Bearings (ER)	G-107 to G-108
0	on Contact Seal + Flinger	N/A	1" - 2 3/16"	N/A	Material Handling Bearings	G-113 to G-114
Cast Iron			1" - 1 15/16"	N/A		G-115 to G-116

					Lock Type			
Brand	Image	Series	Housing Style	Duty	Setscrew	Concentric	Double Setscrew	
		SFMH	Four Bolt Flange	Standard	SFMH	SFMH-T		
		SFTMH	Two Bolt Flange	Standard	SFTMH	SFTMH-T		
		FBMH	Flange Bracket	Standard	FBMH	FBMH-T		
		STMH	Wide Slot Take Up	Standard	STMH	STMH-T		
	9	МН	Insert	Standard	МН	MH-T		
Sealmaster		PVR-x3xx	Pillow Block	Varies				
Geamaster		PVR-x4xx	Tapped Base Pillow Block	Varies				
		PVR-x5xx	Four Bolt Flange	Varies				
		PVR-x6xx	Two Bolt Flange	Varies				
		PVR-x1xx	Piloted Flange Cartridge	Varies				
		PVR-x2xx	Hanger Bearing	Varies				
		PVR-x7xx	Cylindrical Cartridge	Varies				

			Size Range			
Housing Material	Standard Seal	Seal Options	Inch	Metric	Section Name	Pages
			1" - 2 7/16"	N/A		G-117 to G-118
Cast Iron			1" - 2 3/16"	N/A		G-119 to G-120
5451,1611	Contact + Flinger		1" - 1 15/16"	N/A	Material Handling Bearings	G-121 to G-122
			1" - 2 3/16"	N/A		G-123 to G-124
N/A			1" - 2 7/16"	N/A		G-125 to G-126
		N/A	1 1/8" - 1 3/4"	N/A	Paver Bearings	G-130
			1" - 2"	N/A		G-131
			1 1/2" 2 11/16"	N/A		G-132
Varies	Varies		1 7/16" - 2"	N/A		G-133
			1 15/16" - 2 3/16"	N/A		G-134
			2" - 2 11/16"	N/A		G-135
			1 3/4"	N/A		G-136

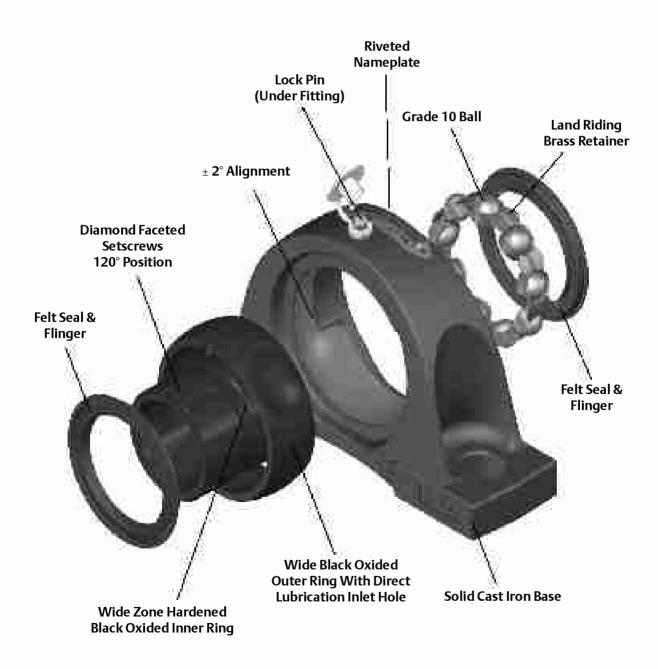
						L оск Түре	
Brand	Image	Series	Housing Style	Duty	Setscrew	Concentric	Eccentric
		VP 100	Two Bolt Pillow Block - High Base	Intermediate	VPS 100		VPE 100
	1	VP 200	Two Bolt Pillow Block - High Base	Standard	VPS 200	VPB 200	VPE 200
		VP 300	Two Bolt Pillow Block - High Base	Medium	VPS 300	VPB 300	
		VPL 100	Two Bolt Pillow Block - Low Base	Intermediate	VPLS 100		VPLE 100
		VPL 200	Two Bolt Pillow Block - Low Base	Standard	VPLS 200	VPLB 200	VPLE 200
		VPD 200	Two Bolt Pillow Block - Alternate Base	Standard	VPDS 200		
Browning		VTB 100	Tapped Base Pillow Block	Intermediate			VTBE 100
		VTB 200	Tapped Base Pillow Block	Standard	VTBS 200	VTBB 200	
		VF4 100	Four Bolt Flange	Intermediate	VF4S 100		VF4E 100
		VF4 200	Four Bolt Flange	Standard	VF4S 200	VF4B 200	VF4E 200
	0	VF4 300	Four Bolt Flange	Medium	VF4S 300	VF4B 300	
	1	VF2 100	Two Bolt Flange	Intermediate	VF2S 100		VF2E 100
	9	VF2 200	Two Bolt Flange	Standard	VF2S 200	VF2B 200	VF2E 200

			SIZE F	RANGE		
Housing Material	Standard Seal	Seal Options	Inch	Metric	Section Name	Pages
	Contact		1/2" - 2 3/16"	N/A		G-145 to G-146
	Contact + Flinger		1/2" - 2 15/16"	20 mm - 60 mm		G-147 to G-150
	Contact + Filliger		1" - 2 3/16"	N/A		G-151 to G-152
	Contact		1/2" - 2 3/16"	N/A		G-153 to G-154
	Contact Elipson	N/A	1/2" - 2 7/16"	N/A		G-155 to G-157
	Contact + Flinger		1 3/16" - 1 1/2"	N/A	Mounted Ball Bearings	G-158
Cast Iron	Contact		3/4" - 2"	N/A		G-159
	Contact + Flinger		1/2" - 2"	20mm - 50mm		G-160 to G-162
	Contact		1/2" - 2 3/16"	N/A		G-163 to G-164
	Contact + Flinger		1/2" - 2 7/16"	20mm - 60mm		G-165 to G-168
	Contact + Filliger		1" - 2 3/16"	N/A		G-169 to G-170
	Contact		1/2" - 2 3/16"	N/A		G-171 to G-172
	Contact + Flinger		1/2" - 2 7/16"	20mm - 60mm		G-173 to G-176

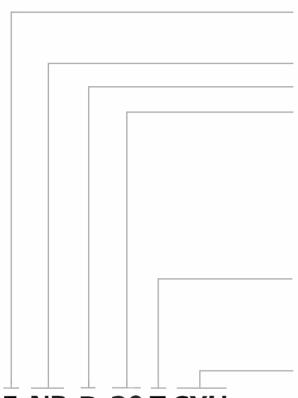
					L оск Түре			
Brand	Image	Series	Housing Style	Duty	Setscrew	Concentric	Eccentric	
	0	VF2 300	Two Bolt Flange	Medium	VF2S 300	VF2B 300		
		VFB 200	Flange Bracket	Standard	VFBS 200	VFBB 200		
	0	VFC 200	Piloted Flange Cartridge	Standard	VFCS 200	VFCB 200		
		VFC 300	Piloted Flange Cartridge	Medium	VFCS 300	VFCB 300		
		VTW 100	Wide Slot Take Up	Intermediate	VTWS 100		VTWE 100	
		VTW 200	Wide Slot Take Up	Standard	VTWS 200		VTWE 200	
Browning		VTW 300	Wide Slot Take Up	Medium	VTWS 300			
		SF	Center Pull Take Up Frame	Standard	xSFxx			
	A	TF	Top Mount Take Up Frame	Standard	xTFxx			
	9	VP 100M	Pillow Block	Intermediate	VPS100-M			
	6	VF2 100M	Two Bolt Flange	Intermediate	VF2S100-M			
		VF3 100M	Three Bolt Flange	Intermediate	VF3S100-M			
		SSP 100	Pillow Block	Light	SSPS 100			

	Size Range					
Housing Material	Standard Seal	Seal Options	Inch	Metric	Section Name	Pages
			1" - 2"			G-177 to G-178
	Contact + Flinger		3/4" - 2"			G-179 to G-180
	Gomaci + i illigor		1 1/8" - 2 7/16"			G-181 to G-182
Cast Iron			1" - 2 1/4"		Mounted Ball Bearings	G-183 to G-184
	Contact	N/A	3/4" - 2 3/16"	N/A		G-185 to G-186
	Contact + Flinger		1/2" - 2 7/16"			G-187 to G-188
			1" - 2 1/4"			G-189
N/A	N/A		1/2" - 2 7/16"			G-190
147.1	10/1		3/4" - 2 7/16"			G-191
			1/2" - 1 7/16"			G-192
Ductile Iron	Contact		1/2" - 1 7/16"			G-193
	Contact		1/2" - 1 7/16"			G-194
Stamped Steel			7/8" - 1 1/4"			G-195

						Lock Type	
Brand	Image	Series	Housing Style	Duty	Setscrew	Concentric	Eccentric
	5	SSRP 100	Pillow Block	Light	SSRPS 100		
		SSF4 100	Four Bolt Flange	Light	SSF4S 100		
	3	SSF3 100	Three Bolt Flange	Light	SSF3S 100		
	5	SSF3T 100	Three Bolt Flange	Light	SSF3TS 100		
	9	SSF2 100	Two Bolt Flange	Light	SSF2S 100		
		RUBR 100	Rubber Grommet	Light	RUBRS 100	RUBRB 100	RUBRE 100
Browning	0	SL 100	Cylindrical O.D. Insert	Light	SLS 100		
	9	L 100	Insert	Light	LS 100		
	0	LR 100	Insert	Light	LRS 100		
	9	V 100	Insert	Intermediate	VS 100		VE 100
	0	V 200	Insert	Standard	VS 200	VB 200	VE 200
	9	V 300	Insert	Medium	VS 300	VB 300	
	0	VER 200	Cylindrical O.D. Insert	Standard	VER 200		



			Size F	Range			
Housing Material	Standard Seal	Seal Options	Inch	Metric	Section Name	Pages	
Stamped Steel with Rubber Grommet			3/4" - 1"			G-196	
			1 1/2" - 1 15/16"			G-197	
Stamped Steel			3/4" - 1 7/16"			G-198	
Otamped Oteel			3/4" - 1 1/4"			G-199	
	Contact	Contact		1/2" - 1 1/4"	N/A		G-200
Rubber	Odniadi		1/2" - 1"	14/7	Mounted Ball Bearings	G-201 to G-202	
		N/A	1/2" - 1 1/2"			G-203	
			1/2" - 1 15/16"			G-204	
			3/4" - 1 1/4"			G-205	
N/A			1/2" - 2 3/16"			G-206 to G-207	
			1/2" - 2 7/16"	20mm - 60mm		G-208 to G-211	
	Contact + Flinger		1" - 2 3/16"	N/A		G-212 to G-213	
			1/2" - 2 7/16"		Cylindrical O.D. Insert Bearings	G-218	


Sealmaster Gold Mounted Ball Bearings

Sealmaster Gold mounted ball bearings feature a wide outer race insert bearing with land riding metallic retainer. The black oxide treated bearing steel insert features an exclusive lock pin and dimple system providing a direct path for lubrication into the bearing, and prevents outer ring rotation within the housing. Shaft lock is achieved by either setscrew or Skwezloc[®] concentric locking collar. The felt seal with flinger provide a good balance between contaminant entry, GoldPlex® HP grease loss and friction. Depending on your preference, these bearings are available in both inch and metric shaft sizes with a wide variety of cast iron, stamped steel or rubber mount housings, sealing, and lubrication options or industry specific solutions as illustrated on the pages to follow.

Sealmaster Gold Mounted Ball Nomenclature **Housing Units**

Prefix

E - Expansion Unit

Housing* (see table below)

D - Double Setscrew Locking

Bore Size

Inch - #/16 (ex. 20/16 = 1 1/4") R for 1 1/4" and 2" Reduced Only

Metric - Standard Duty - 2##, ## x 5 mm

(ex. 05 = 25 mm)

Medium Duty - 3##, ## x 5 mm

(ex. 07 = 35 mm)

Standard Option

T - Skwezloc® Locking Collar

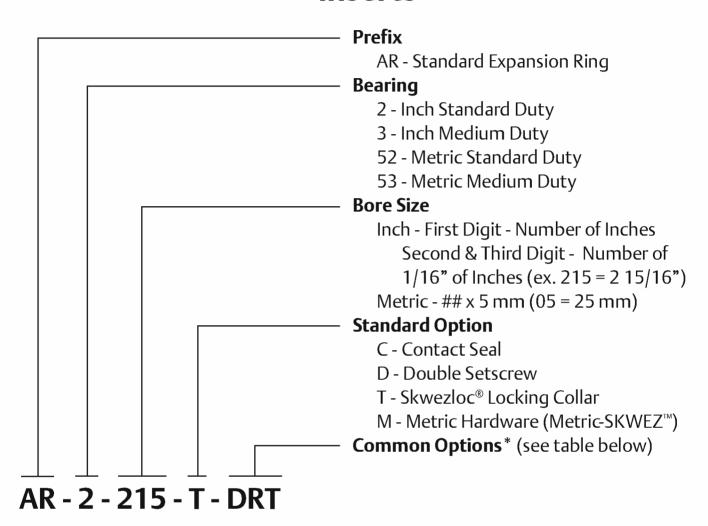
M - Metric Hardware (Metric-SKWEZ™)

C - Contact Seal

Common Options*(see table below)

E NP D-20 T CXU

* Housing	Housing Style	Bearing Duty
FB	Flange Bracket	Standard
MFC	Piloted Flange Cartridge	Medium
MFP	Four Bolt Pillow Block - High Base	Medium
MP	Pillow Block - High Base	Medium
MSC	Cylindrical Cartridge	Medium
MSF	Four Bolt Flange	Medium
MSFPD	Four Bolt Pillow Block - High Base	Medium
MSFT	Two Bolt Flange	i i di im
MSPD	Four Bolt Pillow Block - High Base	₩-dium
MST	Wide Slot Take Up	d,
NP	Pillow Block - High Base	Standard
NPL	Pillow Block - Low Base	Standard
RB	Rubber Mount Insert Only	Standard
SC	Cylindrical Cartridge	Standairi
SF	Four Bolt Flange	Stan Lail
SFC	Piloted Flange Cartridge	Standari
SFT	Rubber Mounted Flange	Standard
SP	Pillow Block - Heavy Duty	Shortall
SPM	Pillow Block - High Base	MONTH
SRC	Rubber Mounted Cartridge	TOWNSM!
SRF	Rubber Mounted Flange	#Intelligible
SRP	Rubber Mounted Pillo	Terrorism .
ST	Wide Slot Take Up	Third all
TB	Tapped Base Pillow Blo. 🖡	This lad
TFT	Two Bolt Flange	MINUSTERS.


*Common Options

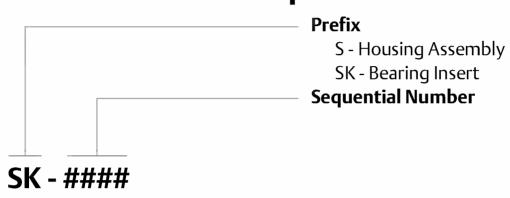
Double Lip Contact Seal - replaced by DRT in most Sizes 30 Trip Lip Contact Seal - replaced by DRT in most sizes Backed Off Felt Seal BF Spring Seal - Spring Out CXU Air Handling High Contamination DRT High Performance Seal High Temperature Krytox*** Grease Hig! peed High emperature High Temperature Air Handling h Temperature Contact Seal A irag Maintenance • • H • Ontact Seal ... Ing --- -- Hring In Spring In K'M Carang Lear - Spring Out أحبد النسخاني

^{***}KRYTOX is a registered trademark of E.I. du Pont de Nemurs and Company This tra 🖟 🙀 🛊 🔭 🛊 🔭 👣 🔭 🛊 🔭 👣 🛊 💮 👣 🛊 💮 🛊 👣 🛊 💮 🔭 🔭 🔭 🔭 🔭 🔭 🔭 🔭 🔭 🔭 🔭 🔭 💮 e owner and is not owned or controlled by Power Transmission Solutions

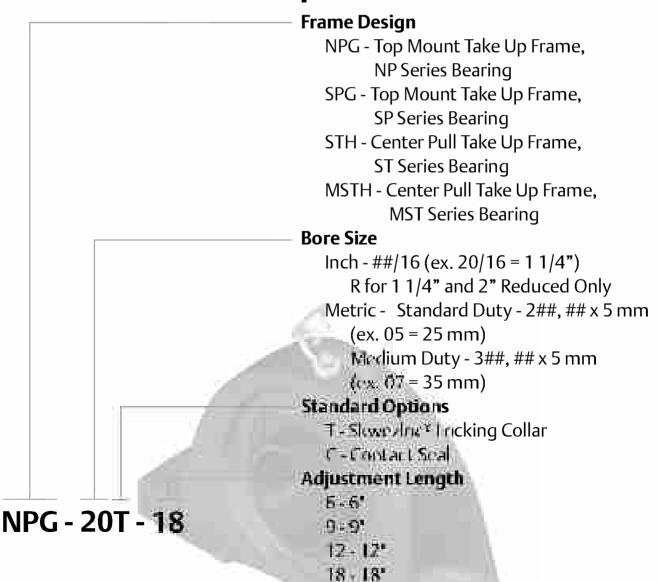
SEALMASTER® Performance Mounted Ball Bearings

Sealmaster Gold Mounted Ball Nomenclature Inserts

*Common Options


2C	Double Lip Contact Seal - replaced by DRT in 1 1001 Miles	10	Low Drag
3C	Trip Lip Contact Seal - replaced by DRT in Li 2001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M	Metric Hardware (Metric-SKWEZ only)
AS	Backed Off Felt Seal	RM	Reduced Maintenance
BF	Spring Seal - Spring Out	SF	I ligh Temperature Double Lip Contact Seal
DRT	High Contamination	NO.	sting Seal - Spring In
Н	High Performance Seal	VA	TkM Spring Seal - Spring In
HI	High Temperature Krytox** Greate	VS	IKM Apring Seal - Spring Out
HS	High Speed	X	Lithyrui h Seal
HT	High Temperature	XLO	hrb LLw Drag
HTC	High Temperature Communi Smil	0000	The section of the se

*Note: Configurations are not available in all sizes or housing styles. C 🗝 📜 📜 🗱 👪 👢 👢 👢 👢 for more detail or consult a Bearing Application Engineer


**KRYTOX is a registered trademark of E.I. du Pont de Nemurs and Company This tra ui ii u u i is property of their respective owner and is not owned or controlled by Power Transmission So

Sealmaster Gold Mounted Ball Nomenclature **Specials**

Take up Frames

SEAL MASTER

ASTER® Performance Mounted Ball Bearings

Features and Benefits

Wide Outer Ring

Sealmaster has the industry's widest outer ring. The black oxided outer ring is 20 to 30% wider than industry standard outer rings. This feature results in increased grease capacity, and room for improved sealing options. A wider outer ring has increased surface area contact with the housing to better absorb shock load.

Lock Pin and Dimple

The Sealmaster exclusive locking pin and dimple system provides a direct lubricant path into the bearing cavity & ball path instead of around a lubrication groove. The pin also prevents outer ring rotation (sometimes referred to as "creep"), and allows $\pm 2^{\circ}$ static misalignment of the bearing insert.

Multiple Sealing Options Felt Seal with Flinger

The standard felt seal provides a tight labyrinth seal which retains lubrication and acts as a filter to exclude contamination. The external stamping is a flinger which shields the felt from large contaminants and directs them away from the sealing surface. The design operates with less drag and less heat generation than rubber contact seals.

Single Lip Contact Seal

Single Lip Contact Seal consists of a nitrile rubber washer in metal shroud to shield the lip from large contaminants. The seal is designed to balance drag and protection in wet and dry environments. This can be specified by adding the suffix C to the part number.

Additional Sealing Options can be found in the Custom Select section on pages G-24 to G-27.

Multiple Locking Methods Setscrew Locking

120° spaced, balanced three point contact minimizes inner ring distortion vibration, reduces noise, and improves reliability. Precision manufactured diamond faceted setscrews contribute to improved clamping and resistance to back out.

Skwezloc® Concentric Locking Collar

SKWEZLOC is a concentric locking collar clamp design that results in near-perfect concentricity of the shaft to bearing bore and maintains near perfect ball path roundness, while reducing fretting corrosion. This design eliminates the shaft damage of setscrew locking, and minimizes bearing induced vibration for smoother quieter operation. The collar has a TORX head cap screw that outlasts stripping 12 times longer than hex head cap screws.

Features and Benefits continued

Zone Hardened Inner Race

Sealmaster incorporates a unique heat treat process that hardens the inner race only where it is needed...under the ball path. The black oxided zone hardened inner race results in improved lock reliability as a result of less distortion at the setscrew location and improved thread conformity resulting in improved clamping and resistance to setscrew back-out

Land Riding Retainer

The Sealmaster unique land riding metal retainer design provides superior pocket clearance that allows for 360° grease circulation around the rolling elements resulting in better retained and utilized lubrication. The land riding design of the retainer minimizes wear on both Ball and retainer, while maximizing stability, which is especially important in applications involving vibration, shock loading or high operating speeds.

Solid Base

Solid bases are standard on Sealmaster Gold ball bearing pillow blocks. The solid base provides improved stability, resistance to shock and vibration and prevents frame buckling under base compared to semi-solid and hollow mounting bases.

Housing Fit

All bearings are assembled with a controlled housing fit between the bearing outer ring and housing bore. This fit allows the bearing to properly self-align in common industrial applications. Special fits are available based on your specific application need.

Nameplate

Metal nameplate riveted to the housing allows for easy identification even after years of operation.

Options

Sealmaster Gold Mounted Ball Bearing Options

Bearings are typically selected using L10 fatigue life calculations based on ideal operating conditions. However, most bearing problems are not fatigue related, but occur due to contamination, lubrication starvation, or other environmental issues. As a result, our engineers have developed custom solutions to meet the varying severity, operating parameters and maintenance regularity, such as Reduced Maintenance and Custom Select.

Reduced Maintenance "RM"

Sealmaster Reduced Maintenance bearings are the result of a patented Tapered Lands bearing race profile which means that critical lubricant is circulated more efficiently, while requiring no regular service intervals. The bearing are supplied from the factory with a plug instead of a lubrication fitting.

The outer land surface in a conventional bearing is parallel to the axis of the inner ring. The Tapered Lands surface is tapered in a radial direction toward the bearing race. This subtle yet crucial design change allows lubricant to more easily flow back to the raceway. With improved bearing lubricant circulation comes significantly longer bearing service life. This improved circulation and service life comes without any reductions in bearing radial or thrust capacities.

* For bearings that are maintained and relubricated on a regular basis, there is no significant difference in expected service life.

Custom Select

Sealmaster Custom Select options are available in popular shaft sizes from $\frac{1}{2}$ " to 2 7/16" in common housing configurations.

High Temperature

Suffix	Description	Temperature	Environment	Speed Limits
HT*	Standard High Temp			
HI*	High Performance High Temp	200°F to 400°F	Dry/Dusty	pages G-235 to G-240
HTA*	High Temp Air Handling	200 F 10 400 F		pages G-233 to G-240
HTC*	High Temp Contact Seal		Wet/Moisture	

^{*}For expansion units add an E prefix (example: ENP-23 HTA). Information on expansion units can be found on page G-29.

High Temperature "HT"

High temperature bearing with increased radial internal clearance to accommodate thermal expansion of components and Nomex* seal and high temperature synthetic grease.

High Performace High Temperature "HI"

High temperature bearing with increased radial internal clearance to accommodate thermal expansion of components and Nomex** seal and Krytox* 226 grease. Available in expansion version in some sizes with half-dog and wire, suffix "HIY", see page G-104 for more information.

High Temperature Air Handling "HTA"

Utilizes the same features as our high temperature "HT" option with the additional features that are important in Air Handling equipment:

- Controlled air handling housing fit that allows the bearing to properly selfalign when mounted on light weight frames
- Two stage noise testing verification procedure for quiet operation
- For standard operating temperatures, consider the Air Handling "CXU" option shown on following pages

High Temperature Contact Seal "HTC"

High temperature bearing with increased radial internal clearance to accommodate thermal expansion of components, single lip silicone fiberglass or FKM spring seal and high temperature synthetic grease.

MASTER ® Performance Mounted Ball Bearings

Custom Select continued

High Contamination

Suffix	Description	Temperature	Environment	Speed Limits
DRT	Highly Contaminated	-40°F to 200°F	Highly Contaminated	pages G-235 to G-240

2C Seal 3C Seal

High Contamination "DRT"

Heavy Duty Multi-Lip contact seal (depending on size and series, either supplied with "2C" double lip or "3C" triple lip seal), 100% Grease Fill with Sealmaster GoldPlex HP Grease.

High Speed

Suffix	Description	Temperature	Environment	Speed Limits
HS	High Speed	-40°F to 200°F	Dry/Dusty	pages G-235 to G-240

High Speed "HS"

- Available in SKWEZLOC locking collar only
- Backed off, felt seal reduces contact area between the felt sealing material and the internal metal flinger
- Controlled air handling housing fit that allows the bearing to properly selfalign when mounted on lightweight frames
- Increased radial internal clearance to accommodate radial thermal expansion of components

Custom Select continued

Air Handling

Suffix	Description	Temperature	Environment	Speed Limits	
CXU	Air Handling	-40°F to 200°F	Drv/Dustv	pages G-235 to G-240	
HTA*	High Temp Air Handling	200°F to 400°F	Diy/Dusty	pages G-255 to G-240	

^{*}For expansion units add an E prefix to unit assembly (example: EMP-23 HTA)

Air Handling "CXU"

Utilizes many of the same features as standard Sealmaster Gold Mounted Ball Bearings but designed and manufactured for Air Handling equipment.

- Controlled air handling housing fit that allows the bearing to properly selfalign when mounted on lightweight frames
- Available with the standard Sealmaster felt seal for decreased energy consumption
- Two stage noise testing verification procedure for quiet operation

High Temperature Air Handling "HTA"

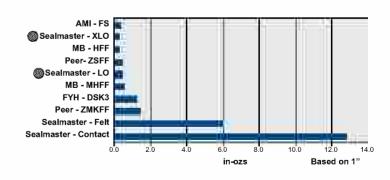
Features listed on page G-24

Custom Select continued

Low Drag

Suffix	Description	Temperature	Environment	Speed Limits
LO	Low Drag	-20°F to 180°F	Dr./Duch/	pages G-235 to G-240
XLO	Extra Low Drag	-20°F to 100°F	Dry/Dusty	pages G-255 to G-240

Low Drag "LO"


- Felt seal cut down to reduce drag
- Provides excellent barrier that works to retain grease and acts as a filter to reduce the ingress of debris contaminants
- Features a channeling grease that reduces drag while lubricating the
- A reduced housing fit to allow for the bearing to properly self-align on light weight frames

X-Tra Low Drag "XLO"

- Felt seal cut down and oil soaked for extra low drag
- Oil lubricated and supplied with an adapter and plug for easy field relubrication
- A reduced housing fit to allow for the bearing to properly self-align on light weight frames

Bearing Rotational Torque - Comparision Chart

	Company	Suffix Option	Seal Type	Lubrication
LO Drag Bearing	AMI®	FS	Non-Contact	Oil
	Sealmaster	XLO	Low Drag Felt	Oil
	MB®	HFF	Steel Labyrinth	Oil
	Peer®	ZSFF	Steel Labyrinth	Oil
Options	Sealmaster	LO	Low Drag Felt	Grease
	MB	MHFF	Steel Labyrinth	Grease
	FYH®	DSK3	Non-Contact	Oil
	Peer	ZMKFF	Steel Labyrinth	Grease
Standard	Sealmaster	-	Felt	Grease
Bearing Drag (Reference)	Sealmaster	С	Contact	Grease

^{*}The following trade names, trademarks and/or registered trademarks that follow are used in this material by Emerson for comparison purposes only, are NOT owned or controlled by Emerson and are believed to be owned by the following parties: Dodge: Baldor Electric Company; AMI: Asahi Tec Corp. of japan; MB: Rexnord Industries, inc.; Peer: Peer Bearing Company; FYH: Nippon Pillow Block Co., Ltd. Fafnir: Timken US Corporation. Emerson cannot and does not represent or warrant the accuracy of this information

Custom Select continued

Optional Fittings

Suffix	Description
CSK	90° Grease Fitting
CSJ	45° Grease Fitting
CTJ	Adapter and Plug
CTY	Plug
W	Adapter and Grease Fitting

CSK – 90° Grease Fitting

CS_I – 45° Grease Fitting

CTJ - Adaptor and Plastic Plug

CTY - Plug

W - Adaptor and Grease Fitting

Note:

- Fittings are designed to properly position the lock pin anti-rotation device. Other fittings not designed for Sealmaster brand bearings may not provide this function causing reduced bearing life.
- Fittings are factory adjusted to properly position the lock pin anti-rotation device. Improper field adjustment of the fitting may cause reduced bearing life. Consult Bearing Technical Services for proper adjustment techniques or review installation instructions.
- For specific hole sizes per housing assembly refer to section L Accessories.

SEALMASTER® Performance Mounted Ball Bearings

Additional Options

Expansion Units Options

Axial shaft expansion is compensated by a non-expansion (fixed) and expansion (float) arrangement. Many bearings are offered in both fixed and float arrangements and have identical mounting dimensions. It is recommended to use both units on one shaft in high temperature applications to help account for linear shaft expansion. For more information see page G-249 in the Mounted Ball Bearing Engineering section.

Expansion Unit Availability Chart

Bore Diameter		Unit Standard Duty			Expansion		
in	mm	Size	ENP	ESP	ESF	ESFT	Capability
5/8		10					
11/16		11			_	_	
3/4		12	•		•	•	3/32"
	20	204	İ				
13/16		13					
7/8		14	İ				
15/16		15	•	•	•	•	3/32"
	25	205					
1		16					
1 1/16		17					
1 1/8		18					
	30	206	•	•	•		1/8"
1 3/6		19	İ				
1 1/4		20R					
1 1/4		20					
1 5/16		21					
1 3/8		22	•	•	•	•	1/8"
	35	207					
1 7/16		23					
1 1/2		24					
1 9/16		25	•		•		1/8"
	40	208	İ				
1 5/8		26					
1 11/16		27	_		_	_	
1 3/4		28	•		•	•	1/8"
	45	209					
1 13/16		29					
1 7/8		30	İ				
1 15/16		31	•	•	•		3/16"
	50	210	İ				
2		32R					
2		32					
2 1/8		34					0// 011
	55	211	•	•	•	•	3/16"
2 3/16		35					
2 1/4		36					
	60	212					0,,,,,,,
2 3/8		38	•	•	•		3/16"
2 7/16		39	İ				
2 1/2		40					
2 11/16		43		•	•		3/16"
	70	214					
2 7/8		46					
2 15/16		47	İ		•		3/16"
	75	215					
3		48					
	80	216		•			1/4"
3 3/16		51					

Bore Di	ameter	Unit				Mediu	ım Duty				Expansion
in	mm	Size	EMFP	EMFPD	EMP	EMSPD	EMSFPD	EMSF	EMSFT	EMFC	Capability
15/16		15									
	25	305			•			•	•		1/8"
1		16									
	30	306									
1 3/16		19			•			•	•		1/8"
1 1/4		20									
	35	307			•			•			1/8"
1 7/16		23						•			170
1 1/2		24						•			1/8"
	40	308									1/0
1 11/16		27									
1 3/4		28			•			•	•	•	3/16"
	45	309									
1 15/16		31									
	50	310			•	•		•	•	•	3/16"
2		32									
	55	311									
2 3/16		35			•			•		•	3/16"
2 1/4		36									
2 7/16		39									
2 1/2		40	•	•	•	•		•		•	3/16"
	65	313									
2 11/16		43			•			•			3/16"
	70	314		•	•			•			3/10
2 15/16		47									
	75	315	•	•	•	•		•			1/4"
3		48									
	80	316									
3 3/16		51			•			•			1/4"
3 1/4		52									
3 7/16		55	•	•	•	•	•	•			9/32"
3 15/16		63									
	100	320	•	•	•	•	•	•			9/32"
4		64									
4 7/16		71					•				7/16"
4 15/16		79		_							//10

Expansion option exists for the bearing and housing combination

Note: 1. Not all combinations of housing styles, locking types and seal options are available. Consult customer service for availability and possible set-up charges.

2. Alternate expansion version available in some sizes and confirgurations with half-dog and wire, suffix "HIY", see page G-104 for more information

Additional Options

Greases

Optional greases are readily available, consult Application Engineering for complete list

High Temperature Synthetic

- Used in HT, HTA, and HTC suffix modified bearings
- High quality, synthetic hydrocarbon, lithium complex thickened grease NLGI#2, and ISO 220 viscosity
- Superior high temperature (200 F to 400F) stability

KRYTOX* Extended Lube

- Used in HI suffix modified bearings
- KYRTOX GPL 226, an extremely high performance perflourinated oil and PTFE thickened grease
- KRYTOX grease has a superior service life and therefore diminishes relubrication frequency and extends life
- Engineers have found that, compared to other high temperature greases. the thermal stability and lubricity of the KRYTOX can improve high temperature bearing life by a factor of 4 to 45 times

Custom Capabilities

Additional Industry specific options exist such as the: Sealmaster Paver Bearing – page G-127 Sealmaster Material Handling Bearing - page G-109 Sealmaster PN Gold – Corrosion Resistant – page K-29

Our Application Engineers will design a bearing based on your unique application parameters, utilizing a variety of existing components or special components. By combining your equipment knowledge and our Application Engineers bearing expertise, a product solution can be designed to maximize bearing performance in your specific application.

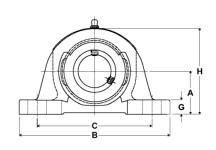
Thousands of customers benefit from this capability every year, and now you no longer have to endure the lead time associated with these custom engineered solutions. In many cases, a higher performance product can be designed and developed specifically for your application.

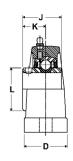
ASTER ® Performance Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Pillow Block - High


Self Alignment: +/- 2 Degrees


> Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

NP Series Standard Duty Pillow Blocks - Setscrew Locking

Dans D	:4		Bearing	Basic				Dir	nensions	inch / mr	n				The same	
Bore D	iameter	Part No.	Insert	Dynamic Rating	1/A	В		C	D	G	#	(3)	· K	L	Bolt Size	Unit W
inch	mm	H-annount ()	No.	lb/N		9	min.	max.	<u> </u>	9		. 2		- 1	Oleb	ID/Kg
1/2		NP-8	2-08													
9/16		NP-9	2-09	2611	1 3/16	5	3 3/8	4 1/8	1 1/2	1/2	2 7/16	1 7/32	23/32	1 3/16	1/2	1.7
5/8		NP-10	2-010	11614	30.2	127.0	85.7	104.8	38.1	12.7	61.9	31.0	18.3	30.2	1/2	.77
11/16		NP-11	2-011									. =				
3/4		NP-12	2-012	2611	1 5/16	5	3 3/8	4 1/8	1 1/2	1/2	2 9/16	1 7/32	23/32	1 3/16	3/8	1.9
40/40	20	NP-204	5204	11614	33.3	127.0	85.7	104.8	38.1	12.7	65.1	31.0	18.3	30.2		.86
13/16		NP-13	2-013													
7/8 15/16		NP-14 NP-15	2-014 2-015	2801	1 7/16	5 1/2	3 7/8	4 3/8	1 1/2	1/2	2 13/16	1 3/8	13/16	1 3/8	3/8	2.2
13/16		NP-15	2-015	12459	36.5	139.7	98.4	111.1	38.1	12.7	71.4	34.9	20.6	34.9	3/0	1.00
'	25	NP-16 NP-205	5205													
1 1/16	23	NP-17	2-11													
1 1/18		NP-18	2-11													
1 3/16		NP-19	2-12	4381	1 11/16	6 1/2	4 7/16	5 1/16	1 7/8	9/16	3 3/8	1 1/2	7/8	1 19/32	1/2	3.6
1 1/4		NP-20R	1-14	19487	42.9	165.1	112.7	128.6	47.6	14.3	85.7	38.1	22.2	40.5	1,2	1.63
, .	30	NP-206	5206													
1 1/4		NP-20	2-14													
1 5/16		NP-21	2-15					==	. =.0	=						
1 3/8		NP-22	2-16	5782	17/8	6 9/16	4 11/16	5 5/16	17/8	5/8	3 3/4	1 11/16	1	1 55/64	1/2	4.5
1 7/16		NP-23	2-17	25718	47.6	166.7	119.1	134.9	47.6	15.9	95.3	42.9	25.4	47.2		2.04
	35	NP-207	5207													
1 1/2		NP-24	2-18	7340	1 15/16	7 1/4	4 7/8	5 7/8	2 1/8	11/16	3 15/16	1 15/16	1 3/16	2 1/16		5.7
1 9/16		NP-25	2-19	32648	49.2	184.2	123.8	149.2	54.0	17.5	100.0	49.2	30.2	52.4	1/2	2.59
	40	NP-208	5208	32040	40.2	104.2	120.0	140.2	34.0	17.0	100.0	40.2	30.2	02.4		2.00
1 5/8		NP-26	2-110													
1 11/16		NP-27	2-111	7901	2 1/8	7 1/2	5 7/16	6 1/16	2 1/8	11/16	4 1/4	1 15/16	1 3/16	2 19/64	1/2	6.5
1 3/4		NP-28	2-112	35144	54.0	190.5	138.1	154.0	54.0	17.5	108.0	49.2	30.2	58.3	1,2	2.95
	45	NP-209	5209													
1 13/16		NP-29	2-113													
1 7/8		NP-30	2-114	7889	2 1/4	8 1/8	6	6 1/2	2 3/8	3/4	4 9/16	2 1/32	1 9/32	2 15/32	5/8	7.9
1 15/16		NP-31	2-115	35090	57.2	206.4	152.4	165.1	60.3	19.1	115.9	51.6	32.5	62.7	5/8	3.58
2	50	NP-32R NP-210	1-2 5210													
2	50	NP-32	2-2													
2 1/8		NP-34	2-2	9752	2 1/2	8 5/8	6 1/2	7	2 3/8	3/4	5	2 3/16	1 5/16	2 23/32		9.7
2 3/16		NP-35	2-22	43377	63.5	219.1	165.1	177.8	60.3	19.1	127.0	55.6	33.3	69.1	5/8	4.40
2 3/10	55	NP-211	5211	45511	03.3	213.1	100.1	177.0	00.5	13.1	127.0	33.0	00.0	03.1		4.40
2 1/4	- 00	NP-36	2-24													
2 3/8		NP-38	2-26	11789	2 3/4	9 1/2	6 7/8	7 5/8	2 3/4	7/8	5 9/16	2 9/16	1 9/16	2 63/64		13.7
2 7/16		NP-39	2-27	52437	69.9	241.3	174.6	193.7	69.9	22.2	141.3	65.1	39.7	75.8	5/8	6.21
	60	NP-212	5212		"""	,										
2 7/8		NP-46	2-214				0.440	0.440	0.440	4.410	_	0.445	4.044			27.0
2 15/16		NP-47	2-215	14839	3.5 88.9	13 330.2	8 1/2	9 1/2	3 1/2	1 1/8	7 177.8	3 1/16 77.8	1 3/4 44.5	3 41/64	7/8	27.9
	75	NP-215	5215	66004	88.9	330.2	215.9	241.3	88.9	28.6	177.8	77.8	44.5	92.5		12.66

For Standard Duty Bearing Inserts-Single Lock see page G-92.

Metric dimensions for reference only.

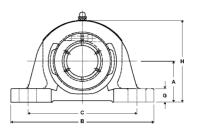
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

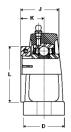
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Duty: Standard

Rolling Elements:

Cast Iron Pillow Block – High Base Housing:


Self Alignment: +/- 2 Degrees


> SKWEZLOC Locking Collar Lock:

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

NP-T Series Standard Duty Pillow Block - SKWEZLOC Locking Collar - Inch

Bore		_	Basic	2 1								50.00	WU SIGN		
Diameter	Part No	Bearing	Dynamic	100	-	C				100		1480		Bolt	Unit Wt
inch		Insert No.	Rating lb/N	A	В	mîna	max	D	G	集	(62	К	L	Size	lb/kg
3/4	NP-12T	2-012T	2611 11614	1 5/16 33.3	5 127.0	3 3/8 85.7	4 1/8 104.8	1 1/2 38.1	1/2 12.7	2 9/16 65.1	1 9/32 32.5	25/32 19.8	1 3/4 44.5	3/8	2.0 .91
15/16 1	NP-15T NP-16T	2-015T 2-1T	2801 12459	1 7/16 36.5	5 1/2 139.7	3 7/8 98.4	4 3/8 111.1	1 1/2 38.1	1/2 12.7	2 13/16 71.4	1 7/16 36.5	7/8 22.2	1 15/16 49.2	3/8	2.4 1.09
1 1/8 1 3/16 1 1/4	NP-18T NP-19T NP-20RT	2-12T 2-13T 1-14T	4381 19487	1 11/16 42.9	6 1/2 165.1	4 7/16 112.7	5 1/16 128.6	1 7/8 47.6	9/16 14.3	3 3/8 85.7	1 9/16 39.7	15/16 23.8	2 3/16 55.6	1/2	3.8 1.72
1 1/4	NP-20T	2-14T	5782 25718	1 7/8 47.6	6 9/16 166.7	4 11/16 119.1	5 5/16 134.9	1 7/8 47.6	5/8 15.9	3 3/4 95.3	1 3/4 44.5	1 1/16 27.0	2 7/16 61.9	1/2	4.8 2.18
1 3/8 1 7/16	NP-22T NP-23T	2-16T 2-17T	4782 21270	1 7/8 47.6	6 9/16 166.7	4 11/16 119.1	5 5/16 134.9	1 7/8 47.6	5/8 15.9	3 3/4 95.3	1 3/4 44.5	1 1/16 27.0	2 9/16 65.1	1/2	4.8 2.18
1 1/2	NP-24T	2-18T	7340 32648	1 15/16 49.2	7 1/4 184.2	4 7/8 123.8	5 7/8 149.2	2 1/8 54.0	11/16 17.5	3 15/16 100.0	2 50.8	1 1/4 31.8	2 11/16 68.3	1/2	6.0 2.72
1 5/8	NP-26T	2-110T	7901 35144	2 1/8 54.0	7 1/2 190.5	5 7/16 138.1	6 1/16 154.0	2 1/8 54.0	11/16 17.5	4 1/4 108.0	2 50.8	1 1/4 31.8	2 13/16 71.4	1/2	6.8 3.08
1 11/16 1 3/4	NP-27T NP-28T	2-111T 2-112T	7901 35144	2 1/8 54.0	7 1/2 190.5	5 7/16 138.1	6 1/16 154.0	2 1/8 54.0	11/16 17.5	4 1/4 108.0	2 50.8	1 1/4 31.8	2 15/16 74.6	1/2	6.8 3.08
1 15/16 2	NP-31T NP-32RT	2-115T 1-2T	7889 35090	2 1/4 57.2	8 1/8 206.4	6 152.4	6 1/2 165.1	2 3/8 60.3	3/4 19.1	4 9/16 115.9	2 3/32 53.2	1 11/32 34.1	3 3/8 85.7	5/8	8.5 3.86
2	NP-32T	2-2T	9752 43377	2 1/2 63.5	8 5/8 219.1	6 1/2 165.1	7 177.8	2 3/8 60.3	3/4 19.1	5 127.0	2 1/4 57.2	1 3/8 34.9	3 1/2 88.9	5/8	10.3 4.67
2 1/8 2 3/16	NP-34T NP-35T	2-22T 2-23T	9752 43377	2 1/2 63.5	8 5/8 219.1	6 1/2 165.1	7 177.8	2 3/8 60.3	3/4 19.1	5 127.0	2 1/4 57.2	1 3/8 34.9	3 5/8 92.1	5/8	10.3 4.67
2 1/4	NP-36T	2-24T	11789 52437	2 3/4 69.9	9 1/2 241.3	6 7/8 174.6	7 5/8 193.7	2 3/4 69.9	7/8 22.2	5 9/16 141.3	2 5/8 66.7	1 5/8 41.3	4 1/16 103.2	5/8	14.9 6.76
2 3/8	NP-38T	2-26T	11789 52437	2 3/4 69.9	9 1/2 241.3	6 7/8 174.6	7 5/8 193.7	2 3/4 69.9	7/8 22.2	5 9/16 141.3	2 5/8 66.7	1 5/8 41.3	4 1/8 104.8	5/8	14.9 6.76

NP-T Series Standard Duty Pillow Block - SKWEZLOC Locking Collar - Metric -SKWEZ™

Bore			Basic	_			Dir	nensions	mm / inc	h			-	200	A THE REAL PROPERTY.
Diameter	Part No.	Bearing	Dynamic	24		C		MAN				1445		Bolt	Unit Wt.
mm	Tartito.	Insert No.	Rating N/lb	Α	В	min _o	max	D	G	H		K	1.	Size	lb/kg
20	NP-204TMC	5204TMC	11614 4782	33.3 1 7/8	127.0 6 9/16	85.7 4 11/16	104.8 5 5/16	38.1 1 7/8	12.7 5/8	65.1 3 3/4	32.5 1 3/4	19.8 1 1/16	44.5 2 9/16	M10	.91 4.8
25	NP-205TMC	5205TMC	19487 2801	36.5 1 7/16	139.7 5 1/2	98.4 3 7/8	111.1 4 3/8	38.1 1 1/2	12.7 1/2	71.4 2 13/16	36.5 1 7/16	22.2 7/8	49.2 1 15/16	M10	1.1 2.4
30	NP-206TMC	5206TMC	19487 4381	42.9 1 11/16	165.1 6 1/2	112.7 4 7/16	128.6 5 1/16	47.6 1 7/8	14.3 9/16	85.7 3 3/8	39.7 1 9/16	23.8 15/16	55.6 2 3/16	M10	1.72 3.8
35	NP-207TMC	5207TMC	21270 4782	47.6 1 7/8	166.7 6 9/16	119.1 4 11/16	134.9 5 5/16	47.6 1 7/8	15.9 5/8	95.3 3 3/4	44.5 1 3/4	27.0 1 1/16	65.1 2 9/16	M10	2.18 4.8
40	NP-208TMC	5208TMC	32648 7340	49.2 1 15/16	184.2 7 1/4	123.8 4 7/8	149.2 5 7/8	54.0 2 1/8	17.5 11/16	100.0 3 15/16	50.8 2	31.8 1 1/4	68.3 2 11/16	M14	2.72 6.0
45	NP-209TMC	5209TMC	35144 7901	54.0 2 1/8	190.5 7 1/2	138.1 5 7/16	154.0 6 1/16	54.0 2 1/8	17.5 11/16	108.0 4 1/4	50.8 2	31.8 1 1/4	74.6 2 15/16	M14	3.08 6.8
50	NP-210TMC	5210TMC	35090 7889	57.2 2 1/4	206.4 8 1/8	152.4 6	165.1 6 1/2	60.3 2 3/8	19.1 3/4	115.9 4 9/16	53.2 2 3/32	34.1 1 11/32	85.7 3 3/8	M16	3.86 8.5
55	NP-211TMC	5211TMC	43377 9752	63.5 2 1/2	219.1 8 5/8	165.1 6 1/2	177.8 7	60.3 2 3/8	19.1 3/4	127.0 5	57.2 2 1/4	34.9 1 3/8	92.1 3 5/8	M16	4.67 10.3
60	NP-212TMC	5212TMC	11789 52437	69.9 2 3/4	241.3 9 1/2	174.6 6 7/8	193.7 7 5/8	69.9 2 3/4	22.2 7/8	141.3 5 9/16	66.7 2 5/8	41.3 1 5/8	104.8 4 1/8	M16	6.8 14.9

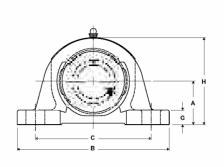
For Standard Duty Bearing Inserts - SKWEZLOC Locking Collar see page G-93.

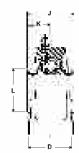
ASTER Performance Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Pillow Block - High


Self Alignment: +/- 2 Degrees


> Lock: Double Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

NPD Series Standard Duty Pillow Blocks With Double Lock - Setscrew Locking

Bara			Backs					mer sin r	ar de l'e	W			<i></i>		
Immater Inc.	-Pert Tis	Canny Av	Dynamic Fading In N			inin.	W.	r	1(0)	H	<u>.e</u> .	Ø,	1		Unit Williams
11 to-18	1975 a 1973 a 1973 as	2514) 26150 241	2824 6994	5510 003	0 162 1997	8.7% W/A	486	2.2	12	1 (546 717	115	A4 (9)	038 3450	275	2+ 100
1 3/16	NPD-19	2-13D	4381 19487	1 11/16 42.9	6 1/2 165.1	4 7/16 112.7	5 1/16 128.6	1 7/8 47 6	9/16 14.3	3 3/8 85.7	1 3/4 44 5	7/8 22.2	1 19/32 40 5	1/2	3 8 1.72
128	142412 142342 14237	>M1 2000 2000	8792 3873	17d	eg i	411/dp (181)	10.00 10.00	17.0 1.2	55 65	3-54 367	- Agui	3 26 4	1 55,04	9/2	77.
1 1/2 1 9/16	NPD-24 NPD-25	2-18D 2-19D	7340 32648	1 15/16 49.2	7 1/4 184.2	4 7/8 123.8	5 7/8 149.2	2 1/8 54.0	11/16 17.5	3 15/16 100.0	2 5/16 58.7	1 5/32 29.4	2 1/16 52.4	1/2	6 0 2.73
1 000 1 34	911 g 993 25	= 110E E4:20	72m 75'11	2165 54.0	7 1/2 10 1	2,748 (201	0.1415 (2-44)	2:2	11/16 1/27	-16x,2 =-104	23E 665	1306 300	2 1990 57.0	407	6.6 14-
1 7/8 1 15/16	NPD-30 NPD-31	2-114D 2-115D	7889 35090	2 1/4 57.2	8 1/8 206.4	6 152.4	6 1/2 165.1	2 3/8 60.3	3/4 19.1	4 9/16 115.9	2 1/2 63.5	1 1/4 31.8	2 15/32 62.7	5/8	8 3 3.76
≠1+4 2046	97.149 97.047 975.03	1 (4) (AVV 1 2 3312	2752 2007	2 1/2 1/15	8 5/8 T/A (#:3 888	, Fai	23-e 60-*	8/4 (0.7	- \$-	25% 60	1248 300	22332 nc	545	10.7 Get
2 1/4 2 3/8 2 7/16	NPD-36 NPD-38 NPD-39	2-24D 2-26D 2-27D	11789 52437	2 3/4 69 9	9 1/2 241.3	6 7/8 174.6	7 5/8 193.7	2 3/4 69.9	7/8 22.2	5 9/16 141.3	3 1/8 79.4	1 9/16 39.7	2 63/64 75 8	5/8	14.0 6.35

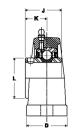
For Standard Duty Bearing Inserts-Double Lock see page G-94.

Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Pillow Block - Low

Self Alignment +/- 2 Degrees


> Setscrew Lock

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

NPL Series Standard Duty Pillow Blocks - Setscrew Locking

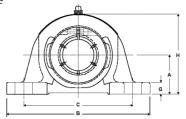
Bore Dia	amotor	100	Bearing	Hasic			- 6		Dimensior	s inch / n	nm				100015	With The
Bole Di	anietei	Pari. No.	Insert	Dynamic Rating	A	В	(3	D	G	н	- T	ĸ	WL.	Boit	Unit Wt. lb/kg
inch	mm	V/2	No.	b/	1000	70	min.	max.	W	1	100	9		0.00	50.00	Sant
1/2		NPL-8	2-08													
9/16		NPL-9	2-09	2611	1 1/16	5	3 3/8	4 1/8	1 1/2	3/8	2 5/16	1 7/32	23/32	1 3/16	3/8	1.7
5/8		NPL-10	2-010	11614	27.0	127.0	85.7	104.8	38.1	9.5	58.7	31.0	18.3	30.2		.77
11/16		NPL-11	2-011	2044	4 4 / 4	-	0.040	1.1/0	4.470	7/10	0.4/0	4.7/00	00/00	1.0/10		
3/4	20	NPL-12	2-012	2611	1 1/4	5	3 3/8	4 1/8	1 1/2	7/16	2 1/2	1 7/32	23/32	1 3/16	3/8	1.7
13/16	20	NPL-204 NPL-13	5204 2-013	11614	31.8	127.0	85.7	104.8	38.1	11.1	63.5	31.0	18.3	30.2		.77
7/8		NPL-13	2-013													
15/16		NPL-14	2-014	2801	1 5/16	5 1/2	3 7/8	4 3/8	1 1/2	1/2	2 11/16	1 3/8	13/16	1 3/8	3/8	2.0
1 1		NPL-16	2-013	12459	33.3	139.7	98.4	111.1	38.1	12.7	68.3	34.9	20.6	34.9	3/0	.91
'	25	NPL-205	5205													
1 1/16	20	NPL-17	2-11													
1 1/8		NPL-18	2-12													
1 3/16		NPL-19	2-13	4381	1 9/16	6 1/2	4 7/16	5 1/16	1 7/8	7/16	3 1/4	1 1/2	7/8	1 19/32	1/2	3.6
1 1/4		NPL-20R	1-14	19487	39.7	165.1	112.7	128.6	47.6	11.1	82.6	38.1	22.2	40.5		1.63
	30	NPL-206	5206													
1 1/4		NPL-20	2-14													
1 5/16		NPL-21	2-15	5700				440	4 7/0	0/40						
1 3/8		NPL-22	2-16	5782 25718	1 13/16 46.0	6 9/16 166.7	4 11/16 119.1	5 5/16 134.9	1 7/8 47.6	9/16 14.3	3 11/16 93.7	1 11/16 42.9	1 25.4	1 55/64 47.2	1/2	4.4 2.00
1 7/16		NPL-23	2-17	237 10	40.0	100.7	110.1	154.5	47.0	14.5	95.1	42.3	25.4	41.2		2.00
	35	NPL-207	5207													
1 1/2		NPL-24	2-18	7340	1 15/16	7 1/4	4 7/8	5 7/8	2 1/8	11/16	3 15/16	1 15/16	1 3/16	2 1/16		5.7
1 9/16		NPL-25	2-19	32648	49.2	184.2	123.8	149.2	54.0	17.5	100.0	49.2	30.2	52.4	1/2	2.59
	40	NPL-208	5208										****			
1 5/8		NPL-26	2-110													
1 11/16		NPL-27	2-111	7901	2 1/16	7 1/2	5 7/16	6 1/16	2 1/8	5/8	4 3/16	1 15/16	1 3/16	2 19/64	1/2	6.2
1 3/4		NPL-28	2-112	35144	52.4	190.5	138.1	154.0	54.0	15.9	106.4	49.2	30.2	58.3		2.81
	45	NPL-209	5209													
1 13/16		NPL-29	2-113													
1 7/8		NPL-30	2-114	7889	2 3/16	8 1/8	6	6 1/2	2 3/8	11/16	4 1/2	2 1/32	1 9/32	2 15/32	E/0	7.8
1 15/16 2		NPL-31 NPL-32R	2-115 1-2	35090	55.6	206.4	152.4	165.1	60.3	17.5	114.3	51.6	32.5	62.7	5/8	3.54
-	50	NPL-32R NPL-210	5210													
2	50	NPL-32	2-2													
2 1/8		NPL-34	2-22	9752	2 7/16	8 5/8	6 1/2	7	2 3/8	11/16	4 15/16	2 3/16	1 5/16	2 23/32		9.6
2 3/16		NPL-35	2-23	43377	61.9	219.1	165.1	177.8	60.3	17.5	125.4	55.6	33.3	69.1	5/8	4.35
	55	NPL-211	5211		0					,,,,						
2 1/4		NPL-36	2-24													
2 3/8		NPL-38	2-26	11789	2 11/16	9 1/2	6 7/8	7 5/8	2 3/4	13/16	5 1/2	2 9/16	1 9/16	2 63/64	F.'0	13.5
2 7/16		NPL-39	2-27	52437	68.3	241.3	174.6	193.7	69.9	20.6	139.7	65.1	39.7	75.8	5/8	6.12
	60	NPL-212	5212													
2 11/16		NPL-43	2-211	13971	3	11 1/4	7 1/8	8 7/8	3 1/4	1 1/16	6 1/4	2 3/4	1 11/16	3 7/16	3/4	21.5
2 11/10		INFL-43	2-211	62143	76.2	285.8	181.0	225.4	82.6	27.0	158.8	69.9	42.9	87.3	3/4	9.75

For Standard Duty Bearing Inserts-Single Lock see page G-92.

SEALMASTER• Performance Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball


> Housing: Cast Iron Pillow Block - Low Base

Self Alignment: +/- 2 Degrees

> Lock: SKWEZLOC Locking Collar

Seal:

Optional Seal: Contact Temperature: -20° to 220°F

NPL-T Series Standard Duty Pillow Block - SKWEZLOC Locking Collar

in ore			Basic					imensions i	nch / mi	m				(0.000	Marine San
D'=mrler	Part.No.	fixering incert As	Dynamic Rating	A	В			Ď	G	н	3	к	YL.	Bolt Size	Unit Wt. lb/kg
intiti			Ib/N	721671	7.50	min.	max.	1.10	740	0.440	4.0/00	05/00	4.044	Charter	4.0
3/4	NPL-12T	2-012T	2611	1 1/4	5	3 3/8	4 1/8	1 1/2	7/16	2 1/2	1 9/32	25/32	1 3/4	3/8	1.8
			11614	31.8	127.0	85.7	104.8	38.1	11.1	63.5	32.5	19.8	44.5		.82
15/16	NPL-15T	2-015T	2801	1 5/16	5 1/2	3 7/8	4 3/8	1 1/2	1/2	2 11/16	1 7/16	7/8	1 15/16	3/8	2.2
1	NPL-16T	2-1T	12459	33.3	139.7	98.4	111.1	38.1	12.7	68.3	36.5	22.2	49.2		1.00
1 1/8	NPL-18T	2-12T	4004	4.0440	0.4/0	4.7/40	E 4/40	4.7.0	7.40		4.0/40	45440	0.0440		
1 3/16	NPL-19T	2-13T	4381 19487	1 9/16 39.7	6 1/2 165.1	4 7/16 112.7	5 1/16 128.6	1 7/8 47.6	7/16 11.1	3 1/4 82.6	1 9/16 39.7	15/16 23.8	2 3/16 55.6	1/2	3.8 1.72
1 1/4	NPL-20RT	1-14T													
1 1/4	NPL-20T	2-14T	5782	1 13/16	6 9/16	4 11/16	5 5/16	1 7/8	9/16	3 11/16	1 3/4	1 1/16	2 7/16	1/2	4.7
1 1/4	NPL-201	2-141	25718	46.0	166.7	119.1	134.9	47.6	14.3	93.7	44.5	27.0	61.9	1/2	2.13
1 3/8	NPL-22T	2-16T	5782	1 13/16	6 9/16	4 11/16	5 5/16	1 7/8	9/16	3 11/16	1 3/4	1 1/16	2 9/16	4.0	4.7
1 7/16	NPL-23T	2-17T	25718	46.0	166.7	119.1	134.9	47.6	14.3	93.7	44.5	27.0	65.1	1/2	2.13
			7340	1 15/16	7 1/4	4 7/8	5 7/8	2 1/8	11/16	3 15/16	2	1 1/4	2 11/16		6.0
1 1/2	NPL-24T	2-18T	32648	49.2	184.2	123.8	149.2	54.0	17.5	100.0	50.8	31.8	68.3	1/2	2.72
			7901	2 1/16	7 1/2	5 7/16	6 1/16	2 1/8	5/8	4 3/16	2	1 1/4	2 13/16		6.5
1 5/8	NPL-26T	2-110T	35144	52.4	190.5	138.1	154.0	54.0	15.9	106.4	50.8	31.8	71.4	1/2	2.95
1 11/16	NPL-27T	2-111T	7901	2 1/16	7 1/2	5 7/16	6 1/16	2 1/8	5/8	4 3/16	2	1 1/4	2 15/16		6.5
1 3/4	NPL-28T	2-112T	35144	52.4	190.5	138.1	154.0	54.0	15.9	106.4	50.8	31.8	74.6	1/2	2.95
1 15/16	NPL-31T	2-115T	7889	2 3/16	8 1/8	6	6 1/2	2 3/8	11/16	4 1/2	2 3/32	1 11/32	3 3/8	F (0	8.4
2	NPL-32RT	1-2T	35090	55.6	206.4	152.4	165.1	60.3	17.5	114.3	53.2	34.1	85.7	5/8	3.81
	NIDL COT	0.07	9752	2 7/16	8 5/8	6 1/2	7	2 3/8	11/16	4 15/16	2 1/4	1 3/8	3 1/2	F (0	10.2
2	NPL-32T	2-2T	43377	61.9	219.1	165.1	177.8	60.3	17.5	125.4	57.2	34.9	88.9	5/8	4.63
2 1/8	NPL-34T	2-22T	9752	2 7/16	8 5/8	6 1/2	7	2 3/8	11/16	4 15/16	2 1/4	1 3/8	3 5/8	E / 0	10.2
2 3/16	NPL-35T	2-23T	43377	61.9	219.1	165.1	177.8	60.3	17.5	125.4	57.2	34.9	92.1	5/8	4.63
0.4/4	NIDI OOT	0.047	11789	2 11/16	9 1/2	6 7/8	7 5/8	2 3/4	13/16	5 1/2	2 5/8	1 5/8	4 1/16	F 10	14.7
2 1/4	NPL-36T	2-24T	52437	68.3	241.3	174.6	193.7	69.9	20.6	139.7	66.7	41.3	103.2	5/8	6.67
2 3/8	NPL-38T	2-26T	11789	2 11/16	9 1/2	6 7/8	7 5/8	2 3/4	13/16	5 1/2	2 5/8	1 5/8	4 1/8	5/8	14.7
2 7/16	NPL-39T	2-27T	52437	68.3	241.3	174.6	193.7	69.9	20.6	139.7	66.7	41.3	104.8	5/8	6.67

For Standard Duty SKWEZLOC Locking Collar Bearing inserts see page G-93.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

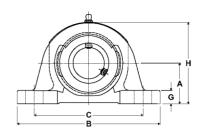
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Pillow Block -

Heavy Duty


Self Alignment: +/- 2 Degrees

> Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

SP Series Standard Duty Pillow Blocks - Setscrew Locking

Bor			160 11	Basic					mension	s inch / n	ım			- 8	155	2012
Diame	eter	Part No.	Bearing Insert No.	Dynamic Rating	Α.	В		3	D	6	UH)	J.	к	L	Bolt Size	Unit Wt. lb/kg
inch	mm			lb/N	. 70	100	min.	max.	ij	9	398	- 10	20	- 8	OIZO	io/kg
13/16 7/8 15/16 1	25	SP-13 SP-14 SP-15 SP-16 SP-205	2-013 2-014 2-015 2-1 5205	2801 12459	1 3/4 44.5	7 177.8	5 1/8 130.2	5 5/8 142.9	2 50.8	9/16 14.3	3 5/16 84.1	1 3/8 34.9	13/16 20.6	1 3/8 34.9	1/2	3.6 1.63
1 1/16 1 1/8 1 3/16 1 1/4	30	SP-17 SP-18 SP-19 SP-20R SP-206	2-11 2-12 2-13 2-14 5206	4381 19487	2 50.8	7 1/2 190.5	5 3/8 136.5	6 1/8 155.6	2 50.8	5/8 15.9	3 7/8 98.4	1 1/2 38.1	7/8 22.2	1 19/32 40.5	1/2	5.0 2.27
1 1/4 1 5/16 1 3/8 1 7/16	35	SP-20 SP-21 SP-22 SP-23 SP-207	2-14 2-15 2-16 2-17 5207	5782	2 3/8 60.3	8 1/4 209.6	5 5/8 142.9	6 7/8 174.6	2 1/4 57.2	3/4 19.1	4 1/2 114.3	1 11/16 42.9	1 25.4	1 55/64 47.2	5/8	7.0 3.18
1 1/2 1 9/16	40	SP-24 SP-25 SP-208	2-18 2-19 5208	7340 32648	2 5/16 58.7	8 1/2 215.9	5 7/8 149.2	7 1/8 181.0	2 3/8 60.3	3/4 19.1	4 9/16 115.9	1 15/16 49.2	1 3/16 30.2	2 1/16 52.4	5/8	7.6 3.45
1 5/8 1 11/16 1 3/4	45	SP-26 SP-27 SP-28 SP-209	2-110 2-111 2-112 5209	7901 35144	2 3/8 60.3	8 3/4 222.3	5 7/8 149.2	7 1/8 181.0	2 3/8 60.3	3/4 19.1	4 5/8 117.5	1 15/16 49.2	1 3/16 30.2	2 19/64 58.3	5/8	8.1 3.67
1 13/16 1 7/8 1 15/16 2	50	SP-29 SP-30 SP-31 SP-32R SP-210	2-113 2-114 2-115 1-2 5210	7889 35090	2 3/4 69.9	10 1/2 266.7	6 3/4 171.5	8 1/2 215.9	2 1/2 63.5	7/8 22.2	5 5/16 134.9	2 1/32 51.6	1 9/32 32.5	2 15/32 62.7	5/8	11.6 5.26
2 2 1/8 2 3/16	55	SP-32 SP-34 SP-35 SP-211	2-2 2-22 2-23 5211	9752 43377	3 1/8 79.4	11 1/4 285.8	7 5/8 193.7	9 3/8 238.1	2 3/4 69.9	7/8 22.2	5 15/16 150.8	2 3/16 55.6	1 5/16 33.3	2 23/32 69.1	5/8	14.1 6.40
2 1/4 2 3/8 2 7/16	60	SP-36 SP-38 SP-39 SP-212	2-24 2-26 2-27 5212	11789 52437	3 1/8 79.4	11 1/2 292.1	7 7/8 200.0	9 3/8 238.1	3 76.2	7/8 22.2	6 1/16 154.0	2 9/16 65.1	1 9/16 39.7	2 63/64 75.8	3/4	16.5 7.48
2 1/2 2 11/16	70	SP-40 SP-43 SP-214	3-28 2-211 5214	13971 62143	3 3/4 95.3	12 5/8 320.7	9 3/8 238.1	10 5/8 269.9	3 3/8 85.7	1 25.4	7 1/8 181.0	2 3/4 69.9	1 11/16 42.9	3 7/16 87.3	3/4	26.3 11.93
2 7/8 2 15/16	75	SP-46 SP-47 SP-215	2-214 2-215 5215	14839 66004	3 3/4 95.3	13 330.2	9 1/4 235.0	10 3/4 273.1	3 3/8 85.7	1 25.4	7 3/16 182.6	3 1/16 77.8	1 3/4 44.5	3 41/64 92.5	3/4	26.6 12.07
3 3 3/16	80	SP-48 SP-51 SP-216	3-3 2-33 5216	17412 77449	4 101.6	14 1/2 368.3	10 5/8 269.9	12 1/8 308.0	3 3/4 95.3	1 1/8 28.6	7 13/16 198.4	3 1/4 82.6	1 15/16 49.2	3 59/64 99.6	3/4	34.0 15.42
3 1/4 3 3/8 3 7/16		SP-52 SP-54 SP-55	2-34 2-36 2-37	18681 83093	4 101.6	15 381.0	9 5/8 244.5	11 7/8 301.6	4 1/4 108.0	1 1/4 31.8	8 1/16 204.8	3 3/8 85.7	2 1/32 51.6	4 5/32 105.6	7/8	42.1 19.10

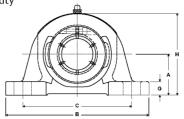
For Standard Duty Bearing Inserts-Single Lock see page G-93.

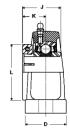
ASTER Performance Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Pillow Block - Heavy Duty


Self Alignment: +/- 2 Degrees


> Lock: SKWEZLOC Locking Collar

Seal:

Optional Seal: Contact Temperature:

-20° to 220°F

SP-T Series Standard Duty Pillow Blocks - SKWEZLOC Locking Collar

Bore		Dogring	Basic					imensions	s inch / m	ım				-	
Diameter	Part No.	Bearing Insert No.	Dynamic Rating	A	В			D	G	H	=1	κ	L.	Bolt Size	Unit Wt. lb/kg
inch		No.	lb/N	***	15	min.	max	74	- 86	. 8		38	08/4	9976	
15/16	SP-15T	2-015T	2801	1 3/4	7	5 1/8	5 5/8	2	9/16	3 5/16	1 7/16	7/8	1 15/16	1/2	3.8
1	SP-16T	2-1T	12459	44.5	177.8	130.2	142.9	50.8	14.3	84.1	36.5	22.2	49.2	172	1.72
1 1/8	SP-18T	2-12T		_				_							
1 3/16	SP-19T	2-13T	4381 19487	2 50.8	7 1/2 190.5	5 3/8 136.5	6 1/8 155.6	2 50.8	5/8 15.9	3 7/8 98.4	1 9/16 39.7	15/16 23.8	2 3/16 55.6	1/2	5.2 2.36
1 1/4	SP-20RT	1-14T													
1 1/4	SP-20T	2-14T	5782	2 3/8	8 1/4	5 5/8	6 7/8	2 1/4	3/4	4 1/2	1 3/4	1 1/16	2 7/16	5/8	7.3
1 1/4	SP-201	2-141	25718	60.3	209.6	142.9	174.6	57.2	19.1	114.3	44.5	27.0	61.9	3/6	3.31
1 3/8	SP-22T	2-16T	5782	2 3/8	8 1/4	5 5/8	6 7/8	2 1/4	3/4	4 1/2	1 3/4	1 1/16	2 9/16	F/0	7.3
1 7/16	SP-23T	2-17T	25718	60.3	209.6	142.9	174.6	57.2	19.1	114.3	44.5	27.0	65.1	5/8	3.31
4.4/0	0D 04T	0.407	7340	2 5/16	8 1/2	5 7/8	7 1/8	2 3/8	3/4	4 9/16	2	1 1/4	2 11/16	E 10	7.3
1 1/2	SP-24T	2-18T	32648	58.7	215.9	149.2	181.0	60.3	19.1	115.9	50.8	31.8	68.3	5/8	3.31
4.5/0	OD 00T	0.4407	7901	2 3/8	8 3/4	5 7/8	7 1/8	2 3/8	3/4	4 5/8	2	1 1/4	2 13/16	- 10	8.4
1 5/8	SP-26T	2-110T	35144	60.3	222.3	149.2	181.0	60.3	19.1	117.5	50.8	31.8	71.4	5/8	3.81
1 11/16	SP-27T	2-111T	7901	2 3/8	8 3/4	5 7/8	7 1/8	2 3/8	3/4	4 5/8	2	1 1/4	2 15/16	F (0	8.4
1 3/4	SP-28T	2-112T	35144	60.3	222.3	149.2	181.0	60.3	19.1	117.5	50.8	31.8	74.6	5/8	3.81
1 15/16	SP-31T	2-115T	7889	2 3/4	10 1/2	6 3/4	8 1/2	2 1/2	7/8	5 5/16	2 3/32	1 11/32	3 3/8	- 10	12.2
2	SP-32RT	1-2T	35090	69.9	266.7	171.5	215.9	63.5	22.2	134.9	53.2	34.1	85.7	5/8	5.53
0	OD 00T	0.07	9752	3 1/8	11 1/4	7 5/8	9 3/8	2 3/4	7/8	5 15/16	2 1/4	1 3/8	3 1/2	5/8	14.7
2	SP-32T	2-2T	43377	79.4	285.8	193.7	238.1	69.9	22.2	150.8	57.2	34.9	88.9	5/8	6.67
2 1/8	SP-34T	2-22T	9752	3 1/8	11 1/4	7 5/8	9 3/8	2 3/4	7/8	5 15/16	2 1/4	1 3/8	3 5/8	F/0	14.7
2 3/16	SP-35T	2-23T	43377	79.4	285.8	193.7	238.1	69.9	22.2	150.8	57.2	34.9	92.1	5/8	6.67
0.444	00.007	0.047	11789	3 1/8	11 1/2	7 7/8	9 3/8	3	7/8	6 1/16	2 5/8	1 5/8	4 1/16	0/4	17.7
2 1/4	SP-36T	2-24T	52437	79.4	292.1	200.0	238.1	76.2	22.2	154.0	66.7	41.3	103.2	3/4	8.03
2 3/8	SP-38T	2-26T	11789	3 1/8	11 1/2	7 7/8	9 3/8	3	7/8	6 1/16	2 5/8	1 5/8	4 1/8	0/4	17.7
2 7/16	SP-39T	2-27T	52437	79.4	292.1	200.0	238.1	76.2	22.2	154.0	66.7	41.3	104.8	3/4	8.03

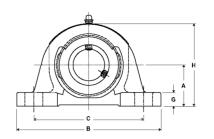
For Standard Duty SKWEZLOC Locking Collar Bearing Inserts see page G-93.

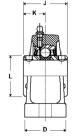
Duty: Standard

Rolling Elements: Ball

Housing: Cast Iron Pillow Block –

Heavy Duty


Self Alignment: +/- 2 Degrees


Lock: Double Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

SPD Series Standard Duty Pillow Blocks With Double Lock - Setscrew Locking

Bore		OF COL	Basic			_		ensions	inch / mr	n				20.5	
Diameter inch	Part No.	Bearing Insert No.	Dynamic Rating	A	В	min	max.	D	G	H	7	K	L	Bolt Size	Uni Wt lb/kg
7/8	SPD-14	2-014D	lb/N	1000	- 00	minico	· Indixa-	COLIN		10000	- 200	2000		0.31	1807.00
			2801	1 3/4	7	5 1/8	5 5/8	2	9/16	3 5/16	1 1/2	3/4	1 3/8	440	3.6
15/16	SPD-15	2-015D	12459	44.5	177.8	130.2	142.9	50.8	14.3	84.1	38.1	19.1	34.9	1/2	1.63
1	SPD-16	2-1D													
1 3/16	SPD-19	2-13D	4381 19487	2 50.8	7 1/2 190.5	5 3/8 136.5	6 1/8 155.6	2 50.8	5/8 15.9	3 7/8 98.4	1 3/4 44.5	7/8 22.2	1 19/32 40.5	1/2	5 2.27
1 1/4	SPD-20	2-14D													
1 3/8	SPD-22	2-16D	5782 25718	2 3/8 60.3	8 1/4 209.6	5 5/8 142.9	6 7/8 174.6	2 1/4 57.2	3/4 19.1	4 1/2 114.3	2 50.8	1 25.4	1 55/64 47.2	5/8	7.2 3.27
1 7/16	SPD-23	2-17D	20110	00.0	200.0	142.0	114.0	01.2	10.1	114.0	00.0	20.4	71.2		0.21
1 1/2	SPD-24	2-18D	7340	2 5/16	8 1/2	5 7/8	7 1/8	2 3/8	3/4	4 9/16	2 5/16	1 5/32	2 1/16	E/0	7.7
1 9/16	SPD-25	2-19D	32648	58.7	215.9	149.2	181.0	60.3	19.1	115.9	58.7	29.4	52.4	5/8	3.49
1 11/16	SPD-27	2-111D	7901	2 3/8	8 3/4	5 7/8	7 1/8	2 3/8	3/4	4 5/8	2 3/8	1 3/16	2 19/64	5/8	8.3
1 3/4	SPD-28	2-112D	35144	60.3	222.3	149.2	181.0	60.3	19.1	117.5	60.3	30.2	58.3	3/6	3.76
1 7/8	SPD-30	2-114D	7889	2 3/4	10 1/2	6 3/4	8 1/2	2 1/2	7/8	5 5/16	2 1/2	1 1/4	2 15/32	5/8	11.6
1 15/16	SPD-31	2-115D	35090	69.9	266.7	171.5	215.9	63.5	22.2	134.9	63.5	31.8	62.7	3/6	5.26
2	SPD-32	2-2D													
2 1/8	SPD-34	2-22D	9752 43377	3 1/8 79.4	11 1/4 285.8	7 5/8 193.7	9 3/8 238.1	2 3/4 69.9	7/8 22.2	5 15/16 150.8	2 5/8 66.7	1 5/16 33.3	2 23/32 69.1	5/8	14.1 6.40
2 3/16	SPD-35	2-23D			200.0			""				00.0			31.10
2 1/4	SPD-36	2-24D													
2 3/8	SPD-38	2-26D	11789 52437	3 1/8 79.4	11 1/2 292.1	7 7/8 200.0	9 3/8 238.1	3 76.2	7/8 22.2	6 1/16 154.0	3 1/8 79.4	1 9/16 39.7	2 63/64 75.8	3/4	17 7.71
2 7/16	SPD-39	2-27D	02.0.					''				""			
2 1/2	SPD-40	3-28D	13971	3 3/4	12 5/8	9 3/8	10 5/8	3 3/8	1	7 1/8	3 1/2	1 3/4	3 7/16	3/4	26.8
2 11/16	SPD-43	2-211D	62143	95.3	320.7	238.1	269.9	85.7	25.4	181.0	88.9	44.5	87.3	3/4	12.16
2 7/8	SPD-46	2-214D	14839	3 3/4	13	9 1/4	10 3/4	3 3/8	1	7 3/16	3 1/2	1 3/4	3 41/64	3/4	26.8
2 15/16	SPD-47	2-215D	66004	95.3	330.2	235.0	273.1	85.7	25.4	182.6	88.9	44.5	92.5	3/4	12.16
3	SPD-48	3-3D	17412	4	14 1/2	10 5/8	12 1/8	3 3/4	1 1/8	7 13/16	3 7/8	1 15/16	3 59/64	3/4	34.5
3 3/16	SPD-51	2-33D	77449	101.6	368.3	269.9	308.0	95.3	28.6	198.4	98.4	49.2	99.6	3/4	15.65

For Standard Duty Bearing Inserts-Double Lock see page G-94.

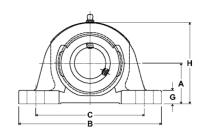
ASTER Performance Mounted Ball Bearings

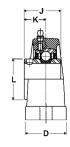
Duty: Medium

Rolling Elements: Ball

> Housing: Cast Iron Pillow Block -

High Base


Self Alignment: +/- 2 Degrees


> Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

MP Series Medium Duty Pillow Blocks - Setscrew Locking

Part No. Part No.	Para Di	ameter		Bearing	Basic					mensions	s inch / m	ım				La Caldadia N	
15/16 MP-16	Dole Di	ameter	Part No.	Insert	Dynamic	- 14	181		CMF			1000	200	e e	7	Boit	Lines WE
1	inch	mm		No.			9)	min.	max.	N.	28	340	8		. 1881	5	ŗ
No. 1.0	15/16		MP-15	3-015	4004	4.0/4	0.4/4	4.0/40	E 0/40	0	E (O	0.7/40	4.4/0	7.00	4.40/00		4.0
1 1 1 1 1 1 1 1 1 1	1		MP-16	3-1												1/2	
11/4 MP-20 30 2-14 MP-306 5782 5306 17.86 25718 17.86 17.46 11.43 17.46 21.12 17.66 114.3 21.14 17.16 17.2 21.14 17.16 17.2 11.17.6 17.2 31.37.6 17.2 11.17.6 17.2 31.37.6 17.2 11.17.6 17.2 31.37.6 17.2 11.17.6 17.2 31.37.6 17.2 11.17.6 18.3 31.37.6 18.3 11.17.6 40 31.36 MP-307 11.17.6 5307 31.6 2548 8 8 2.7 61.9 16.9 21.14 57.2 31.4 19.1 43.16 19.2 11.15.16 49.2 11.15.16 49.2 11.17.6 3.0 11.17.6 49.2 11.17.6 3.0 31.16 49.2 11.17.6 3.0 31.16 49.2 11.17.6 3.0 31.16 49.2 11.17.6 3.0 31.16 49.2 11.17.6 3.0 31.16 49.2 11.17.6 49.2 31.16 49.2 11.17.6 3.18.1 11.17.6 49.2		25															
11/16 30 MP-306 5306 5306 5306 5306 5306 5306 5306 5306 5306 540 21/8 8.8 540 20.32 12/10 161.9 57/2 19.1 106.4 49.2 30.2 52.4 1/2 6.8 3.08 11/2 40 MP-308 5308 53144 58.7 22.3 319.7 171.5 66.7 20.6 49.2 30.2 58.3 57.8 40.8 11/2 40 MP-308 5308 35144 58.7 22.3 319.7 171.5 66.7 20.6 49.2 30.2 25.6 30.2 58.3 57.8 40.8 11/2 40 MP-308 5308 35144 58.7 22.3 319.7 171.5 66.7 20.6 49.2 30.2 25.6 30.2 58.3 57.8 40.8 11/2 30.0 40.8 45.8 45.0 40.8 45.0 40.8 45.0 40.8 45.0 40.8 45.8 45.0 40.8 40.8 45.0	1 3/16			3-13	5700	1 7/0	67/9	1 1/2	5 1/2	2 1/4	11/16	2 12/16	1 11/16	1	1 55/64		5.4
17/16 1.378 35 MP-23 3-17 7340 21/8 8 540 203.2 127.0 161.9 57.2 19.1 106.4 49.2 30.2 52.4 1/2 6.8 3.08 11/2 40 MP-24 3-18 5508 35144 58.7 222.3 139.7 171.5 55.8 13/16 13/16 13/16 21/16 52.4 1/2 6.8 3.08 11/16 40 MP-24 3-18 5508 35144 58.7 222.3 139.7 171.5 66.7 20.6 115.9 49.2 30.2 58.3 5/8 4.08 4.08 11/16 13/16 49/16 13/16 49/16 115.9 49.2 30.2 58.3 5/8 4.08 4.08 11/16 13/16 49/16 13/16 13/16 49/16 13/16	1 1/4			1												1/2	
1.378 35 MP-307 5307 32648 54.0 203.2 127.0 161.9 57.2 19.1 106.4 49.2 30.2 52.4 172 308 1 11/2 40 MP-24 3-18 7901 25/16 8 3/4 51/2 63/4 25/8 13/16 4 9/6 115/9 49.2 30.2 52.4 5/8 9.0 1 11/16 MP-27 3-111 7889 35/14 58.7 222.3 138.1 173.0 66.7 20.6 115/6 145/6 21/32 21/32 5/8 40.8 1 11/16 MP-28 3-112 7889 25/16 8 3/4 57/16 613/16 25/8 13/16 4 5/8 21/32 19/32 21/32 91/3 111/3 66.7 70.6 613/16 27/8 76.6 77.3 22.2 13/16 15/16 23/3 62.7 5/8 11.7 1 15/16 MP-30 3-22 2-2 21/2 91/2		30															
1.172 MP-24 3-18 7-901 25/16 8-34 5-1/2 17.5 6-37 22.2 13.9.7 17.5 6-37 22.6 115/16 13/16 219/64 5-5/8 3.02 5-8/3 5/8 9.0 1.11/16 MP-27 3-111 7-889 25/16 8-34 57/16 6-13/16 25/8 13/16 4-5/8 2-1/32 19/32 2-15/32 5/8 4.08 1.11/16 MP-28 3-112 7-889 25/16 8-34 5-7/16 6-13/16 2-5/8 13/16 4-5/8 2-1/32 19/32 2-15/32 5/8 4.31 1.15/16 MP-30 3-115 7-889 2-5/16 8-34 5-7/16 6-13/16 2-5/8 13/16 4-5/8 2-1/32 19/32 2-15/32 5/8 4.31 1.15/16 MP-31 3-115 7-889 2-5/16 8-34 5-7/16 6-13/16 2-7/8 7-8 5-3/32 2-3/16 1-5/16 2-23/32 5/8 4.31 1.15/16 MP-31 3-115																1/2	
40 MP-308 5308 35144 58.7 222.3 139.7 171.5 66.7 20.6 115.9 49.2 30.2 58.3 5/8 4.08 111/16 MP-27 3-111 7889 35090 58.7 222.3 138.1 57/16 613/16 25/8 13/16 45/8 21/32 19/32 215/32 5/8 9.5 MP-309 5309 5309 58.7 222.3 138.1 57/16 613/16 25/8 13/16 45/8 21/32 19/32 215/32 5/8 4.31 115/16 MP-309 5309 5309 58.7 222.3 138.1 57/16 613/16 25/8 13/16 45/8 21/32 19/32 215/32 5/8 4.31 115/16 MP-31 3-115 MP-32 2-2 97/52 21/2 43377 63.5 241.3 150.8 192.1 73.0 22.2 129.4 55.6 33.3 69.1 5/8 21/32 5/8 11.7 23/16 MP-35 3-23 MP-311 5311 5311 5311 5311 5311 5311 5311		35			32648	54.0	203.2	127.0	161.9	57.2	19.1	106.4	49.2	30.2	52.4		3.08
MP-308 S308 S3144 S8.7 Z22.3 S3.7 T17.5 S6.7 Z0.6 T17.5 S6.7 Z0.6 T17.5 S6.7 Z0.6	1 1/2															5/8	
1 3/4		40			35144	58.7	222.3	139.7	1/1.5	66.7	20.6	115.9	49.2	30.2	58.3		4.08
15/16					7889	2 5/16	8.3/4	5 7/16	6 13/16	2 5/8	13/16	4 5/8	2 1/32	1 9/32	2 15/32		9.5
1 15/16 2	1 3/4															5/8	
2 MP-32 2-2 9752 43377 63.5 241.3 150.8 192.1 73.0 22.2 129.4 55.6 33.3 69.1 5/16 223/32 69.1 5/18 11.7 2 3/16		45															
23/16 MP-310 5310 5310 43377 63.5 241.3 150.8 192.1 73.0 22.2 129.4 55.6 33.3 69.1 3/6 5.31 23/16 MP-36 2-24 52437 69.9 260.4 166.7 201.6 79.4 27.0 142.9 65.1 39.7 75.8 3/4 161.2 21/4 MP-36 2-24 52437 69.9 260.4 166.7 201.6 79.4 27.0 142.9 65.1 39.7 75.8 3/4 75.8 27/16 MP-39 3-27 13971 3 111/4 71/8 87/8 181.0 225.4 82.6 27.0 158.8 69.9 42.9 42.9 87.3 3/4 21.5 865 MP-313 5313 76.2 285.8 181.0 225.4 82.6 27.0 158.8 69.9 42.9 87.3 3/4 21.5 87.3 MP-43 3-211 14839 31/2 13 77/8 10.1/8 31/2 11/8 77.8 17.8 17.8 17.8 17.8 17.8 17.8 17.				1	9752	2 1/2	9 1/2	5 15/16	7 9/16	2 7/8	7/8	5 3/32	2 3/16	1 5/16	2 23/32	= 10	11.7
2 3/16 2 1/4	2			1								129.4				5/8	
2 1/4	0.0/10	50															
No. Section					11789	2 3/4	10 1/4	6 9/16	7 15/16	3 1/8	1 1/16	5 5/8	2 9/16	1 9/16	2 63/64	0/4	16.2
27/16 21/2	2 1/4															3/4	
2 1/2	0.7/40	55															
2 11/16 65 MP-313 5313 62143 76.2 285.8 181.0 225.4 82.6 27.0 158.8 69.9 42.9 87.3 3/4 9.75 2 11/16 MP-43 3-211 14839 31/2 13 77/8 10 1/8 31/2 11/8 7 31/16 13/4 341/64 92.5 7/8 29.2 27.56 70 MP-314 5314 66004 88.9 330.2 200.0 257.2 88.9 28.6 177.8 77.8 44.5 92.5 7/8 13.24 2 15/16 MP-47 3-215 MP-48 3-3 77/449 88.9 330.2 200.0 257.2 88.9 31.8 184.2 82.6 11/16 359.64 99.6 7/8 31.5 14.29 3 3/16 MP-51 3-33 1/4 MP-52 2-34 83093 101.6 381.0 246.1 319.1 101.6 31.8 203.2 85.7 51.6 105.6 7/8 20.00 3 7/16 MP-55 3-37 21566 4 15 381.0 246.1 319.1 101.6 31.8 203.2 85.7 51.6 105.6 7/8 21.68 3 15/16 MP-56 2-38 95926 101.6 381.0 244.5 320.7 111.1 3/3 3.3 209.6 96.0 56.4 111.5 7/8 21.68 3 15/16 MP-63 3-315 29905 5 17 11 3/4 14 3/4 4 3/4 15/16 10 4 5/8 211/16 5 11/64 117.5 68.3 131.4 1 73.2 33.20				1	13971	3	11 1/4	7 1/8	8 7/8	3 1/4	1 1/16	6 1/4	2 3/4	1 11/16	3 7/16	2/4	21.5
2 11/16 MP-43 3-211 14839 3 1/2 13 7 7/8 10 1/8 3 1/2 1 1/8 7 3 1/16 1 3/4 3 41/64 92.5 7/8 29.2 2.756 70 MP-314 5314 66004 88.9 330.2 200.0 257.2 88.9 28.6 177.8 77.8 14.5 92.5 7/8 13.24 2 15/16 MP-47 3-215 MP-48 3-3 17412 3 1/2 13 7 7/8 10 1/8 3 1/2 1 1/4 7 1/4 3 1/4 1 15/16 3 59/64 99.6 7/8 31.5 3 3/16 MP-315 3-33 18681 4 15 9 11/16 12 9/16 4 1 1/4 8 3 3/8 2 1/32 4 5/32 7/8 14.29 3 3/16 MP-52 2-34 83093 101.6 381.0 246.1 319.1 101.6 31.8 203.2 85.7 51.6 105.6 7/8 44.1 3 1/2 </td <td>2 1/2</td> <td>CE</td> <td></td> <td>1</td> <td>62143</td> <td>76.2</td> <td>285.8</td> <td>181.0</td> <td>225.4</td> <td>82.6</td> <td>27.0</td> <td>158.8</td> <td>69.9</td> <td>42.9</td> <td>87.3</td> <td>3/4</td> <td>9.75</td>	2 1/2	CE		1	62143	76.2	285.8	181.0	225.4	82.6	27.0	158.8	69.9	42.9	87.3	3/4	9.75
2.756 70 MP-314 5314 66004 88.9 330.2 200.0 257.2 88.9 28.6 177.8 77.8 44.5 92.5 7/8 13.24 2 15/16 3 MP-47 MP-48 MP-48 MP-48 MP-315 3-3 MP-315 MP-315 17412 MP-49 MP-316 MP-315 13 MP-315 MP-315 MP-315 13 MP-315 MP-315 MP-315 MP-315 MP-316 MP-52 MP-316	2 11/16	65										_					
2.15/16 3 MP-47 3-215 3-31 17412 3 1/2 88.9 330.2 200.0 257.2 88.9 31.8 184.2 82.6 49.2 99.6 7/8 31.5 14.29 88.9 330.2 200.0 257.2 88.9 31.8 184.2 82.6 49.2 99.6 7/8 31.5 14.29 88.9 80 MP-315 5315 88.9 101.6 381.0 246.1 319.1 101.6 31.8 203.2 85.7 51.6 105.6 7/8 44.1 20.00 80 MP-316 5316 MP-55 3-37 21566 4 101.6 381.0 244.5 320.7 111.1 33.3 209.6 96.0 56.4 111.5 7/8 47.8 21.68 MP-64 3-4 13.017 127.0 431.8 298.5 374.7 120.7 33.3 254.0 117.5 68.3 131.4 1 33.4 1 33.20		70														7/8	
3 3/16 3 1/4 MP-52 2-34 83.93 101.6 3 1/2 MP-56 2-38 95926 101.6 381.0 244.5 381.0 244.5 320.7 111.1 3/4 13/4 4 3/4 18/4 15/16 33.3 12/2 117/16 10 4 5/8 2 117/16 5 11/64 4 15/16 33.3 29905 5 177 11 3/4 14 3/4 4 3/4 15/16 10 4 5/8 2 117/16 5 11/64 5 11/64 5 13/16 5 13/2 33.20		70				33.0	00012	200.0		0010	20.0			1 110	02.0		10121
75 MP-315 5315 77 449 88.9 330.2 200.0 257.2 88.9 31.8 184.2 82.6 49.2 99.6 142.9 331.6 31/4 MP-51 3-33 1/4 MP-52 2-34 83093 101.6 381.0 246.1 319.1 101.6 31.8 203.2 85.7 51.6 105.6 7/8 44.1 20.00 31/4 MP-55 3-37 21566 4 15 95/8 125/8 43/8 15/16 31/2 MP-56 2-38 95926 101.6 381.0 244.5 320.7 111.1 33.3 209.6 96.0 56.4 111.5 7/8 21.68 31.6 4 MP-63 3-4 133017 127.0 431.8 298.5 374.7 120.7 33.3 254.0 117.5 68.3 131.4 1 33.20				1												7/8	
3 3/16 3 1/4 MP-51 3-33 18681 4 15 381.0 9 11/16 12 9/16 4 1 11/4 8 203.2 85.7 51.6 105.6 7/8 44.1 20.00 MP-316 5316	"	75		1	77449	88.9	330.2	200.0	257.2	88.9	31.8	184.2	82.6	49.2	99.6	110	14.29
3 1/4 MP-52 80 MP-316 5316 83093 101.6 381.0 9 11/16 12 9/16 4 11/14 8 203.2 85.7 51.6 105.6 7/8 44.1 20.00	3 3/16	10															
80 MP-316 5316 83093 101.6 381.0 246.1 319.1 101.6 31.8 203.2 85.7 51.6 105.6 20.00 317.16 MP-55 3-37 21566 4 15.0 95/8 12.5/8 43/8 15/16 MP-56 2-38 95926 101.6 381.0 244.5 320.7 111.1 33.3 209.6 96.0 56.4 111.5 7/8 47.8 21.68 315/16 MP-63 3-315 MP-64 3-4 133017 127.0 431.8 298.5 374.7 120.7 33.3 254.0 117.5 68.3 131.4 1 33.20																7/8	
3 7/16 3 1/2 MP-55 3-37 21566 4 15 9 5/8 12 5/8 4 3/8 15/16 3 1/2 MP-64 3-4 15 12 10 10 10 10 10 10 10 10 10 10 10 10 10	0 17-1	80			83093	101.6	381.0	246.1	319.1	101.6	31.8	203.2	85.7	51.6	105.6	1,0	20.00
3 1/2 MP-56 2-38 95926 101.6 381.0 244.5 320.7 111.1 33.3 209.6 96.0 56.4 111.5 7/8 21.68 3 15/16 4 MP-63 3-4 133017 127.0 431.8 298.5 374.7 120.7 33.3 254.0 117.5 68.3 131.4 1 33.20	3 7/16	55			21566	1	15	9.5/8	12.5/8	1 3/8	1 5/16	8 1/4	3 25/32	2 7/32	1 25/64		47.8
3 15/16 MP-63 3-315 29905 5 17 11 3/4 14 3/4 4 3/4 1 5/16 10 4 5/8 2 11/16 5 11/64 1 73.2 MP-64 3-4 133017 127.0 431.8 298.5 374.7 120.7 33.3 254.0 117.5 68.3 131.4 1 33.20				1												7/8	
4 MP-64 3-4 29905 5 17 11 3/4 14 3/4 4 3/4 1 5/16 10 4 5/8 2 11/16 5 11/64 1 73.2 33.20																	
																1	
		100	MP-320	5320	133017	127.0	431.8	298.5	3/4./	120.7	33.3	254.0	117.5	68.3	131.4		33.20

For Medium Duty Bearing Inserts-Single Lock see page G-95.

Metric dimensions for reference only.

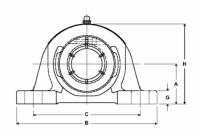
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

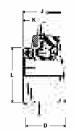
Duty: Medium

Rolling Elements: Ba

Housing: Cast Iron Pillow Block -

High Base


Self Alignment: +/- 2 Degrees


Lock: SKWEZLOC Locking Collar

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

MP-T Series Medium Duty Pillow Blocks - SKWEZLOC Locking Collar

5074			Saute:					madalkin	a frieth Ar	000					
Tigranter (no.:	Var no.	Boyring new take	Bysicani Faviry 1879	*	#	860		P	7			W.	1	3811 1918	line Wy
-	197 (CT	¥.	1111 19487	101	6.1M 188.0	43216 1954	148 148	25.E	700	37.48 27.4	20 m	15(1) 22(8)	1,1705 52 A	Þč	11.07
1 3/16 1 1/4	MP-19T MP-20T	3-13T 2-14T	5782 25718	1 7/8 47.6	6 7/8 174.6	4 1/2 114.3	5 1/2 139.7	2 1/4 57.2	11/16 17.5	3 13/16 96 8	1 3/4 44.5	1 1/16 27.0	2 7/16 61.9	1/2	5.7 2.59
7.50	(NE-22)	57.77	(314 32045	7.05 545	139.2	拉拉	63.5 34.5	21.1 22.1	158 90 1	190,4 190,4	268	31.3	2 0°5 685	18	7/3 5/22
1 1/2	MP-24T	3-18T	7901 35144	2 5/16 58.7	8 3/4 222.3	5 1/2 139.7	6 3/4 171.5	2 5/8 66.7	13/16 20.6	4 9/16 115.9	2 50.8	1 1/4 31 8	2 13/16 71.4	5/8	9.3 4.22
1.70 - 30	WP-251 W-251	3-112" 3-112"	FES0 15067	25010	435 1227	9 7,10 130	0.8850 79.5	128	\$0.0 \$0.0	439 107.5	8 3758 50 II	34 34	3:14 12:7	S.	107
1 15/16 2	MP-31T MP-32T	3-115T 2-2T	9752 43377	2 1/2 63.5	9 1/2 241.3	5 15/16 150.8	7 9/16 192.1	2 7/8 73.0	7/8 22.2	5 3/32 129.4	2 1/4 57.2	1 3/8 34_9	3 1/2 88 9	5/8	12.3 5.58
274E 2.:4	1991:61 199:30	0.217 2.247	11705 -2417	254 762	10 f.4 230	0 0.16 tist ;	T1010	7.19 /P 1	1	2.2.2 1.2.0	255 26	411	4 36	554	772 19

For Medium Duty SKWEZLOC Locking Collar Bearing inserts see page G-96.

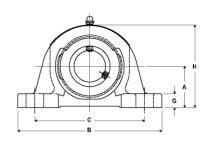
ASTER® Performance Mounted Ball Bearings

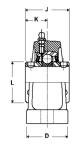
Duty: Medium

Rolling Elements: Ball

> Housing: Cast Iron Pillow Block -

High Base


Self Alignment: +/- 2 Degrees


> Lock: Double Setscrew

Seal:

Optional Seal: Contact

Temperature: -20° to 220°F

MPD Series Medium Duty Pillow Blocks With Double Lock - Setscrew Locking

Bore		Bearing	Basic					mension	s inch / m	ım					THE REAL PROPERTY.
Diameter	Part No.	Insert No.	Dynami Rating	A	В	min.	min.	D	G	Ħ	J	К	1	Bolt Size	Unit Wt. lb/kg
		5.00	lb/N			200000	12WWW		_						
1	MPD-16	3-1D	4381 19487	1 3/4 44.5	6 1/4 158.8	4 3/16 106.4	5 3/16 131.8	2 50.8	5/8 15.9	3 7/16 87.3	1 3/4 44.5	7/8 22.2	1 19/32 40.5	1/2	4.0 1.81
1 3/16	MPD-19	3-13D	5782	1 7/8	6 7/8	4 1/2	5 1/2	2 1/4	11/16	3 13/16	2	1	1 55/64	1/2	5.4
1 1/4	MPD-20	2-14D	25718	47.6	174.6	114.3	139.7	57.2	17.5	96.8	50.8	25.4	47.2	1/2	2.45
1 7/16	MPD-23	3-17D	7340 32648	2 1/8 54.0	8 203.2	5 127.0	6 3/8 161.9	2 1/4 57.2	3/4 19.1	4 3/16 106.4	2 5/16 58.7	1 5/32 29.4	2 1/16 52.4	1/2	6.8 3.08
1 1/2	MPD-24	3-18D	7901 35144	2 5/16 58.7	8 3/4 222.3	5 1/2 139.7	6 3/4 171.5	2 5/8 66.7	13/16 20.6	4 9/16 115.9	2 3/8 60.3	1 3/16 30.2	2 19/64 58.3	5/8	9.0 4.08
1 11/16	MPD-27	3-111D	7889	2 5/16	8 3/4	5 7/16	6 13/16	2 5/8	13/16	4 5/8	2 1/2	1 1/4	2 15/32	E/0	9.5
1 3/4	MPD-28	3-112D	35090	58.7	222.3	138.1	173.0	66.7	20.6	117.5	63.5	31.8	62.7	5/8	4.31
1 15/16	MPD-31	3-115D	9752	2 1/2	9 1/2	5 15/16	7 9/16	2 7/8	7/8	5 3/32	2 5/8	1 5/16	2 23/32	5/8	11.7
2	MPD-32	2-2D	43377	63.5	241.3	150.8	192.1	73.0	22.2	129.4	66.7	33.3	69.1	5/0	5.31
2 3/16	MPD-35	3-23D	11789	2 3/4	10 1/4	6 9/16	7 15/16	3 1/8	1 1/16	5 5/8	3 1/8	1 9/16	2 63/64	3/4	16.2
2 1/4	MPD-36	2-24D	52437	69.9	260.4	166.7	201.6	79.4	27.0	142.9	79.4	39.7	75.8	0/4	7.35
2 7/16	MPD-39	3-27D	13971	3	11 1/4	7 1/8	8 7/8	3 1/4	1 1/16	6 1/4	3 1/2	1 3/4	3 7/16	3/4	21.5
2 1/2	MPD-40	3-28D	62143	76.2	285.8	181.0	225.4	82.6	27.0	158.8	88.9	44.5	87.3		9.75
2 11/16	MPD-43	3-211D	14839 66004	3 1/2 88.9	13 330.2	7 7/8 200.0	10 1/8 257.2	3 1/2 88.9	1 1/8 28.6	7 177.8	3 1/2 88.9	1 3/4 44.5	3 41/64 92.5	7/8	29.2 13.24
2 15/16	MPD-47	3-215D	17412	3 1/2	13	7 7/8	10 1/8	3 1/2	1 1/4	7 1/4	3 7/8	1 15/16	3 59/64	7/8	31.5
3	MPD-48	3-3D	77449	88.9	330.2	200.0	257.2	88.9	31.8	184.2	98.4	49.2	99.6	110	14.29
3 3/16	MPD-51	3-33D	18681	4	15	9 11/16	12 9/16	4	1 1/4	8	4 1/16	2 1/32	4 5/32	7/8	44.1
3 1/4	MPD-52	2-34D	83093	101.6	381.0	246.1	319.1	101.6	31.8	203.2	103.2	51.6	105.6	110	20.00
3 7/16	MPD-55	3-37D	21566	4	15	9 5/8	12 5/8	4 3/8	1 5/16	8 1/4	4 7/16	2 7/32	4 25/64	7/8	47.8
3 1/2	MPD-56	2-38D	95926	101.6	381.0	244.5	320.7	111.1	33.3	209.6	112.7	56.4	111.5	770	21.68
3 15/16	MPD-63	3-315D	29905	5	17	11 3/4	14 3/4	4 3/4	1 5/16	10	5 3/8	2 11/16	5 11/64	1	73.2
4	MPD-64	3-4D	133017	127.0	431.8	298.5	374.7	120.7	33.3	254.0	136.5	68.3	131.4	•	33.20

For Medium Duty Bearing Inserts-Double Lock see page G-97.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

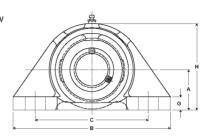
Duty: Medium

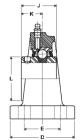
Rolling Elements: Ball

> Housing: Cast Iron Four Bolt Pillow

Block - High Base

Self Alignment +/- 2 Degrees


Setscrew


Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

> Relube: Relube

MFP Series Medium Duty Four-Bolt Base Pillow Blocks - Setscrew Locking

Bor		- 1	Bearing	Basic					Dimen	sions inc	h/mm					(/=d/h	Unit
Diame		Part No.	Insert	Dynamic Rating	A	B		11	В	E	6	н	13	ĸ	01.	Bolt Size	Wt
inch	mm		No.	lb/N	1000	- A	min	max	75	- 70	. 8	- 88	- 83	. 000	0.890	1990	lb/kg
1 15/16		MFP-31	3-115		0.440		0.040										
2		MFP-32	2-2	9752 43377	2 1/2 63.5	9 3/4 247.7	6 3/8 161.9	7 5/8 193.7	4 101.6	2 1/4 57.2	13/16 20.6	5 3/8 136.5	2 3/16 55.6	1 5/16 33.3	2 23/32 69.1	5/8	13.7 6.21
	50	MFP-310	5310														
2 3/16		MFP-35	3-23														
2 1/4		MFP-36	2-24	11789 52437	2 3/4 69.9	10 1/4 260.4	6 7/8 174.6	8 1/8 206.4	4 1/8 104.8	2 1/4 57.2	7/8 22.2	5 13/16 147.6	2 9/16 65.1	1 9/16 39.7	2 63/64 75.8	5/8	17.0 7.71
	55	MFP-311	5311	02.0.	00.0	200		200		01.12				""			
2 7/16		MFP-39	3-27														
2 1/2		MFP-40	3-28	13971 62143	3 76.2	11 1/4 285.8	7 1/2 190.5	9 228.6	4 1/2 114.3	2 5/8 66.7	1 25.4	6 1/2 165.1	2 3/4 69.9	1 11/16 42.9	3 7/16 87.3	5/8	23.3 10.57
	65	MFP-313	5313	02110	10.2	200.0	100.0	220.0	111.0	00.1	20.1	100.1	00.0	12.0	01.0		10.01
2 11/16		MFP-43	3-211	14839	3 1/2	13	9	10 1/2	5	2 3/4	1 1/8	7 1/4	3 1/16	1 3/4	3 41/64	3/4	34.0
	70	MFP-314	5314	66004	88.9	330.2	228.6	266.7	127.0	69.9	28.6	184.2	77.8	44.5	92.5	3/4	15.42
2 15/16		MFP-47	3-215														
3		MFP-48	3-3	17412 77449	3 1/2 88.9	13 330.2	9 228.6	10 1/2 266.7	5 127.0	2 3/4 69.9	1 25.4	7 3/8 187.3	3 1/4 82.6	1 15/16 49.2	3 59/64 99.6	3/4	36.5 16.56
	75	MFP-315	5315	11110	00.0	000.2	220.0	200.1	121.0	00.0	20.1	101.0	02.0	10.2	00.0		10.00
3 3/16		MFP-51	3-33														
3 1/4		MFP-52	2-34	18681 83093	4 101.6	15 381.0	10 3/4 273.1	12 1/4 311.2	5 127.0	3 76.2	1 1/16 27.0	8 7/16 214.3	3 3/8 85.7	2 1/32 51.6	4 5/32 105.6	3/4	44.5 20.18
	80	MFP-316	5316	03033	101.0	301.0	270.1	311.2	121.0	10.2	21.0	214.5	00.7	31.0	100.0		20.10
3 7/16		MFP-55	3-37	21566	4	15	10 3/4	12 1/4	5	3	1 1/16	8 7/16	3 25/32	2 7/32	4 25/64	0/4	48.6
3 1/2		MFP-56	2-38	95926	101.6	381.0	273.1	311.2	127.0	76.2	27.0	214.3	96.0	56.4	111.5	3/4	22.04
3 15/16		MFP-63	3-315														
4		MFP-64	3-4	29905 133017	5 127.0	17 431.8	12 7/16 315.9	14 1/16 357.2	6 152.4	3 1/2 88.9	1 1/4 31.8	10 1/4 260.4	4 5/8 117.5	2 11/16 68.3	5 11/64 131.4	7/8	83.5 37.87
	100	MFP-320	5320	100011	127.0	401.0	010.0	007.2	102.4	00.0	01.0	200.4	117.5	55.5	101.4		01.01

For Medium Duty Bearing Inserts-Single Lock see page G-95.

SEAL MASTER

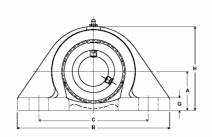
ASTER ® Performance Mounted Ball Bearings

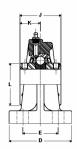
Duty: Medium

Rolling Elements: Ball

Housing: Cast Iron Four Bolt Pillow

Block - High Base


Self Alignment: +/- 2 Degrees


Lock: Double Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

MFPD Series Medium Duty Four-Bolt Base Pillow Blocks With Double Lock - Setscrew Locking

Ba-1		Paring	Beta					Dimer	stante im	W (mill)						und.
Edwards High	Post the	balting fraunt %5	Ganums Gair u Bair	N	Mi	Minns.	iede.	90	28	.	#		28	, Wi	564 644	A Second
i ve	K1 2350	1 page	9665 45577	03.5	242.7	19130	22.6	96. 2555	57.2	0.00 25.0	5 14 100,7	3.00 3.00	20.0	99.09 65:	(624)	1177 2.21
2 3/16	MFPD-35	3-23D	11789 52437	2 3/4 69.9	10 1/4 260.4	6 7/8 174.6	8 1/8 206.4	4 1/8 104.8	2 1/4 57.2	7/8 22.2	5 13/16 147.6	3 1/8 79.4	1 9/16 39.7	2 63/64 75.8	5/8	17 7.71
2730 249	KEPB B	3-27E 3-28E	1501 H2141	-7.	21.245 21.340	(60.a	$m_{\tilde{\kappa}}$	7.63 117	130	2.4	12	2.7 20.6	1 34° 24° 8	672	890	10 57
2 11/16	MFPD-43	3-211D	14839 66004	3 1/2 88.9	13 330.2	9 228.6	10 1/2 266.7	5 127.0	2 3/4 69.9	1 1/8 28.6	7 1/4 184.2	3 1/2 88.9	1 3/4 44 5	3 41/64 92 5	3/4	34 863.6
# 2 T	KF°D4t KF°D4t	3 21/39: 5/30	*27.09 227.40	110) 1119	18 5000	284) d	100 100 7	10 12:4	727 189	69	2 m m/n	prot m (1 35-16 -(4.3*	a scort Moi	orto	785E 10-164
3 7/16 3 1/2	MFPD-55 MFPD-56	3-37D 2-38D	21566 95926	4 101.6	15 381.0	25 3/4 654.1	12 1/4 311.2	5 127.0	3 76.2	1 1/16 27.0	8 7/16 214.3	4 39/89 112.7	2 7/32 56.4	4 25/64 111.5	3/4	48.6 22.04
174	PPPD69 HE'D-04	#2150 240	95905 03012	16 16—31	500	12.2ME 245.8	fa fetë. Bad f	**	3 /22 160 H	138	10.1/A 3697-4	1234 165	2.110 p. 2017	gates:	740	(83/E 77 m)
4 7/16 4 15/16 5	MFPD-71* MFPD-79* MFPD-80	3-47D 3-415D 3-500D	37482 166720	6 152.4	19 482.6	14 355.6	16 406.4	5 1/2 139.7	3 1/4 82 6	1 5/8 41.3	12 1/8 308.0	5 3/4 146.1	2 7/8 73.0	6 11/32 161.1	1	130.0 58.97

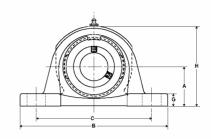
^{*} Units MFPD-71, MFPD-79 and MFPD-80 are not available with contact seal. For Medium Duty Bearing Inserts-Double Lock see page G-97.

Duty: Medium

Rolling Elements: Ball

Housing: Cast Iron Pillow Block –

Heavy Duty


Self Alignment: +/- 2 Degrees

Lock: Double Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

MSPD Series Medium Duty Pillow Blocks With Double Lock - Setscrew Locking

5eann		Basiling	Gazdy				D	mern hi	in lock 1 to	100					
To merectary	24146	brear Va	Rodoc BW	(32)	1153	HINT.	lima)	P	1891	#	18	M.s.	=	5加	(Base)
1.11.15 Sie	M970-25 M270-25	3 HID 3-H3D	7589 Mai(25	204 204	9 (9 9 (9)	11 1 18 162 A	6.08 617.0	100	%* (N)	€/1975 (\$41.1)	190 47 =	17.2 71.2	990 1970 t	F	95- 111
1 15/16 2	MSPD-31 MSPD-32	3-115D 2-2D	9752 43377	2 3/4 69.9	10 254.0	7 1/8 181.0	8 3/8 212.7	2 5/8 66.7	7/8 22.2	5 7/16 138.1	2 5/8 66.7	1 5/16 33.3	2 5/8 66.7	5/8	12.5 5.67
2000 214	M540 75 M570 35	3 PT 22ff	11780 50407	3 16. 78 t	16.778 2762	100 100	345	밝힌	15-10	n icin Esta	2 (M) 75 d	7.510	2 0 290 4 2 - 3	566	74
2 7/16 2 1/2	MSPD-39 MSPD-40	3-27D 3-28D	13971 62143	3 1/8 79.4	11 3/4 298.5	8 3/4 222.3	9 7/8 250.8	3 76.2	1 25.4	6 5/16 160.3	3 1/2 88.9	1 3/4 44.5	3 1/2 88.9	3/4	22.0 9.98
2 1015	HSTAG	34780	1=895 90000	5 544 48	18 8/8 3/40 7	10 .8 20(C)	158 2000	3 744 3 744	(2500	7546 88.7	2.72 4.5	124 111	1 .2 4-4	21	25X 16:20
2 15/16 3	MSPD-47 MSPD-48	3-215D 3-3D	17412 77449	3 3/4 95.3	13 3/4 349.3	10 254.0	11 1/2 292.1	3 3/8 85.7	1 3/16 30.2	7 1/2 190.5	3 7/8 98.4	1 15/16 49.2	3 7/8 98.4	7/8	33.0 14.97
3 5991 3 3 4 3	MASS IT	2000	21065 35077	44/10 10/19	19 336 2140 m	121% 1814	18.1/2 5/8 ft	ng K	1,32	8 2° 6	+ 7016: 1797	2157 717	4.7d6 (122	. Ne	F.13
3 15/16 4	MSPD-63 MSPD-64	3-315D 3-4D	29905 133017	5 1/8 130.2	17 431.8	13 1/8 333.4	14 3/4 374.7	4 3/4 120.7	1 1/4 31 8	10 1/8 257.2	5 3/8 136.5	2 11/16 68.3	5 3/8 136.5	1	74.5 33.79
A.006 3.45-40	984 671 984 871	5,470°* 31,4153°*	25422 045290	t H naa	2 1A 3000	162.8	Edit Object	5 74 1981	84 H 3	12.5/2 1863	3.84 1.81	276 700	234 181	128	150.0 10.12

^{*} Units MSPD-71 and MSPD-79 are not available with contact seal. For Medium Duty Bearing Inserts-Double Lock see page G-97.

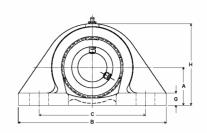
ASTER Performance Mounted Ball Bearings

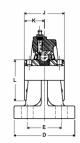
Duty: Medium

Rolling Elements: Ball

> Housing: Cast Iron Four Bolt Pillow

> > Block - Heavy Duty


Self Alignment: +/- 2 Degrees


> Lock: Double Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

MSFPD Series Medium Duty-Four-Bolt Base Pillow Blocks With Double Lock - Setscrew Locking

Dor-		Binning	San kr						nja lämija lin	se Amm						Unin
line)	Vargenn	1	Enling Tak	(60)	**	(dia	W.	69	8801	1090	(1983)	9.1	- 80	8	800 Mar	1000
a.e.	West 1530	9.5.7P 34-tc	11/2/2 400 TT	95.3 95.3	267.7	R 50 101.5	/ 194 100.7	151.5	237 77.5	1 120H 27.5	1420	100 00.7	500 500	730 357	1	tast 0.50
2 3/16 2 1/4	MSFPD-35 MSFPD-36	3-23D 2-24D	11789 52437	3 1/8 79.4	10 1/4 260.4	6 7/8 174.6	8 1/8 206.4	4 1/8 104.8	2 1/4 57.2	1 1/4 31.8	6 3/16 157.2	3 1/8 79.4	1 9/16 39.7	2 63/64 75 8	5/8	20.1 9.12
874L	98-11-0 98-11-0	- 1993 -5-28Q	1807 72147	21.78 77.8	17 (A18) 207 (I	7,57	200	4 (7) 16.7	2:55 56	1.16 201	2 te 1600	107 A	1.83 34,5	2 h) 11 h	144	25.4 11.65
2 11/16	MSFPD-43	3-211D	14839 66004	3 3/4 95.3	13 330.2	9 228.6	10 1/2 266.7	5 127.0	2 3/4 69 9	1 3/8 34.9	7 1/2 190.5	3 1/2 88 9	1 3/4 44.5	3 1/2 88 9	3/4	37.3 16.92
17695.1 E	tasapt 🛶	0:1100 5-21	472 ½	3 214 6 1,1	13 130 9	16-c	10 1/2 3480 /	6 620 (5)	2 % = 180 %	3.14	7.28 HOLD	2.78 MOM	1 13/36 76/2	5.748 21.7	Bod Sind	4) à (*)-
3 3/16 3 1/4	MSFPD-51 MSFPD-52	3-33D 2-34D	18681 83093	4 1/8 104.8	15 381.0	10 3/4 273.1	12 1/4 311.2	5 127.0	3 76.2	1 3/16 30.2	8 9/16 217.5	4 1/16 103.2	2 1/32 51.6	4 5/32 105.6	3/4	51 2 23.22
7 /- E 3 :2	WARE DO	1101 2380	2100E \$56AT	6 (d) (1), 3	/## 20000	0.344 27,1 1	12 1/2 17 1 2	76 186⊕	30.0	114	22000	#71/0 1407	2.7782 907	1700		5:30 (2:40
3 15/16 4	MSFPD-63 MSFPD-64	3-315D 3-4D	29905 133017	5 1/8 130.2	17 431.8	12 7/16 315.9	14 1/16 357.2	6 152.4	3 1/2 88 9	1 3/8 34.9	10 3/8 263.5	5 3/8 136.5	2 11/16 68.3	5 3/8 136.5	7/8	84.6 38.37
750 400	744 FE 51 748 FC 79	100 3-50	37495 995,36	6:24 (503)	10 102 u	34 183	16 (05 d	5 .2 128.3	8.1-6 10 6	174 1/2	12 98 7840	534 3864	2.73 200	2.214 140		1363 c165

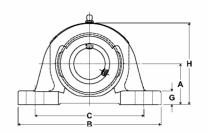
For Medium Duty Bearing Inserts-Double Lock see page G-97. Units MSFPD-71 and MSFPD-79 are not available with contact seal.

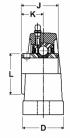
Duty: Medium

Rolling Elements: Ba

Housing: Cast Iron Pillow Block -

Heavy Duty


Self Alignment: +/- 2 Degrees


Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

SPM Series Medium Duty Pillow Blocks - Setscrew Locking

Sam			Saile .				<u> 1</u>	manden	n ingli de	mate:					
Depositor: Fatt	Puritio.	DAN KA Inter Ka	Gymanii Faiding In N	7/1	14	Section 2	Section 1	1178	i T e	Ŋ.,	95	53		Sec	Here
1271	879L 1	3.18	6,40 40 No	> 20:5	1200	57-7 100	# N 11/0 W	59 N	45	0±5 #8%	760 14472	±4	30,4\$1 460	142	< # 8.7≱
1 7/16	SPM-23	3-17	7340 32648	2 3/8 60.3	8 1/4 209.6	5 5/8 142.9	6 7/8 174.6	2 1/4 57.2	3/4 19.1	4 1/2 114.3	1 15/16 49.2	1 3/16 30.2	2 1/16 52.4	5/8	7_1 3.22
11.16	379497 1679091	7# 7#	2400 85005	27.° 30.3	3.394 2.323	7.4E 41.Z	7. An 18 0	903	340 341	4.725	23-75 514	305 305	127,17	355	24
1 15/16	SPM-31	3-115	9752 43377	2 3/4 69.9	10 1/2 266.7	6 3/4 171.5	8 1/2 215.9	2 1/2 63 5	7/8 22.2	5 5/16 134.9	2 3/16 55.6	1 5/16 33.3	2 23/32 69.1	5/8	11.9 5.40
2.7(2)	GPMDs.	3.201	(1141 1241	5 (A) 70 4	10 100 280 6	1345 33,7	_ UN 230 1	9561 50 V	96 22.2	5 in 18 268	96-18 95-1	197e 307	receive 703	v	18.8 7.58
2 7/16 2 1/2	SPM-39 SPM-40	3-27 3-28	13971 62143	3 1/8 79.4	11 1/2 292.1	7 7/8 200.0	9 3/8 238.1	3 76.2	7/8 22.2	6 1/4 158.8	2 3/4 69 9	1 11/16 42.9	3 7/16 87.3	3/4	20.1 9.12

For Medium Duty Bearing Inserts-Single Lock see page G-95.

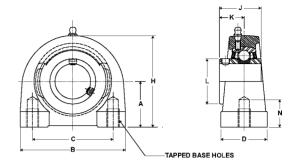
ASTER ® Performance Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Tapped Base Pillow

Block


Self Alignment: +/- 2 Degrees

> Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

TB Series Tapped Base Pillow Blocks - Setscrew Locking

Bore Dia	ameter		Bearing	Basic				Dime	nsions inc	h / mm				Bolt	Unit
inch	mm	Part No.	Insert No.	Dynamic Rating Ib/N	A	В	C	D	н	<u>J</u>	K	Ë	N Tap Depth	UNC-2B Thread	Wt. lb/kg
1/2		TB-8	2-08	16/14											
9/16		TB-9	2-09												
5/8		TB-10	2-010	2611	1 5/16	3 1/8	2	1 1/2	2 9/16	1 7/32	23/32	1 3/16	1/2		1.8
11/16		TB-11	2-011	11614	33.3	79.4	50.8	38.1	65.1	31.0	18.3	30.2	12.7	3/8-16	.82
3/4		TB-12	2-012												
	20	TB-204	5204												
7/8		TB-14	2-014												
15/16		TB-15	2-015	2801	1 7/16	3	2	1 1/2	2 13/16	1 3/8	13/16	1 3/8	1/2	0/0.40	2.0
1		TB-16	2-1	12459	36.5	76.2	50.8	38.1	71.4	34.9	20.6	34.9	12.7	3/8-16	.91
	25	TB-205	5205												
1 1/16		TB-17	2-11												
1 1/8		TB-18	2-12												
1 3/16		TB-19	2-13	4381 19487	1 11/16 42.9	4 101.6	3 76.2	1 1/2 38.1	3 13/32 86.5	1 1/2 38.1	7/8 22.2	1 19/32 40.5	5/8 15.9	7/16-14	3.5 1.59
1 1/4		TB-20R	1-14	10401	42.0	101.0	10.2	30.1	00.0	30.1		40.0	10.0		1.00
	30	TB-206	5206												
1 1/4		TB-20	2-14												
1 5/16		TB-21	2-15												
1 3/8		TB-22	2-16	5782 25718	1 7/8 47.6	4 1/4 108.0	3 1/4 82.6	1 7/8 47.6	3 3/4 95.3	1 11/16 42.9	1 25.4	1 55/64 47.2	3/4 19.1	1/2-13	4.5 2.04
1 7/16		TB-23	2-17	20110	11.0	100.0	02.0	11.0	00.0	12.0	20.1	"	10.1		2.01
	35	TB-207	5207												
1 1/2		TB-24	2-18	70.40	4.1.110	4.540	0.4/0	4.7/0	0.45440	4.45/40	4 0/40	0.4440			
1 9/16		TB-25	2-19	7340 32648	1 15/16 49.2	4 5/8 117.5	3 1/2 88.9	1 7/8 47.6	3 15/16 100.0	1 15/16 49.2	1 3/16 30.2	2 1/16 52.4	3/4 19.1	1/2-13	6.0 2.72
	40	TB-208	5208	02010			00.0		10010		33.2	02			22
1 5/8		TB-26	2-110												
1 11/16		TB-27	2-111	7901	2 1/8	5	3 3/4	2	4 1/4	1 15/16	1 3/16	2 19/64	3/4	1/2-13	6.5
1 3/4		TB-28	2-112	35144	54.0	127.0	95.3	50.8	108.0	49.2	30.2	58.3	19.1	1/2-13	2.95
-	45	TB-209	5209												
1 7/8		TB-30	2-114												
1 15/16		TB-31	2-115	7889	2 1/4	5 1/2	4	2	4 5/8	2 1/32	1 9/32	2 15/32	7/8	5/8-11	8.0
2		TB-32R	1-2	35090	57.2	139.7	101.6	50.8	117.5	51.6	32.5	62.7	22.2	3/0-11	3.63
	50	TB-210	5210												

For Standard Duty Bearing Inserts-Single Lock see page G-92.

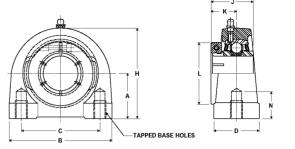
Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

Duty: Standard

Rolling Elements:

Housing: Cast Iron Tapped Base Pillow


Block

+/- 2 Degrees **Self Alignment:**

> Lock: SKWEZLOC Locking Collar

Seal:

Optional Seal: Contact -20° to 220°F Temperature:

TB-T Series Standard Duty Tapped Base Pillow Block - SKWEZLOC Locking Collar - Inch

110/6		_	Basic				Dimer	nsions incl	h / mm				Bolt	
inch	Part No.	Bearing Insert No.	Dynamic Rating Ib/N	(A	В	c	0	H	1	ĸ	ř	N Tap Depth	UNC-2B Thread	Unit Wt. lb/kg
3/4	*TB-12T	2-012T	2611	1 5/16	3 1/8	2	1 1/2	2 9/16	1 9/32	25/32	1 3/4	1/2	3/8-16	1.8
3/4	10-121	2-0121	11614	33.3	79.4	52.0	38.1	65.1	32.5	19.8	44.5	12.7	3/0-10	.82
15/16	TB-15T	2-015T	2801	1 7/16	3	2	1 1/2	2 13/16	1 7/16	7/8	1 15/16	1/2	3/8-16	2.0
1	TB-16	2-1T	12459	36.5	76.2	56.0	38.1	71.4	36.5	22.2	49.2	12.7	3/0-10	.91
1 1/8	TB-18T	2-12T	4204	4 44/40	4	3	1.1/0	2.42/22	1.0/10	45/40	0.046	5/8		3.7
1 3/16	TB-19T	2-13T	4381 19487	1 11/16 42.9	101.6	65.9	1 1/2 38.1	3 13/32 86.5	1 9/16 39.7	15/16 23.8	2 3/16 55.6	15.9	7/16-14	1.68
1 1/4	TB-20RT	1-14T	19407	42.5	101.0	00.5	30.1	00.5	33.7	25.0	33.0	10.5		1.00
1 1/4	TB-20T	2-14T	5782	1 7/8	4 1/4	3 1/4	1 7/8	3 3/4	1 3/4	1 1/16	2 7/16	3/4	1/2-13	4.8
1 1/4	16-201	2-141	25718	47.6	108.0	82.6	47.6	95.3	44.5	27.0	61.9	19.1	1/2-13	2.18
1 3/8	TB-22T	2-16T	5782	1 7/8	4 1/4	3 1/4	1 7/8	3 3/4	1 3/4	1 1/16	2 9/16	3/4	1/2-13	4.8
1 7/16	TB-23T	2-17T	25718	47.6	108.0	80.2	47.6	95.3	44.5	27.0	65.1	19.1	1/2-13	2.18
1 1/2	TB-24T	2-18T	7340	1 15/16	4 5/8	3 1/2	1 7/8	3 15/16	2	1 1/4	2 11/16	3/4	1/2-13	6.3
1 1/2	10-241	2-101	32648	49.2	117.5	84.1	47.6	100.0	50.8	31.8	68.3	19.1	1/2-13	2.86
1 5/8	TB-26T	2-110T	7901	2 1/8	5	3 3/4	2	4 1/4	2	1 1/4	2 13/16	3/4	1/2-13	6.8
1 3/0	16-201	2-1101	35144	54.0	127.0	95.3	50.8	108.0	50.8	31.8	71.4	19.1	1/2-13	3.08
1 11/16	TB-27T	2-111T	7901	2 1/8	5	3 3/4	2	4 1/4	2	1 1/4	2 15/16	3/4	1/2-13	6.8
1 3/4	TB-28T	2-112T	35144	54.0	127.0	90.1	50.8	108.0	50.8	31.8	74.6	19.1	1/2-13	3.08
1 15/16	TB-31T	2-115T	7889	2 1/4	5 1/2	4	2	4 5/8	2 3/32	1 11/32	3 3/8	7/8	5/8-11	8.6
2	TB-32RT	1-2T	35090	57.2	139.7	94.1	50.8	117.5	53.2	34.1	85.7	22.2	3/0-11	3.90

^{*} Bearing reversed in housing for collar clearance

TB-T Series Standard Duty Tapped Base Pillow Block - SKWEZLOC Locking Collar - Metric -SKWEZ™

Bore			Basic				Dimer	sions mm	/ inch				M	Unit
Diameter	Part No.	Bearing Insert No.	Dynamic Rating N/lb	*	B	¢.	D	#	7	×	74	N Min. Tap Depth	Bolt Thread	Wt. kg/lb
20	*TB-204TMC	5204TMC	11614	33.3	79.4	52.0	38.1	65.1	32.5	19.8	44.5	12.7	M10 x 1.5	.82
20	1B-2041WC	3204 TIVIC	2611	1 5/16	3 1/8	2	1 1/2	2 9/16	1 9/32	25/32	1 3/4	1/2	W 10 X 1.3	1.8
25	TB-205TMC	5205TMC	12459	36.5	76.2	56.0	38.1	71.4	36.5	22.2	49.2	12.7	M10 x 1.5	.91
25	TB-203 TMC	3203 TWIC	2801	1 7/16	3	2	1 1/2	2 13/16	1 7/16	7/8	1 15/16	1/2	W10 X 1.5	2.0
30	TB-206TMC	5206TM	19487	42.9	101.6	65.9	38.1	86.5	39.7	23.8	55.6	15.9	M14 x 2.0	1.68
30	TB-200 TMC	3200 TWI	4381	1 11/16	4	3	1 1/2	3 13/32	1 9/16	15/16	2 3/16	5/8	W114 X Z.U	3.7
35	TB-207TMC	5207TMC	25718	47.6	108.0	80.2	47.6	95.3	44.5	27.0	65.1	19.1	M14 x 2.0	2.18
33	TB-207 TMC	3207 TWIC	5782	1 7/8	4 1/4	3 1/4	1 7/8	3 3/4	1 3/4	1 1/16	2 9/16	3/4	W114 X Z.U	4.8
40	TB-208TMC	5208TMC	32648	49.2	117.5	84.1	47.6	100.0	50.8	31.8	68.3	19.1	M14 x 2.0	2.86
40	TB-200 TIVIC	3200 TWIC	7340	1 15/16	4 5/8	3 1/2	1 7/8	3 15/16	2	1 1/4	2 11/16	3/4	W114 X Z.U	6.3
45	TB-209TMC	5209TMC	35144	54.0	127.0	90.1	50.8	108.0	50.8	31.8	74.6	19.1	M14 x 2.0	3.08
45	TB-209TMC	3209 TWIC	7901	2 1/8	5	3 3/4	2	4 1/4	2	1 1/4	2 15/16	3/4	W114 X 2.0	6.8
50	TD 240TMC	E240TMC	35090	57.2	139.7	94.1	50.8	117.5	53.2	34.1	85.7	22.2	M16 v 2 0	3.90
30	TB-210TMC	5210TMC	7889	2 1/4	5 1/2	4	2	4 5/8	2 3/32	1 11/32	3 3/8	7/8	M16 x 2.0	8.6

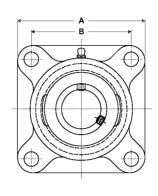
* Bearing reversed in housing for collar clearance For Standard Duty SKWELOC Single Locking Collar Bearing Inserts see page G-93.

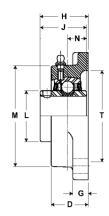
ASTER ® Performance Mounted Ball Bearings

Standard **Duty:**

Rolling Elements: Ball

> Cast Iron Four Bolt Flange Housing:


Self Alignment: +/- 2 Degrees


> Lock: Setscrew

Seal: Felt

Optional Seal: Contact

-20° to 220°F Temperature:

SF Series Standard Duty Four-Bolt Flange Units - Setscrew Locking

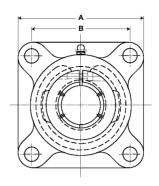
Bore Di	meter		760	Hasic				D	imension	s inch / m	m				¥0.5	SUSSIE!
SCHOOL STATE		Part No.	Bearing Insert No.	D nami Rating	A	B*	D	G	H	30	N	300	M	Core	Bolt Size	Unit Wt. lb/kg
inch	mm	05.0	0.00	lb/N	300	1150	1800	- 0	2000	- 20			10000	Core	- 10	(a) (c) (c)
1/2 9/16		SF-8 SF-9	2-08 2-09	2611	3	2 1/8	59/64	7/16	1 9/32	1 7/32	1/2	1 3/16	2 17/64	2		1.4
5/8		SF-10	2-09	11614	76.2	54.0	23.4	11.1	32.5	31.0	12.7	30.2	57.5	50.8	3/8	.64
11/16		SF-11	2-010	11014	10.2	34.0	25.4	11.1	32.3	31.0	12.7	30.2	31.5	30.0		.04
3/4		SF-12	2-012	2611	3 3/8	2 1/2	59/64	7/16	1 9/32	1 7/32	1/2	1 3/16	2 11/32	2	0.40	1.5
	20	SF-204	5204	11614	85.7	63.5	23.4	11.1	32.5	31.0	12.7	30.2	59.5	50.8	3/8	.68
13/16		SF-13	2-013													
7/8		SF-14	2-014	2801	3 3/4	2 3/4	1 1/32	17/32	1 7/16	1 3/8	9/16	1 3/8	2 23/32	2 3/8		2.1
15/16		SF-15	2-015	12459	95.3	69.9	26.2	13.5	36.5	34.9	14.3	34.9	69.1	60.3	7/16	.95
1	25	SF-16	2-1 5205													
1 1/16	23	SF-205 SF-17	2-11													
1 1/8		SF-18	2-11													
1 3/16		SF-19	2-13	4381	4 1/4	3 1/4	1 11/64	17/32	1 9/16	1 1/2	5/8	1 19/32	3 7/32	27/8	7/16	3.6
1 1/4		SF-20R	1-14	19487	108.0	82.6	29.8	13.5	39.7	38.1	15.9	40.5	81.8	73.0		1.63
	30	SF-206	5206													
1 1/4		SF-20	2-14													
1 5/16		SF-21	2-15	5782	4 5/8	3 5/8	1 11/32	9/16	1 3/4	1 11/16	11/16	1 55/64	3 23/32	3 5/16	4.00	4.1
1 3/8		SF-22	2-16	25718	117.5	92.1	34.1	14.3	44.5	42.9	17.5	47.2	94.5	84.1	1/2	1.86
1 7/16	35	SF-23 SF-207	2-17 5207													
1 1/2	33	SF-24	2-18													
1 9/16		SF-25	2-19	7340	5 1/8	4	1 1/2	9/16	2 1/64	1 15/16	3/4	2 1/16	4 5/64	3 1/2	1/2	5.5
	40	SF-208	5208	32648	130.2	101.6	38.1	14.3	51.2	49.2	19.1	52.4	103.6	88.9		2.49
1 5/8		SF-26	2-110													
1 11/16		SF-27	2-111	7901	5 3/8	4 1/8	1 9/16	9/16	2 3/64	1 15/16	3/4	2 19/64	4 21/64	3 7/8	9/16	5.7
1 3/4	45	SF-28	2-112	35144	136.5	104.8	39.7	14.3	52.0	49.2	19.1	58.3	109.9	98.4		2.59
1 13/16	45	SF-209 SF-29	5209 2-113													
1 7/8		SF-29 SF-30	2-113													
1 15/16		SF-31	2-115	7889	5 5/8	4 3/8	1 9/16	9/16	2 5/32	2 1/32	3/4	2 15/32	4 33/64	4	9/16	6.4
2		SF-32R	1-2	35090	142.9	111.1	39.7	14.3	54.8	51.6	19.1	62.7	114.7	101.6		2.90
	50	SF-210	5210													
2		SF-32	2-2													
2 1/8		SF-34	2-22	9752	6 3/8	5 1/8	1 3/4	13/16	2 5/16	2 3/16	7/8	2 23/32	5 3/16	4 1/4	5/8	10.5
2 3/16	EE	SF-35 SF-211	2-23	43377	161.9	130.2	44.5	20.6	58.7	55.6	22.2	69.1	131.8	108.0		4.76
2 1/4	55	SF-211 SF-36	5211 2-24													
2 3/8		SF-38	2-24	11789	6 7/8	5 5/8	1 15/16	13/16	2 11/16	2 9/16	1	2 63/64	5 7/16	5		11.8
2 7/16		SF-39	2-27	52437	174.6	142.9	49.2	20.6	68.3	65.1	25.4	75.8	138.1	127.0	5/8	5.35
	60	SF-212	5212													
2 1/2		SF-40	3-28	13971	7 3/8	5 7/8	2 5/16	11/16	3	2 3/4	1 1/16	3 7/16	6 1/8	5 1/8		16.4
2 11/16		SF-43	2-211	62143	187.3	149.2	58.7	17.5	76.2	69.9	27.0	87.3	155.6	130.2	5/8	7.44
0.7/6	70	SF-214	5214	02.10					, ,,,,	00.0		00	100.0			
2 7/8 2 15/16		SF-46 SF-47	2-214	14839	7 3/4	6	2 3/8	1	3 3/16	3 1/16	1 5/16	3 41/64	6 1/2	5 7/8	3/4	19.4
2 15/16	75	SF-47 SF-215	2-215 5215	66004	196.9	152.4	60.3	25.4	81.0	77.8	33.3	92.5	165.1	149.2	3/4	8.80
	10	3F-Z I	UZ 10						L			L	L			

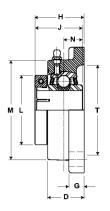
For Standard Duty Bearing Inserts-Single Lock see page G-92. *To obtain bolt circle, multiply B x 1.414".

Metric dimensions for reference only.

Duty: Standard

Rolling Elements: Ball


> Housing: Cast Iron Four Bolt Flange


Self Alignment: +/- 2 Degrees

> SKWEZLOC Locking Collar Lock:

Seal:

Optional Seal: Contact Temperature: -20° to 220°F

SF-T Series Standard Duty Four Bolt Flange - SKWEZLOC Locking Collar - Inch

Bore			Pacia Dynamia				Di	mension	s inch / m	ım				780141	Unit
Diameter inch	Part No.	Bearing Insert No.	Basic Dynamic Rating Ib/N	Α	В*	D	G	Н	Į.	L	M	Ň	T Core	Bolt Size	Wt. lb/kg
3/4	SF-12T	2-012T	2611 11614	3 3/8 85.7	2 1/2 63.5	59/64 23.4	7/16 11.1	1 11/32 34.1	1 9/32 32.5	1 3/4 44.5	2 11/32 59.5	1/2 12.7	2 50.8	3/8	1.6 .73
15/16 1	SF-15T SF-16T	2-015T 2-1T	2801 12459	3 3/4 95.3	2 3/4 69.9	1 1/32 26.2	17/32 13.5	1 1/2 38.1	1 7/16 36.5	1 15/16 49.2	2 23/32 69.1	9/16 14.3	2 3/8 60.3	7/16	2.3 1.04
1 1/8 1 3/16 1 1/4	SF-18T SF-19T SF-20RT	2-12T 2-13T 1-14T	4381 19487	4 1/4 108.0	3 1/4 82.6	1 11/64 29.8	17/32 13.5	1 5/8 41.3	1 9/16 39.7	2 3/16 55.6	3 7/32 81.8	5/8 15.9	2 7/8 73.0	7/16	3.8 1.72
1 1/4	SF-20T	2-14T	5782 25718	4 5/8 117.5	3 5/8 92.1	1 11/32 34.1	9/16 14.3	1 13/16 46.0	1 3/4 44.5	2 7/16 61.9	3 23/32 94.5	11/16 17.5	3 5/16 84.1	7/16	4.4 2.00
1 3/8 1 7/16	SF-22T SF-23T	2-16T 2-17T	5782 25718	4 5/8 117.5	3 5/8 92.1	1 11/32 34.1	9/16 14.3	1 13/16 46.0	1 3/4 44.5	2 9/16 65.1	3 23/32 94.5	11/16 17.5	3 1/2 88.9	1/2	4.4 2.00
1 1/2	SF-24T	2-18T	7340 32648	5 1/8 130.2	4 101.6	1 1/2 38.1	9/16 14.3	2 5/64 52.8	2 50.8	2 11/16 68.3	4 1/8 104.8	3/4 19.1	3 7/8 98.4	1/2	5.8 2.63
1 5/8	SF-26T	2-110T	7901 35144	5 3/8 136.5	4 1/8 104.8	1 9/16 39.7	9/16 14.3	2 7/64 53.6	2 50.8	2 13/16 71.4	4 21/64 109.9	3/4 19.1	3 7/8 98.4	9/16	6.0 2.72
1 11/16 1 3/4	SF-27T SF-28T	2-111T 2-112T	7901 35144	5 3/8 136.5	4 1/8 104.8	1 9/16 39.7	9/16 14.3	2 7/64 53.6	2 50.8	2 15/16 74.6	4 21/64 109.9	3/4 19.1	3 7/8 98.4	9/16	6.0 2.72
1 15/16 2	SF-31T SF-32RT	2-115T 1-2T	7889 35090	5 5/8 142.9	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 7/32 56.4	2 3/32 53.2	3 3/8 85.7	4 33/64 114.7	3/4 19.1	4 101.6	9/16	7.0 3.18
2	SF-32T	2-2T	9752 43377	6 3/8 161.9	5 1/8 130.2	1 3/4 44.5	13/16 20.6	2 3/8 60.3	2 1/4 57.2	3 1/2 88.9	5 3/16 131.8	7/8 22.2	4 1/4 108.0	9/16	11.1 5.03
2 1/8 2 3/16	SF-34T SF-35T	2-22T 2-23T	9752 43377	6 3/8 161.9	5 1/8 130.2	1 3/4 44.5	13/16 20.6	2 3/8 60.3	2 1/4 57.2	3 5/8 92.1	5 3/16 131.8	7/8 22.2	4 1/4 108.0	5/8	11.1 5.03
2 1/4	SF-36T	2-24T	11789 52437	6 7/8 174.6	5 5/8 142.9	1 15/16 49.2	13/16 20.6	2 3/4 69.9	4 1/16 103.2	4 1/16 103.2	5 7/16 138.1	1 25.4	5 127.0	5/8	13.0 5.90
2 3/8 2 7/16	SF-38T SF-39T	2-26T 2-27T	11789 52437	6 7/8 174.6	5 5/8 142.9	1 15/16 49.2	13/16 20.6	2 3/4 69.9	4 1/8 104.8	4 1/8 104.8	5 7/16 138.1	1 25.4	5 127.0	5/8	13.0 5.90

SF-T Series Standard Four Bolt Flange - SKWEZLOC Locking Collar - Metric -SKWEZ™

Bore	-	10 V V V	Basic Dynamic			-300	Di	mension	s mm / in	ch					Unit
Diameter mm	Part No.	Bearing Insert No.	Rating N/lb	A	B*	D	G	н	30 1	Œ	M	N	Core	Bolt Size	Wt. kg/lb
20	SF-204TMC	5204TMC	11614 2611	85.7 3 3/8	63.5 2 1/2	23.4 59/64	11.1 7/16	34.1 1 11/32	32.5 1 9/32	44.5 1 3/4	59.5 2 11/32	12.7 1/2	50.8 2	M10	.73 1.6
25	SF-205TMC	5205TMC	12459 2801	95.3 3 3/4	69.9 2 3/4	26.2 1 1/32	13.5 17/32	38.1 1 1/2	36.5 1 7/16	49.2 1 15/16	69.1 2 23/32	14.3 9/16	60.3 2 3/8	M10	1.04 2.3
30	SF-206TMC	5206TMC	19487 4381	108.0 4 1/4	82.6 3 1/4	29.8 1 11/64	13.5 17/32	41.3 1 5/8	39.7 1 9/16	55.6 2 3/16	81.8 3 7/32	15.9 5/8	73.0 2 7/8	M12	1.72 3.8
35	SF-207TMC	5207TMC	25718 5782	117.5 4 5/8	92.1 3 5/8	34.1 1 11/32	14.3 9/16	46.0 1 13/16	44.5 1 3/4	65.1 2 9/16	94.5 3 23/32	17.5 11/16	88.9 3 1/2	M14	2.00 4.4
40	SF-208TMC	5208TMC	32648 7340	130.2 5 1/8	101.6 4	38.1 1 1/2	14.3 9/16	52.8 2 5/64	50.8 2	68.3 2 11/16	104.8 4 1/8	19.1 3/4	98.4 3 7/8	M14	2.63 5.8
45	SF-209TMC	5209TMC	351 44 7901	136.5 5 3/8	104.8 4 1/8	39.7 1 9/16	14.3 9/16	53.6 2 7/64	50.8 2	74.6 2 15/16	109.9 4 21/64	19.1 3/4	98.4 3 7/8	M14	2.72 6.0
50	SF-210TMC	5210TMC	35090 7889	142.9 5 5/8	111.1 4 3/8	39.7 1 9/16	14.3 9/16	56.4 2 7/32	53.2 2 3/32	85.7 3 3/8	114.7 4 33/64	19.1 3/4	101.6 4	M16	3.18 7.0
55	SF-211TMC	5211TMC	43377 9752	161.9 6 3/8	130.2 5 1/8	44.5 1 3/4	20.6 13/16	60.3 2 3/8	57.2 2 1/4	92.1 3 5/8	131.8 5 3/16	22.2 7/8	108.0 4 1/4	M16	5.03 11.1
60	SF-212TMC	5212TMC	52437 11789	174.6 6 7/8	142.9 5 5/8	49.2 1 15/16	20.6 13/16	69.9 2 3/4	104.8 4 1/8	104.8 4 1/8	138.1 5 7/16	25.4 1	127.0 5	M16	5.90 13.0

For standard duty SKWEZLOC Locking Collar Bearing Inserts see page G-93.

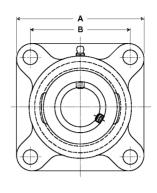
*To obtain bolt circle, multiply B x 1.414

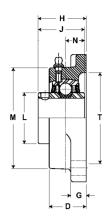
SEALMASTER• Performance Mounted Ball Bearings

Duty: Medium

Rolling Elements: Ball

> Housing: Cast Iron Four Bolt Flange


Self Alignment: +/- 2 Degrees


> Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

MSF Series Medium Duty Four-Bolt Flange Units - Setscrew Locking

D D				Basic				D	imension	s inch / m	ım	<u> </u>			Second .	
Bore Di	ameter	Part No.	Bearing Insert	Dynamic	10000	11000	98811					190	19700	Ť	Bolt	Unit Wt.
Inch	mm		No.	Rating lb/N	A	В	D	6	Н	3	N	.	***	Core	Size	lb/kg
15/16 1	25	MSF-15 MSF-16 MSF-305	3-015 3-1 5305	4381 19487	4 1/4 108.0	3 1/4 82.6	1 11/64 29.8	17/32 13.5	1 9/16 39.7	1 1/2 38.1	5/8 15.9	1 19/32 40.5	3 7/32 81.8	2 7/8 73.0	7/16	3.6 1.63
1 3/16 1 1/4	30	MSF-19 MSF-20 MSF-306	3-13 2-14 5306	5782 25718	4 5/8 117.5	3 5/8 92.1	1 11/32 34.1	9/16 14.3	1 3/4 44.5	1 11/16 42.9	11/16 17.5	1 55/64 47.2	3 23/32 94.5	3 5/16 84.1	1/2	4.1 1.86
1 7/16	35	MSF-23 MSF-307	3-17 5307	7340 32648	5 1/8 130.2	4 101.6	1 1/2 38.1	9/16 14.3	2 1/64 51.2	1 15/16 49.2	3/4 19.1	2 1/16 52.4	4 5/64 103.6	3 1/2 88.9	1/2	5.5 2.49
1 1/2	40	MSF-24 MSF-308	3-18 5308	7901 35144	5 3/8 136.5	4 1/8 104.8	1 9/16 39.7	9/16 14.3	2 3/64 52.0	1 15/16 49.2	3/4 19.1	2 19/64 58.3	4 21/64 109.9	3 7/8 98.4	9/16	6.0 2.72
1 11/16 1 3/4	45	MSF-27 MSF-28 MSF-309	3-111 3-112 5309	7889 35090	5 5/8 142.9	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 5/32 54.8	2 1/32 51.6	3/4 19.1	2 15/32 62.7	4 33/64 114.7	4 101.6	9/16	6.8 3.08
1 15/16 2	50	MSF-31 MSF-32 MSF-310	3-115 2-2 5310	9752 43377	6 3/8 161.9	5 1/8 130.2	1 3/4 44.5	13/16 20.6	2 5/16 58.7	2 3/16 55.6	7/8 22.2	2 23/32 69.1	5 3/16 131.8	4 1/4 108.0	5/8	10.5 4.76
2 3/16 2 1/4	55	MSF-35 MSF-36 MSF-311	3-23 2-24 5311	11789 52437	6 7/8 174.6	5 5/8 142.9	1 15/16 49.2	13/16 20.6	2 11/16 68.3	2 9/16 65.1	1 25.4	2 63/64 75.8	5 7/16 138.1	5 127.0	5/8	12.1 5.49
2 7/16 2 1/2	65	MSF-39 MSF-40 MSF-313	3-27 3-28 5313	13971 62143	7 3/8 187.3	5 7/8 149.2	2 5/16 58.7	11/16 17.5	3 76.2	2 3/4 69.9	1 1/16 27.0	3 7/16 87.3	6 1/8 155.6	5 10/77 130.3	5/8	16.4 7.44
2 11/16	70	MSF-43 MSF-314	3-211 5314	14839 66004	7 3/4 196.9	6 152.4	2 3/8 60.3	1 25.4	3 3/16 81.0	3 1/16 77.8	1 5/16 33.3	3 41/64 92.5	6 1/2 165.1	5 22/25 149.4	3/4	20.6 9.34
2 15/16 3	75	MSF-47 MSF-48 MSF-315	3-215 3-3 5315	17412 77449	7 3/4 196.9	6 152.4	2 11/16 68.3	7/8 22.2	3 1/2 88.9	3 1/4 82.6	1 5/16 33.3	3 59/64 99.6	6 3/4 171.5	5 14/25 141.2	3/4	21.4 9.71
3 3/16 3 1/4	80	MSF-51 MSF-52 MSF-316	3-33 2-34 5316	18681 83093	8 7/16 214.3	6 3/4 171.5	2 3/4 69.9	1 25.4	3 17/32 89.7	3 3/8 85.7	1 11/32 34.1	4 5/32 105.6	7 1/4 184.2	6 152.4	3/4	26.7 12.11
3 7/16 3 1/2		MSF-55 MSF-56	3-37 3-38	21566 95926	8 7/16 214.3	6 3/4 171.5	3 76.2	1 25.4	3 31/32 100.8	3 25/32 96.0	1 9/16 39.7	4 25/64 111.5	7 3/4 196.9	6 22/71 160.3	7/8	30.0 13.61
3 15/16 4	100	MSF-63 MSF-64 MSF-320	3-315 3-4 5320	29905 133017	10 9/16 268.3	8 5/16 211.1	3 13/16 96.8	1 1/4 31.8	5 127.0	4 5/8 117.5	1 15/16 49.2	5 11/64 131.4	9 1/4 235.0	7 11/25 189.0	1	55.1 24.99
4 7/16 4 15/16		MSFD-71 MSFD-79	3-47D 3-415D	37482 166720	12 3/4 323.9	10 254.0	4 3/4 120.7	1 9/16 39.7	6 152.4	5 3/4 146.1	2 7/8 73.0	6 11/32 161.1	11 1/2 292.1	9 1/2 241.3	1 1/4 32	115.0 52.16

Units MSFD-71 and MSFD-79 are equipped with four set screws: two on each end of inner race extensions.

Units MSFD-71 and MSFD-79 are not available with contact seal.

*To obtain bolt circle, multiply B x 1.414'

For Medium Duty Bearing Inserts-Single Lock see page G-95.

For Medium Duty Bearing Inserts-Double Lock see page G-97.

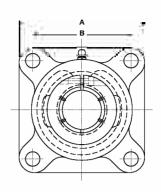
Metric dimensions for reference only.

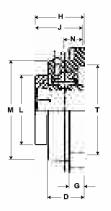
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

Duty: Medium

Rolling Elements: Ball

Housing: Cast Iron Four Bolt Flange


Self Alignment: +/- 2 Degrees


Lock: SKWEZLOC Locking Collar

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

MSF-T Series Medium Duty Four-Bolt Flange Units - SKWEZLOC Locking Collar

Burn		1	5ack				þ	iman ticu	n hình (c	mail					
Elametai Hab	#4 5 k.H.	Hope Hy Hope Hy	Hymerria Rodrig Illa74	M	₽;	2)	18 7 18	34	125	990	15	980	Cons	Elen Glass	PART
ž.	HB *1	341	4K:1 (本)。	+0 <i>B</i>	8 to 0.5%	1 the* 28th	/his Van	1=95 11.1	1 0008 32 /	50	3/1/38 3/2 [36.60 36.00	7.6% 7.94L	77400-	3.at 159
1 3/16 1 1/4	MSF-19T MSF-20T	3-13T 2-14T	5782 25718	4 5/8 117.5	3 5/8 92.1	1 11/32 34.1	9/16 14.3	1 13/16 46.0	1 3/4 44.5	11/16 17.5	2 7/16 61.9	3 23/32 94.5	3 5/16 84.1	1/2	4 4 2.00
55900	H802000	36001	7640 7580	0.178	î,	367 261	0,10 1,1	2564 55.7	334	(20) (2)	(14,18) (0.7.7	6 -35 Heli	1 7# 2 1 W	490	12
1 1/2	MSF-24T	3-18T	7901 35144	5 3/8 136.5	4 1/8 104.8	1 9/16 39.7	9/16 14.3	2 7/64 53.6	2 50.8	3/4 19.1	2 13/16 71.4	4 21/64 109.9	3 7/8 98.4	9/16	6 3 2.86
154	100 VI 105-307	3120	7860 7800	5 500 102 h	# 5/0 1/2.2	10 = 10	1410 1411	2732 01	1,652	246 1941	1 4	43864 11	14 0 0 0	par	7.4 2.28
1 15/16 2	MSF-31T MSF-32T	3-115T 2-2T	9752 43377	6 3/8 161.9	5 1/8 130.2	1 3/4 44.5	13/16 20.6	2 3/8 60.3	2 1/4 57.2	7/8 22.2	3 1/2 88.9	5 3/16 131.8	4 1/4 108.0	5/8	11.1 5.03
i tol	KIST JEST KIST JEST	2.231 2.231	11700 59417	0.5/6 (41.5	95/0	1 15.10	=34% (248)	2.2% Harin	229 01	94	4 1000 10002	5,7:40 339.1	12.n	36	19-3 N 100

For Medium Duty SKWEZLOC Locking Collar Bearing Inserts see page G-96.

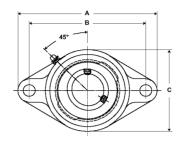
^{*}To obtain bolt circle, multiply B x 1.414".

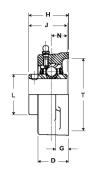
SEALMASTER® Performance Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball

> Cast Iron Two Bolt Flange Housing:


+/- 2 Degrees Self Alignment:


> Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

SFT Series Standard Duty Two-Bolt Flange Units - Setscrew Locking

	Daw Dia				Basic					mension	s inch / n	nm				2077.000	nnersi
1/2			Part No.	Bearing Insert No.	Rating	A	В	C	0	G	н	3	N	(1)			⊌nit Wt. Ib/kg
9/16 SFT-9 2-09 2-01 1614 98.4 76.2 58.7 23.4 11.1 32.5 31.0 12.7 30.2 50.8 3/8 5FT-10 2-010 11614 98.4 76.2 58.7 23.4 11.1 32.5 31.0 12.7 30.2 50.8 3/8		111030	CET 0	2.09	lb/N				1000				2000	- 0000			9
SFT-10					2611	3.7/8	2	25/16	50/6/	7/16	1 9/32	1 7/32	1/2	1 3/16	2		1.2
11/16 SFT-11 2-011 SFT-12 2-012 2611 4 19/32 317/32 23/8 59/64 7/16 19/32 17/32 11/2 13/16 2 30.2 50.8 3/8 13/16						1										3/8	.54
3/4 20 SFT-12 2-012 2611 41/3/3 31/7/3 23/8 59/64 7/16 19/32 17/32 11/2 13/16 2 3/8 3/8					11014	30.4	10.2	30.7	20.4	'''	02.0	31.0	12.1	30.2	30.0		.54
13/16 SFT-13					2611	4 13/32	3 17/32	2 3/8	59/64	7/16	1 9/32	1 7/32	1/2	1 3/16	2		1.2
13/16 7/8 SFT-13 2-013 7/16 15/16 SFT-16 2-015		20	l			1	1			ı				1		3/8	.54
Tild	13/16																
15/16 1 2-15 12/45 1																	
1 1/16 SFT-16 Z-1 Z-11	15/16		SFT-15	2-015	2801				1 1/32	17/32					2 3/8	7/16	1.6 .73
1 1/16					12459	123.0	96.6	09.9	20.2	13.5	30.5	34.9	14.3	34.9	00.3		.13
1 1/8 SFT-18 2-12 4381 59/16 4 19/32 3 1/4 1 11/64 17/32 3 9/16 1 11/2 5/8 1 19/32 27/8 7/16 1 1/4 SFT-20R 1-14 SFT-206 506 506 506 1 1/4 1 1/4 1 5/16 1 1/2 39.7 38.1 15/9 15/9 73.0 7/16 1 1/4 SFT-206 5206 506 6 1/8 5 1/8 3 3/4 1 11/32 39.7 38.1 15/9 40.5 73.0 7/16 1 5/16 SFT-20 2-14 5782 6 1/8 5 1/8 3 3/4 1 11/32 9/16 1 3/4 1 11/16 1 11/16 1 55/64 3 5/16 81/12 1 1/2 4 4/5 4 11/10 1 11/16 1 11/16 1 15/16 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2 4 1/2		25	SFT-205	5205													
1 3/16	1 1/16		SFT-17	2-11													
1 1/4 SFT-20R 1-14 SFT-20R 5206 SFT-20R 5206 SFT-20R 5206 SFT-20R 5206 SFT-20R 5206 SFT-20R 5206 SFT-20R 5206 SFT-20R 5207 SFT-21 2-15 SFT-22 2-16 SFT-22 2-16 SFT-23 2-17 SFT-23 2-17 SFT-20R 5207 SET-20R 5208 SFT-30 2-114 SFT-20R 5208 SFT-30 2-114 SFT-30 SFT-30 SFT-31 2-115 SFT-32R 1-2 SFT-32R 1-2 SFT-32R 1-2 SFT-32R 1-2 SFT-32R 1-2 SFT-32R 1-2 SFT-210 S210 SFT-210 S710 SFT-210 S710 SFT-210	1 1/8		SFT-18	2-12						47/00			= 10		0.7/0		
1 1/4 SFT-20R 1-14 SFT-20R 5206 SFT-20R 5206 SFT-20R 5206 SFT-20R 5206 SFT-20R 5206 SFT-20R 5206 SFT-20R 5206 SFT-20R 5207 SFT-21 2-15 SFT-22 2-16 SFT-22 2-16 SFT-23 2-17 SFT-23 2-17 SFT-20R 5207 SET-20R 5208 SFT-30 2-114 SFT-20R 5208 SFT-30 2-114 SFT-30 SFT-30 SFT-31 2-115 SFT-32R 1-2 SFT-32R 1-2 SFT-32R 1-2 SFT-32R 1-2 SFT-32R 1-2 SFT-32R 1-2 SFT-210 S210 SFT-210 S710 SFT-210 S710 SFT-210	1 3/16		SFT-19	2-13	4381 19487		4 19/32	3 1/4	1 11/64	17/32 13.5	1 9/16				2 7/8 73 0	7/16	2.2 1.00
1 1/4	1 1/4		SFT-20R	1-14	15467	141.5	110.7	02.0	20.0	10.0	00.1	30.1	10.0	10.5	7 3.0		1.00
1 5/16 1 3/8 1 7/16 SFT-21 SFT-22 35 2-15 SFT-23 2-17 2-15 2-16 2-718 5782 25718 6 1/8 155.6 5 1/8 155.6 3 3/4 95.3 1 11/32 34.1 9/16 44.5 1 3/4 44.5 1 11/16 42.9 1 11/16 42.9 1 15/6 47.2 1 15/6 84.1 1 1/2 1/2 1 1/2 1 9/16 1 9/16 1 11/16 SFT-20 SFT-208 SFT-208 SFT-208 SFT-208 SFT-208 SFT-208 SFT-209 SFT-209 SET-209 SET-209 SET-209 SET-209 SET-209 SET-30 SFT-30 SFT-30 SFT-30 SFT-31 SFT-31 SFT-32R SFT-32R SFT-32R SFT-32R SFT-31 SFT-32R SFT-31 SFT-31 SFT-31 SFT-31 SFT-31 SFT-31 SFT-31 SFT-31 SFT-31 SFT-31 SFT-31 SFT-31 SFT-31 SFT-31 SFT-31 SFT-31 SET		30	SFT-206	5206													
1 3/8 SFT-22 2-16 5782 6 1/8 5 1/8 3 3/4 1 11/32 9/16 1 3/4 1 11/16 1 11/16 1 15/64 3 5/16 44.5 1 11/16 1 11/16 1 11/16 1 15/64 47.2 84.1 1/2 1 1/2 SFT-207 5207 5207 7340 5 21/32 4 1/8 1 11/2 9/16 2 1/64 1 15/16 3/4 2 1/16 3 1/2 1/2 1 1/2 SFT-25 2-19 32648 171.5 143.7 104.8 38.1 1 1/2 9/16 2 1/64 1 15/16 3/4 2 1/16 3 1/2 1/2 1 5/8 SFT-208 5208 5208 7 1/16 5 27/32 4 3/8 1 9/16 9/16 2 3/64 1 15/16 3/4 2 19/64 3 7/8 88.9 1/2 1 5/8 SFT-26 2-110 7 1/16 5 27/32 4 3/8 1 9/16 9/16 2 3/64 1 15/16 3/4 2 19/64 3 7/8 9/16 1																	
1 7/16 SFT-23 2-17 35 SFT-207 5207 1 1/2 SFT-24 2-18 1 9/16 SFT-25 2-19 32648 171.5 143.7 104.8 38.1 11/2 9/16 2 1/64 1 15/16 3/4 2 1/16 3 1/2 88.9 1/2 1 5/8 SFT-208 5208 7 1/16 5 27/32 4 3/8 1 9/16 9/16 2 3/64 1 15/16 3/4 2 19/64 3 7/8 88.9 1/2 1 5/8 SFT-26 2-110 7 1/16 5 27/32 4 3/8 1 9/16 9/16 2 3/64 1 15/16 3/4 2 19/64 3 7/8 88.9 9/16 1 3/4 SFT-27 2-111 7901 7 1/16 5 27/32 4 3/8 1 9/16 9/16 2 3/64 1 15/16 3/4 2 19/64 3 7/8 9/16 1 3/16 SFT-28 2-112 35144 179.4 148.4 111.1 39.7 14.3 52.0 49.2			SFT-21		E700	0.4/0	E 4/0	2 2/4	4 44/20	0/40	1 2/4	4 44/40	44/40	4 55/04	2 5/4 0		2.0
1 1/16 SFT-207 5207 SFT-207 5207 SFT-207 5207 SFT-207 5207 SFT-207 5207 SFT-208 SFT-25 2-19 32648 171.5 143.7 104.8 38.1 14.3 21/64 115/16 3/4 21/16 31/2 88.9 1/2					25718			95.3		14.3						1/2	3.2 1.45
1 1/2 SFT-24 2-18 7340 6 3/4 5 21/32 4 1/8 1 1/2 9/16 2 1/64 1 15/16 3/4 2 1/16 3 1/2 88.9 1/2 1 5/8 SFT-208 5208 FT-26 2-110 7 1/16 5 27/32 4 3/8 1 9/16 9/16 2 3/64 1 15/16 3/4 2 19/64 3 7/8 88.9 1/2 1 13/16 SFT-26 2-110 7 1/16 5 27/32 4 3/8 1 9/16 9/16 2 3/64 1 15/16 3/4 2 19/64 3 7/8 9/16 1 3/4 SFT-27 2-111 7901 7 1/16 5 27/32 4 3/8 1 9/16 9/16 2 3/64 1 15/16 3/4 2 19/64 3 7/8 9/16 1 3/4 SFT-28 2-112 35144 179.4 148.4 111.1 39.7 14.3 52.0 49.2 19.1 58.3 98.4 9/16 1 13/16 SFT-29 2-113 7889 35090 7 7/16 157.2 </td <td>1 7/16</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1 7/16																
1 9/16 SFT-25 2-19 7340 6 3/4 5 21/32 4 1/8 1 1/2 9/16 2 1/64 1 15/16 3/4 2 1/16 3 1/2 88.9 1/2 1 5/8 SFT-208 5208 SFT-26 2-110 7 1/16 5 27/32 4 3/8 1 9/16 9/16 2 3/64 1 15/16 3/4 2 19/64 3 7/8 9/16 1 11/16 SFT-27 2-111 7901 7 1/16 5 27/32 4 3/8 1 9/16 9/16 2 3/64 1 15/16 3/4 2 19/64 3 7/8 9/16 1 3/4 SFT-28 2-112 35144 179.4 148.4 111.1 39.7 14.3 52.0 49.2 19.1 58.3 98.4 1 13/16 SFT-209 5209 5209 7 7/16 6 3/16 4 9/16 1 9/16 9/16 2 5/32 2 1/32 3/4 2 15/32 4 1 15/16 SFT-30 2-114 7889 35090 7 7/16 6 3/16 4 9/16 19/16 9/16 2 5/32 2 1/32 3/4 2 15/32 4 2 SFT-32R 1-2 50 SFT-210 5210 5210 115.9 39.7 14.3 19.16 39.7 <t< td=""><td></td><td>35</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		35															
15/16 SFT-208 5208 5208 171.5 143.7 104.8 38.1 14.3 51.2 49.2 19.1 52.4 88.9 1/2 15/8					7340	63/4	5 21/32	1 1/8	1 1/2	9/16	2 1/6/	1 15/16	3//	2 1/16	3 1/2		4.5
1 5/8 SFT-26 2-110 7901 7 1/16 5 27/32 4 3/8 1 9/16 9/16 2 3/64 1 15/16 3/4 2 19/64 3 7/8 9/16 1 3/4 SFT-28 2-112 35144 179.4 148.4 111.1 39.7 14.3 52.0 49.2 19.1 58.3 98.4 9/16 1 13/16 SFT-29 2-113 SFT-30 2-114 7889 77/16 6 3/16 4 9/16 19/16 9/16 2 5/32 2 1/32 3/4 2 15/32 4 1 15/16 SFT-31 2-115 35090 7889 157.2 4 9/16 115.9 9/16 2 5/32 2 1/32 3/4 2 15/32 4 1 5/16 SFT-210 5210 5210 7 7/16 157.2 4 9/16 115.9 39.7 14.3 2 5/32 2 1/32 3/4 2 15/32 62.7 4 101.6 9/16	1 9/16				32648		143.7	104.8	38.1		51.2				88.9	1/2	2.04
1 11/16 SFT-27 2-111 7901 7 1/16 5 27/32 4 3/8 1 9/16 9/16 2 3/64 1 15/16 3/4 2 19/64 3 7/8 9/16 1 3/4 SFT-28 2-112 35144 179.4 148.4 111.1 39.7 14.3 52.0 49.2 19.1 58.3 98.4 1 13/16 SFT-29 2-113 1 7/8 SFT-30 2-114 1 15/16 SFT-31 2-115 7889 35090 157.2 115.9 19/16 19/16 9/16 25/32 21/32 3/4 2 15/32 4 2 SFT-32R 1-2 50 SFT-210 5210		40															
1 3/4 SFT-28 2-112 35144 179.4 148.4 111.1 39.7 14.3 52.0 49.2 19.1 58.3 98.4 9/16 1 13/16 SFT-29 2-113 1 7/8 SFT-30 2-114 1 15/16 SFT-31 2-115 7889 35090 157.2 115.9 19/16 19/16 9/16 25/32 21/32 3/4 2 15/32 4 2 SFT-32R 1-2 50 SFT-210 5210					7004										0.740		_
45 SFT-209 5209 6 9 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9/16</td><td>5</td></th<>						1										9/16	5
1 13/16	1 3/4	45			35144	179.4	148.4	111.1	39.7	14.3	52.0	49.2	19.1	58.3	98.4		2.27
1 7/8 SFT-30 2-114 1 15/16 SFT-31 2-115 7889 7 7/16 6 3/16 157.2 19/16 9/16 2 5/32 2 1/32 3/4 2 15/32 4 101.6 2 SFT-32R 1-2 50 SFT-210 5210	1 12/16	45															
1 15/16 SFT-31 2-115 7889 35090 7 7/16 188.9 6 3/16 157.2 4 9/16 115.9 1 9/16 39.7 9/16 14.3 2 5/32 54.8 2 1/32 54.8 3/4 51.6 2 15/32 62.7 4 101.6 9/16 62.7																	
2 SFT-32R 1-2 50 SFT-210 5210 188.9 157.2 115.9 39.7 14.3 54.8 51.6 19.1 62.7 101.6 67.7 51.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52					7889				1 9/16		2 5/32	2 1/32			4	9/16	5.4 2.45
50 SFT-210 5210					35090	188.9	157.2	115.9	39.7	14.3	54.8	51.6	19.1	62.7	101.6	3/10	2.45
	-	50															
	2																
2.1/8 SET.34 2.22 9752 8.1/2 7.1/4 5.1/4 1.3/4 1.3/4 2.5/16 2.3/16 7/8 2.23/32 4.1/4					9752	8 1/2	7 1/4	5 1/4	1 3/4	13/16	2 5/16	2 3/16	7/8	2 23/32	4 1/4		8.4
2 3/16 SFT-35 2-23 43377 215.9 184.2 133.4 44.5 20.6 58.7 55.6 22.2 69.1 108.0										l						5/8	3.81
55 SFT-211 5211 5211 5511		55															

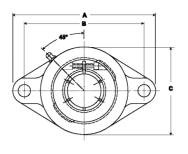
For Standard Duty Bearing Inserts-Single Lock see page G-92.

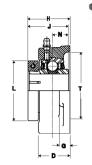
Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

Duty: Standard

Rolling Elements: Ball


> Housing: Cast Iron Two Bolt Flange


Self Alignment: +/- 2 Degrees

> SKWEZLOC Locking Collar Lock:

Seal:

Optional Seal: Contact Temperature: -20° to 220°F

SFT-T Series Standard Duty Two Bolt Flange - SKWEZLOC Locking Collar - Inch

Bore			Basic				Dim	ension	s inch / m	ım				2000	
Diameter inch	Part No.	Bearing Insert No.	Dynamic Rating Ib/N	(A	8	C	D	G	jį.	0	L	N	T Core	Bolt Size	Unit Wi
3/4	SFT-12T	2-012T	2611 11614	4 13/32 111.9	3 17/32 89.7	2 3/8 60.3	59/64 23.4	7/16 11.1	1 11/32 34.1	1 9/32 32.5	1 3/4 44.5	1/2 12.7	2 50.8	3/8	1.3 .59
15/16 1	SFT-15T SFT-16T	2-015T 2-1T	2801 12459	4 7/8 123.8	3 57/64 98.8	2 3/4 69.9	1 1/32 26.2	17/32 13.5	1 1/2 38.1	1 7/16 36.5	1 15/16 49.2	9/16 14.3	2 3/8 60.3	7/16	1.8 .82
1 1/8 1 3/16 1 1/4	SFT-18T SFT-19T SFT-20RT	2-12T 2-13T 1-14T	4381 19487	5 9/16 141.3	4 19/32 116.7	3 1/4 82.6	1 11/64 29.8	17/32 13.5	1 5/8 41.3	1 9/16 39.7	2 3/16 55.6	5/8 15.9	2 7/8 73.0	7/16	2.4 1.09
1 1/4	SFT-20T	2-14T	5782 25718	6 1/8 155.6	5 1/8 130.2	3 3/4 95.3	1 11/32 34.1	9/16 14.3	1 13/16 46.0	1 3/4 44.5	2 7/16 61.9	11/16 17.5	3 5/16 84.1	7/16	3.5 1.59
1 3/8 1 7/16	SFT-22T SFT-23T	2-16T 2-17T	5782 25718	6 1/8 155.6	5 1/8 130.2	3 3/4 95.3	1 11/32 34.1	9/16 14.3	1 13/16 46.0	1 3/4 44.5	2 9/16 65.1	11/16 17.5	3 5/16 84.1	1/2	3.5 1.59
1 1/2	SFT-24T	2-18T	7340 32648	6 3/4 171.5	5 21/32 143.7	4 1/8 104.8	1 1/2 38.1	9/16 14.3	2 5/64 52.8	2 50.8	2 11/16 68.3	3/4 19.1	3 1/2 88.9	1/2	4.8 2.18
1 5/8	SFT-26T	2-110T	7901 35144	7 1/16 179.4	5 27/32 148.4	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 7/64 53.6	2 50.8	2 13/16 71.4	3/4 19.1	3 7/8 98.4	9/16	5.3 2.40
1 11/16 1 3/4	SFT-27T SFT-28T	2-111T 2-112T	7901 35144	7 1/16 179.4	5 27/32 148.4	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 7/64 53.6	2 50.8	2 15/16 74.6	3/4 19.1	3 7/8 98.4	9/16	5.3 2.40
1 15/16 2	SFT-31T SFT-32RT	2-115T 1-2T	7889 35090	7 7/16 188.9	6 3/16 157.2	4 9/16 115.9	1 9/16 39.7	9/16 14.3	2 7/32 56.4	2 3/32 53.2	3 3/8 85.7	3/4 19.1	4 101.6	9/16	6 2.72
2	SFT-32T	2-2T	9752 43377	8 1/2 215.9	7 1/4 184.2	5 1/4 133.4	1 3/4 44.5	13/16 20.6	2 3/8 60.3	2 1/4 57.2	3 1/2 88.9	7/8 22.2	4 1/4 108.0	5/8	9 4.08
2 1/8 2 3/16	SFT-34T SFT-35T	2-22T 2-23T	9752 43377	8 1/2 215.9	7 1/4 184.2	5 1/4 133.4	1 3/4 44.5	13/16 20.6	2 3/8 60.3	2 1/4 57.2	3 5/8 92.1	7/8 22.2	4 1/4 108.0	5/8	9 4.08

SFT-T Series Standard Two Bolt Flange - SKWEZLOC Locking Collar - Metric -SKWEZ™

Bore	1		Basic Dynam c				Dim	ension	s mm / in	ch				TO USE	AMERICAN I
Diameter mm	Part No.	Bearing Insert No	Rating N/Ib	A	В	C	D	G	H	d	i.	N	T Core	Bolt Size	Unit Wt kg/lb
20	SFT-204TMC	5204TMC	11614	111.9	89.7	60.3	23.4	11.1	34.1	32.5	44.5	12.7	50.8	M10	.59
20	3F 1-204 HVIC	3204 TIVIC	2611	4 13/32	3 17/32	2 3/8	59/64	7/16	1 11/32	1 9/32	1 3/4	1/2	2	IVI IO	1.3
25	SFT-205TMC	5205TMC	12459	123.8	98.8	69.9	26.2	13.5	38.1	36.5	49.2	14.3	60.3	M10	.82
23	31 1-203 TWIC	3203 TWC	2801	4 7/8	3 57/64	2 3/4	1 1/32	17/32	1 1/2	1 7/16	1 15/16	9/16	2 3/8	WITO	1.8
30	SFT-206TMC	5206TMC	19487	141.3	116.7	82.6	29.8	13.5	41.3	39.7	55.6	15.9	73.0	M12	1.09
30	31 1-200 TWO	3200 TIVIC	4381	5 9/16	4 19/32	3 1/4	1 11/64	17/32	1 5/8	1 9/16	2 3/16	5/8	2 7/8	IVITZ	2.4
35	SFT-207TMC	5207TMC	25718	155.6	130.2	95.3	34.1	14.3	46.0	44.5	65.1	17.5	84.1	M14	1.59
33	31 1-207 HVIO	3207 TWG	5782	6 1/8	5 1/8	3 3/4	1 11/32	9/16	1 13/16	1 3/4	2 9/16	11/16	3 5/16	10114	3.5
40	SFT-208TMC	5208TMC	32648	171.5	143.7	104.8	38.1	14.3	52.8	50.8	68.3	19.1	88.9	M14	2.18
40	31 1-200 TWC	3200 TIVIC	7340	6 3/4	5 21/32	4 1/8	1 1/2	9/16	2 5/64	2	2 11/16	3/4	3 1/2	101 14	4.8
45	SFT-209TMC	5209TMC	35144	179.4	148.4	111.1	39.7	14.3	53.6	50.8	74.6	19.1	98.4	M14	2.40
45	31 1-209 TWO	3209 TIVIC	7901	7 1/16	5 27/32	4 3/8	1 9/16	9/16	2 7/64	2	2 15/16	3/4	3 7/8	10114	5.3
50	SFT-210TMC	5210TMC	35090	188.9	157.2	115.9	39.7	14.3	56.4	53.2	85.7	19.1	101.6	M16	2.72
30	31 1-2101WC	32 TO TIVIC	7889	7 7/16	6 3/16	4 9/16	1 9/16	9/16	2 7/32	2 3/32	3 3/8	3/4	4	IVITO	6
55	SFT-211TMC	5211TMC	43377	215.9	184.2	133.4	44.5	20.6	60.3	57.2	92.1	22.2	108.0	M16	4.08
] 33	31 1-2111100	JZ IT HVIC	9752	8 1/2	7 1/4	5 1/4	1 3/4	13/16	2 3/8	2 1/4	3 5/8	7/8	4 1/4	IVITO	9

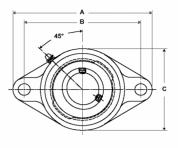
For Medium Duty SKWEZLOC Locking Collar Bearing Inserts see page G-93.

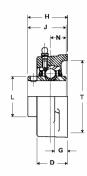
SEALMASTER® Performance Mounted Ball Bearings

Duty: Medium

Rolling Elements: Ball

> Cast Iron Two Bolt Flange Housing:


+/- 2 Degrees Self Alignment:


> Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

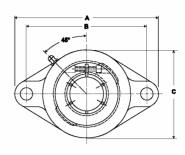
MSFT Series Medium Duty Two-Bolt Flange Units - Setscrew Locking

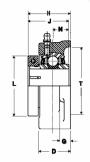
HOUSE THE			5.mkr				21	neares on	a live : 1 j	(m)					
too in n	Pert Val.	Souther treats NE	Eynamic Earling IbN		Ĭ	Q.		a	***	10	100		200	GIII Mare	(holeg
į€1i. 35	205 1-16 205 1-16 205 1-15	300% 3/1 5/10	digi- Desit	5946 1619	410% UK7	177	# 564 Nat	742 73	tir≡ ær	152 141°	is v	1.1952 305	4.555 2007	5990	#2 726
1 3/16 1 1/4 30	MSFT-19 MSFT-20 MSFT-306	3-13 2-14 5306	5782 25718	6 1/8 155.6	5 1/8 130.2	3 3/4 95.3	1 11/32 34.1	9/16 14.3	1 3/4 44 5	1 11/16 42.9	11/16 17.5	1 55/64 47.2	3 5/16 84.1	1/2	3 4 1.54
12:10	965 1525 96543-967	377.0°	4.200 52646	= con 47 .8	44075 4407	17.9E 104.0	30	0.18 4.0	151 3 3	1:mc14 45.2)	18	* 179¢ *22.4	20 to 1 200 to	162	4.0 2,03
1 1/2	MSFT-24 MSFT-308	3-18 5308	7901 35144	7 1/16 179.4	5 27/32 148.4	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 3/64 52.0	1 15/16 49.2	3/4 19.1	2 19/64 58.3	3 7/8 98.4	9/16	5 2 2.36
1 **** 1 #4 42	HS 1-7 HS 1-74 HS-17-75	- 111 117 - 3339	7860 20%	77/10 100 S	6 \$36 166 9	- 590 1859	10/16 167	930 36+	50/82 70/8	a ter o K	14	2 15/32	1670	WW.	5.0 1.71
1 15/16 2 50	MSFT-31 MSFT-32 MSFT-310	3-115 2-2 5310	9752 43377	8 1/2 215.9	7 1/4 184.2	5 1/4 133.4	1 3/4 44 5	13/16 20.6	2 5/16 58.7	2 3/16 55.6	7/8 22.2	2 23/32 69.1	4 1/4 108.0	5/8	8 6 3.90

For Medium Duty Bearing Inserts-Single Lock see page G-95.

Duty: Medium

Rolling Elements: Ball


Housing: Cast Iron Two Bolt Flange


Self Alignment: +/- 2 Degrees

Lock: SKWEZLOC Locking Collar

Seal: Felt

Optional Seal: Contact
Temperature: -20° to 220°F

MSFT-T Series Medium Duty Two-Bolt Flange Units - SKWEZLOC Locking Collar

Barn			Bande Dynamia				1	na neimu	a leach for	reit:					
America.	PartNa	Batala	Favoring	1	(E)	ję.	Ē,	e	Ē	77	N.	ñ.	Com	E del	DE SAC
677	Vol. 165en	SKEE	17111 16422	n Miln Tatt.X	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 111 525	1 161 25.8	destr ≅%:	251 212	16.0 255	11/1 200	524	70.0	White	7.10
1 3/16 1 1/4	MSFT-19T MSFT-20T	3-13T 2-14T	5782 25718	6 1/8 155.6	5 1/8 130.2	3 3/4 95.3	1 11/32 34.1	9/16 14.3	1 13/16 46.0	1 3/4 44.5	11/16 17.5	2 7/16 61.9	3 5/16 84.1	1/2	3_7 1.68
13775	MEST-RET	3400	25(0 3360b	16344 1644	=51/25 197 =	100	# 1 1	90°00	25.7 45.7	10.74 10.74	***	Proces Nati	11:1/2- ful M	7#83	1 e 1 pp
1 1/2	MSFT-24T	3-18T	7901 35144	7 1/16 179.4	5 27/32 148.4	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 7/64 53.6	2 50.8	3/4 19.1	2 13/16 71.4	3 7/8 98.4	9/16	5 5 2.49
200	HS 1971 HS 1981	2-1774 31 / 5-1	CORRE SMIRE	7.7790 	4.0004 142	150 M	25 HI	me	2.932 =:1	3/2403/ ±1/1	#01 - 4/7	10/K	n T(or)=	50%	7.00 9.00
1 15/16 2	MSFT-31T MSFT-32T	3-115T 2-2T	9752 43377	8 1/2 215.9	7 1/4 184.2	5 1/4 133.4	1 3/4 44.5	13/16 20.6	2 3/8 60.3	2 1/4 57.2	7/8 22.2	3 1/2 88.9	4 1/4 108.0	5/8	9 2 4.17

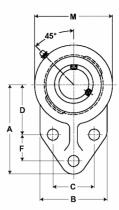
For Medium Duty SKWEZLOC Locking Collar Bearing Inserts see page G-96.

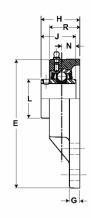
ASTER Performance Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Flange Bracket


Self Alignment: +/- 2 Degrees


> Lock: Setscrew

Seal: Felt

Optional Seal: Contact

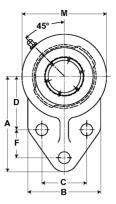
Temperature: -20° to 220°F

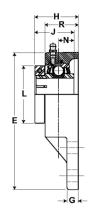
FB Series Standard Duty Three Bolt Single Lock Flange Brackets - Setscrew Locking

J. Berry	on viva		A 200	lbrh.				<u> </u>		Dimm	nimik ()	on / end							1400
Bere Di Ima	inese (100	Bearing House No.	Cyr unio Roding		£	ij.	in a		Ĭ	1.97	77	4		177	7.0	Ā	戵	WIT INC.
10 0/10 0/1 100± 3-4	.au	1 - 31 F3-0 1 - 10 F3-11 F3-11 1 +303	3.00 2.00 2.00 2.00 2.01 3.002 14.2	350 110 4	10.2	: in 573	/st.	* 1145 423	430 4 1554	253 25	en **	11.52 34,	7%- 3.0	202 : X34	153 153	16. 27.) 35,4	19	- a ·
13/16 7/8 15/16 1	25	FB-13 FB-14 FB-15 FB-16 FB-205	2-013 2-014 2-015 2-1 5205	2801 12459	3 3/8 85.7	2 1/2 63.5	1 5/8 41.3	1 13/16 46.0	4 3/4 120.7	1 1/8 28.6	3/8 9.5	1 1/2 38.1	1 3/8 34.9	1 3/8 34.9	2 3/4 69.9	9/16 14.3	1 3/32 27.8	3/8	2 1 0.95
1 045 Erat 1 255 Eat	20	F8 T 11 (4) F8-3 (0) V3 11 (0)	2 T 5 12 243 144 m*15	4751 (1944)	55!	I 24 Kirk	570 47.40	\$,7,0°	g goese Ulis	114 134	25 25	25% 2°3	112	1 10% 10%	3.7.7 <u>∆</u>	26	264 (101.0)	323	3.0
1 1/4 1 5/16 1 3/8 1 7/16	35	FB-20 FB-21 FB-22 FB-23 FB-207	2-14 2-15 2-16 2-17 5207	5782 25718	4 1/4 108.0	3 1/4 82.6	2 50.8	2 3/8 60.3	6 1/8 155.6	1 1/4 31.8	1/2 12.7	1 7/8 47.6	1 11/16 42.9	1 55/64 47.2	3 3/4 95.3	11/16 17.5	1 15/32 37 3	1/2	3 1 1.41
7/0 15/30 2	-	FE-80 11.5 15-32.4 15-2.7	204 117 120 620	7559 "NINC	5-5/10 CC //	100,00	184 184	21545 04 K	* 15 de 10% 2	160	162 17	2.002 54.0	2 32 344	5 inco- 200	4 2016 135 H	24 88	7 10067 5615)	-4	5† 131)

For Standard Duty Bearing Inserts-Single Lock see page G-92.

Duty: Standard **Rolling Elements:** Ball


Housing: Cast Iron Flange Bracket


Self Alignment: +/- 2 Degrees

Lock: SKWEZLOC Locking Collar

Seal: Felt

Optional Seal: Contact
Temperature: -20° to 220°F

FB-T Series Standard Duty Flange Bracket - SKWEZLOC Locking Collar - Inch

boff		Hearing	Basic						imens	ions inc	ch / mm						200	WAY TO A SECOND
Diameter (no.)	Part No.	maert No.	Dynamic Rating lb/N	A	B	c	D	Е	F	G	Ħ	ĵ	L	W	N	R	Bolt Size	Unit Wt lb/kg
3/4	FB-12T	2-012T	2611 11614	3 76.2	2 3/8 60.3	1 1/2 32.1	1 11/16 42.9	4 3/16 106.4	7/8 27.0	5/16 7.9	1 13/32 35.7	1 9/32 32.5	1 3/4 44.5	2 3/8 60.3	1/2 12.7	1 25.4	13/32	1.4 0.64
15/16 1	FB-15T FB-16T	2-015T 2-1T	2801 12459	3 3/8 85.7	2 1/2 63.5	1 5/8 34.1	1 13/16 44.8	4 3/4 120.7	1 1/8 27.0	3/8 9.5	1 9/16 39.7	1 7/16 36.5	1 15/16 49.2	2 3/4 69.9	9/16 14.3	1 1/8 27.8	13/32	2.3 1.04
1 1/8 1 3/16 1 1/4	FB-18T FB-19T FB-20RT	2-12T 2-13T 1-14T	4381 19487	3 3/4 95.3	2 3/4 69.9	1 7/8 40.1	2 1/16 50.1	5 23/64 136.1	1 1/4 29.0	3/8 9.5	1 11/16 42.9	1 9/16 39.7	2 3/16 55.6	3 7/32 81.8	5/8 15.9	1 1/4 31.8	13/32	3.2 1.45
1 1/4	FB-20T	2-14T	5782 25718	4 1/4 108.0	3 1/4 82.6	2 50.8	2 3/8 60.3	6 1/8 155.6	1 1/4 31.8	1/2 12.7	1 15/16 49.2	1 3/4 44.5	2 7/16 61.9	3 3/4 95.3	11/16 17.5	1 7/16 36.5	17/32	3.4 1.54
1 3/8 1 7/16	FB-22T FB-23T	2-16T 2-17T	5782 25718	4 1/4 108.0	3 1/4 82.6	2 46.0	2 3/8 55.2	6 1/8 155.6	1 1/4 32.1	1/2 12.7	1 15/16 49.2	1 3/4 44.5	2 9/16 65.1	3 3/4 95.3	11/16 17.5	1 1/2 37.3	17/32	3.4 1.54
1 15/16 2	FB-31T FB-32RT	2-115T 1-2T	7889 35090	5 3/16 131.8	4 101.6	2 3/4 57.9	2 15/16 67.9	7 15/32 189.7	1 5/8 46.0	1/2 12.7	2 7/32 56.4	2 3/32 53.2	3 3/8 85.7	4 9/16 115.9	3/4 19.1	1 35/64 39.3	17/32	5.7 2.59

FB-T Series Standard Flange Bracket - SKWEZLOC Locking Collar - Metric - SKWEZ $^{\text{TM}}$

Harr	1	Bearing	Basic					D	imens	ions m	m / inch					-	2700	WY TO
Diameter	Part No.	msert No.	Dynamic Rating N/lb	A	В	O.	D	ш	ŧ	G	*	31	-	M	N.	R	Bolt Size	Unit Wt kg/lb
20	FB-204TMC	5204TMC	11614 2611	76.2 3	60.3 2 3/8	32.1 1 1/2	42.9 1 11/16	106.4 4 3/16	27.0 7/8	7.9 5/16	35.7 1 13/32	32.5 1 9/32	44.5 1 3/4	60.3 2 3/8	12.7 1/2	25.4 1	M10	.64 1.4
25	FB-205TMC	5205TMC	12459 2801	85.7 3 3/8	63.5 2 1/2	34.1 1 5/8	44.8 1 13/16	120.7 4 3/4	27.0 1 1/8	9.5 3/8	39.7 1 9/16	36.5 1 7/16	49.2 1 15/16	69.9 2 3/4	14.3 9/16	27.8 1 1/8	M10	1.04 2.3
30	FB-206TMC	5206TMC	19487 4381	95.3 3 3/4	69.9 2 3/4	40.1 1 7/8	50.1 2 1/16	136.1 5 23/64	29.0 1 1/4	9.5 3/8	42.9 1 11/16	39.7 1 9/16	55.6 2 3/16	81.8 3 7/32	15.9 5/8	31.8 1 1/4	M10	1.45 3.2
35	FB-207TMC	5207TMC	25718 5782	108.0 4 1/4	82.6 3 1/4	46.0 2	55.2 2 3/8	155.6 6 1/8	32.1 1 1/4	12.7 1/2	49.2 1 15/16	44.5 1 3/4	65.1 2 9/16	95.3 3 3/4	17.5 11/16	37.3 1 1/2	M10	1.54 3.4
50	FB-210TMC	5210TMC	35090 7889	131.8 5 3/16	101.6 4	57.9 2 3/4	67.9 2 15/16	189.7 7 15/32	46.0 1 5/8	12.7 1/2	56.4 27/32	53.2 2 3/32	85.7 3 3/8	115.9 4 9/16	19.1 3/4	39.3 1 35/64	M12	2.59 5.7

For Medium Duty SKWEZLOC Locking Collar Bearing Inserts see page G-93.

SEALMASTER

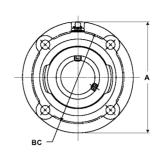
ASTER® Performance Mounted Ball Bearings

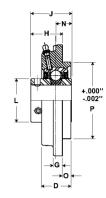
Duty: Standard

Rolling Elements: Ball

Housing: Cast Iron Piloted Flange

Cartridge


Self Alignment: +/- 2 Degrees


Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

SFC Series Standard Duty Flange Cartridge Units - Setscrew locking

		arraara		Basic		<u> </u>			nension	s inch / r	nm					
Bore D	iameter	Part No.	Bearing	Dynamic						S IIICII / I					Bolt	Unit Wt.
inch	mm	Part No.	Insert No.	Rating lb/N	A	BC	D	6	#	4	Ü	2	0	P*	Size	lb/kg
1 1/8		SFC-18	2-12									_				
1 3/16		SFC-19	2-13	4381	4 3/8	3 5/8	1 3/16	3/8	1 5/16	1 9/16	1 19/32	5/8	1/4	3.000	5/16	3.0
1 1/4		SFC-20R	1-14	19487	111.1	92.1	30.2	9.5	33.3	39.7	40.5	15.9	6.4	76.20	3/16	1.36
	30	SFC-206	5206													
1 1/4		SFC-20	2-14													
1 5/16		SFC-21	2-15		_											
1 3/8		SFC-22	2-16	5782 25718	5 127.0	4 1/8 104.8	1 9/32 32.5	3/8 9.5	1 5/16 33.3	1 11/16 42.9	1 55/64 47.2	11/16 17.5	3/8 9.5	3.375 85.73	3/8	3.9 1.77
1 7/16		SEF-23	2-17	20110	121.0	10 1.0	02.0	0.0	00.0	12.0		''.0	0.0	00.10		
	35	SFC-207	5207													
1 1/2		SFC-24	2-18	70.10				=					=			
1 9/16		SFC-25	2-19	7340 32648	5 1/4 133.4	4 3/8 111.1	1 27/64 36.1	7/16 11.1	1 1/2 38.1	1 15/16 49.2	2 1/16 52.4	3/4 19.1	7/16 11.1	3.625 92.08	3/8	4.7 2.13
	40	SFC-208	5208	02010	100.1		00.1		00.1	10.2	OZ.1	10.1		02.00		2.10
1 5/8		SFC-26	2-110													
1 11/16		SFC-27	2-111	7901	6 1/8	5 1/8	1 29/64	7/16	1 1/2	1 15/16	2 19/64	3/4	7/16	4.250	7/16	6.0
1 3/4		SFC-28	2-112	35144	155.6	130.2	36.9	11.1	38.1	49.2	58.3	19.1	11.1	107.95	1/10	2.72
	45	SFC-209	5209													
1 7/8		SFC-30	2-114													
1 15/16		SFC-31	2-115	7889	6 1/8	5 1/8	1 27/64	7/16	1 9/16	2 1/32	2 15/32	3/4	15/32	4.250	7/16	6.5
2		SFC-32R	1-2	35090	155.6	130.2	36.1	11.1	39.7	51.6	62.7	19.1	11.9	107.95	1/10	2.95
	50	SFC-210	5210													
2		SFC-32	2-2													
2 1/8		SFC-34	2-22	9752	6 3/8	5 3/8	1 5/8	7/16	1 9/16	2 3/16	2 23/32	7/8	5/8	4.500	7/16	7.5
2 3/16		SFC-35	2-23	43377	161.9	136.5	41.3	11.1	39.7	55.6	69.1	22.2	15.9	114.30	1710	3.40
	55	SFC-211	5211													
2 1/4		SFC-36	2-24													
2 3/8		SFC-38	2-26	11789	7 1/8	6	1 13/16	1/2	1 11/16	2 9/16	2 63/64	1	7/8	5.000	1/2	10.5
2 7/16		SFC-39	2-27	52437	181.0	152.4	46.0	12.7	42.9	65.1	75.8	25.4	22.2	127.00	1/2	4.76
	60	SFC-212	5212													
2 11/16		SFC-43	2-211	13971	7 5/8	6 1/2	2 5/32	9/16	1 3/4	2 27/32		1 5/32	1 3/32	5.500	1/2	14.5
	70	SFC-214	5214	62143	193.7	165.1	54.8	14.3	44.5	72.2	87.3	29.4	27.8	139.70	112	6.58
2 7/8		SFC-46	2-214	14000	0.214	7.4/0	2.5/10	0/46		2.4/40	2 44/64	1 5 (1)	1 1 110	6 275		10.7
2 15/16		SFC-47	2-215	14839 66004	8 3/4 222.3	7 1/2 190.5	2 5/16 58.7	9/16 14.3	2 50.8	3 1/16 77.8	3 41/64 92.5	1 5/16 33.3	1 1/16 27.0	6.375 161.93	5/8	18.7 8.48
	75	SFC-215	5215													
3 3/16		SFC-51	2-33	17412	8 3/4	7 1/2	2 7/16	21/32	2	3 1/4	3 59/64	1 5/16	1 1/4	6.375	5/8	20.0
	80	SFC-216	5216	77449	222.3	190.5	61.9	16.7	50.8	82.6	99.6	33.3	31.8	161.93	5/0	9.07

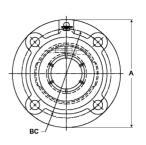
For Standard Duty Bearing Inserts-Single Lock see page G-92.

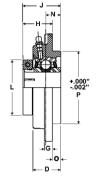
Metric dimensions for reference only.

^{*}Recommended hole size for pilot +.002" / -.000".

Duty: Standard

Rolling Elements:


Housing: Cast Iron Piloted Flange Cartridge


Self Alignment: +/- 2 Degrees

> SKWEZLOC Locking Collar Lock:

Seal:

Optional Seal: Contact Temperature: -20° to 220°F

SFC-T Series Standard Duty Piloted Flange Cartridge- SKWEZLOC Locking Collar - Inch

Bore			Basic Dynamic				Di	mension	s inch / n	nm				155377	ANNUT RESERVE
Diameter inch	Part No.	Bearing Insert No.	Rating Ib/N	A	BC	D	6	Ĥ	ä	į,	N	0	P	Bolt	Unit Wt lb/kg
1 1/8 1 3/16 1 1/4	SFC-18T SFC-19T SFC-20RT	2-12T 2-13T 1-14T	4381 19487	4 3/8 111.1	3 5/8 92.1	1 3/16 30.2	3/8 9.5	1 3/8 34.9	1 5/8 41.3	2 3/16 55.6	5/8 15.9	1/4 6.4	3.000 76.200	5/16	3.2 1.45
1 1/4	SFC-20T	2-14T	5782 25718	5 127.0	4 1/8 104.8	1 5/16 33.3	3/8 9.5	1 3/8 34.9	1 3/4 44.5	2 7/16 61.9	11/16 17.5	3/8 9.5	3.375 85.725	3/8	4.2 1.91
1 3/8 1 7/16	SFC-22T SFC-23T	2-16T 2-17T	5782 25718	5 127.0	4 1/8 104.8	1 5/16 33.3	3/8 9.5	1 3/8 34.9	1 3/4 44.5	2 9/16 65.1	11/16 17.5	3/8 9.5	3.375 85.725	3/8	4.2 1.91
1 1/2 1 9/16	SFC-24T SFC-25T	2-18T 2-19T	7340 32648	5 1/4 133.4	4 3/8 111.1	1 25/64 35.3	7/16 11.1	1 9/16 39.7	2 50.8	2 11/16 68.3	3/4 19.1	7/16 11.1	3.625 92.075	3/8	5.0 2.27
1 5/8	SFC-26T	2-110T	7901 35144	6 1/8 155.6	5 1/8 130.2	1 7/16 36.5	7/16 11.1	1 9/16 39.7	2 50.8	2 13/16 71.4	3/4 19.1	7/16 11.1	4.250 107.950	7/16	6.3 2.86
1 11/16 1 3/4	SFC-27T SFC-28T	2-111T 2-112T	7901 35144	6 1/8 155.6	5 1/8 130.2	1 7/16 36.5	7/16 11.1	1 9/16 39.7	2 50.8	2 15/16 74.6	3/4 19.1	7/16 11.1	4.250 107.950	7/16	6.3 2.86
1 15/16 2	SFC-31T SFC-32RT	2-115T 1-2T	7889 35090	6 1/8 155.6	5 1/8 130.2	1 15/32 37.3	7/16 11.1	1 5/8 41.3	2 3/32 53.2	3 3/8 85.7	3/4 19.1	15/32 11.9	4.250 107.950	7/16	7.1 3.22
2	SFC-32T	2-2T	9752 43377	6 3/8 161.9	5 3/8 136.5	1 19/32 40.5	7/16 11.1	1 5/8 41.3	2 1/4 57.2	3 1/2 88.9	7/8 22.2	5/8 15.9	4.500 114.300	7/16	8.1 3.67
2 1/8 2 3/16	SFC-34T SFC-35T	2-22T 2-23T	9752 43377	6 3/8 161.9	5 3/8 136.5	1 19/32 40.5	7/16 11.1	1 5/8 41.3	2 1/4 57.2	3 5/8 92.1	7/8 22.2	5/8 15.9	4.500 114.300	7/16	8.1 3.67
2 1/4	SFC-36T	2-24T	11789 52437	7 1/8 181.0	6 152.4	1 25/32 45.2	1/2 12.7	1 3/4 44.5	2 5/8 66.7	4 1/16 103.2	1 25.4	7/8 22.2	5.000 127.000	1/2	11.7 5.31
2 3/8 2 7/16	SFC-38T SFC-39T	2-26T 2-27T	11789 52437	7 1/8 181.0	6 152.4	1 25/32 45.2	1/2 12.7	1 3/4 44.5	2 5/8 66.7	4 1/8 104.8	1 25.4	7/8 22.2	5.000 127.000	1/2	11.7 5.31

SFC-T Series Standard Piloted Flange Cartridge - SKWEZLOC Locking Collar - Metric -SKWEZ™

Bore			Basic Dynamic				Di	mension	s mm / ir	ıch					a died
Diameter mm	Part No.	Bearing Insert No.	Rating N/lb	A	ВС	0	G	н	3	10	N	0	P	Bolt Size	Unit W.L. kg/lb
30	SFC-206TMC	5206TMC	19487 4381	111.1 4 3/8	92.1 3.625	30.2 1 3/16	9.5 3/8	34.9 1 3/8	41.3 1 5/8	55.6 2 3/16	15.9 .63	6.4 1/4	76.200 3.000	M10	1.45 3.2
35	SFC-207TMC	5207TMC	25718 5782	127.0 5	104.8 4.125	33.3 1 5/16	9.5 3/8	34.9 1 3/8	44.5 1 3/4	61.9 2 7/16	17.5 .69	9.5 3/8	85.725 3.375	M12	1.91 4.2
40	SFC-208TMC	5208TMC	32648 7340	133.4 5 1/4	111.1 4.375	35.3 1 25/64	11.1 7/16	39.7 1 9/16	50.8 2	68.3 2 11/16	19.1 .75	11.1 7/16	92.075 3.625	M12	2.27 5
45	SFC-209TMC	5209TMC	35144 7901	155.6 6 1/8	130.2 5.125	36.5 1 7/16	11.1 7/16	39.7 1 9/16	50.8 2	74.6 2 15/16	19.1 .75	11.1 7/16	107.950 4.250	M14	2.86 6.3
50	SFC-210TMC	5210TMC	35090 7889	155.6 6 1/8	130.2 5.125	37.3 1 15/32	11.1 7/16	41.3 1 5/8	53.2 2 3/32	85.7 3 3/8	19.1 .75	11.9 15/32	107.950 4.250	M14	3.22 7.1
55	SFC-211TMC	5211TMC	43377 9752	161.9 6 3/8	136.5 5.375	40.5 1 19/32	11.1 7/16	41.3 1 5/8	57.2 2 1/4	92.1 3 5/8	22.2 .88	15.9 5/8	114.300 4.500	M14	3.67 8.1
60	SFC-212TMC	5212TMC	52437 11789	181.0 7 1/8	152.4 6	45.2 1 25/32	12.7 1/2	44.5 1 3/4	66.7 2 5/8	104.8 4 1/8	25.4 1	22.2 7/8	127.000 5.000	M16	5.31 11.7

For Medium Duty SKWEZLOC Locking Collar Bearing Inserts see page G-93.

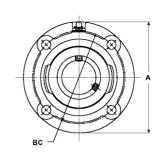
ASTER Performance Mounted Ball Bearings

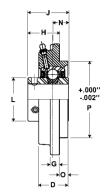
Duty: Medium

Rolling Elements: Ball

> Housing: Cast Iron Piloted Flange

> > Cartridge


Self Alignment: +/- 2 Degrees


> Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

MFC Series Medium Duty Flange Cartridge Units - Setscrew Locking

Bore Di	amatar			Basic		a.g.		Dir	nensions	inch / m	m	_			2/AV	Unit
inch	mm	Part No.	Bearing Insert No.	Dynamic Rating Ib/N	A	BC	0	ø	н	J	Ë	N	0	۵	Bolt Size	Wt. lb/kg
15/16		MFC-15	3-015													
1		MFC-16	3-1	4381 19487	4 3/8 111.1	3 5/8 92.1	1 11/64 29.8	3/8 9.5	1 5/16 33.3	1 9/16 39.7	1 19/32 40.5	5/8 15.9	1/4 6.4	3.000 76.20	5/16	3.0 1.36
.984	25	MFC-305	5305	19401	111.1	32.1	29.0	9.5	33.3	39.7	40.5	13.5	0.4	70.20		1.50
1 3/16		MFC-19	3-13													
1 1/4		MFC-20	2-14	5782 25718	5 127.0	4 1/8 104.8	1 9/32 32.5	3/8 9.5	1 5/16 33.3	1 11/16 42.9	1 55/64 47.2	11/16 17.5	3/8 9.5	3.375 85.73	3/8	3.9 1.77
1.181	30	MFC-306	5306	237 10	127.0	104.0	32.3	9.5	33.3	42.5	47.2	17.5	9.5	03.73		1.77
1 7/16		MFC-23	3-17	7340	5 1/4	4 3/8	1 25/64	7/16	1 1/2	1 15/16	2 1/16	3/4	13/32	3.625	0.10	4.7
1.378	35	MFC-307	5307	32648	133.4	111.1	35.3	11.1	38.1	49.2	52.4	19.1	10.3	92.08	3/8	2.13
1 1/2		MFCH-24	3-18	7901	6 1/8	5 1/8	1 27/64	7/16	1 1/2	1 15/16	2 19/64	3/4	13/32	4.250	7/40	6
	40	MFC-308	5308	35144	155.6	130.2	36.1	11.1	38.1	49.2	58.3	19.1	10.3	107.95	7/16	2.72
1 11/16		MFC-27	3-111													
1 3/4		MFC-28	3-112	7889 35090	6 1/8 155.6	5 1/8 130.2	1 25/64 35.3	7/16 11.1	1 9/16 39.7	2 1/32 51.6	2 15/32 62.7	3/4 19.1	7/16 11.1	4.250 107.95	7/16	6.5 2.95
	45	MFC-309	5309	33030	100.0	130.2	33.3		33.7	31.0	02.7	13.1	11.1	107.55		2.55
1 15/16		MFC-31	3-115													
2		MFC-32	2-2	9752 43377	6 3/8 161.9	5 3/8 136.5	1 19/32 40.5	7/16 11.1	1 9/16 39.7	2 3/16 55.6	2 23/32 69.1	7/8 22.2	19/32 15.1	4.500 114.30	7/16	7.5 3.40
	50	MFC-310	5310	40011	101.5	100.0	40.0		00.1	00.0	00.1	22.2	10.1	114.50		0.40
2 3/16		MFC-35	3-23													
2 1/4		MFC-36	2-24	11789 52437	7 1/8 181.0	6 152.4	1 25/32 45.2	1/2 12.7	1 11/16 42.9	2 9/16 65.1	2 63/64 75.8	1 25.4	27/32 21.4	5.000 127.00	1/2	10.5 4.76
	55	MFC-311	5311	02401	101.0	102.4	40.2	12.1	72.0	00.1	70.0	20.4	21.7	127.00		4.70
2 7/16		MFC-39	3-27													
2 1/2		MFC-40	3-28	13971 62143	7 5/8 193.7	6 1/2 165.1	2 5/32 54.8	9/16 14.3	1 3/4 44.5	2 7/8 73.0	3 7/16 87.3	1 1/16 27.0	1 3/32 27.8	5.500 139.70	1/2	14.0 6.35
	65	MFC-313	5313	02140	100.1	100.1	04.0	14.0	14.0	10.0	07.0	21.0	21.0	100.70		0.00
2 11/16		MFC-43	3-211	14839	8 3/4	7 1/2	2 9/32	9/16	2	3 1/16	3 41/64	1 5/16	1 1/32	6.375	5/8	18.7
	70	MFC-314	5314	66004	222.3	190.5	57.9	14.3	50.8	77.8	92.5	33.3	26.2	161.93	3/6	8.48
2 15/16		MFC-47	3-215													
3		MFC-48	3-3	17412 77449	8 3/4 222.3	7 1/2 190.5	2 13/32 61.1	5/8 15.9	2 50.8	3 1/4 82.6	3 59/64 99.6	1 5/16 33.3	1 7/32 31.0	6.375 161.93	5/8	20.0 9.07
	75	MFC-315	5315					. 5.0				55.0		.57.55		3.01
3 7/16		MFC-55	3-37	21566	10 1/4	8 5/8	2 23/32	3/4	2 21/32	3 25/32	4 25/64	1 9/16	1 3/32	7.375	3/4	32.0
3 1/2		MFC-56	2-38	95926	260.4	219.1	69.1	19.1	67.5	96.0	111.5	39.7	27.8	187.33	3/4	14.51
3 15/16		MFC-63	3-315													
4		MFC-64	3-4	29905 133017	10 7/8 276.2	9 3/8 238.1	3 7/32 81.8	7/8 22.2	3 1/2 88.9	4 5/8 117.5	5 11/64 131.4	1 15/16 49.2	1 3/32 27.8	8.125 206.38	3/4	44.0 19.96
	100	MFC-320	5320	100011	210.2		01.0		55.5		1017	10.2				

For Medium Duty Bearing Inserts-Single Lock see page G-95.

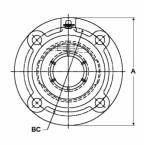
Metric dimensions for reference only.

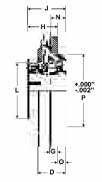
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

^{*}Recommended hole size for pilot 15/16 to 3 1/2 +.000" / -.002" and 3 15/16 to 4 +.000" / -.004".

Medium **Duty:**

Rolling Elements: Ball


> Cast Iron Piloted Flange Cartridge Housing:


Self Alignment: +/- 2 Degrees

> Lock: SKWEZLOC Locking Collar

Seal:

Optional Seal: Contact Temperature: -20° to 220°F

MFC-T Series Medium Duty Flange Cartridge Units - SKWEZLOC Locking Collar

Carre		_	Baroks				D	mar ding	n I Van de	100					
Dia note:	Pallw.	Realignii Dissell Mic	Review Delvi	72		9		100	(30)	ill man	111	8		Feil Sia	Livin
	MESON	32 H	451 967	1.00	315W 92	1348H 33,3	3.0 5.0	1 1W 34.0	1 177. 41.3	971/1M 12.5	195 16.6	64 64	7041. 7042	544	1.45
1 3/16 1 1/4	MFC-19T MFC-20T	3-13T 2-14T	5782 25718	5 127.0	4 1/8 104.8	1 9/32 32.5	3/8 9.5	1 3/8 34.9	1 3/4 44.5	2 7/16 61.9	11/16 17.5	3/8 9.5	3.375 85.73	3/8	4 2 1.91
	MATORI MATORI	3(1/1) 3(18)	tijo. carae	3.17 '22.1	- 830 - 131	lanta en.a	11.7	10, + 30,7	i i	28.5 240.5	77) 210.1	/00C	tth!- tteas	23)	7, 1 20,000
1 1/2	MFCH-24T	3-18T	7901 35144	6 1/8 155.6	5 1/8 130.2	1 7/16 36.5	7/16 11.1	1 9/16 39.7	2 50.8	2 13/16 71.4	3/4 19.1	7/16 11.1	4.250 107.95	7/16	6 3 2.86
1/16 3V	KHI 277 Khizani	3::HIT 3::HIP1	7(85) (*1846	616	3-136 1111	27.64	77.5 11.1	50	0.070	7.14	3M 60.1	1582 179	4.2% 0±16	(20)	7. = 55
1 15/16 2	MFC-31T MFC-32T	3-115T 2-2T	9752 43377	6 3/8 161.9	5 3/8 136.5	1 5/8 41.3	7/16 11.1	1 5/8 41.3	2 1/4 57.2	3 1/2 88.9	27/32 21.4	5/8 15.9	4.500 114.30	7/16	8 ₁ 1 3.67
2309 274	NEG-267 REG-211	5-297 2-247	11.780 58437	7 65 24,0	TEX	12292 41.2	127	-35 43 ti	1128 957	43/18 103/2	204	36	660c 1250	22	±0.7 ± 21

For Medium Duty SKWEZLOC Locking Collar Bearing inserts see page G-96. *Recommended hole size for pilot +.000" / -.002".

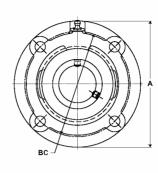
EALMASTER Performance Mounted Ball Bearings

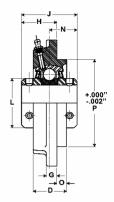
Duty: Medium

Rolling Elements: Ball

> Housing: Cast Iron Piloted Flange

> > Cartridge


Self Alignment: +/- 2 Degrees


> Lock: **Double Setscrew**

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

MFCD Series Medium Duty Flange Cartridge Units With Double Lock - Setscrew Locking

			,	J		J									J
drafe			Sante:				Din	manatoria i	och i mi	***					
(ne)	9993846	Blating hear/kin	Dynamic Factory IdN	6	₽:	(10)	0	E.	100	1	X	0	Pri.	製	Urac Wil
3	negatie	san	10437	7 Tal	1:30-1 1:20-1	1163V 2938	0.7	LNIR 22 i	11. 25.	1 (952) 40.6	11713 1277	6.4	241.0 75.20	3435	8.8
1 3/16 1 1/4	MFCD-19 MFCD-20	3-13 2-14	5782 25718	5 127.0	4 1/8 104.8	1 9/32 32.5	3/8 9 5	1 5/16 33.3	2 50.8	1 55/64 47.2	11/16 17.5	3/8 9.5	3.375 85.73	3/8	3 9 1 8
1.2216	9FCB-28 9FCB-28	372	75-0 2004:	0.1/4 - 2.1	+ 5/5 1/***	1,2504 550	7,10 p.+	1.1Q 26.1	10/€ N/	2195	54 (91	19/30 10/3	8,625 43/36	-30	4. 23
1 11/16 1 3/4	MFCD-27 MFCD-28	3-111 3-112	7889 35090	6 1/8 155.6	5 1/8 130.2	1 25/64 35.3	7/16 11.1	1 9/16 39.7	2 1/2 63.5	2 15/32 62.7	23/32 18.3	7/16 11.1	4.250 107.95	7/16	6 5 3 0
11212	10.00A81 1000000	5-1m ≥±	19750) 17077	9135 24.2	9.835 .957	1 1022	128	1 (A) 181 232 T	2,64 66.7	9 20092 65	29.00 24.4	1998 1674	8.529 115.30	246	8st 303
2 3/16 2 1/4	MFCD-35 MFCD-36	3-23 2-24	11789 52437	7 1/8 181.0	6 152.4	1 25/32 45.2	1/2 12.7	1 11/16 42.9	3 1/8 79.4	3 1/8 79	31/32 24.6	27/32 21.4	5.000 127.00	1/2	10.4 4 7
2 1 16 2 19	945646	3.97 878	15671 52743	250 233	36.15E	9 11.67 64.8	19.2	1 (5) E. 44(1)	31 T.2 88.0	271m 873f	1802	353 25-8	* 430 381.71	-W	143 fin
2 11/16	MFCD-43	3-211	14839 66004	8 3/4 222.3	7 1/2 190.5	2 9/32 57.9	9/16 14.3	2 50.8	3 1/2 88.9	3 41/64 92.5	1 9/32 32.5	1 1/32 26.2	6.375 161.93	5/8	18.9 8 6
1.70	9FCD 47	7-9 # 3-31	17412 7144	0.34	713 2009	345/32 60	55 155	2	3 7.0 945	7.00-64 94.7	1 7度	11 7,79.2 10 10	7.375 801-01	.Wi	2013* 3.5
3 7/16 3 1/2	MFCD-55 MFCD-56	3-37 2-38	21566 95926	10 1/4 260.4	8 5/8 219.1	2 23/32 69.1	3/4 19.1	2 21/32 67.5	4 7/16 112.7	4 25/64 111.5	2 7/32 56.4	1 3/32 27.8	7.375 187.33	3/4	32.8 14.9
100	ALCO CI	3-8-5 3-4	297.3	10 245 376 2	938 2753	3.2652 0.70	7,5	5 to 5	638 1765	6713H 1274	2 tive 1027	1 223 d 27 0	5.125 201.01	24	2019 2019

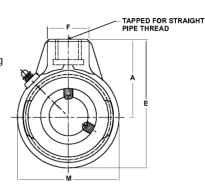
For Medium Duty Bearing Inserts-Single Lock see page G-95.

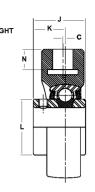
*Recommended hole size for pilot 15/16 to 3 1/2 +.000" / -.002" and 3 15/16 to 4 +.000" / -.004".

Duty: Varies

Rolling Elements: Ball

Housing: Ductile Iron Hanger Bearing


Self Alignment: +/- 2 Degrees


Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

SEHB Series Hanger Bearing External Lube - Setscrew Locking

Bore Dia	ameter		Bearing	Basic				Dimension			CITICI			N	CKITIS
inch	mm	Part No.	Insert No.	Dynamic Rating Ib/N	A	C)	售	#	J	K	(4)	M	NEW Y	Thread Length	Unit Wt. lb/kg
15/16		SEHB-15	3-015												
	25	SEHB-305	5305				l <u>.</u>								
1		SEHB-16	3-1	4381 19487	2 1/2 63.5	-	4 1/16 103.2	1 9/16 39.7	1 1/2 38.1	7/8 22.2	1 19/32 40.5	3 1/8 79.4	3/4-14	13/16	2.2 1.00
1 1/16		SEHB-17	2-11	10 101	00.0		100.2	00.1	00.1		10.0	10.1			1.00
	30	SEHB-206	5206												
1 3/16		SEHB-19	3-13												
1 1/4		SEHB-20	2-14	F700	0.044		4040	4.0/40			4 55 10 4	0.5/0			0.4
1 5/16		SEHB-21	2-15	5782 25718	2 3/4 69.9	-	4 9/16 115.9	1 9/16 39.7	1 11/16 42.9	1 25.4	1 55/64 47.2	3 5/8 92.1	3/4-14	3/4	3.1 1.41
1 3/8		SEHB-22	2-16	201.10	00.0		110.0	00.1	12.0	20.1		02.1			
	35	SEHB-207	5207												
1 7/16		SEHB-23	3-17												
1 1/2		SEHB-24	2-18	7340	2 7/8	3/32	4 3/4	1 9/16	1 15/16	1 3/16	2 1/16	3 3/4	3/4-14	3/4	3.4
1 9/16		SEHB-25	2-19	32648	73.0	2.4	120.7	39.7	49.2	30.2	52.4	95.3	3/4-14	3/4	1.54
	40	SEHB-208	5208												
1 11/16		SEHB-27	3-111												
1 3/4		SEHB-28	3-112												
1 7/8		SEHB-30	2-114	7889	3 1/4	3/16	5 7/16	1 7/8	2 1/32	1 9/32	2 15/32	4 3/8	1-11 1/2	13/16	4.5
1 15/16		SEHB-31	2-115	35090	82.6	4.8	138.1	47.6	51.6	32.5	62.7	111.1	1-11 1/2	15/10	2.04
2		SEHB-32R	1-2												
	50	SEHB-210	5210												
2 3/16		SEHB-35	3-23												
2 1/4		SEHB-36	2-24	44700		44/00	0.40/40	0.540	0.040	4.0/40	0.00/04	F F (0			0
2 3/8		SEHB-38	2-26	11789 52437	4 101.6	11/32 8.7	6 13/16 173.0	2 5/16 58.7	2 9/16 65.1	1 9/16 39.7	2 63/64 75.8	5 5/8 142.9	1 1/4-11 1/2	1 1/8	9 4.08
2 7/16		SEHB-39	2-27												
	60	SEHB-212	5212												
2 11/16		SEHB-43	3-211												
2 7/8		SEHB-46	2-214	14839	4 5/8	3/8	7 7/8	2 3/4	3 1/16	1 3/4	3 41/64	6 1/2	1 1/2-11 1/2	1 1/4	14.6
2 15/16		SEHB-47	2-215	66004	117.5	9.5	200.0	69.9	77.8	44.5	92.5	165.1	1 1/2-11 1/2	' '/-	6.62
	75	SEHB-215	5215												
3		SEHB-48	3-3	17412	4 7/8	EMC	8 5/16	2 13/16	3 1/4	4.45/4.0	2.50/04	C 7/0			40.0
3 3/16		SEHB-51	2-33	77449	4 7/8 123.8	5/16 7.9	211.1	71.4	82.6	1 15/16 49.2	3 59/64 99.6	6 7/8 174.6	1 1/2-11 1/2	1 1/4	16.8 7.62
	80	SEHB-216	5216												
3 15/16		SEHB-63	3-315	29905	8 1/8		13 1/4	4 3/8	4 5/8	2 11/16	5 11/64	10 1/4			62
4		SEHB-64	3-4	133017	206.4		336.6	4 3/8 111.1	117.5	68.3	131.4	260.4	2 1/2-8 1/2	2 5/8	62 28.12
	100	SEHB-320	5320												

For Standard (2-) Duty Bearing Inserts-Double Lock see page G-95. For Medium (3-) Duty Bearing Inserts-Double Lock see page G-97.

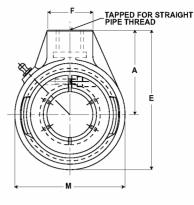
*Use Straight Pipe Thread.

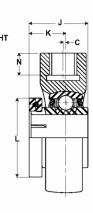
Note: Units may be provided with tight internal bearing clearance and housing fits by adding suffix BDZ to Part No., as SEHB-19 BDZ.

Bearing Selection Page G-3 Nomenclature Aid Page G-18 Features & Benefits Page G-21 Product Options Page G-23 Technical Engineering Page G-220

Duty: Varies

Rolling Elements: Ball


> Housing: Ductile Iron Hanger Bearing


Self Alignment: +/- 2 Degrees

> Lock: SKWEZLOC Locking Collar

Seal:

Optional Seal: Contact -20° to 220°F Temperature:

SEHB-T Series Hanger Bearing External Lube - SKWEZLOC Locking Collar

1				Back			, o	limente Ab	Kilma Line	W.I	9			(8)	
(Seriel Inc 166	tren	Average.	housel ku.	Hemorriz Rolling Hally	Ą	3	in.	E	4	95	1	Ņ	路器	Triend Lumpin	Anilland
5-f) 	3	75 00 040 SEHE 000T BEHB 16T BEHB 17T	7705 5705 3417 3417	ded (e.d.	On the second		100 -1 100 -1	gree Sa	(34) (34)	200	2,615 253	S.fab ele:	## 1547	THE A	20 300
1 3/16 1 1/4		SEHB-19T SEHB-20 T	3-13T 2-14T	5782 25718	2 3/4 69.9	ig.	4 9/16 115.9	1 9/16 39.7	1 3/4 44.5	1 1/16 27.0	2 7/16 61.9	3 5/8 92.1	3/4-14	3/4	3 1 1.41
1.7/15 	74 1	BEHE SOT BEHEN SOL	3-7T Bidl aca	7885 (2881)	173 716	3,82	124 Dit	or E	2°	1.18 31.0	2 - A0 47 1	354 865	24.14	4	84 55d
1 11/16 1 3/4 1 7/8 1 15/16 2	50	SEHB-27T SEHB-28T SEHB-30T SEHB-31T SEHB-32T SEHB-210T	3-111T 3-112T 2-114T 2-115T 1-2T 5210T	7889 35090	3 1/4 82.6	3/16 4.8	5 7/16 138.1	1 7/8 47.6	2 3/32 53.2	1 11/32 34.1	3 1/4 82.6	4 3/8 111.1	1-11 1/2	13/16	4 5 2.04
para		11 10 951	3.20	11/189 72497	10.0	11,000 2,7	178.0	1010 201	59 953	150 313	109.2	5-5-1 42.1	154.91	í ju	4.00
2 7/16	60	SEHB-39T SEHB-212T	2-27T 5212T	11789 52437	4 101.6	11/32 8.7	6 13/16 173.0	2 5/16 58.7	2 5/8 66.7	1 5/8 41.3	4 1/8 104.8	5 5/8 142.9	1 1/4-11 1/2	1 1/8	9 4.08

For Standard (2-)Duty Bearing Inserts - SKWELOC Locking Collar see page G-94. For Medium (3-) Duty Bearing Inserts - SKWELOC Locking Collar see page G-95. *Use Straight Pipe Thread.

Note: Units may be provided with tight internal bearing clearance and housing fits by adding suffix BDZ to Part No., as SEHB-19T BDZ.

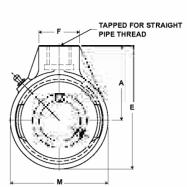
Metric dimensions for reference only.

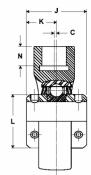
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

Duty: Varies

Rolling Elements: Bal

Housing: Ductile Iron Hanger Bearing


Self Alignment: +/- 2 Degrees


Lock: Double Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

SEHBD Series Hanger Bearing External Lube - Double Set Screw Locking

: Examp		Stature	Bakk				District At	ellek (1 m					30	tuiti
Prometer 1-25	LINGS HE.	No.	Damurje Ralitoj 10.79	-41		neil	Ţ	a	7.5	212	/	Trans.	Thread Langua	Unit Onto 10-100
ï	92HB0-15	5-10	4.±1 1= 4.	29m-	12	# 4/16 1017.1	THE STATE	147 +d n	20 T	11591) lig	14.44	15/16	33 till
1 3/16 1 1/4	SEHBD-19 SEHBD-20	3-13D 2-14D	5782 25718	2 3/4 69.9		4 9/16 115.9	1 9/16 39.7	2 50.8	1 25.4	1 55/64 47.2	3 5/8 92.1	3/4-14	3/4	3 1 1.41
1.72	A HATEL	31.57E 11.17E	19441 19441	w.∞ :697	1800A V	1.54 1967	3016 70 y	entra Pali-4	1,000 2639	2000 -20	2.27d 95°	39/6	39	3 54 5 54
1 11/16 1 7/8 1 15/16	SEHBD-27 SEHBD-30 SEHBD-31	3-111D 2-114D 2-115D	7889 35090	3 1/4 82.6	3/16 4 8	5 7/16 138.1	1 7/8 47 6	2 1/2 63.5	1 1/4 31 8	2 15/32 62.7	4 3/8 111.1	1-11 1/2	13/16	4 5 2.04
1.66- 170:1	7/11/11# 83/80-16	3-20 3-22	11/161 13-97	0 000 1575	28.0	149.2	Kara unio	314.6 T0.4	6 # 71 93.7	#2000 #8.4	125.8	SHOW	259901	а 4 ОП
2 11/16 2 15/16	SEHBD-43 SEHBD-47	3-211D 2-215D	13971 62143	4 5/8 117.5	3/8 9.5	7 7/8 200.0	2 3/4 69.9	3 1/2 88.9	3 1/2 88.9	3 41/64 92.5	6 1/2 165.1	1 1/2-11 1/2	1 1/4	14.6 6.62
5.4836 ±	38H50 97 88H50 94	32003 345	(7664) 198217	0.04 2014	==	1211/H 33000	4.4	6 37. 305	0 On 130 B	10 a	9 M 2004	7 1: 5 P.	260	:53 25.41

For Standard (2-)Duty Bearing Inserts-Double Lock see page G-94. For Medium (3-) Duty Bearing Inserts-Double Lock see page G-97. *Use Straight Pipe Thread.

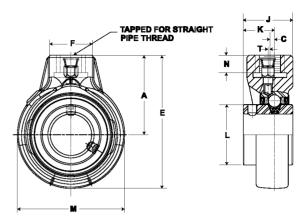
Note: Units may be provided with tight internal and housing fits by adding suffix BDZ to Part No., as SEHBD-19 BDZ.

SEALMASTER® Performance Mounted Ball Bearings

Duty: Varies

Rolling Elements: Ball

> Housing: Ductile Iron Hanger Bearing


Self Alignment: +/- 2 Degrees

> Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

SCHB Series Hanger Bearing Internal Lube - Setscrew Locking

Bore Di	ameter		Bearing	Basic			D	imensions	s inch / m	m			Pipe	N	T Brg.	and or story
inch	mm	Part Nu.	Insert No.	Dynam C Rating Ib/N	A	C	E	F	9	(K	L	M	Tap* N.P.S.M.	Threac Length	To Lub. Ftg. Centers	Unit Wt. lb/kg
15/16		SCHB-15	3-015											-		
	25	SCHB-305	5305													
1		SCHB-16	3-1	4381 19487	2 1/2 63.5	-	4 1/16 103.2	1 9/16 39.7	1 1/2 38.1	7/8 22.2	1 19/32 40.5	3 1/8 79.4	3/4 - 14	13/16 0.37	♦ 7/32 0.10	2.2 1.00
1 1/16		SCHB-18	2-12	13401	03.5		103.2	39.1	30.1	22.2	40.5	13.4		0.57	0.10	1.00
	30	SCHB-206	5206													
1 3/16		SCHB-19	3-13													
1 1/4		SCHB-20	2-14													
1 5/16		SCHB-21	2-15	5782 25718	2 3/4 69.9	-	4 9/16 115.9	1 9/16 39.7	1 11/16 42.9	1 25.4	1 55/64 47.2	3 5/8 92.1	3/4 - 14	3/4 0.34	♦ 1/4 0.11	3.1 1.41
1 3/8		SCHB-22	2-16	257 10	00.0		110.0	55.1	72.5	20.4	71.2	52.1		0.54	0.11	''
	35	SCHB-207	5207													
1 7/16		SCHB-23	3-17													
1 1/2		SCHB-24	2-18	7340	2 7/8	3/32	4 3/4	1 9/16	1 15/16	1 3/16	2 1/16	3 3/4	3/4 - 14	3/4	♦ 19/64	3.4
1 9/16		SCHB-25	2-19	32648	73.0	2.4	120.7	39.7	49.2	30.2	52.4	95.3	3/4 - 14	0.34	0.13	1.54
	40	SCHB-208	5208													
1 11/16		SCHB-27	3-111													
1 3/4		SCHB-28	3-112													
1 7/8		SCHB-30	2-114	7889	3 1/4	3/16	5 7/16	1 7/8	2 1/32	1 9/32	2 15/32	4 3/8	1 - 11	13/16	17/64	4.5
1 15/16		SCHB-31	2-115	35090	82.6	4.8	138.1	47.6	51.6	32.5	62.7	111.1	1/2	0.37	0.12	2.04
2		SCHB-32R	1-2													
	50	SCHB-210	5210													
2 3/16		SCHB-35	3-23													
2 1/4		SCHB-36	2-24	11789	4	11/32	6 42/46	2 5/16	2 9/16	1 9/16	2 63/64	5 5/8	1 1/4 -	1 1/8	21/64	9.0
2 3/8		SCHB-38	2-26	52437	4 101.6	8.7	6 13/16 173.0	2 5/16 58.7	65.1	39.7	75.8	142.9	11 1/4 -	0.51	0.15	4.08
2 7/16		SCHB-39	2-27													
	60	SCHB-212	5212													
2 11/16		SCHB-43	3-211													
2 7/8		SCHB-46	2-214	14839	4 5/8	3/8	7 7/8	2 3/4	3 1/16	1 3/4	3 41/64	6 1/2	1 1/2 -	1 1/4	3/8	14.6
2 15/16		SCHB-47	2-215	66004	117.5	9.5	200.0	69.9	77.8	44.5	92.5	165.1	11 1/2	0.57	0.17	6.62
	75	SCHB-215	5215													
3 3/16		SCHB-51	2-33	17412	4 7/8	5/16	8 5/16	2 13/16	3 1/4	1 15/16	3 59/64	6 7/8	1 1/2 -	1 1/4	13/32	16.8
	80	SCHB-216	5216	77449	123.8	7.9	211.1	71.4	82.6	49.2	99.6	174.6	11 1/2	0.57	0.18	7.62
3 15/16		SCHB-63	3-315	29905	8 1/8		13 1/4	4 3/8	4 5/8	2 11/16	5 11/64	10 1/4	2 1/2 -	2 5/8	19/32	62
4		SCHB-64	3-4	133017	206.4		336.6	111.1	117.5	68.3	131.4	260.4	8 1/2	1.19	0.27	28.12
	100	SCHB-320	5320													

For Standard Duty Bearing inserts-Single Lock see page G-92.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

[♦] No Adapter or Fitting

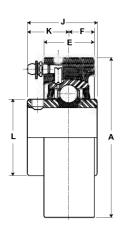
^{*}Use Straight Pipe Thread

Duty: Standard

Rolling Elements: Ball

Housing: Cast Iron Cylindrical

Cartridge


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

SC Series Standard Duty Cartridge Units - Setscrew Locking

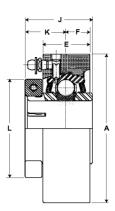
Bore Di	iamotor		80 000	Basic Dynamic			Dimension	s inch / mm			Statement I
-	ameter	Part No.	Bearing Insert No.	Rating	A	E	(F	b)	IL.	K	Unit Wt. Ib/kg
inch	mm		100000000000000000000000000000000000000	lb/N	±.001"	9	8	×.	(8)	200	
1/2		SC-8	2-08								
9/16		SC-9	2-09	2611	2.688	7/8	1/2	1 7/32	1 3/16	23/32	1.1
5/8 11/16		SC-10 SC-11	2-010 2-011	11614	68.26	22.2	12.7	31.0	30.2	18.3	0.50
3/4		SC-11	2-011	2611	2.938	7/8	1/2	1 7/32	1 3/16	23/32	1.4
3/4	20	SC-204	5204	11614	74.61	22.2	12.7	31.0	30.2	18.3	.63
13/16		SC-13	2-013	11011			12.1	01.0	00.2	10.0	
7/8		SC-14	2-014	0004	0.405	4.4/00	0/40	4.0/0	4.0/0	40/40	4.0
15/16		SC-15	2-015	2801 12459	3.125 79.38	1 1/32 26.2	9/16 14.3	1 3/8 34.9	1 3/8 34.9	13/16 20.6	1.9 0.86
1		SC-16	2-1	12459	19.30	20.2	14.5	34.9	34.9	20.0	0.00
	25	SC-205	5205								
1 1/16		SC-17	2-11								
1 1/8		SC-18	2-12	4381	3.500	1 3/32	5/8	1 1/2	1 19/32	7/8	2.5
1 3/16 1 1/4		SC-19 SC-20R	2-13 1-14	19487	88.90	27.8	15.9	38.1	40.5	22.2	1.13
1 1/4	30	SC-20R SC-206	5206								
1 1/4	30	SC-200	2-14								
1 5/16		SC-21	2-15								
1 3/8		SC-22	2-16	5782	3.875 98.43	1 7/32 31.0	11/16	1 11/16 42.9	1 55/64 47.2	1 1	3.2
1 7/16		SC-23	2-17	25718	98.43	31.0	17.5	42.9	47.2	25.4	1.45
	35	SC-207	5207								
1 1/2		SC-24	2-18	7340	A 188	1 15/32	3/4	1 15/16	2 1/16	1 3/16	4.1
1 9/16		SC-25	2-19	32648	4.188 106.36	37.3	19.1	49.2	52.4	30.2	1.86
4.5.00	40	SC-208	5208								
1 5/8 1 11/16		SC-26 SC-27	2-110 2-111	7901	4.375	1 7/16	3/4	1 15/16	2 19/64	1 3/16	4.5
1 3/4		SC-28	2-111	35144	111.13	36.5	19.1	49.2	58.3	30.2	2.04
1 3/4	45	SC-209	5209	33144	111.10	30.5	15.1	40.2	30.5	30.2	2.04
1 13/16		SC-29	2-113								
1 7/8		SC-30	2-114								
1 15/16		SC-31	2-115	7889	4.563	1 15/32	3/4	2 1/32	2 15/32	1 9/32	4.9
2		SC-32R	1-2	35090	115.89	37.3	19.1	51.6	62.7	32.5	2.22
	50	SC-210	5210								
2		SC-32	2-2	0750	4.020	4.40/20	7.0	2.2/40	0.00/00	4.5/40	F 0
2 1/8 2 3/16		SC-34 SC-35	2-22 2-23	9752 43377	4.938 125.41	1 19/32	7/8 22.2	2 3/16 55.6	2 23/32 69.1	1 5/16 33.3	5.8 2.63
2 3/10	55	SC-35 SC-211	5211	45311	123.41	40.5	22.2	33.6	69.1	33.3	2.03
2 1/4	55	SC-36	2-24								
2 3/8		SC-38	2-24	11789	5.875	1 5/8	1	2 9/16	2 63/64	1 9/16	9.0
2 7/16		SC-39	2-27	52437	149.23	41.3	25.4	65.1	75.8	39.7	4.08
	60	SC-212	5212								
2 1/2		SC-40	3-28	13971	6.250	2	1 1/16	2 3/4	3 7/16	1 11/16	12.6
2 11/16		SC-43	2-211	62143	158.75	50.8	27.0	69.9	87.3	42.9	5.72
	70	SC-214	5214	02110	100.10	00.0	2	00.0	0,.0	.2.0	5.1.2
27/8		SC-46	2-214	14839	6.625	2	1 5/16	3 1/16	3 21/32	1 3/4	13.5
2 15/16	75	SC-47	2- 215	66004	6.625 168.28	50.8	33.3	77.8	92.9	44.5	6.12
	75	SC-215	5215								

For Standard Duty Bearing Inserts-Single Lock see page G-92. For Housing fit guidelines see page G-261.

Bearing Selection Page G-3 Nomenclature Aid Page G-18 Features & Benefits Page G-21 Product Options Page G-23 Technical Engineering Page G-220

Duty: Standard

Rolling Elements: Ball


> Housing: Cast Iron Cylindrical Cartridge

Self Alignment: Consult Application Engineering*

> Lock: SKWEZLOC Locking Collar

Seal:

Optional Seal: Contact -20° to 220°F Temperature:

SC-T Series Standard Duty Cartridge Units - SKWEZLOC Locking Collar - Inch

Bore		1	Basic		Dimensions inch / mm										
Diameter	Part No.	Bearing	Dynamic	A		-16-5	191	1000	ar.	Unit Wt.					
inch	T dittio.	Insert No.	Rating lb/N	±.001"	E		, i	K	L	lb/kg					
15/16 1	SC-15T* SC-16T*	2-015T 2-1T	2801 12459	3 1/8 79.38	1 1/32 26.2	9/16 14.3	1 7/16 36.5	7/8 22.2	1 15/16 49.2	1.9 .86					
1 1/8 1 3/16 1 1/4	SC-18T* SC-19T* SC-20RT*	2-12T 2-13T 1-14T	4381 19487	3 1/2 88.90	1 3/32 27.8	9/16 14.3	1 9/16 39.7	15/16 23.8	2 3/16 55.6	2.5 1.13					
1 1/4	SC-20T	2-14T	5782 25718	3 7/8 98.43	1 7/32 31.0	5/8 15.9	1 3/4 44.5	1 1/16 27.0	2 7/16 61.9	3.3 1.47					
1 3/8 1 7/16	SC-22T SC-23T	2-16T 2-17T	5782 25718	3 7/8 98.43	1 7/32 31.0	5/8 15.9	1 3/4 44.5	1 1/16 27.0	2 9/16 65.1	3.2 1.45					
1 1/2 1 9/16	SC-24T SC-25T	2-18T 2-19T	7340 32648	4 3/16 106.36	1 15/32 37.3	3/4 19.1	2 50.8	1 1/4 31.8	2 11/16 68.3	4.1 1.86					
1 5/8	SC-26T	2-110T	7901 35144	4 3/8 111.13	1 7/16 36.5	23/32 18.3	2 50.8	1 1/4 31.8	2 13/16 71.4	4.6 2.09					
1 11/16 1 3/4	SC-27T SC-28T	2-111T 2-112T	7901 35144	4 3/8 111.13	1 7/16 36.5	23/32 18.3	2 50.8	1 1/4 31.8	2 15/16 74.6	4.5 2.04					
1 15/16	SC-31T	2-115T	7889 35090	4 9/16 115.89	1 15/32 37.3	3/4 19.1	2 3/32 53.2	1 11/32 34.1	3 3/8 85.7	4.9 2.22					
2	SC-32T	2-2T	9752 43377	4 15/16 125.41	1 19/32 40.5	27/32 21.4	2 1/4 57.2	1 3/8 34.9	3 1/2 88.9	5.8 2.63					
2 1/8 2 3/16	SC-34T SC-35T	2-22T 2-23T	9752 43377	4 15/16 125.41	1 19/32 40.5	27/32 21.4	2 1/4 57.2	1 3/8 34.9	3 5/8 92.1	5.8 2.63					
2 1/4	SC-36T	2-24T	11789 52437	5 7/8 149.23	1 5/8 41.3	13/16 20.6	2 5/8 66.7	1 5/8 41.3	4 1/16 103.2	9.0 4.08					
2 3/8 2 7/16	SC-38T SC-39T	2-26T 2-27T	11789 52437	5 7/8 149.23	1 5/8 41.3	13/16 20.6	2 5/8 66.7	1 5/8 41.3	4 1/8 104.8	9.0 4.08					

SC-T Series Standard Cartridge Units - SKWEZLOC Locking Collar - Metric - SKWEZ™

Bore	-		Basic Dynamic			Dimension	s mm / inch				
Diameter	Part No.	Bearing		(A)						Gmit Wit.	
mm	Turtio.	Insert No.	Rating lb/N	±₀0025 mm	Е	F	<u>, , , , , , , , , , , , , , , , , , , </u>	K		lhikg	
25	SC-205TMC*	5205TMC	12459 2801	79.38 3 1/8	26.2 1 1/32	14.3 9/16	36.5 1 7/16	22.2 7/8	49.2 1 15/16	.86 1.9	
30	SC-206TMC*	5206TMC	19487 4381	88.90 3 1/2	27.8 1 3/32	14.3 9/16	39.7 1 9/16	23.8 15/16	55.6 2 3/16	1.13 2.5	
35	SC-207TMC	5207TMC	25718 5782	98.43 3 7/8	31.0 1 7/32	15.9 5/8	44.5 1 3/4	27.0 1 1/16	65.1 2 9/16	1.45 3.2	
40	SC-208TMC	5208TMC	32648 7340	106.36 4 3/16	37.3 1 15/32	19.1 3/4	50.8 2	31.8 1 1/4	68.3 2 11/16	1.86 4.1	
45	SC-209TMC	5209TMC	35144 7901	111.13 4 3/8	36.5 1 7/16	18.3 23/32	50.8 2	31.8 1 1/4	74.6 2 15/16	2.04 4.5	
50	SC-210TMC	5210TMC	35090 7889	115.89 4 9/16	37.3 1 15/32	19.1 3/4	53.2 2 3/32	34.1 1 11/32	85.7 3 3/8	2.22 4.9	
55	SC-211TMC	5211TMC	43377 9752	125.41 4 15/16	40.5 1 19/32	21.4 27/32	57.2 2 1/4	34.9 1 3/8	92.1 3 5/8	2.63 5.8	
60	SC-212TMC	5212TMC	52437 11789	149.23 5 7/8	41.3 1 5/8	20.6 13/16	66.7 2 5/8	41.3 1 5/8	104.8 4 1/8	4.08 9.0	

*Reversed Inner Ring; Misalignment Capability ± 1 1/2° For standard Duty SKWEZLOC Bearing inserts see page G-93

For Housing fit guidelines see page G-261.

Metric dimensions for reference only.

Bearing Selection Page G-3

Nomenclature Aid Page G-18

Features & Benefits Page G-21

Product Options Page G-23

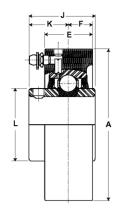
Technical Engineering Page G-220

Duty: Medium

Rolling Elements: Ball

Housing: Cast Iron Cylindrical

Cartridge


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

MSC Series Medium Duty Cartridge Units - Setscrew Locking

Boro D	iameter			Basic	110		Dimension	s inch / mm			500000
_	_	Part No.	Bearing Insert	Dynamic Rating	A	E	F	15	к	IL.	Unit Wt.
inch	mm		1100	lb/N	±1001"	127	M	,	0.00	1000	
15/16		MSC-15	3-015	4004	2 500	4.0/00	0/40	4.4/0	7/0	4.40/22	0.5
1		MSC-16	3-1	4381 19487	3.500 88.90	1 3/32 27.8	9/16 14.3	1 1/2 38.1	7/8 22.2	1 19/32 40.5	2.5 1.13
	25	MSC-305	5305	10 101	00.00	21.0	, ,,,	30.1	22.2	10.0	1.10
1 3/16		MSC-19	3-13	F700	0.075	4.7/00	F/0	4.44/40	4	4 55 (0.4	2.0
1 1/4		MSC-20	2-14	5782 25718	3.875 98.43	1 7/32 31.0	5/8 15.9	1 11/16 42.9	1 25.4	1 55/64 47.2	3.2 1.45
	30	MSC-306	5306	20110	00.10	01.0	10.0	12.0	20.1		1.10
1 3/8		MSC-22	3-16	70.40	4.400	4.45/00	0/4	4.45440	4.0440	0.440	
1 7/16		MSC-23	3-17	7340 32648	4.188 106.36	1 15/32 37.3	3/4 19.1	1 15/16 49.2	1 3/16 30.2	2 1/16 52.4	4.1 1.86
	35	MSC-307	5307	02040	100.50	01.0	10.1	40.2	00.2	02.4	1.00
1 1/2		MSC-24	3-18	7901	4.375	1 7/16	23/32	1 15/16	1 3/16	2 19/64	4.5
	40	MSC-308	5308	35144	111.13	36.5	18.3	49.2	30.2	58.3	2.04
1 11/16		MSC-27	3-111	7000				0.4400	4.0/00	2.45/22	
1 3/4		MSC-28	3-112	7889 35090	4.563 115.89	1 15/32 37.3	3/4 19.1	2 1/32 51.6	1 9/32 32.5	2 15/32 62.7	4.9 2.22
	45	MSC-309	5309	33030	110.00	01.0	10.1	01.0	02.0	02.1	2.22
1 15/16		MSC-31	3-115								
2		MSC-32	2-2	9752 43377	4.938 125.41	1 19/32 40.5	51/64 20.2	2 3/16 55.6	1 5/16 33.3	2 23/32 69.1	5.8 2.63
	50	MSC-310	5310	45577	125.41	40.5	20.2	33.0	33.3	09.1	2.03
2 3/16		MSC-35	3-23								
2 1/4		MSC-36	2-24	11789 52437	5.875 149.23	1 5/8 41.3	13/16 20.6	2 9/16 65.1	1 9/16 39.7	2 63/64 75.8	9.5 4.31
	55	MSC-311	5311	02401	145.25	41.5	20.0	00.1	33.7	7 5.0	4.51
2 7/16		MSC-39	3-27			_					
2 1/2		MSC-40	3-28	13971 62143	6.250 158.75	2 50.8	1 25.4	2 3/4 69.9	1 11/16 42.9	3 7/16 87.3	12.6 5.72
	65	MSC-313	5313	02143	130.73	30.0	25.4	05.5	42.5	07.5	5.72
2 11/16		MSC-43	3-211			_					
2 3/4		MSC-44	3-212	14839 66004	6.625 168.28	2 50.8	1 25.4	3 1/16 77.8	1 3/4 44.5	3 21/32 9 2 .9	14.1 6.40
	70	MSC-314	5314	00004	100.20	30.0	25.4	77.0	44.5	92.9	0.40
2 15/16		MSC-47	3-215								
3		MSC-48	3-3	17412 77449	7.000 177.80	2 3/16 55.6	1 3/32 27.8	3 1/4 82.6	1 15/16 49.2	3 59/64 99.6	16.6 7.53
	75	MSC-315	5315	11445	177.00	35.0	21.0	02.0	49.2	99.0	7.55
3 3/16		MSC-51	3-33								
3 1/4		MSC-52	2-34	18681	7.438	2 1/2	1 1/4	3 3/8	2 1/32	4 5/32	20.2
3 3/8		MSC-54	2-36	83093	188.91	63.5	31.8	85.7	51.6	105.6	9.16
	80	MSC-316	5316								
3 7/16		MSC-55	3-37	21566	8.188	2 1/2	1 1/4	3 25/32	2 7/32	4 25/64	25.8
3 1/2		MSC-56	2-38	95926	207.96	63.5	31.8	96.0	56.4	111.5	11.70
3 15/16		MSC-63	3-315								
4		MSC-64	3-4	29905 133017	9.500 241.30	3 76.2	1 1/2 38.1	4 5/8 117.5	2 11/16 68.3	5 11/64 131.4	42 19.05
	100	MSC-320	5320	100017	241.50	70.2	30.1	117.5	00.5	151.4	13.03

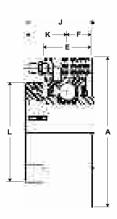
For Medium Duty Bearing Inserts-Single Lock see page G-95. For Housing fit guidelines see page G-261.

SEALMASTER.

ASTER Performance Mounted Ball Bearings

Duty: Medium

Rolling Elements: Ball


Housing: Cast Iron Cylindrical Cartridge

Self Alignment: Consult Application Engineering*

Lock: SKWEZLOC Locking Collar

Seal: Felt

Optional Seal: Contact
Temperature: -20° to 220°F

MSC-T Series Medium Duty Cartridge Units- SKWEZLOC Locking Collar

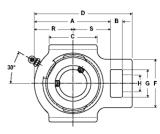
.aore			5416			Dinmala	n kirki Erinr			
meh.	749 96	No.	Eynama: Furdor h 94	20	携。		A	#		Majeran Majeran
Œ	(0) C - 1	367	479 1948	3 AL 45.03	1702 278	1 517 957	7:45 25:8	0.10 4.3	2 1/16 52.4	25
1 3/16	MSC-19T	3-13T	5782	3 7/8	17/32	1 3/4	1 1/16	5/8	2 7/16	3 2
1 1/4	MSC-20T	2-14T	25718	98.43	31.0	44.5	27.0	15.9	61.9	1.45
1.400)	1691311	-5(9)	T340 30045	2 31 T 100,50	95/32 97.2	1 652	1.4 M2:	34 4.1	i v	41 125
1 1/2	MSC-24T	3-18T	7901 35144	4 3/8 111.13	1 7/16 36.5	2 50.8	1 1/4 31.8	23/32 18.3	2 13/16 71.4	4 5 2.04
0.00290	3837 271	557417	7568	39万里	3802	11000年	5/10/2003	360	2(0)0)	70900
134	480 46T	3 12	30077	15.65	37.2	65.1	84.	1.1	82.1	7,51
1 15/16	MSC-31T	3-115T	9752	4 15/16	1 19/32	2 1/4	1 3/8	27/32	3 1/2	5 8
2	MSC-32T	2-2T	43377	125.41	40.5	57.2	34.9	21.4	88.9	2.63
2116 218	1490 JPT 1480 861	3/3/1 2/3/1	11745 52485	0.50 149.23	41.3	7.5W 63.T	1 AM . 41.8 :	11200 4518	= 7/10 103/2	1/17 1/45

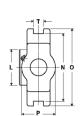
^{*} Misalignment capability reduced as a result of SKWEZLOC collar clearance. For Medium Duty SKWEZLOC Locking Collar Bearing inserts see page G-96. For Housing fit guidelines see page G-261.

Duty: Standard

Rolling Elements: Ball

Housing: Cast Iron Wide Slot Take Up


Self Alignment: +/- 2 Degrees


Lock: Setscrew

Seal: Felt

Optional Seal: Contact
Temperature: -20° to 220°F

ST Series Standard Duty Take-UP Units - Setscrew Locking

Dave Die			-	Basic							Di	mension	s inch / n	nm							man
Bore Dia	meter	Part	Bearing Insert	Dynamic		AMES	111200	200	1944	201	H	- 100	144		1000	1100	P.	199001		20	Unit
inch	mm	No.	No.	Rating lb/N	· X	10	c	D	F	G	Core	3	Ж	1	11 MA	0	High	R	S	T	lb/kg
1/2		ST-8	2-08																		
9/16		ST-9	2-09																		
5/8		ST-10	2-010	2611	2 11/16	5/8	2	3 11/16	2	1 1/4	3/4	1 7/32	23/32	1 3/16	3	3 1/2	1 3/8	1 5/16	1 3/8	17/32	2.1
11/16 3/4		ST-11 ST-12	2-011 2-012	11614	68.3	15.9	50.8	93.7	50.8	31.8	19.1	31.0	18.3	30.2	76.2	88.9	34.9	33.3	34.9		0.95
3/4	20	ST-204	5204																		
13/16	20	ST-13	2-013																		
7/8		ST-14	2-014				_		_						١.						
15/16		ST-15	2-015	2801 12459	2 13/16 71.4	5/8 15.9	2 50.8	3 13/16 96.8	2 50.8	1 1/4 31.8	3/4 19.1	1 3/8 34.9	13/16 20.6	1 3/8 34.9	3 76.2	3 1/2 88.9	1 1/2 38.1	1 3/8 34.9	1 7/16 36.5	17/32	2.6 1.18
1		ST-16	2-1	12403	/ 1.4	15.5	30.0	30.0	50.0	31.0	13.1	54.3	20.0	34.3	10.2	00.3	30.1	34.3	30.3		1.10
1.1/10	25	ST-205	5205																		
1 1/16 1 1/8		ST-17 ST-18	2-11 2-12																		
1 3/16		ST-19	2-12	4381	3 7/16	5/8	2 1/4	4 7/16	2 3/16	1 7/16	7/8	1 1/2	7/8	1 19/32	3 1/2	4	1 3/4	1 11/16	1 3/4	17/32	3.4
1 1/4		ST-20R	1-14	19487	87.3	15.9	57.2	112.7	55.6	36.5	22.2	38.1	22.2	40.5	88.9	101.6	44.5	42.9	44.5		1.54
	30	ST-206	5206																		
1 1/4		ST-20	2-14																		
1 5/16		ST-21	2-15	5782	3 15/16	5/8	2 1/2	5 1/16	2 1/2	1 7/16	7/8	1 11/16	1	1 55/64	3 1/2	4	1 3/4	2	1 15/16	47/00	4.0
1 3/8 1 7/16		ST-22 ST-23	2-16 2-17	25718	100.0	15.9	63.5	128.6	63.5	36.5	22.2	42.9	25.4	47.2	88.9	101.6	44.5	50.8	49.2	17/32	1.81
1 //16	35	ST-207	5207																		
1 1/2	- 00	ST-24	2-18																		
1 9/16		ST-25	2-19	7340 32648	4 5/16 109.5	3/4 19.1	3 1/4 82.6	5 11/16 144.5	3 1/4 82.6	1 15/16 49.2	1 1/8 28.6	1 15/16 49.2	1 3/16 30.2	2 1/16 52.4	4 101.6	4 1/2 114.3	2 1/8 54.0	2 3/16 55.6	2 1/8 54.0	11/16	6.0 2.7
	40	ST-208	5208	32046	109.5	19.1	02.0	144.5	02.0	49.2	20.0	49.2	30.2	32.4	101.0	114.3	34.0	55.0	34.0		2.1
1 5/8		ST-26	2-110																		
1 11/16 1 3/4		ST-27 ST-28	2-111	7901 35144	4 5/16 109.5	3/4 19.1	3 1/4 82.6	5 11/16 144.5	3 1/4	1 15/16	1 1/8 28.6	1 15/16	1 3/16 30.2	2 19/64 58.3	4 101.6	4 5/8 117.5	2 3/16 55.6	2 1/4	2 1/16	11/16	6.0
1 3/4	45	ST-209	2-112 5209	35144	109.5	19.1	82.6	144.5	82.6	49.2	28.6	49.2	30.2	56.3	101.6	117.5	55.6	57.2	52.4		2.72
1 13/16	70	ST-29	2-113																		-
1 7/8		ST-30	2-114	7000	4.4/0	0/4	2.00	F 7/0	3 1/4	4 4 5 (4.0	4.410	0.4/00	4.0/00	0 45/00	١,,	4.5/0	2 2/4 6	0.546	2 246		
1 15/16		ST-31	2-115	7889 35090	4 1/2 114.3	3/4 19.1	3 3/8 85.7	5 7/8 149.2	82.6	1 15/16 49.2	1 1/8 28.6	2 1/32 51.6	1 9/32 32.5	2 15/32	4 101.6	4 5/8 117.5	2 3/16 55.6	2 5/16 58.7	2 3/16 55.6	11/16	6.0 2.72
2		ST-32R	1-2						02.0		20.0	""	52.5	"			00.0	00	00.0		
2	50	ST-210 ST-32	5210 2-2																		
2 1/8		ST-34	2-2	9752	5	1	3 3/4	6 3/4	4	2 1/2	1 3/8	2 3/16	1 5/16	2 23/32	5 1/8	5 3/4	2 1/4	2 9/16	2 7/16		9.8
2 3/16		ST-35	2-23	43377	127.0	25.4	95.3	171.5	101.6	63.5	34.9	55.6	33.3	69.1	130.2	146.1	57.2	65.1	61.9	1 1/16	4.4
L	55	ST-211	5211																		
2 1/4		ST-36	2-24																		
2 3/8		ST-38	2-26	11789	5 5/8	1 1/4	4	7 5/8	4	2 1/2	1 3/8	2 9/16	1 9/16	2 63/64	5 1/8	5 3/4	2 3/8	2 15/16	2 11/16	1 1/16	12.3
2 7/16	60	ST-39 ST-212	2-27 5212	52437	142.9	31.8	101.6	193.7	101.6	63.5	34.9	65.1	39.7	75.8	130.2	146.1	60.3	74.6	68.3		5.58
2 1/2	- 00	ST-40	3-28																		
2 11/16		ST-43	2-211	13971	6 3/4	1 1/4	4 3/4	8 13/16	4 3/8	2 3/4	1 5/8	2 3/4	1 11/16	3 7/16	5 15/16	6 9/16	3 3/8	3 7/16	3 5/16	1 1/16	19.0
	70	ST-214	5214	62143	171.5	31.8	120.7	223.8	111.1	69.9	41.3	69.9	42.9	87.3	150.8	166.7	85.7	87.3	84.1		8.62
2 7/8		ST-46	2-214	14839	7 1/16	1 1/4	4 3/4	9 1/8	4 3/8	2 3/4	1 5/8	3 1/16	1 3/4	3 41/64	5 15/16	6 9/16	3 3/8	3 5/8	3 7/16	1 1/16	19.0
2 15/16		ST-47	2-215	66004	179.4	31.8	120.7	231.8	111.1	69.9	41.3	77.8	44.5	92.5	150.8	166.7	85.7	92.1	87.3	27.0	8.62
3 3/16	75	ST-215 ST-51	5215 2-33	17412	7 3/16	1 1/4	4 3/4	9 1/4	4 3/8	2 3/4	1 5/8	3 1/4	1 15/16	3 59/64	6 1/2	7 1/4	3 3/8	3 3/4	3 7/16	1 1/16	22.1
3 3/10	80	ST-216	2-33 5216	77449	182.6	31.8	120.7	235.0	4 3/8 111.1	69.9	41.3	82.6	49.2	99.6	165.1	184.2	85.7	95.3	87.3	27.0	10.02
3 1/4	-	ST-52	2-34																		-
3 3/8		ST-54	2-36	18681 83093	7 5/8 193.7	1 1/2 38.1	6 3/16 157.2	10 1/4 260.4	4 7/8 123.8	2 7/8 73.0	1 7/8 47.6	3 3/8 85.7	2 1/32 51.6	4 5/32 105.6	6 13/16 173.0	7 13/16 198.4	3 1/2 88.9	3 7/8 98.4	3 3/4 95.3	1 13/16 46.0	31.4 14.2
3 7/16		ST-55	2-37	00030	133.7	55.1	101.2	200.4	120.0	7 3.0	77.0	00.7	01.0	100.0	175.0	100.4	00.9	30.4	30.0	70.0	17.2

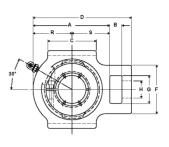
For Standard Duty Bearing Inserts-Single Lock see page G-92. For Take-Up Frames see pages G-76 to G-78.

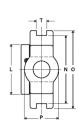
ASTER• Performance Mounted Ball Bearings

Duty: Standard

Rolling Elements: Bal

Housing: Cast Iron Wide Slot Take Up


Self Alignment: +/- 2 Degrees


Lock: SKWEZLOC Locking Collar

Seal: Felt

Optional Seal: Contact
Temperature: -20° to 220°F

ST-T Series Standard Duty Take-Up Units - SKWEZLOC Locking Collar

Bore		S	Basic Dimensions inch / mm												9					
Diameter Inch	Part No.	Bearing Insert No.	Dynamic Rating Ib/N	VA ((8)	//e1	(D)	F	G	H Core	13	W.	/IES	II NI	0	P. Hub	R	S	it	Unit Wt. Ib/kg
3/4	ST-12T	2-012T	2611 11614	2 11/16 68.3	5/8 15.9	2 50.8	3 11/16 93.7	2 50.8	1 1/4 31.8	3/4 19.1	1 9/32 32.5	25/32 19.8	1 3/4 44.5	3 76.2	3 1/2 88.9	1 3/8 34.9	1 5/16 33.3	1 3/8 34.9	17/32	2.2 1.00
15/16	ST-15T	2-015T	2801	2 13/16	5/8	2	3 13/16	2	1 1/4	3/4	1 7/16	7/8	1 15/16	3	3 1/2	1 1/2	1 3/8	1 7/16	17/32	2.8
1	ST-16T	2-1T	12459	71.4	15.9	50.8	96.8	50.8	31.8	19.1	36.5	22.2	49.2	76.2	88.9	38.1	34.9	36.5		1.27
1 1/8	ST-18T	2-12T	4381	3 7/16	5/8	2 1/4	4 7/16	2 3/16	1 7/16	7/8	1 9/16	15/16	2 3/16	3 1/2	4	1 3/4	1 11/16	1 3/4	17/32	3.6
1 3/16	ST-19T	2-13T	19487	87.3	15.9	57.2	112.7	55.6	36.5	22.2	39.7	23.8	55.6	88.9	101.6	44.5	42.9	44.5		1.63
1 1/4	ST-20T	2-14T	5782 25718	3 15/16 100.0	5/8 15.9	2 1/2 63.5	5 1/16 128.6	2 1/2 63.5	1 7/16 36.5	7/8 22.2	1 3/4 44.5	1 1/16 27.0	2 7/16 61.9	3 1/2 88.9	4 101.6	1 3/4 44.5	2 50.8	1 15/16 49.2	17/32	4.3 1.95
1 3/8	ST-22T	2-16T	5782	3 15/16	5/8	2 1/2	5 1/16	2 1/2	1 7/16	7/8	1 3/4	1 1/16	2 9/16	3 1/2	4	1 3/4	2	1 15/16	17/32	4.3
1 7/16	ST-23T	2-17T	25718	100.0	15.9	63.5	128.6	63.5	36.5	22.2	44.5	27.0	65.1	88.9	101.6	44.5	50.8	49.2		1.95
1 1/2	ST-24T	2-18T	7340	4 5/16	3/4	3 1/4	5 11/16	3 1/4	1 15/16	1 1/8	2	1 1/4	2 11/16	4	4 1/2	2 1/8	2 3/16	2 1/8	11/16	6.3
1 9/16	ST-25T	2-19T	32648	109.5	19.1	82.6	144.5	82.6	49.2	28.6	50.8	31.8	68.3	101.6	114.3	54.0	55.6	54.0		2.86
1 5/8	ST-26T	2-110T	7901 35144	4 5/16 109.5	3/4 19.1	3 1/4 82.6	5 11/16 144.5	3 1/4 82.6	1 15/16 49.2	1 1/8 28.6	2 50.8	1 1/4 31.8	2 13/16 71.4	4 101.6	4 5/8 117.5	2 3/16 55.6	2 1/4 57.2	2 1/16 52.4	11/16	6.3 2.86
1 11/16	ST-27T	2-111T	7901	4 5/16	3/4	3 1/4	5 11/16	3 1/4	1 15/16	1 1/8	2	1 11/32	2 15/16	4	4 5/8	2 3/16	2 1/4	2 1/16	11/16	6.3
1 3/4	ST-28T	2-112T	35144	109.5	19.1	82.6	144.5	82.6	49.2	28.6	50.8	34.1	74.6	101.6	117.5	55.6	57.2	52.4		2.86
1 15/16	ST-31T	2-115T	7889	4 1/2	3/4	3 3/8	5 7/8	3 1/4	1 15/16	1 1/8	2 3/32	1 1/4	3 3/8	4	4 5/8	2 3/16	2 5/16	2 3/16	11/16	6.6
2	ST-32RT	1-2T	35090	114.3	19.1	85.7	149.2	82.6	49.2	28.6	53.2	31.8	85.7	101.6	117.5	55.6	58.7	55.6		2.99
2	ST-32T	2-2T	9752 43377	5 127.0	1 25.4	3 3/4 95.3	6 3/4 171.5	4 101.6	2 1/2 63.5	1 3/8 34.9	2 1/4 57.2	1 3/8 34.9	3 1/2 88.9	5 1/8 130.2	5 3/4 146.1	2 1/4 57.2	2 9/16 65.1	2 7/16 61.9	1 1/16	10.4 4.72
2 1/8	ST-34T	2-22T	9752	5	1	3 3/4	6 3/4	4	2 1/2	1 3/8	2 1/4	1 3/8	3 5/8	5 1/8	5 3/4	2 1/4	2 9/16	2 7/16	1 1/16	10.4
2 3/16	ST-35T	2-23T	43377	127.0	25.4	95.3	171.5	101.6	63.5	34.9	57.2	34.9	92.1	130.2	146.1	57.2	65.1	61.9		4.72
2 1/4	ST-36T	2-24T	11789 52437	5 5/8 142.9	1 1/4 31.8	4 101.6	7 5/8 193.7	4 101.6	2 1/2 63.5	1 3/8 34.9	2 5/8 66.7	1 5/8 41.3	4 1/16 103.2	5 1/8 130.2	5 3/4 146.1	2 3/8 60.3	2 15/16 74.6	2 11/16 68.3	1 1/16	13.4 6.08
2 3/8	ST-38T	2-26T	11789	5 5/8	1 1/4	4	7 5/8	4	2 1/2	1 3/8	2 5/8	1 5/8	4 1/8	5 1/8	5 3/4	2 3/8	2 15/16	2 11/16	1 1/16	13.4
2 7/16	ST-39T	2-27T	52437	142.9	31.8	101.6	193.7	101.6	63.5	34.9	66.7	41.3	104.8	130.2	146.1	60.3	74.6	68.3		6.08

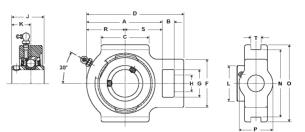
For Standard Duty Bearing Inserts-SKWEZLOC Locking Collar see page G-93 For Take-Up Frames see pages G-76 to G-78.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

Duty: Medium

Rolling Elements: Ball


Housing: Cast Iron Wide Slot Take Up

Self Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: Felt

Optional Seal: Contact
Temperature: -20° to 220°F

MST Series Medium Duty Take-Up Units - Setscrew Locking

Bor	е		Design	Basic							Dimen	sions ir	nch / mr	n		200				Unit
Diame		Part No.	Bearing Insert	Dynamic		mar.	175000	III Tees	150		H				- 20	P	1060			Wt.
inch	mm		No.	Rating lb/N	A	В	C	Đ	F	G	Core		к	N	0	Hub	R	S	Ŧ.	lb/kg
15/16		MST-15	3-015	1001					2								1			
1		MST-16	3-1	4381 19487	3 7/16 87.3	5/8 15.9	2 1/4 57.2	4 7/16 112.7	3/16	1 7/16 36.5	7/8 22.2	1 1/2 38.1	7/8 22.2	3 1/2 88.9	101.6	1 3/4 44.5	11/16	1 3/4 44.5	17/32	3.4 1.54
_	25	MST-305	5305		01.0	10.0	01.12		55.6	00.0		00.1		00.0	101.0		42.9			
1 3/16		MST-19	3-13	F700	0.4540	F.(0	0.4/0	5 4 (40	0.4/0	4.7/40	7.0	4 44 44 0		0.4/0		4.04		1		4.0
1 1/4		MST-20	2-14	5782 25718	3 15/16 1 00.0	5/8 15.9	2 1/2 63.5	5 1/16 128.6	2 1/2 63.5	1 7/16 36.5	7/8 22.2	1 11/16 42.9	1 25.4	3 1/2 88.9	4 101.6	1 3/4 44.5	2 50.8	15/16	17/32	4.0 1.81
	30	MST-306	5306															49.2		
1 7/16		MST-23	3-17	7340	4 5/16	3/4	3 1/4	5 11/16	3 1/4	1 15/16	1 1/8	1 15/16	1 3/16	4	4 1/2	2 1/8	2 3/16	2 1/8	11/16	6.2
	35	MST-307	5307	32648	109.5	19.1	82.6	144.5	82.6	49.2	28.6	49.2	30.2	101.6	114.3	54.0	55.6	54.0	11/10	2.81
1 1/2		MST-24	3-18	7901	4 5/16	3/4	3 1/4	5 11/16	3 1/4	1 15/16	1 1/8	1 15/16	1 3/16	4	4 5/8	2 3/16	2 1/4	2 1/16	11/16	6.2
	40	MST-308	5308	35144	109.5	19.1	82.6	144.5	82.6	49.2	28.6	49.2	30.2	101.6	117.5	55.6	57.2	52.4	11,10	2.81
1 11/16		MST-27	3-111	7889	4 1/2	3/4	3 3/8	5 7/8	3 1/4	1 15/16	1 1/8	2 1/32	1 9/32	4	4 5/8	2 3/16	2 5/16	2 3/16		6.4
1 3/4		MST-28	3-112	35090	114.3	19.1	85.7	149.2	82.6	49.2	28.6	51.6	32.5	101.6	117.5	55.6	58.7	55.6	11/16	2.90
_	45	MST-309	5309																	
1 15/16		MST-31	3-115	9752	5	1	3 3/4	6 3/4	4	2 1/2	1 3/8	2 3/16	1 5/16	5 1/8	5 3/4	2 1/4	2 9/16	2 7/16		10.0
2		MST-32	2-2	43377	127.0	25.4	95.3	171.5	101.6	63.5	34.9	55.6	33.3	130.2	146.1	57.2	65.1	61.9	11/16	4.54
0.0440	50	MST-310	5310																	
2 3/16		MST-35	3-23	11789	5 5/8	1 1/4	4	7 5/8	4	2 1/2	1 3/8	2 9/16	1 9/16	5 1/8	5 3/4	2 3/8	2	2 11/16	4 4 4 4 0	12.3
2 1/4		MST-36	2-24	52437	142.9	31.8	101.6	193.7	101.6	63.5	34.9	65.1	39.7	130.2	146.1	60.3	15/16 74.6	68.3	1 1/16	5.58
2 7/16	55	MST-311 MST-39	5311																	
2 1/10		MST-40	3-27 3-28	13971	6 3/4	1 1/4	4 3/4	8 13/16	4 3/8	2 3/4	1 5/8	2 3/4	1 11/16	5 15/16	6 9/16	3 3/8	3 7/16	3 5/16	1 1/16	19.5
2 1/2	65	MST-313	5313	62143	171.5	31.8	120.7	223.8	111.1	69.9	41.3	69.9	42.9	150.8	166.7	85.7	87.3	84.1	1 1/16	8.85
2 11/16	00	MST-43	3-211	4.4000	7.4/40	4.4/4	4.0/4	0.4/0	4.0/0	0.044	4.5/0	0.4/40	4.0/4	E 45/40	0.040	0.0/0	0.5/0	0.7/40		40.0
2 11/10	70	MST-314	5314	14839 66004	7 1/16 179.4	1 1/4 31.8	4 3/4 120.7	9 1/8 231.8	4 3/8	2 3/4 69.9	1 5/8 41.3	3 1/16 77.8	1 3/4 44.5	5 15/16 150.8	6 9/16 166.7	3 3/8 85.7	3 5/8 92.1	3 7/16 87.3	1 1/16	19.8 8.98
2 15/16	70	MST-47	3-215										4							
3		MST-48	3-3	17412	7 3/16	1 1/4	4 3/4	9 1/4	4 3/8	2 3/4	1 5/8	3 1/4	1 15/16	6 1/2	7 1/4	3 3/8	3 3/4	3 7/16	1 1/16	23.0
	75	MST-315	5315	77449	182.6	31.8	120.7	235.0	111.1	69.9	41.3	82.6	49.2	165.1	184.2	85.7	95.3	87.3		10.43
3 3/16		MST-51	3-33				C							6						
3 1/4		MST-52	2-34	18681 83093	7 5/8 193.7	1 1/2 38.1	6 3/16	10 1/4 260.4	4 7/8 123.8	2 7/8 73.0	1 7/8 47.6	3 3/8 85.7	2 1/32 51.6	6 13/16	7 13/16 198.4	3 1/2 88.9	3 7/8 98.4	3 3/4 95.3	1 13/16	31.8 14.42
	80	MST-316	5316	03093	193.7	30.1	157.2	200.4	123.8	73.0	47.0	65.7	31.6	173.0	190.4	00.9	90.4	90.3		14.42
3 15/16		MST-63	3-315										2							
4		MST-64	3-4	29905 133017	9 1/4 235.0	1 1/2 38.1	6 1/2 165.1	11 7/8 301.6	4 7/8 123.8	2 7/8 73.0	1 7/8 47.6	4 5/8 117.5	11/16	8 3/8 212.7	9 3/8 238.1	3 1/2 88.9	4 3/4 120.7	4 1/2 114.3	1 13/16	50.0 22.68
	100	MST-320	5320	155017	200.0	50.1	100.1	301.0	120.0	73.0	77.0	'''.5	68.3	212.1	200.1	00.9	120.1	114.3		22.00

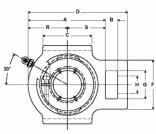
For Medium Duty Bearing Inserts-Single Lock see page G-95. For Take-Up Frames see page G-78.

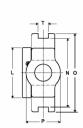
ASTER Performance Mounted Ball Bearings

Duty: Medium

Rolling Elements: Bal

Housing: Cast Iron Wide Slot Take Up


Self Alignment: +/- 2 Degrees


Lock: SKWEZLOC Locking Collar

Seal: Felt

Optional Seal: Contact
Temperature: -20° to 220°F

MST-T Series Medium Duty Take-Up Units - SKWEZLOC Locking Collar

Joe		HALLING.	line b	#						Desir	entiona i									200
	**************************************	train.	-	99	7	5	3	ii.	8		2	7.5	楚	110	n	<u></u>		35	Ţį.	***
	(E1:36)	(4)	9.65 9.65	17.2 27.2	98d (2.7	47.Y	2000 127	2 C H		0.07 35:0	TAY.	2729 37204	1.770 533	2.47% 38%	TOTAL P	11.00	12 9790 142 8	7.994 39.2	1:36	1000
1 3/16 1 1/4	MST-19T MST-20T	3-13T 2-14T	5782 25718	3 15/16 100 0	5/8 15 9	2 1/2 63 5	5 1/16 128 6	2 1/2 63 5	1 7/16 36 5	7/8 22 2	1 3/4 44 5	1 1/16 27 0	2 7/16 61 9	3 1/2 88 9	4 101 6	1 3/4 44 5	2 50 8	1 15/16 49 2	17/32	43 195
15(8)	(C)TAZET	WED.	127	4 2/15	54 151	in St	t back tour	2 kg 3457	1 1217	100	22	1.04	2 198 2011	17	=19 ****	1.10 55	8,000 15.0	1.1m 1.1m	Q12	183 201
1 1/2	MST-24T	3-18T	7901 35144	4 5/16 109 5	3/4 19 1	3 1/4 82 6	5 11/16 144 5	3 1/4 82 6	1 15/16 49 2	1 1/8 28 6	2 50 8	1 1/4 31 8	2 13/16 71 4	4 101 6	4 5/8 117 5	2 3/16 55 6	2 1/4 57 2	2 1/16 52 4	11/16	63 286
1914 29	70) 301 VIT-201	(17 51 21	#324 aci 1	- 142 143	\$4 1.0	2.27	SSE Mark	2.77 3730	4 42/12	./6 :2511	2 3 22 8 2	1 jez 44.	5-19- #764	(i) (i)	164	2.545	12 HE 1887	2 2012 -11-1	115	2.0 (X.14)
1 15/16 2	MST-31T MST-32T	3-115T 2-2T	9752 43377	5 127 0	1 25 4	3 3/4 95 3	6 3/4 171 5	4 101 6	2 1/2 63 5	1 3/8 34 9	2 1/4 57 2	1 3/8 34 9	3 1/2 88 9	5 1/8 130 2	5 3/4 146 1	2 1/4 57 2	2 9/16 65 1	2 7/16 61 9	1 1/16	10 4 4 72
1864) (*)	Verber Verber	844 386	14739 58437	2004 245 9	336	(1) (1)	III CV.	(i) (2)(2)	# 100 #345	3-0 3-0	#17X 106/2	9 64 46.0	# 1255 #253	f 480 (\$5.2	1689 1681	8.94 #4.2	(A)	5144W 513	1211	×=

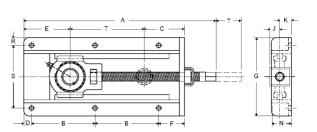
For medium duty SKWEZLOC Locking Collar Bearing Inserts see page G-96. For Take-Up Frames see page G-80.

Duty: Standard

Rolling Elements: Ball

Housing: Center Pull Take Up Frame &

Take Up Housing


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Optional Lock: SKWEZLOC Locking Collar

Seal: Felt

Optional Seal: Contact Temperature: -20° to 220°F

STH Center Pull Take Up Frames

- 160	re.		Housing	Pooring					D	imensi	ons incl	h / mm						200		*
lliam	eles	Part No.	Assembly	Bearing Insert	-1	W.	8	//ell	10		W e l	(61)	3	17800	CMATE	R	IIS:	Bolt Size	Unit Wt. lb/kg	Frame Only Part No.
inch	(mm)		Included	No	Travel		•	,	•	•		•	•					3420	listing	
7/8		STH-14-6	ST-14	2-014	6 152.4	15 381.0	4 5/8 117.5	3 1/4	3/4	3 1/4	2 1/2	7 9/16	13/16	1 1/8	1 3/4	3/4	6 1/16	3/8	11.6 5.3	STH 12 TO 16-6 DZU
- 170		STH-14-9	0111	2014	9 228.6	18 457.2	6 1/8 155.6	82.6	19.1	82.6	63.5	192.1	20.6	28.6	44.5	19.1	154.0	0,0	13.6 6.2	STH 12 TO 16-9 DZU
15/16		STH-15-6	ST-15	2-015	6 152.4	15 381.0	4 5/8 117.5	3 1/4	3/4	3 1/4	2 1/2	7 9/16	13/16	1 1/8	1 3/4	3/4	6 1/16	3/8	11.6 5.3	STH 12 TO 16-6 DZU
10/10		STH-15-9	01-10	2-010	9 228.6	18 457.2	6 1/8 155.6	82.6	19.1	82.6	63.5	192.1	20.6	28.6	44.5	19.1	154.0	0/0	13.6 6.2	STH 12 TO 16-9 DZU
	25	STH-205-6	ST-205	5205	6 152.4	15 381.0	4 5/8 117.5	3 1/4	3/4	3 1/4	2 1/2	7 9/16	13/16	1 1/8	1 3/4	3/4	6 1/16	3/8	11.6 5.3	STH 12 TO 16-6 DZU
	20	STH-205-9	01-200	3203	9 228.6	18 457.2	6 1/8 155.6	82.6	19.1	82.6	63.5	192.1	20.6	28.6	44.5	19.1	154.0	3/0	13.6 6.2	STH 12 TO 16-9 DZU
1		STH-16-6	ST-16	2-1	6 152.4	15 381.0	4 5/8 117.5	3 1/4	3/4	3 1/4	2 1/2	7 9/16	13/16	1 1/8	1 3/4	3/4	6 1/16	3/8	11.6 5.3	STH 12 TO 16-6 DZU
		STH-16-9			9 228.6	18 457.2	6 1/8 155.6	82.6	19.1	82.6	63.5	192.1	20.6	28.6	44.5	19.1	154.0	0,0	13.6 6.2	STH 12 TO 16-9 DZU
1 1/8		STH-18-6	ST-18	2-12	6 152.4	16 1/8 409.6	5 127.0	3 1/2	3/4	3 3/4	2 1/2	8 1/16	7/8	1 1/4	1 3/4	3/4	6 9/16	3/8	14.1 6.4	STH 17 TO 16-6 DZU
		STH-18-9	01.10	2 12	9 228.6	19 1/8 485.8	6 1/2 165.1	88.9	19.1	95.3	63.5	204.8	22.2	31.8	44.5	19.1	166.7	5,75	17.4 7.9	STH 17 TO 16-9 DZU
	30	STH-206-6	ST-206	5206	6 152.4	16 1/8 409.6	5 127.0	3 1/2	3/4	3 3/4	2 1/2	8 1/16	7/8	1 1/4	1 3/4	3/4	6 9/16	3/8	14.1 6.4	STH 17 TO 19-6 DZU
	00	STH-206-9	01-200	0200	9 228.6	19 1/8 485.8	6 1/2 165.1	88.9	19.1	95.3	63.5	204.8	22.2	31.8	44.5	19.1	166.7	0,0	16 7.3	STH 17 TO 19-9 DZU
1 3/16		STH-19-6	ST-19	2-13	6 152.4	16 1/8 409.6	5 127.0	3 1/2	3/4	3 3/4	2 1/2	8 1/16	7/8	1 1/4	1 3/4	3/4	6 9/16	3/8	14.1 6.4	STH 17 TO 19-6 DZU
		STH-19-9	01.10	2 10	9 228.6	19 1/8 485.8	6 1/2 165.1	88.9	19.1	95.3	63.5	204.8	22.2	31.8	44.5	19.1	166.7	0,0	16 7.3	STH 17 TO 19-9 DZU
1 1/4		STH-20-9	ST-20	2-14	9 228.6	19 11/16 500.1	6 13/16 173.0	3 7/8	3/4	4	2 1/2	8 1/16	1	1 1/4	1 3/4	3/4	6 9/16	3/8	16 7.3	STH 20 TO 23-9 DZU
, -		STH-20-12	0120	2 14	12 304.8	22 11/16 576.3	8 5/16 211.1	98.4	19.1	101.6	63.5	204.8	25.4	31.8	44.5	19.1	166.7	0/0	19.5 8.8	STH 20 TO 23-12 DZU
1 3/8		STH-22-9	ST-22	2-16	9 228.6	19 11/16 500.1	6 13/16 173.0	3 7/8	3/4	4	2 1/2	8 1/16	1	1 1/4	1 3/4	3/4	6 9/16	3/8	17.4 7.9	STH 20 TO 23-9 DZU
		STH-22-12	0 1 22	2.13	12 304.8	22 11/16 576.3	8 5/16 211.1	98.4	19.1	101.6	63.5	204.8	25.4	31.8	44.5	19.1	166.7	5,5	19.5 8.8	STH 20 TO 23-12 DZU
	35	STH-207-9	ST-207	5207	9 228.6	19 11/16 500.1	6 13/16 173.0	3 7/8	3/4	4	2 1/2	8 1/16	1	1 1/4	1 3/4	3/4	6 9/16	3/8	17.4 7.9	STH 20 TO 23-9 DZU
		STH-207-12		525.	12 304.8	22 11/16 576.3	8 5/16 211.1	98.4	19.1	101.6	63.5	204.8	25.4	31.8	44.5	19.1	166.7	5,5	19.5 8.8	STH 20 TO 23-12 DZU
1 7/16		STH-23-9	ST-23	2-17	9 228.6	19 11/16 500.1	6 13/16 173.0	3 7/8	3/4	4	2 1/2	8 1/16	1	1 1/4	1 3/4	3/4	6 9/16	3/8	17.4 7.9	STH 20 TO 23-9 DZU
, , , , ,		STH-23-12	0.20	2	12 304.8	22 11/16 576.3	8 5/16 211.1	98.4	19.1	101.6	63.5	204.8	25.4	31.8	44.5	19.1	166.7	3,3	19.5 8.8	STH 20 TO 23-12 DZU
1 1/2		STH-24-12	ST-24	2-18	12 304.8	23.9/16 598.5	8 9/16 217.5	4 1/4	7/8	4 1/4	2 1/2	9 5/16	1 3/16	1 3/8	2	7/8	7 9/16	3/8	27.2 12.3	STH 24 TO 28-12 DZU
		STH-24-18	0.2.	2.3	18 457.2	29 9/16 750.9	11 9/16 293.7	108.0	22.2	108.0	63.5	236.5	30.2	34.9	50.8	22.2	192.1	5,5	32 14.5	STH 24 TO 28-18 DZU

See notes on page G-78.

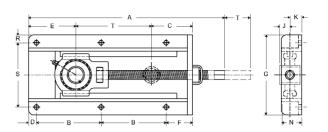
ASTER ® Performance Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball

Housing: Cast Iron Center Pull Take Up

Frame & Take Up Housing


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Optional Lock: SKWEZLOC Locking Collar

Seal: Felt

Optional Seal: Contact Temperature: -20° to 220°F

STH Center Pull Take Up Frames

Во			Housing	Bearing					L	imensi	ons inc	h / mm						3/2	*	
Diam	eter	Part No.	Assembly Included	Insert No.	T Travel	×	8	Ċ.	ь	E	F	G	(20))	ж	1700	R	s	Boll Size	Unit Wu lb/kg	Frame Only Part No.
		STH-25-12			12 304.8	23 9/16 598.5	8 9/16 217.5	4 1/4	7/8	4 1/4	2 1/2	9 5/16	1 3/16	1 3/8	2	7/8	7 9/16		27.2 12.3	STH 24 TO 28-12 DZU
1 9/16		STH-25-18	ST-25	2-19	18 457.2	299/16 750.9	11 9/16 293.7	108.0	22.2	108.0	63.5	236.5	30.2	34.9	50.8	22.2	192.1	3/8	32.0 14.5	STH 24 TO 28-18 DZU
	40	STH-208-12	ST-208	5208	12 304.8	23 9/16 598.5	8 9/16 217.5	4 1/4	7/8	4 1/4	2 1/2	9 5/16	1 3/16	1 3/8	2	7/8	7 9/16	3/8	27.2 12.3	STH 24 TO 28-12 DZU
		STH-208-18	01-200	0200	18 457.2	299/16 750.9	11 9/16 293.7	108.0	22.2	108.0	63.5	236.5	30.2	34.9	50.8	22.2	192.1	0,0	32.0 14.5	STH 24 TO 28-18 DZU
1 5/8		STH-26-12	ST-26	2-110	12 304.8	23 9/16 598.5	8 9/16 217.5	4 1/4	7/8	4 1/4	2 1/2	9 5/16	1 3/16	1 3/8	2	7/8	7 9/16	3/8	27.2 12.3	STH 24 TO 28-12 DZU
		STH-26-18			18 457.2	299/16 750.9	11 9/16 293.7	108.0	22.2	108.0	63.5	236.5	30.2	34.9	50.8	22.2	192.1		32.0 14.5	STH 24 TO 28-18 DZU
1 11/16		STH-27-12	ST-27	2-111	12 304.8	23 9/16 598.5	8 9/16 217.5	4 1/4	7/8	4 1/4	2 1/2	9 5/16	1 3/16	1 3/8	2	7/8	7 9/16	3/8	27.2 12.3	STH 24 TO 28-12 DZU
		STH-27-18			18 457.2	29 9/16 750.9	11 9/16 293.7	108.0	22.2	108.0	63.5	236.5	30.2	34.9	50.8	22.2	192.1		32.0 14.5	STH 24 TO 28-18 DZU
1 3/4		STH-28-12	ST-28	2-112	12 304.8 18	23 9/16 598.5 29 9/16	8 9/16 217.5 11 9/16	4 1/4 108.0	7/8 22.2	4 1/4 108.0	2 1/2 63.5	9 5/16	1 3/16 30.2	1 3/8 34.9	2 50.8	7/8 22.2	7 9/16 192.1	3/8	27.2 12.3 32.0	STH 24 TO 28-12 DZU
		STH-28-18			457.2 12	750.9 239/16	293.7 8 9/16	100.0	22.2	106.0	63.5	236.5	30.2	34.9	50.6	22.2	192.1		14.5 27.2	STH 24 TO 28-18 DZU
	45	STH-209-12	ST-209	5209	304.8 18	598.5 299/16	217.5 11 9/16	4 1/4 108.0	7/8 22.2	4 1/4 108.0	2 1/2 63.5	9 5/16 236.5	1 3/16 30.2	1 3/8 34.9	2 50.8	7/8 22.2	7 9/16 192.1	3/8	12.3 32.0	STH 24 TO 28-12 DZU
		STH-209-18			457.2 12	750.9 2311/16	293.7 8 5/8	100.0	22.2	100.0	03.3	230.3	30.2	34.9	30.0	22.2	192.1		14.5 27.2	STH 24 TO 28-18 DZU
1 7/8		STH-30-12	ST-30	2-114	304.8 18	601.7 2911/16	219.1 11 5/8	4 3/8 111.1	7/8 22.2	4 1/4 108.0	2 1/2 63.5	9 5/16 236.5	1 9/32 32.5	1 3/8 34.9	2 50.8	7/8 22.2	7 9/16 192.1	1/2	12.3	STH 30 TO 31-12 DZU
		STH-30-18			457.2 12	754.1 2311/16	295.3			100.0	00.0	200.0	02.0	0 1.0	00.0		102.1		15.0	STH 30 TO 31-18 DZU
115/16		STH-31-12	ST-31	2-115	304.8 18	601.7 2911/16	219.1 11 5/8	4 3/8 111.1	7/8 22.2	4 1/4 108.0	2 1/2 63.5	9 5/16 236.5	1 9/32 32.5	1 3/8 34.9	2 50.8	7/8 22.2	7 9/16 192.1	1/2	12.3	STH 30 TO 31-12 DZU
		STH-31-18			457.2 12	754.1 2311/16	295.3 8 5/8												15.0 27.2	STH 30 TO 31-18 DZU
	50	STH-210-12	ST-210	5210	304.8 18	601.7 2911/16	219.1 11 5/8	4 3/8 111.1	7/8 22.2	4 1/4 108.0	2 1/2 63.5	9 5/16 236.5	1 9/32 32.5	1 3/8 34.9	2 50.8	7/8 22.2	7 9/16 192.1	1/2	12.3 33.0	STH 30 TO 31-12 DZU
		STH-210-18 STH-32-12			457.2 12	754.1 2413/16	295.3 9 1/16												15.0 41.6	STH 30 TO 31-18 DZU STH 32 TO 35-12 DZU
2		STH-32-12	ST-32	2-2	304.8 18	630.2 3013/16	230.2 12 1/16	4 7/8 123.8	7/8 22.2	4 1/2 114.3	2 3/8 60.3	11 3/16 284.2	1 5/16 33.3	1 1/2 38.1	2 1/2 63.5	7/8 22.2	9 7/16 239.7	1/2	18.9 50.6	STH 32 TO 35-12 DZU
		STH-34-12			457.2 12	782.6 2413/16	306.4 9 1/16												23.0 41.6	STH 32 TO 35-16 DZU
2 1/8		STH-34-18	ST-34	2-22	304.8 18	630.2 3013/16	230.2 12 1/16	4 7/8 123.8	7/8 22.2	4 1/2 114.3	2 3/8 60.3	11 3/16 284.2	1 5/16 33.3	1 1/2 38.1	2 1/2 63.5	7/8 22.2	9 7/16 239.7	1/2	18.9 50.6	STH 32 TO 35-12 DZU
		STH-211-12			457.2 12	782.6 2413/16	306.4 9 1/16												23.0 41.6	STH 32 TO 35-12 DZU
	55	STH-211-18	ST-211	5211	304.8 18	630.2 3013/16	230.2	4 7/8 123.8	7/8 22.2	4 1/2 114.3	2 3/8 60.3	11 3/16 284.2	1 5/16 33.3	1 1/2 38.1	2 1/2 63.5	7/8 22.2	9 7/16 239.7	1/2	18.9 50.6	STH 32 TO 35-18 DZU
			l	l	457.2	782.6	306.4				l		l		l				23.0	

See notes on page G-78.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

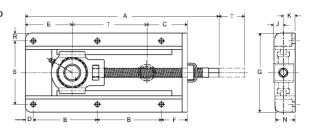
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Duty: Standard

Rolling Elements: Ball

Housing: Cast Iron Center Pull Take Up

Frame & Take Up Housing


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Optional Lock: SKWEZLOC Locking Collar

Seal: Felt

Optional Seal: Contact **Temperature:** -20° to 220°F

STH Center Pull Take Up Frames

- 50	T		(Dame)	Pagring						Dimensio	ons incl	h / mm							1	9
History Inichi	der mm	Part No.	Housing Assembly Included	Bearing Insert No.	T Teavel		8		0	(m)	F	0	(6)	(M)	N.	R	197	Belt Size	Unit Wt. Ib/kg	Frame Only Part No.
2 3/16		STH-35-12	ST-35	2-23	12 304.8	2413/16 630.2	9 1/16 230.2	4 7/8	7/8	4 1/2	2 3/8	11 3/16	1 5/16	1 1/2	2 1/2	7/8	9 7/16	1/2	41.6 18.9	STH 32 TO 35-12 DZU
23/10		STH-35-18	31-33	2-23	18 457.2	3013/16 782.6	12 1/16 306.4	123.8	22.2	114.3	60.3	284.2	33.3	38.1	63.5	22.2	239.7	1/2	50.6 23.0	STH 32 TO 35-18 DZU
2 1/4		STH-36-12	ST-36	2-24	12 304.8	25 9/16 649.3	9 9/16 242.9	5 3/8	7/8	5	2 3/8	11 3/16	1 9/16	1 1/2	2 1/2	7/8	9 7/16	1/2	45.0 20.4	STH 36 TO 39-12 DZU
2 1/4		STH-36-18	31-30	2-24	18 457.2	31 9/16 801.7	12 9/16 319.1	136.5	22.2	127.0	60.3	284.2	39.7	38.1	63.5	22.2	239.7	1/2	53.0 24.0	STH 36 TO 39-18 DZU
	60	STH-212-12	ST-212	5212	12 304.8	25 9/16 649.3	9 9/16 242.9	5 3/8	7/8	5	2 3/8	11 3/16	1 9/16	1 1/2	2 1/2	7/8	9 7/16	1/2	45.0 20.4	STH 36 TO 39-12 DZU
	00	STH-212-18	31-212	5212	18 457.2	31 9/16 801.7	12 9/16 319.1	136.5	22.2	127.0	60.3	284.2	39.7	38.1	63.5	22.2	239.7	1/2	53.0 24.0	STH 36 TO 39-18 DZU
2 3/8		STH-38-12	ST-38	2-26	12 304.8	25 9/16 649.3	9 9/16 242.9	5 3/8	7/8	5	2 3/8	11 3/16	1 9/16	1 1/2	2 1/2	7/8	9 7/16	1/0	45.0 20.4	STH 36 TO 39-12 DZU
2 3/0		STH-38-18	31-30	2-20	18 457.2	31 9/16 801.7	12 9/16 319.1	136.5	22.2	127.0	60.3	284.2	39.7	38.1	63.5	22.2	239.7	1/2	53.0 24.0	STH 36 TO 39-18 DZU
0.7/46		STH-39-12	ST 20	2-27	12 304.8	259/16 649.3	9 9/16 242.9	5 3/8	7/8	5	2 3/8	11 3/16	1 9/16	1 1/2	2 1/2	7/8	9 7/16	4.0	45.0 20.4	STH 36 TO 39-12 DZU
27/16		STH-39-18	ST-39	2-21	18 457.2	31 9/16 801.7	12 9/16 319.1	136.5	22.2	127.0	60.3	284.2	39.7	38.1	63.5	22.2	239.7	1/2	53.0 24.0	STH 36 TO 39-18 DZU
0.4/0		STH-40-12	OT 10	0.00	12 304.8	27 1/2 698.5	10 1/4 260.4	6 3/16	7/8	5 11/16	2 1/2	12	1 11/16	2	3	7/8	10 1/4	F (0	62.5 28.3	STH 40 TO 47-12 DZU
2 1/2		STH-40-18	ST-40	3-28	18 457.2	33 1/2 850.9	13 1/4 336.6	157.2	22.2	144.5	63.5	304.8	42.9	50.8	76.2	22.2	260.4	5/8	73.7 33.4	STH 40 TO 47-18 DZU
0.4440		STH-43-12	OT 10	0.044	12 304.8	27 1/2 698.5	10 1/4 260.4	6 3/16	7/8	5 11/16	2 1/2	12	1 11/16	2	3	7/8	10 1/4	F (0	62.5 28.3	STH 40 TO 47-12 DZU
211/16		STH-43-18	ST-43	2-211	18 457.2	33 1/2 850.9	13 1/4 336.6	157.2	22.2	144.5	63.5	304.8	42.9	50.8	76.2	22.2	260.4	5/8	73.7 33.4	STH 40 TO 47-18 DZU
	70	STH-214-12	27.044	5044	12 304.8	27 1/2 698.5	10 1/4 260.4	6 3/16	7/8	5 11/16	2 1/2	12	1 11/16	2	3	7/8	10 1/4		62.5 28.3	STH 40 TO 47-12 DZU
	70	STH-214-18	ST-214	5214	18 457.2	33 1/2 850.9	13 1/4 336.6	157.2	22.2	144.5	63.5	304.8	42.9	50.8	76.2	22.2	260.4	5/8	73.7 33.4	STH 40 TO 47-18 DZU
0.7/0		STH-46-12	OT 40	0.014	12 304.8	27 1/2 698.5	10 1/4 260.4	6 3/16	7/8	5 11/16	2 1/2	12	1 3/4	2	3	7/8	10 1/4	F (0	62.5 28.3	STH 40 TO 47-12 DZU
2 7/8		STH-46-18	ST-46	2-214	18 457.2	33 1/2 850.9	13 1/4 336.6	157.2	22.2	144.5	63.5	304.8	44.5	50.8	76.2	22.2	260.4	5/8	73.7 33.4	STH 40 TO 47-18 DZU
04540		STH-47-12	OT 47	0.045	12 304.8	27 1/2 698.5	10 1/4 260.4	6 3/16	7/8	5 11/16	2 1/2	12	1 3/4	2	3	7/8	10 1/4	F (0	62.5 28.3	STH 40 TO 47-12 DZU
215/16		STH-47-18	ST-47	2-215	18 457.2	33 1/2 850.9	13 1/4 336.6	157.2	22.2	144.5	63.5	304.8	44.5	50.8	76.2	22.2	260.4	5/8	73.7 33.4	STH 40 TO 47-18 DZU
		STH-215-12	07.045	50/5	12 304.8	27 1/2 698.5	10 1/4 260.4	6 3/16	7/8	5 11/16	2 1/2	12	1 3/4	2	3	7/8	10 1/4	F/0	62.5 28.3	STH 40 TO 47-12 DZU
	75	STH-215-18	ST-215	5215	18 457.2	33 1/2 850.9	13 1/4 336.6	157.2	22.2	144.5	63.5	304.8	44.5	50.8	76.2	22.2	260.4	5/8	73.7 33.4	STH 40 TO 47-18 DZU

The STH series style H, are side mounting frame take-up units designed to incorporate the ST series take-up units (see pages G-72 to G-74), as indicated in the accompanying charts.

They are used where shaft adjustment and/or belt tightening is required in conveyor applications. They are manufactured from heavy gauge structural steel members and equipped with heavy duty Acme (square) threads for positive action.

Adjustment is made by turning the square head with an open end wrench.

For SKWEZLOC Locking Collar add T suffix example STH-23T-12

For Contact Seal add C suffix example STH-23C-12

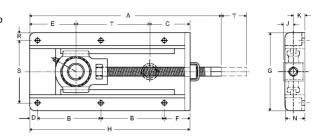
ASTER Performance Mounted Ball Bearings

Duty: Medium

Rolling Elements: Ball

Housing: Cast Iron Center Pull Take Up

Frame & Take Up Housing


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

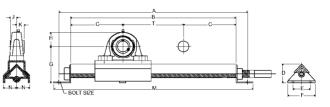
MSTH Center Pull Take Up Frames

Born Dermede nich	in trim made	Massing Assembly Induced	Ecoreta Propert Ma	i i			¢	0	Havino E	elena) E	##(() # #		3		ij,	8	Û	Bell File	Usili Set. Heliq	frame tary Pari Na
11098 2	96 H - C-17 96 H - E-12	VE:1011	3-10 ₁ 3-2	1: 5748	Mark Bridge Andrews	BALLETON SHOW	1 778 123-6	0.004.003	100000	The State of the S	972 H 242	AND THE RESERVE	20,000 (500,000)	328	3 1 1 3 2 3 2	1000	94.75 W	o	118	SHAPE TO MAR
2 7/16 2 1/2	MSTH-39-12 MSTH-40-12	MST-39 MST-40	3-27 3-28	12 304.8	25 9/16 698.5	9 9/16 260.4		7/8 22.2	-		11 3/16 304.8	22 3/8 606.4		1 1/2 50.8			9 7/16 260.4	5/8	62.5 28.3	STH 40 TO 47-12

The MSTH series style H, are side mounting take-up units designed to incorporate MST series take-up units (see page G-80) as indicated in the table above. They are used where shaft adjustment and/or belt tightening is required in conveyor applications. They are manufactured from heavy gauge structural steel members and equipped with heavy duty Acme (square) threads for positive action. Adjustment is made by turning the square head with an open wrench.

Duty: Standard

Rolling Elements: Ball


Housing: Cast Iron Top Mount Take Up Frame & Pillow Block Housing

Self Alignment: +/- 2 Degrees

Lock: Setscrew

Optional Lock: SKWEZLOC Locking Collar

Seal: Felt
Optional Seal: Contact
Temperature: -20° to 220°F

NPG and SPG Series Style "G" Protected Screw Take Ups – Setscrew Locking

	-			Donning						Dimens	ions in	ch / mn	1								
inch	mm	Part No	Housing Assembly Included	Bearing Insert No.	Ţ Travel	A	B	M	c	0	180	F.	G	W	*	ĸ	M	٥	Bolt Size	Unit Wt lb/kg	Frame Only Part No
7/8		NPG-14-6	NP-14	2-014	6 152.4	18 457.2	15 1/4 387.4	19 1/2 495.3	4 5/8	2 5/16	2 1/2	3 3/4	4 1/8	1 3/8	9/16	13/16	1 9/16	1/4	3/8	12.4 5.62	NPG 14 TO 16-6 DZ
110		NPG-14-9	NP-14	2-014	9 228.6	21 533.4	18 1/4 463.6	22 1/2 571.5	117.5	58.7	63.5	95.3	104.8	34.9	14.3	20.6	39.7	6.4	3/0	13.5 6.12	NPG 14 TO 16-9 DZ
5/16		NPG-15-6	NP-15	2-015	6 152.4	18 457.2	15 1/4 387.4	19 1/2 495.3	4 5/8	2 5/16	2 1/2	3 3/4	4 1/8	1 3/8	9/16	13/16	1 9/16		3/8	12.4 5.62	NPG 14 TO 16-6 DZ
0,10		NPG-15-9	141 10	2010	9 228.6	21 533.4	18 1/4 463.6	22 1/2 571.5	117.5	58.7	63.5	95.3	104.8	34.9	14.3	20.6	39.7	6.4	0,0	13.5 6.12	NPG 14 TO 16-9 DZ
1		NPG-16-6	NP-16	2-1	6 152.4	18 457.2	15 1/4 387.4	19 1/2 495.3	4 5/8	2 5/16		3 3/4	4 1/8	1 3/8	9/16	13/16	1 9/16		3/8	12.4 5.62	NPG 14 TO 16-6 DZ
		NPG-16-9			9 228.6	21 533.4	18 1/4 463.6	22 1/2 571.5	117.5	58.7	63.5	95.3	104.8	34.9	14.3	20.6	39.7	6.4		13.5 6.12	NPG 14 TO 16-9 DZ
	25	NPG-205-6	NP-205	5205	6 152.4	18 457.2	15 1/4 387.4	19 1/2 495.3	4 5/8	2 5/16	2 1/2	3 3/4	4 1/8	1 3/8	9/16	13/16	1 9/16		3/8	12.4 5.62	NPG 14 TO 16-6 DZ
		NPG-205-9			9 228.6	21 533.4	18 1/4 463.6	22 1/2 571.5	117.5	58.7	63.5	95.3	104.8	34.9	14.3	20.6	39.7	6.4		13.5 6.12	NPG 14 TO 16-9 DZ
1/8		NPG-18-6	NP-18	2-12	6 152.4 9	19 482.6	16 1/4 412.8	20 1/2 520.7	5 1/8	2 5/16	2 1/2	3 3/4	4 3/8	1 11/16		7/8	1 3/4	1/4	3/8	16.1 7.30	NPG 17 TO 19-6 DZ
		NPG-18-9			228.6	558.8	19 1/4 489.0	23 1/2 596.9	130.2	58.7	63.5	95.3	111.1	42.9	15.9	22.2	44.5	6.4		17.1 7.76	NPG 17 TO 19-9 DZ
3/16		NPG-19-6	NP-19	2-13	6 152.4	19 482.6 22	16 1/4 412.8 19 1/4	20 1/2 520.7 23 1/2	5 1/8 130.2	2 5/16 58.7	2 1/2 63.5	3 3/4 95.3	4 3/8 111.1	1 11/16 42.9	5/8 15.9	7/8 22.2	1 3/4 44.5	1/4 6.4	3/8	16.1 7.30 17.1	NPG 17 TO 19-6 DZ
		NPG-19-9			228.6	558.8 19	489.0 16 1/4	596.9 20 1/2	130.2	50.1	03.5	95.3	111.1	42.9	15.9	22.2	44.5	0.4		7.76 16.1	NPG 17 TO 19-9 DZ
	30	NPG-206-6	NP-206	5206	152.4	482.6 22	412.8	520.7 23 1/2	5 1/8 130.2	2 5/16 58.7	2 1/2 63.5	3 3/4 95.3	4 3/8	1 11/16 42.9	5/8 15.9	7/8 22.2	1 3/4 44.5	1/4 6.4	3/8	7.30	NPG 17 TO 19-6 DZ
		NPG-206-9			228.6	558.8 22 1/4	489.0 19 1/2	596.9 23 3/4	130.2	30.7	03.3	90.0	111.1	42.9	13.9	22.2	44.5	0.4		7.76	NPG 17 TO 19-9 DZ
1/4		NPG-20-9	NP-20	2-14	228.6	565.2 25 1/4	495.3	603.3	5 1/4 133.4	2 5/16 58.7	2 1/2 63.5	3 3/4 95.3	4 9/16 115.9	1 7/8 47.6	11/16 17.5	1 25.4	1 3/4 44.5	1/4 6.4	3/8	8.03 19.1	NPG 20 TO 23-9 DZ
		NPG-20-12			304.8	641.4	571.5 19 1/2	679.5 23 3/4	133.4	30.7	00.0	90.0	110.9	47.0	17.5	25.4	44.5	0.4		8.66 17.7	NPG 20 TO 23-12 D.
3/8		NPG-22-9	NP-22	2-16	228.6	565.2 25 1/4	495.3	603.3	5 1/4 133.4	2 5/16 58.7	2 1/2 63.5	3 3/4 95.3	4 9/16 115.9	1 7/8 47.6	11/16 17.5	1 25.4	1 3/4 44.5	1/4 6.4	3/8	8.03 19.1	NPG 20 TO 23-9 DZ
		NPG-22-12			304.8	641.4	571.5 19 1/2	679.5 23 3/4	100.4	00.7	00.0	30.0	110.5	47.0	17.0	20.4	44.0	0.4		8.66 17.7	NPG 20 TO 23-12 D
7/16		NPG-23-9	NP-23	2-17	228.6	565.2 25 1/4	495.3	603.3	5 1/4 133.4	2 5/16 58.7	2 1/2 63.5	3 3/4 95.3	4 9/16 115.9	1 7/8 47.6	11/16 17.5	1 25.4	1 3/4 44.5	1/4 6.4	3/8	8.03 19.1	NPG 20 TO 23-9 DZ
		NPG-23-12			304.8	641.4	571.5 19 1/2	679.5 23 3/4	100.4	33.1	55.5	55.5	. 10.0		11.5	20.4	11.5	J. 7		8.66 17.7	NPG 20 TO 23-12 D
	35	NPG-207-9	NP-207	5207	228.6	565.2 25 1/4	495.3	603.3	5 1/4 133.4	2 5/16 58.7	2 1/2 63.5	3 3/4 95.3	4 9/16 115.9	1 7/8 47.6	11/16 17.5	1 25.4	1 3/4 44.5	1/4	3/8	8.03 19.1	NPG 20 TO 23-9 DZ
		NPG-207-12			304.8	641.4	571.5	679.5 27 1/2			55.5				3	25. 1		J.,		8.66 25.6	NPG 20 TO 23-12 D
1/2		NPG-24-12	NP-24	2-18	304.8	660.4 32	590.6 29 1/4	698.5 33 1/2	5 5/8 142.9	2 5/16 58.7	2 1/2 63.5	3 3/4 95.3	4 5/8 117.5	2 50.8	3/4 19.1	1 3/16 30.2	2 1/16 52.4	1/4 6.4	3/8	11.61 27.6	NPG 24 TO 28-12 D
		NPG-24-18			457.2	812.8	743.0	850.9	1-2.3	55.7	55.5	33.5		33.0	'3.	55.2	52.7	0.7		12.52	NPG 24 TO 28-18 D

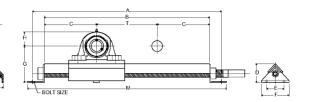
See notes on page G-82.

Duty: Standard

Rolling Elements: Ball

Housing: Cast Iron Top Mount Take Up

Frame & Pillow Block Housing


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Optional Lock: SKWEZLOC Locking Collar

Seal: Felt

Optional Seal: Contact
Temperature: -20° to 220°F

NPG and SPG Series Style "G" Protected Screw Take Ups - Setscrew Locking

Be	are .			Bearing						imensi	ions in	ch / mn	1						1000	-	
Bren	nether .	Part No	Housing Assembly	Insert	7						1000		1000-11						Bolt		Frame Only Part No.
inch	mm		Included	No.	Travel	A	B	W	C	0	щ	F	G	*	7	K	N	0	Size	lb/kg	
		NPS-25-12	ND 05	0.40	12 304.8	26 660.4	23 1/4 590.6	27 1/2 698.5	5 5/8	2 5/16	2 1/2	3 3/4	4 5/8	2	3/4	1 3/16	2 1/16	1/4	0.40	25.6 11.61	NPG 24 TO 28-12 DZW
1 9/16		NPS-25-18	NP-25	2-19	18 457.2	32 812.8	29 1/4 743.0	33 1/2 850.9	142.9	58.7	63.5	95.3	117.5	50.8	19.1	30.2	52.4	6.4	3/8	27.6 12.52	NPG 24 TO 28-18 DZW
	40	NPG-208-12	NP-208	5208	12 304.8	26 660.4	23 1/4 590.6	27 1/2 698.5	5 5/8	2 5/16	2 1/2	3 3/4	4 5/8	2	3/4	1 3/16	2 1/16	1/4	3/8	25.6 11.61	NPG 24 TO 28-12 DZW
		NPG-208-18	141 250	0200	18 457.2	32 812.8	29 1/4 743.0	33 1/2 850.9	142.9	58.7	63.5	95.3	117.5	50.8	19.1	30.2	52.4	6.4	0,0	27.6 12.52	NPG 24 TO 28-18 DZW
1 5/8		NPG-26-12	NP-26	2-110	12 304.8	26 660.4	23 1/4 590.6	27 1/2 698.5	5 5/8	2 5/16	2 1/2	3 3/4	413/16	2 1/8	3/4	1 3/16	2 1/16	1/4	3/8	24.9 11.29	NPG 24 TO 28-12 DZW
		NPG-26-18			18 457.2	32 812.8 26	29 1/4 743.0 23 1/4	33 1/2 850.9 27 1/2	142.9	58.7	63.5	95.3	122.2	54.0	19.1	30.2	52.4	6.4		28.7 13.02 24.9	NPG 24 TO 28-18 DZW
1 11/16		NPG-27-12	NP-27	2-111	304.8	660.4 32	590.6 29 1/4	698.5 33 1/2	5 5/8 142.9	2 5/16 58.7	2 1/2 63.5	3 3/4 95.3	413/16 122.2	2 1/8 54.0	3/4 19.1	1 3/16 30.2	21/16 52.4	1/4	3/8	11.29 28.7	NPG 24 TO 28-12 DZW
		NPG-27-18			457.2 12	812.8 26	743.0	850.9 27 1/2	. 12.0	50.1	55.5	55.5		34.0	10.7	30.2	J. 7	J. 7		13.02	NPG 24 TO 28-18 DZW
1 3/4		NPG-28-12	NP-28	2-112	304.8 18	660.4 32	590.6 29 1/4	698.5 33 1/2	5 5/8 142.9	2 5/16 58.7	2 1/2 63.5	3 3/4 95.3	413/16 122.2	2 1/8 54.0	3/4 19.1	1 3/16 30.2	2 1/16 52.4	1/4 6.4	3/8	11.29 28.7	NPG 24 TO 28-12 DZW
		NPG-28-18 NPG-209-12			457.2 12	812.8 26	743.0 23 1/4	850.9 27 1/2												13.02 24.9	NPG 24 TO 28-18 DZW NPG 24 TO 28-12 DZW
	45	NPG-209-18	NP-209	5209	304.8 18	32	590.6 29 1/4	698.5 33 1/2	5 5/8 142.9	2 5/16 58.7	2 1/2 63.5	3 3/4 95.3	413/16 122.2	2 1/8 54.0	3/4 19.1	1 3/16 30.2	2 1/16 52.4	1/4 6.4	3/8	11.29 28.7	NPG 24 TO 28-18 DZW
		NPG-30-12			457.2 12 304.8	812.8 26 3/4 679.5	743.0 24 609.6	850.9 28 1/4 717.6	6	2 5/16	2 1/2	3 3/4	415/16	2 5/16	3/4	1 9/32	2 1/16	1/4		13.02 27.6 12.52	NPG 30 TO 31-12 DZW
1 7/8		NPG-30-18	NP-30	2-114	18 457.2	32 3/4 831.9	30 762.0	34 1/4 870.0	152.4	58.7	63.5	95.3	125.4	58.7	19.1	32.5	52.4	6.4	1/2	30.4 13.79	NPG 30 TO 31-18 DZW
115/16		NPG-31-12	NP-31	2-115	12 304.8	26 3/4 679.5	24 609.6	28 1/4 717.6	6	2 5/16	2 1/2	3 3/4	415/16	2 5/16	3/4	1 9/32	2 1/16	1/4	1/2	27.6 12.52	NPG 30 TO 31-12 DZW
1 13/16		NPG-31-18	NP-31	2-115	18 457.2	32 3/4 831.9	30 762.0	34 1/4 870.0	152.4	58.7	63.5	95.3	125.4	58.7	19.1	32.5	52.4	6.4	1/2	30.4 13.79	NPG 30 TO 31-18 DZW
	50	NPG-210-12	NP-210	5210	12 304.8	26 3/4 679.5	24 609.6	28 1/4 717.6	6	2 5/16	2 1/2	3 3/4	415/16	2 5/16	3/4	1 9/32	2 1/16	1	1/2	27.6 12.52	NPG 30 TO 31-12 DZW
		NPG-210-18			18 457.2	32 3/4 831.9 27 1/4	30 762.0 24 1/2	34 1/4 870.0 29	152.4	58.7	63.5	95.3	125.4	58.7	19.1	32.5	52.4	6.4		30.4 13.79 36.6	NPG 30 TO 31-18 DZW
2		NPG-32-12	NP-32	2-2	12 304.8 18	692.2 33 1/4	622.3 30 1/2	736.6 35	6 1/4 158.8	211/16 68.3	3 76.2	4 3/4 120.7	5 9/16 141.3	2 1/2 63.5	7/8 22.2	1 5/16 33.3	27/16 61.9	5/16 7.9	1/2	16.60 40.1	NPG 32 TO 35-12 DZW
		NPG-32-18			457.2 12	844.6 27 1/4	774.7	889.0 29	100.0	55.5	10.2	,20.7	141.5	55.5		55.5	01.0			18.19	NPG 32 TO 35-18 DZW
2 1/8		NPG-34-12	NP-34	2-22	304.8	692.2 33 1/4	622.3 30 1/2	736.6 35	6 1/4 158.8	211/16 68.3	3 76.2	4 3/4 120.7	5 9/16 141.3	2 1/2 63.5	7/8 22.2	1 5/16 33.3	2 7/16 61.9	5/16 7.9	1/2	16.60 40.1	NPG 32 TO 35-12 DZW
		NPG-34-18			457.2 12	844.6 27 1/4	774.7 24 1/2	889.0 29												18.19 36.6	NPG 32 TO 35-18 DZW NPG 32 TO 35-12 DZW
	55	NPG-211-12 NPG-211-18	NP-211	5211	304.8 18	692.2 33 1/4	622.3 30 1/2	736.6 35	6 1/4 158.8	211/16 68.3	3 76.2	4 3/4 120.7	5 9/16 141.3	2 1/2 63.5	7/8 22.2	1 5/16 33.3	27/16 61.9	5/16 7.9	1/2	16.60 40.1	NPG 32 TO 35-12 DZW
		1,11 0-211-10			457.2	844.6	774.7	889.0												18.19	14. 3 32 10 30-10 B2W

See notes on page G-82.

Metric dimensions for reference only.

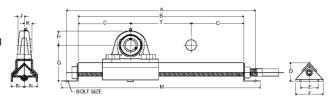
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Duty: Standard

Rolling Elements: Ball

Housing: Cast Iron Top Mount Take Up Frame & Pillow Block Housing


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Optional Lock: SKWEZLOC Locking Collar

Seal: Felt

Optional Seal: Contact
Temperature: -20° to 220°F

NPG and SPG Series Style "G" Protected Screw Take Ups - Setscrew Locking

Во	re			Branch a						Dimensi	ions in	ch / mn	1					_	119	į.	
Dian	neter	Part No	Housing Assembly	Bearin Insert	T		240			200	1990	1122				100000			Bolt	Unit Wt.	Frame Only Part No.
inch	mm		Included	No	Travel	Α.	8	M.	c	Đ	E	F.	G	H	3	K	N	0	Size	lb/kg	
2 3/16		NPG-35-12	NP-35	2-23	12 304.8	27 1/4 692.2	24 1/2 622.3	29 736.6	6 1/4	211/16	3	4 3/4	5 9/16	2 1/2	7/8	1 5/16	2 7/16	5/16	1/2	36.6 16.60	NPG 32 TO 35-12 DZW
2 3/10		NPG-35-18	NF-33	2-23	18 457.2	33 1/4 844.6	30 1/2 774.7	35 889.0	158.8	68.3	76.2	120.7	141.3	63.5	22.2	33.3	61.9	7.9	1/2	40.1 18.19	NPG 32 TO 35-18 DZW
2 1/4		SPG-36-12	SP-36	2-24	12 304.8	30 762.0	27 1/4 692.2	31 1/4 793.8	7 5/8	211/16	3	4 3/4	6 3/16	215/16	1	1 9/16	2 7/16	5/16	5/8	48.9 22.18	SPG 36 TO 39-12 DZW
2 1/4		SPG-36-18	01 -00	2-24	18 457.2	36 914.4	33 1/4 844.6	37 3/4 958.9	193.7	68.3	76.2	120.7	157.2	74.6	25.4	39.7	61.9	7.9	3,0	52.1 23.63	SPG 36 TO 39-18 DZW
2 3/8		SPG-38-12	SP-38	2-26	12 304.8	30 762.0	27 1/4 692.2	31 1/4 793.8	7 5/8	211/16	3	4 3/4	6 3/16	215/16	1	1 9/16	27/16	5/16	5/8	48.9 22.18	SPG 36 TO 39-12 DZW
2 3/0		SPG-38-18	01 -00	2-20	18 457.2	36 914.4	33 1/4 844.6	37 3/4 958.9	193.7	68.3	76.2	120.7	157.2	74.6	25.4	39.7	61.9	7.9	3/0	52.1 23.63	SPG 36 TO 39-18 DZW
2 7/16		SPG-39-12	SP-39	2-27	12 304.8	30 762.0	27 1/4 692.2	31 1/4 793.8	7 5/8	211/16	3	4 3/4	6 3/16	215/16	1	1 9/16	2 7/16	5/16	5/8	48.9 22.18	SPG 36 TO 39-12 DZW
27/10		SPG-39-18	31-39	2-21	18 457.2	36 914.4	33 1/4 844.6	37 3/4 958.9	193.7	68.3	76.2	120.7	157.2	74.6	25.4	39.7	61.9	7.9	3/0	52.1 23.63	SPG 36 TO 39-18 DZW
	60	SPG-212-12	SP-212	5212	12 304.8	30 762.0	27 1/4 692.2	31 1/4 793.8	7 5/8	211/16	3	4 3/4	6 3/16	215/16	1	1 9/16	2 7/16	5/16	5/8	48.9 22.18	SPG 36 TO 39-12 DZW
	00	SPG-212-18	36-212	5212	18 457.2	36 914.4	33 1/4 844.6	37 3/4 958.9	193.7	68.3	76.2	120.7	157.2	74.6	25.4	39.7	61.9	7.9	3/0	52.1 23.63	SPG 36 TO 39-18 DZW
2 1/2		SPG-40-12	SP-40	3-28	12 304.8	31 1/2 800.1	28 3/4 730.3	33 1/2 850.9	8 3/8	3 1/4	3	5	7 1/2	3 3/8	1 1/16	1 11/16	213/16	3/8	5/8	67.2 30.48	SPG 40 TO 47-12 DZW
2 1/2		SPG-40-18	3F-40	3-20	18 457.2	37 1/2 952.5	34 3/4 882.7	39 1/2 1003.3	212.7	82.6	76.2	127.0	190.5	85.7	27.0	42.9	71.4	9.5	3/6	69.2 31.39	SPG 40 TO 47-18 DZW
211/16		SPG-43-12	SP-43	2-211	12 304.8	31 1/2 800.1	28 3/4 730.3	33 1/2 850.9	8 3/8	3 1/4	3	5	7 1/2	3 3/8	1 1/16	1 11/16	213/16	3/8	5/8	67.2 30.48	SPG 40 TO 47-12 DZW
211/10		SPG-43-18	3F-43	2-211	18 457.2	37 1/2 952.5	34 3/4 882.7	39 1/2 1003.3	212.7	82.6	76.2	127.0	190.5	85.7	27.0	42.9	71.4	9.5	3/6	69.2 31.39	SPG 40 TO 47-18 DZW
	70	SPG-214-12	SP-214	5214	12 304.8	31 1/2 800.1	28 3/4 730.3	33 1/2 850.9	8 3/8	3 1/4	3	5	7 1/2	3 3/8	1 1/16	1 11/16	213/16	3/8	5/8	67.2 30.48	SPG 40 TO 47-12 DZW
	70	SPG-214-18	35-214	5214	18 457.2	37 1/2 952.5	34 3/4 882.7	39 1/2 1003.3	212.7	82.6	76.2	127.0	190.5	85.7	27.0	42.9	71.4	9.5	3/6	69.2 31.39	SPG 40 TO 47-18 DZW
27/0		SPG-46-12	SP-46	2-214	12 304.8	31 1/2 800.1	28 3/4 730.3	33 1/2 850.9	8 3/8	3 1/4	3	5	7 1/2	3 7/16	1 5/16	1 3/4	213/16	3/8	5/8	67.6 30.66	SPG 40 TO 47-12 DZW
2 7/8		SPG-46-18	3P-40	2-214	18 457.2	37 1/2 952.5	34 3/4 882.7	39 1/2 1003.3	212.7	82.6	76.2	127.0	190.5	87.3	33.3	44.5	71.4	9.5	3/6	69.8 31.66	SPG 40 TO 47-18 DZW
21546		SPG-47-12	SP-47	2 21F	12 304.8	31 1/2 800.1	28 3/4 730.3	33 1/2 850.9	8 3/8	3 1/4	3	5	7 1/2	3 7/16	1 5/16	1 3/4	213/16	3/8	5/9	67.6 30.66	SPG 40 TO 47-12 DZW
215/16		SPG-47-18	SP-47	2-215	18 457.2	37 1/2 952.5	34 3/4 882.7	39 1/2 1003.3	212.7	82.6	76.2	127.0	190.5	87.3	33.3	44.5	71.4	9.5	5/8	69.8 31.66	SPG 40 TO 47-18 DZW
	7.5	SPG-215-12	OD 245	E24E	12 304.8	31 1/2 800.1	28 3/4 730.3	33 1/2 850.9	8 3/8	3 1/4	3	5	7 1/2	3 7/16	1 5/16	1 3/4	213/16	3/8	E/0	67.6 30.66	SPG 40 TO 47-12 DZW
	75	SPG-215-18	SP-215	5215	18 457.2	37 1/2 952.5	34 3/4 882.7	39 1/2 1003.3	212.7	82.6	76.2	127.0	190.5	87.3	33.3	44.5	71.4	9.5	5/8	69.8 31.66	SPG 40 TO 47-18 DZW

Series NPG and SPG are top mounted protected screw take-up units incorporating standard duty pillow blocks, as indicated in the accompanying charts. They are used where shaft adjustment and/ or belt tightening is required in conveyor applications. They are manufactured from heavy gauge structural steel and equipped with heavy duty Acme (square) threads for positive action. Adjustment is made by turning the square head screw with an open end wrench.

Part numbers shown include standard duty setscrew locking pillow block NP (see pages G-31 to G-32) or SP (see pages G-36 to G-37) as indicated. For SKWEZLOC Locking Collar add T suffix example NPG-32T-18

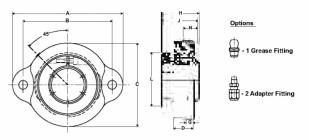
For Contact Seal add C suffix example NPG-32C-18

ASTER® Performance Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball

> Housing: Ductile Iron Two Bolt Flange


Self Alignment: +/- 2 Degrees

> Concentric Lock:

SKWEZLOC Locking Collar Lock:

Seal:

Optional Seal: Contact Temperature: -20° to 220°F

TFT-T Series Standard Duty Two-Bolt Flange Units - SKWEZLOC Locking Collar

304		East No.			Banke.			10	ntimurkski	a borde ere					
Diameter	Standar. CAU: Plug	Vette Smore Filling	Malte Anapros Fillens	No. TE	Dynamia Paten Paten		8		ø	Ŋ	1	3	10	33	line Mr.
396,000	1/ 1/201	1 .0863.1	1.173944	800 B 30	50011	31.34	. 1	3390	116-18	1.126	OVSIN	171548	le as	3234	115
	压助	TF 1617.1	TET GTG-2	2.170	2450	97.2	79.0	99.0	17:2	38.1	*	10.0	142	70.00	2.23
1 1/8	TFT-18TC	TFT-18TC-1	TFT-18TC-2	2-12TC											
1 3/16	TFT-19TC	TFT-19TC-1	TFT-19TC-2	2-13TC	4381 19487	4 7/16 112.7	3 9/16 90.5	3 1/4 82.6	13/16 20.6	1 5/8 41.3	1 9/16 39.7	2 3/16 55.6	5/8 15.9	3/8	23 1.04
1 1/4	TFT-20RT*	TFT-20RT*	TFT-20RT*	1-14T											
11160	1/139.561	и зайаа	Limbia	6.6400	SMX	4.2%	1115-111	975.00	n.	1.13/18	3396	77.0H	197£	3236	3
2	#100000	CHARLE SACTORY	ALL ROLLOWS	oven.	33710	123-0	田院海。	00687.5	\$8.0	26.0	33.7	250	11193		171
1 3/8	TFT-22TC	TFT-22TC-1	TFT-22TC-2	2-16TC	5782	4 7/8	3 15/16	3 11/16	7/8	1 13/16	1 3/4	2 9/16	11/16	3/8	3
1 7/16	TFT-23TC	TFT-23TC-1	TFT-23TC-2	2-17TC	25718	123.8	100.0	93.7	22.2	46.0	44.5	65.1	17.5	3/8	1.36

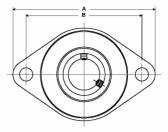
For standard duty SKWEZLOC Locking Collar Bearing inserts, see page G-93. *1 1/4 Reduced not available with contact seal, felt only.

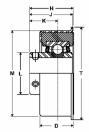
Duty: Light

Rolling Elements: Ball

Housing: Stamped Steel Rubber

Mounted Flange


Lock: Setscrew


Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

Relube: No

SRF Series Light Duty Rubber Mounted Flange Blocks - Setscrew Locking

Braco		BLOCKE	Mak success				Zimini	en a ten fina	T MMA					A Section 19
Unarredia Date:	- Par- No	10	Cartle Laurie	63	##	悬	0000	19	100	846	(8)	Hala beas	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the kg
147 14- 34	92F0 His Kr 8FF-12	SPC-2	2001 2720	1172	5548 611	1 220 34 h	123	900 904	155 1575	191 11 1	2127	-1 77	(1990)	10 10
7/8 15/16	SRF-14 SRF-15 SRF-16	SRC-14 SRC-15 SRC-16	400 1779	4 1/2 114.3	3 5/8 92.1	1 3/32 27.8	1 3/8 34 9	1 3/8 34.9	7/8 22.2	2 41/64 67.1	2 45/64 68.7	7/16 11.1	3/8	85 39
1546 1546	100 AB SRF 95 100 394	SEC. S SEC. S	Lify years	5 3 B 7 #K 5	atsb Will	1.1.4 53.8	12147	151 (10	1 1/10	t iM ext	7 H 404	62 	7700	1.36 86

Maximum steady radial load is based upon the housing strength and materials composition. Thrust load ratings 40% of radial loads..

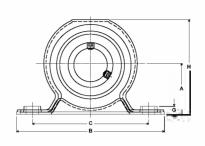
ASTER Performance Mounted Ball Bearings

Duty: Light

Rolling Elements: Ball

> Housing: Stamped Steel Rubber

Mounted Pillow Block


Lock: Setscrew

Felt Seal:

Optional Seal: Contact

Temperature: -20° to 220°F

> Relube: No

SRP Series Light Duty Rubber Mounted Pillow Blocks - Setscrew Locking

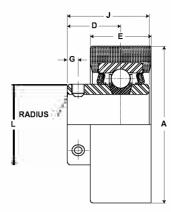
800			And reference				Diliminati	dane inc	h deman						
kimiredar neb	Part 4	Backing Incom No.	Mar, Oliney Bartoti Ande Heli	(1983)	無	19	課	29.00	應	95	(%)	246	200	Six	15-30g
527 838 347	190-6 88 ***	5(5) (II 214) (S 534) (ŝ	1.0 30.1	435 1267	550 701	1 m 7 30 0	(1)-2" A.Z.	71.4	1 .e.or 05.5	/N 676	1116 25.1) <u>1</u>	(89)	-35 -35
7/8 15/16 1	SRP-14 SRP-15 SRP-16	SRC-14 SRC-15 SRC-16	200 890	1 1/2 38.1	4 3/4 120.7	3 5/8 92.1	1 5/16 33.3	11/64 4.4	2 13/16 71.4	1 3/8 34 9	7/8 22.2	1 1/8 28.6	7/16 11.1	3/8	1 45
1 5 E 290 1 10	887416 887410 8874007	6RC+15 6RC+15 8RC-20R	25y 6594	15d 225	5 A	etë 'esë	102 38.1	7;32 5 6	322	150 41.2	1, in	11,35 25,1	7.46 7.46	38	1/2 /*

Maximum steady radial load is based upon the housing strength and materials composition. Thrust load rating 40% of radial loads.

Duty: Light

Rolling Elements: Bal

Housing: Rubber Mounted Insert


Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

Relube: No

SRC Series Light Duty Rubber Mounted Cartridge Units - Setscrew Locking

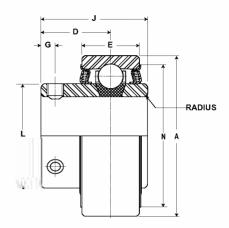
Su.			Nex Steedy			DI Walishim	emakannu -			
Committee	###WW	Finance Inpertisk:	Enditionals BPI	1341	93	88	Ħ	ē.		Here's W.S. Livings
201 201	\$87.5 HG(96 MG(1)	89.0 GH 04 481-12	201_ 600*	91009 643	47	100	5"e 40	25.2 17.3 18.4	155	4
7/8 15/16 1	SRC-14 SRC-15 SRC-16	RB-14 RB-15 RB-16	200 890	2 17/32 64.3	7/8 22.2	1 25.4	3/16 4 8	1 3/8 34.9	1 3/8 34.9	65 29
1.46E (\$500 -1.464	25048 25049 350409	RE-18 RE-19 SE 20P:	%	7.845 7.845	3.0	1.1564 30-5	7,02 518	1902 6 1	GB 41.3	1,50

 $Maximum\ steady\ radial\ load\ is\ based\ upon\ the\ housing\ strength\ and\ materials\ composition.\ Thrust\ load\ ratings\ 40\%\ of\ radial\ loads.$

SEALMASTER• Performance Mounted Ball Bearings

Duty: Light

Rolling Elements: Ball


> Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

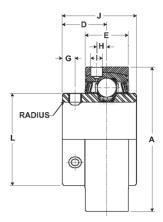
Relube:

RB Series Bearing Assemblies

Box					Dire	ortage meb	July 18					
Kinameler.	Paid No.	Barric Dynamic Ranina (ILW)	M.	3	撫	8 5 8	fil.	90		Man Rec to Close	Thread	BENES!
172	PS-8		10000000	7000	-	1615000		or and the second	Targetti-			KSS746
530	39.7	116-4	1.539) 47.56	751 22.2	5-1 5-2	9-19 4-2	1975) 12.5	1.5-15 502	150	164. 602	(44.25	10 23
332	39 7											
7/8	RB-14											
15/16	RB-15	2801 12459	2.047 52.00	7/8 22.2	3/4 19.1	3/16 4.8	1 3/8 34.9	1 3/8 34.9	1 55/64 47.2	040 1.02	1/4-28	60 27
1	RB-16											
1996	33.5	100071	7773	1200000	7.6	-111	14.00		24 mests	200		(5.00
ANG	₹9.5	4.54 1948)	22.30 22.30	570	225 227	20.00 20.00	1.507 41.3	19.5	1 (04.27 40.5	04. 1.02	04(26	1 1
37494	R9.27E	(18516//).	54545M	12.4	2959	5550	2.52	1.00	1565	20,20		1040

Duty: Standard

Rolling Elements: Ball


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: Felt

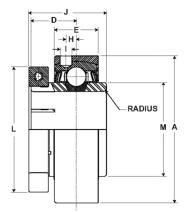
Optional Seal: Contact

Temperature: -20° to 220°F

AR Series Standard Duty Expansion Insert - Setscrew Locking

1				Basic	2000			Dimension	s inch / mm					$\overline{}$	
Bore Di	iameter	Part No.	Bearing	Dynamic									Max Rad.	Setscrew	Unit Wt.
inch	10000	750000000	Insert No	Rating lb/N	000 005	٥	E	G	10		4	L	To Clear	Thread	lb/kg
1/2		AR-2-08	2-08	IDITY	.000								•		
9/16		AR-2-09	2-09												
5/8		AR-2-010	2-010	2611	2.062	23/32	49/64	3/16	1/8	1/4	1 7/32	1 3/16	.040		.8
11/16		AR-2-011	2-011	11614	52.375	18.3	19.4	4.8	3.2	6.4	31.0	30.2	1.02	1/4-28	.36
3/4		AR-2-012	2-012												
	20	AR-204	5204												
13/16		AR-2-013	2-013												
7/8		AR-2-014	2-014	2801	2.272	13/16	49/64	7/32	11/64	1/4	1 3/8	1 3/8	.040		1.0
15/16		AR-2-015	2-015	12459	57.709	20.6	19.4	5.6	4.4	6.4	34.9	34.9	1.02	1/4-28	.45
1		AR-2-1	2-1	12400	01.100	20.0	10.4	0.0	4.4	0.4	04.0	04.0	1.02		0
	25	AR-205	5205												
1 1/16		AR-2-11	2-11												
1 1/8		AR-2-12	2-12	4381	2.687	7/8	61/64	7/32	7/32	1/4	1 1/2	1 19/32	.040	444.00	1.5
1 3/16		AR-2-13	2-13	19487	68.250	22.2	24.2	5.6	5.6	6.4	38.1	40.5	1.02	1/4-28	.68
1 1/4	30	AR-1-14 AR-206	1-14 5206												
1 1/4	30	AR-2-14	2-14												
1 5/16		AR-2-14	2-14												
1 3/8		AR-2-16	2-16	5782	3.140	1	1 1/64	1/4	1/4	1/4	1 11/16	1 55/64	.040	5/16-24	2.1
1 7/16		AR-2-17	2-17	25718	79.756	25.4	25.8	6.4	6.4	6.4	42.9	47.2	1.02		.95
	35	AR-207	5207												
1 1/2		AR-2-18	2-18	7340	2 275	4 2/46	4 44/64	5/16	10/64	4/4	4.45/46	24/46	060		2.0
1 9/16		AR-2-19	2-19	32648	3.375 85.725	1 3/16 30.2	1 11/64 29.8	7.9	19/64 7.5	1/4 6.4	1 15/16 49.2	2 1/16 52.4	.062 1.57	5/16-24	2.8 1.27
	40	AR-208	5208	32040	00.720	30.2	29.0	1.5	7.5	0.4	43.2	32.4	1.57		1.21
1 5/8		AR-2-110	2-110												
1 11/16		AR-2-111	2-111	7901	3.562	1 3/16	1 11/64	5/16	19/64	1/4	1 15/16	2 19/64	.062		3
1 3/4	45	AR-2-112	2-112	35144	90.475	30.2	29.8	7.9	7.5	6.4	49.2	58.3	1.57	5/16-24	1.36
4.4040	45	AR-209	5209												
1 13/16 1 7/8		AR-2-113 AR-2-114	2-113 2-114												
1 15/16		AR-2-114	2-114	7889	3.875	1 9/32	1 13/64	3/8	17/64	11/32	2 1/32	2 15/32	.062	3/8-24	3.5
2		AR-1-2	1-2	35090	98.425	32.5	30.6	9.5	6.7	8.7	51.6	62.7	1.57	0,0-24	1.59
_	50	AR-210	5210												
2		AR-2-2	2-2												
2 1/8		AR-2-22	2-22	9752	4.250	1 5/16	1 17/64	3/8	19/64	11/32	2 3/16	2 23/32	.080		4.4
2 3/16		AR-2-23	2-23	43377	107.950	33.3	32.1	9.5	7.5	8.7	55.6	69.1	2.03	3/8-24	2.00
	55	AR-211	5211												
2 1/4		AR-2-24	2-24												
2 3/8		AR-2-26	2-26	11789	4.718	1 9/16	1 21/64	7/16	21/64	11/32	2 9/16	2 63/64	.080	3/8-24	5.8
2 7/16		AR-2-27	2-27	52437	119.837	39.7	33.7	11.1	8.3	8.7	65.1	75.8	2.03	"" - "	2.63
0.44/40	60	AR-212	5212	40074	F 470	4.44/4.0	4.00/04	7/40	2/0	44 (0.0	0.044	0.7/40	000		0.0
2 11/16	70	AR-2-211 AR-214	2-211 5214	13971 62143	5.170 131.318	1 11/16 42.9	1 29/64 36.9	7/16 11.1	3/8 9.5	11/32 8.7	2 3/4 69.9	3 7/16 87.3	.080 2.03	7/16-20	9.3 4.22
2 7/8	70	AR-2-214	2-214												
2 15/16		AR-2-214 AR-2-215	2-214	14839	5.375	1 3/4	1 37/64	7/16	3/8	11/32	3 1/16	3 41/64	.080	7/16-20	9.6
2 .5, .5	75	AR-215	5215	66004	136.525	44.5	40.1	11.1	9.5	8.7	77.8	92.5	2.03		4.35
3 3/16		AR-2-33	2-33	17412	5.875	1 15/16	1 53/64	17/32	13/32	15/32	3 1/4	3 59/64	.120	7/40 00	12.2
3.150	80	AR-216	5216	77449	149.225	49.2	46.4	13.5	10.3	11.9	82.6	99.6	3.0	7/16-20	5.53
3 1/4		AR-2-34	2-34	18681	6.280	2 1/32	2 5/64	15/32	17/32	15/32	3 3/8	4 5/32	.120		15.2
3 3/8		AR-2-36	2-36	83093	159.512	51.6	52.8	11.9	17/32	11.9	85.7	105.6	3.05	7/16-20	6.89
3 7/16		AR-2-37	2-37												
3 1/2		AR-2-38	2-38	21566	6.750	2 7/32	2 9/64	5/8	15/32	15/32	3 25/32	4 25/64	.120	1/2-20	18.5
	90	AR-218	5218	95926	171.450	56.4	54.4	15.9	11.9	11.9	96.0	111.5	3.05		8.39

For Standard Duty Bearing Inserts - Single Lock see page G-92.


Duty: Standard **Rolling Elements:** Ball

Self Alignment: +/- 2 Degrees

> Lock: SKWEZLOC Locking Collar

Seal:

Optional Seal: Contact Temperature: -20° to 220°F

AR-T Standard Duty Expansion Insert - SKWEZLOC Locking Collar - Inch

Bore		17751	Basic	175			Dimension	s inch / mm						
Diameter	Part No₁	Bearing Insert No.	Dynamic Rating Ib/N	+.000" .005"	(0)	NE:	WWW	T/i	(13)	1/20	1980	Max Rad. To Clear	Torx Cap Screw	Unit Wt. lb/kg
3/4	AR-2-012T	2-012T	2611 11614	2.0620 52.375	25/32 22.8	49/64 19.4	9/64 3.6	1/4 6.4	1 9/32 35.5	1 3/4 44.5	1 3/16 30.2	.040 1.02	T-25	.9 .41
15/16 1	AR-2-015T AR-2-1T	2-015T 2-1T	2801 12459	2.2720 57.709	7/8 22.2	49/64 19.4	11/64 4.4	1/4 6.4	1 7/16 36.5	1 15/16 49.2	1 3/8 34.9	.040 1.02	T-25	1.2 .54
1 1/8	AR-2-12T	2-12T	4381 19487	2.6870 68.250	15/16 22.8	61/64 24.2	7/32 5.6	1/4 6.4	1 9/16 35.5	2 3/16 55.6	1 19/32 40.5	.040 1.02	T-25	1.7 .77
1 1/4	AR-2-14T	2-14T	5782 25718	3.1400 79.756	1 1/16 27.0	1 1/64 25.8	1/4 6.4	1/4 6.4	1 3/4 44.5	2 7/16 61.9	1 55/64 47.2	.040 1.02	T-27	2.4 1.09
1 3/8 1 7/16	AR-2-16T AR-2-17T	2-16T 2-17T	5782 25718	3.1400 79.756	1 1/16 27.0	1 1/64 25.8	1/4 6.4	1/4 6.4	1 3/4 44.5	2 9/16 65.1	1 55/64 47.2	.040 1.02	T-27	2.4 1.09
1 1/2	AR-2-18T	2-18T	7340 32648	3.3750 85.725	1 1/4 31.8	1 11/64 29.8	19/64 7.5	1/4 6.4	2 50.8	2 11/16 68.3	2 1/16 52.4	.062 1.57	T-27	3.1 1.41
1 5/8	AR-2-110T	2-110T	7901 35144	3.5620 90.475	1 1/4 31.8	1 11/64 29.8	19/64 7.5	1/4 6.4	2 50.8	2 13/16 71.4	2 19/64 58.3	.062 1.57	T-27	3.3 1.50
1 11/16 1 3/4	AR-2-111T AR-2-112T	2-111T 2-112T	7901 35144	3.5620 90.475	1 1/4 31.8	1 11/64 29.8	19/64 7.5	1/4 6.4	2 50.8	2 15/16 74.6	2 19/64 58.3	.062 1.57	T-27	3.3 1.50
1 15/16	AR-2-115T	2-115T	7889 35090	3.8750 98.425	1 11/32 34.1	1 13/64 30.6	17/64 6.7	11/32 8.7	2 3/32 53.2	3 3/8 85.7	2 15/32 62.7	.062 1.57	T-30	4.1 1.86
2	AR-2-2T	2-2T	9752 43377	4.2500 107.950	1 3/8 34.9	1 17/64 32.1	19/64 7.5	11/32 8.7	2 1/4 57.2	3 1/2 88.9	2 23/32 69.1	.080 2.03	T-30	5.0 2.27
2 3/16	AR-2-23T AR-211TMC	2-23T 5211TMC	9752 43377	4.2500 107.950	1 3/8 34.9	1 17/64 32.1	19/64 7.5	11/32 8.7	2 1/4 57.2	3 5/8 92.1	2 23/32 69.1	.080 2.03	T-30	5.0 2.27
2 1/4	AR-2-24T	2-24T	11789 52437	4.7190 119.863	1 5/8 41.3	1 21/64 33.7	21/64 8.3	11/32 8.7	2 5/8 66.7	4 1/16 103.2	2 63/64 75.8	.080 2.03	T-45	7.0 3.18
2 3/8 2 7/16	AR-2-26T AR-2-27T	2-26T 2-27T	11789 52437	4.7190 119.863	1 5/8 41.3	1 21/64 33.7	21/64 8.3	11/32 8.7	2 5/8 66.7	4 1/8 104.8	2 63/64 75.8	.080 2.03	T-45	7.0 3.18

AR-T Standard Duty Expansion Insert - Metric - SKWF7™

Bore		- 10	Basic	100			Dimension	s mm / inch						
Diam ver mm	Part No.	Bearing Insert No.	Dynamic Rating Ib/N	+.000mm 125mm	D	B	//#	10	(50)	Y/ U ()	(188)	Max Rad. To Clear	Torx Cap Screw	Unit Wt. kg/lb
20	AR-204TMC	5204TMC	11614 2611	52.375 2.0620	22.8 25/32	19.4 49/64	3.6 9/64	6.4 1/4	35.5 1 9/32	44.5 1 3/4	30.2 1 3/16	1.02 .040	T-25	.41 .9
25	AR-205TMC	5205TMC	12459 2801	57.709 2.2720	22.2 7/8	19.4 49/64	4.4 11/64	6.4 1/4	36.5 1 7/16	49.2 1 15/16	34.9 1 3/8	1.02 .040	T-25	.54 1.2
30	AR-206TMC	5206TMC	19487 4381	68.250 2.6870	22.8 15/16	24.2 61/64	5.6 7/32	6.4 1/4	35.5 1 9/16	55.6 2 3/16	40.5 1 19/32	1.02 .040	T-25	.77 1.7
35	AR-207TMC	5207TMC	25718 5782	79.756 3.1400	27.0 1 1/16	25.8 1 1/64	6.4 1/4	6.4 1/4	44.5 1 3/4	65.1 2 9/16	47.2 1 55/64	1.02 .040	T-27	1.09 2.4
40	AR-208TMC	5208TMC	32648 7340	85.725 3.3750	31.8 1 1/4	29.8 1 11/64	7.5 19/64	6.4 1/4	50.8 2	68.3 2 11/16	52.4 2 1/16	1.57 .062	T-27	1.41 3.1
45	AR-209TMC	5209TMC	35144 7901	90.475 3.5620	31.8 1 1/4	29.8 1 11/64	7.5 19/64	6.4 1/4	50.8 2	74.6 2 15/16	58.3 2 19/64	1.57 .062	T-27	1.50 3.3
50	AR-210TMC	5210TMC	35090 7889	98.425 3.8750	34.1 1 11/32	30.6 1 13/64	6.7 17/64	8.7 11/32	53.2 2 3/32	85.7 3 3/8	62.7 2 15/32	1.57 .062	T-30	1.86 4.1
55	AR-211TMC	5211TMC	43377 9752	107.950 4.2500	34.9 1 3/8	32.1 1 17/64	7.5 19/64	8.7 11/32	57.2 2 1/4	92.1 3 5/8	69.1 2 23/32	2.03 .080	T-30	2.27 5.0
60	AR-212TMC	5212TMC	52437 11789	119.863 4.7190	41.3 1 5/8	33.7 1 21/64	8.3 21/64	8.7 11/32	66.7 2 5/8	104.8 4 1/8	75.8 2 63/64	2.03 .080	T-45	3.18 7.0

For Standard Duty Bearing Inserts - SKWEZLOC Locking collar see page G-93.

Bearing Selection Page G-3

Nomenclature Aid Page G-18

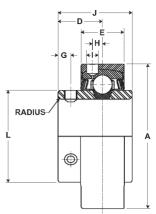
Features & Benefits Page G-21

Product Options Page G-23

Technical Engineering Page G-220

Duty: Medium

Rolling Elements: Ball


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

AR Series Medium Duty Expansion Insert - Setscrew Locking

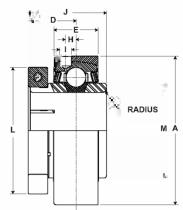
		-		Basic	~			Dimension	s inch / mm			-			
Bore Dia	_	Part No.	Bearing Insert No.	Dynamic Rating	+.000"	6	E	G	1997	N.	30	YES	Max Rad. To Clear	Setscrew Thread	Unit Wt. lb/kg
inch	mm			III/N	.005"										ш
15/16		AR-3-015	3-015	4381	2.687	7/8	61/64	7/32	7/32	1/4	1 1/2	1 19/32	.040		1.5
1		AR-3-1	3-1	19487	68.250	22.2	24.2	5.6	5.6	6.4	38.1	40.5	1.02	1/4-28	.68
	25	AR-305	5305												
1 3/16		AR-3-13	3-13	5782	3.14	1	1 1/64	1/4	1/4	1/4	1 11/16	1 55/64	.040	5/16-24	2.1
	30	AR-306	5306	25718	79.756	25.4	25.8	6.4	6.4	6.4	42.9	47.2	1.02	0/10-24	.95
1 7/16		AR-3-17	3-17	7340	3.375	1 3/16	1 11/64	5/16	19/64	1/4	1 15/16	2 1/16	.062	5/16-24	2.8
	35	AR-307	5307	32648	85.725	30.2	29.8	7.9	7.5	6.4	49.2	52.4	1.57	3/10-24	1.27
1 1/2		AR-3-18	3-18	7901	3.562	1 3/16	1 11/64	5/16	19/64	1/4	1 15/16	2 19/64	.062	5/16-24	3
	40	AR-308	5308	35144	90.475	30.2	29.8	7.9	7.5	6.4	49.2	58.3	1.57	3/16-24	1.36
1 11/16		AR-3-111	3-111												
1 3/4		AR-3-112	3-112	7889 35090	3.875 98.425	1 9/32 32.5	1 13/64 30.6	3/8 9.5	17/64 6.7	11/32 8.7	2 1/32 51.6	2 15/32 62.7	.062 1.57	3/8-24	3.5 1.59
	45	AR-309	5309	33090	90.423	32.5	30.0	9.5	0.7	0.7	31.0	02.7	1.57		1.59
1 15/16		AR-3-115	3-115	9752	4.25	1 5/16	1 17/64	3/8	19/64	11/32	2 3/16	2 23/32	.080	0.00.04	4.4
	50	AR-310	5310	43377	107.950	33.3	32.1	9.5	7.5	8.7	55.6	69.1	2.03	3/8-24	2.00
2 3/16		AR-3-23	3-23	11789	4.718	1 9/16	1 21/64	7/16	21/64	11/32	2 9/16	2 63/64	.080	0/0.04	5.8
	55	AR-311	5311	52437	119.837	39.7	33.7	11.1	8.3	8.7	65.1	75.8	2.03	3/8-24	2.63
2 7/16		AR-3-27	3-27												
2 1/2		AR-3-28	3-28	13971	5.17	1 11/16	1 29/64	7/16	3/8 9.5	11/32	2 3/4	3 7/16	.080	7/16-20	9.3
	65	AR-313	5313	62143	131.318	42.9	36.9	11.1	9.5	8.7	69.9	87.3	2.03		4.22
2 11/16		AR-3-211	3-211	14839	5.375	1 3/4	1 37/64	7/16	3/8	11/32	3 1/16	3 41/64	.080		9.6
	70	AR-314	5314	66004	136.525	44.5	40.1	11.1	9.5	8.7	77.8	92.5	2.03	7/16-20	4.35
2 15/16		AR-3-215	3-215												
3		AR-3-3	3-3	17412	5.875	1 15/16	1 53/64	17/32	13/32	15/32	3 1/4	3 59/64	.120	7/16-20	12.2
	75	AR-315	5315	77449	149.225	49.2	46.4	13.5	10.3	11.9	82.6	99.6	3.05		5.53
3 3/16		AR-3-33	3-33	18681	6.28	2 1/32	2 5/64	15/32	17/32	15/32	3 3/8	4 5/32	.120		15.2
	80	AR-316	5316	83093	159.512	51.6	52.8	11.9	13.5	11.9	85.7	105.6	3.05	7/16-20	6.89
				21566	6.75	2 7/32	2 9/64	5/8	15/32	15/32	3 25/32	4 25/64	.120		18.5
3 7/16		AR-3-37	3-37	95926	171.450	56.4	54.4	15.9	11.9	11.9	96.0	111.5	3.05	1/2-20	8.39
3 15/16		AR-3-315	3-5315												
4		AR-3-4	3-4	29905	8.063	2 11/16	2 33/64	3/4	19/32	15/32	4 5/8	5 11/64	.120	5/8-18	32.9
	100	AR-320	320	133017	204.800	68.3	63.9	19.1	15.1	11.9	117.5	131.4	3.05		14.92

For Medium Duty Bearing Inserts - Single Lock see page G-95.

ASTER_{® Performance Mounted Ball Bearings}

Duty: Medium

Rolling Elements: Ball


> Housing: **Brass Expansion Insert**

Self Alignment: +/- 2 Degrees

> Lock: SKWEZLOC Locking Collar

Seal:

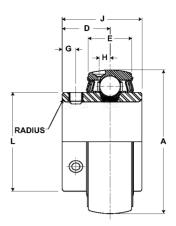
Optional Seal: Contact -20° to 220°F Temperature:

AR-T Medium Duty Expansion Insert - SKWEZLOC Locking Collar

5 04 6			344			T.	no un	e toda eva	e.					
Diarresor musts	307.40	lawing I wit Viz	For therein foul my marks	-0331 -tts	Ж	31	00	700	# (100	((0))	Rad To Clean	Ch) Union	in an that Labor
	7943 T	9.77	1711 1945	3.765 08.255	228	57.565 24.2	730 6-6	1-1 6-4	10000 2017	77,781 52,4	No.15 42.3	50	125	17
1 1/4	AR-2-14T	2-14T	5782 25718	3.14 79.756	1 1/16 27.0	1 25.4	1/4 6 4	1/4 6 4	1 3/4 44 5	2 7/16 61.9	1 27/32 46 8	.040 1.02	T-27	2 4 1.09
12.86	A2247	3,70	7940 301-8	3 2 m 3 1 3 2 7,	3.3	1 (De* 20-8	110HA 17.5	62	90.8	3 Driv 363	2 to 05 32.6	मुङ्	13	31 1.41
1 1/2	AR-3-18T	3-18T	7901 35144	3.562 90.475	1 1/4 31 8	1 11/64 29.8	19/64 7 5	1/4 6 4	2 50.8	2 13/16 71.4	2 5/16 58.7	.062 1.57	T-27	3 3 1.50
(1.4% 13M	200 HH #53-H2	5 tr 3- 31	7821 27741	\$476 15.425	350	1 13454 50 6	17.94 6.7	10:27 0.7	1 3 2 50,1	2.7ct 12.2	(233) (22)	30	1,000	77
1 15/16	AR-3-115T	2-115T	7889 35090	4.25 107.950	1 3/8 34 _. 9	1 17/64 32.1	19/64 7 _. 5	11/32 8 7	2 1/4 57.2	3 1/2 88 9	2 23/32 69.1	.080 2.03	T-30	5 0 2.27
2370	01-3428	West	757	4.715 (m·vic)	39 41.1	1 2604 (417	27.64 Cil	11-22 97	2 6/8 Hr. (4.78	2-02-04 2-0-1	36¢ 200	126	70

For Medium Duty SKWEZLOC Locking Collar Bearing inserts see page G-96.

Duty: Standard


Rolling Elements: Ball

Lock: Setscrew

Seal: Felt

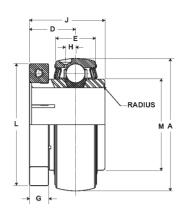
Optional Seal: Contact

Temperature: -20° to 220°F

Standard Duty Bearing Insert – Setscrew

Dave F	Diameter		Basic			Dimen	sions incl	ı / mm					want.
		Part No.	Dynamic Rating	Α	101	E	6	5007	130	i E	Max Rad₃ To Clear	Sets crew Thread	Unit WL Sb/kg
inch	min		lb/N	- 100	. 65	. = .			. 200	1000			
1/2 9/16 5/8 11/16 3/4	20	2-08 2-09 2-010 2-011 2-012 5204	2611 11614	1.8504 47	23/32 18.3	5/8 15.9	3/16 4.8	1/8 3.2	1 7/32 31.0	1 3/16 30.2	.040 1.02	1/4-28	.5 .23
13/16 7/8 15/16 1	25	2-013 2-014 2-015 2-1 5205	2801 12459	2.0472 52	13/16 20.6	11/16 17.5	7/32 5.6	11/64 4.4	1 3/8 34.9	1 3/8 34.9	.040 1.02	1/4-28	.6 .27
1 1/16 1 1/8 1 3/16 1 1/4	30	2-11 2-12 2-13 1-14 5206	4381 19487	2.4409 62	7/8 22.2	7/8 22.2	7/32 5.6	7/32 5.6	1 1/2 38.1	1 19/32 40.5	.040 1.02	1/4-28	1.0 .45
1 1/4 1 5/16 1 3/8 1 7/16	35	2-14 2-15 2-16 2-17 5207	5782 25718	2.8316 72	1 25.4	15/16 23.8	1/4 6.4	1/4 6.4	1 11/16 42.9	1 55/64 47.2	.040 1.02	5/16-24	1.5 .68
1 1/2 1 9/16	40	2-18 2-19 5208	7340 32648	3.1490 80	1 3/16 30.2	1 3/32 27.8	5/16 7.9	19/64 7.5	1 15/16 49.2	2 1/16 52.4	.062 1.57	5/16-24	1.9 .86
1 5/8 1 11/16 1 3/4	45	2-110 2-111 2-112 5209	7901 35144	3.3465 85	1 3/16 30.2	1 3/32 27.8	5/16 7.9	19/64 7.5	1 15/16 49.2	2 19/64 58.3	.062 1.57	5/16-24	2.2 1.00
1 13/16 1 7/8 1 15/16 2	50	2-113 2-114 2-115 1-2 5210	7889 35090	3.5433 90	1 9/32 32.5	1 1/8 28.6	3/8 9.5	17/64 6.7	2 1/32 51.6	2 15/32 62.7	.062 1.57	3/8-24	2.4 1.09
2 2 1/8 2 3/16	55	2-2 2-22 2-23 5211	9752 43377	3.9370 100	1 5/16 33.3	1 3/16 30.2	3/8 9.5	19/64 7.5	2 3/16 55.6	2 23/32 69.1	.080 2.03	3/8-24	2.8 1.27
2 1/4 2 3/8 2 7/16	60	2-24 2-26 2-27 5212	11789 52437	4.3307 110	1 9/16 39.7	1 1/4 31.8	7/16 11.1	21/64 8.3	2 9/16 65.1	2 63/64 75.8	.080 2.03	3/8-24	3.7 1.68
2 11/16	70	2-211 5214	13971 62143	4.9213 125	1 11/16 42.9	1 3/8 34.9	7/16 11.1	3/8 9.5	2 3/4 69.9	3 7/16 87.3	.080 2.03	7/16-20	5.45 2.47
2 7/8 2 15/16	75	2-214 2-215 5215	14839 66004	5.1181 130	1 3/4 44.5	1 1/2 38.1	7/16 11.1	3/8 9.5	3 1/16 77.8	3 41/64 92.5	.080 2.03	7/16-20	6.8 3.08
3 3/16	80	2-33 5216	17412 77449	5.5118 140	1 15/16 49.2	1 11/16 42.9	17/32 13.5	13/32 10.3	3 1/4 82.6	3 59/64 99.6	.120 3.05	7/16-20	7.2 3.27
3 1/4 3 3/8 3 7/16	30	2-34 2-36 2-37	18681 83093	5.9055 150	2 1/32 51.6	1 15/16 49.2	15/32 11.9	17/32 13.5	3 3/8 85.7	4 5/32 105.6	.120 3.05	7/16-20	9.3 4.22
3 1/2	90	2-38 5218	21566 95926	6.2992 160	2 7/32 56.4	2 50.8	5/8 15.9	15/32 11.9	3 25/32 96.0	4 25/64 111.5	.120 3.05	1/2-20	11.7 5.31

ASTER• Performance Mounted Ball Bearings


Duty: Standard

Rolling Elements: Ball Lock: SKWEZLOC Locking Collar

> Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

Standard Duty Bearing Insert – SKWEZLOC Locking Collar

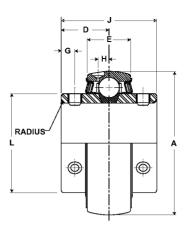
		,	Basic				Dimension	o in ab / mi	_					
Bore Di	iameter	D-ut N	Dvnamic				Jimension	s inch / mr	·			Max Rad.	Torx Cap	UnitWt
inch	mm	Part No.	Ŕating lb/N	A	D	E	G	Н	J	Ţ.	M	To Clear	Screw	lb/kg
3/4	20	2-012T 5204TMC	2611 11614	1.8504 47	23/32 18.3	5/8 15.9	3/8 9.5	9/64 3.6	1 9/32 32.5	1 3/4 44.5	1 3/16 30.2	.040 1.02	T-25	.60 .27
15/16 1	25	2-015T 2-1T 5205TMC	2801 12459	2.0472 52	13/16 20.6	11/16 17.5	3/8 9.5	11/64 4.4	1 7/16 36.5	1 15/16 49.2	1 3/8 34.9	.040 1.02	T-25	.80 .36
1 1/8 1 3/16 1 1/4	30	2-12T 2-13T 1-14T 5206TMC	4381 19487	2.4409 62	7/8 22.2	7/8 22.2	3/8 9.5	7/32 5.6	1 9/16 39.7	2 3/16 55.6	1 19/32 40.5	.040 1.02	T-25	1.2 .54
1 1/4		2-14T	5782 25718	2.8346 72	1 25.4	15/16 23.8	7/16 11.1	1/4 6.4	1 3/4 44.5	2 7/16 61.9	1 55/64 47.2	.040 1.02	T-27	1.8 .82
1 3/8 1 7/16	35	2-16T 2-17T 5207TMC	5782 25718	2.8346 72	1 25.4	15/16 23.8	7/16 11.1	1/4 6.4	1 3/4 44.5	2 9/16 65.1	1 55/64 47.2	.040 1.02	T-27	1.8 .82
1 1/2 1 9/16	40	2-18T 2-19T 5208TMC	7340 32648	3.1496 80	1 3/16 30.2	1 3/32 27.8	7/16 11.1	19/64 7.5	2 50.8	2 11/16 68.3	2 1/16 52.4	.062 1.57	T-27	2.2 1.00
1 5/8		2-110T	7901 35144	3.3465 85	1 3/16 30.2	1 3/32 27.8	7/16 11.1	19/64 7.5	2 50.8	2 13/16 71.4	2 19/64 58.3	.062 1.57	T-27	2.5 1.13
1 11/16 1 3/4	45	2-111T 2-112T 5209TMC	7901 35144	3.3465 85	1 3/16 30.2	1 3/32 27.8	7/16 11.1	19/64 7.5	2 50.8	2 15/16 74.6	2 19/64 58.3	.062 1.57	T-27	2.5 1.13
1 15/16 2	50	2-115T 1-2T 5210TMC	7889 35090	3.5433 90	1 9/32 32.5	1 1/8 28.6	9/16 14.3	17/64 6.7	2 3/32 53.2	3 3/8 85.7	2 15/32 62.7	.062 1.57	T-30	3.0 1.36
2		2-2T	9752 43377	3.9370 100	1 5/16 33.3	1 3/16 30.2	9/16 14.3	19/64 7.5	2 1/4 57.2	3 1/2 88.9	2 23/32 69.1	.080 2.03	T-30	3.4 1.54
2 1/8 2 3/16	55	2-22T 2-23T 5211TMC	9752 43377	3.9370 100	1 5/16 33.3	1 3/16 30.2	9/16 14.3	19/64 7.5	2 1/4 57.2	3 5/8 92.1	2 23/32 69.1	.080 2.03	T-30	3.4 1.54
2 1/4		2-24T	11789 52437	4.3307 110	1 9/16 39.7	1 1/4 31.8	11/16 17.5	21/64 8.3	2 5/8 66.7	4 1/16 103.2	2 63/64 75.8	.080 2.03	T-45	4.9 2.22
2 3/8 2 7/16	60	2-26T 2-27T 5212TMC	11789 52437	4.3307 110	1 9/16 39.7	1 1/4 31.8	11/16 17.5	21/64 8.3	2 5/8 66.7	4 1/8 104.8	2 63/64 75.8	.080 2.03	T-45	4.9 2.22

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Duty: Standard


Rolling Elements: Ball

Lock: Double Setscrew

Seal: Felt

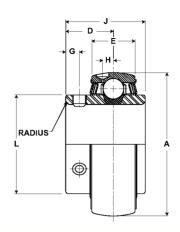
Optional Seal: Contact

Temperature: -20° to 220°F

Standard Duty Bearing Insert – Double Setscrew

Bore					Dime	nsions inch		, ear 11.15	<u>, </u>			- 1
Diameter	Bearing Insert No.	Basīc Dynamīc Rating Ib/N	(A)	D	馬	G	H	[W]	<u>Ç</u>	Max Sell 1s Clear	Subscotw Thread	100 p
7/8 15/16 1	2-014D 2-015D 2-1D	2801 12459	2.0472 52	3/4 19.1	11/16 17.5	7/32 5.6	11/64 4.4	1 1/2 38	1 3/8 34.9	.040 1.02	1/4-28	.6 .27
1 3/16	2-13D	4381 19487	2.4409 62	7/8 22.2	7/8 22.2	7/32 5.6	7/32 5.6	1 3/4 44	1 19/32 40.5	.040 1.02	1/4-28	1.0 .45
1 1/4 1 3/8 1 7/16	2-14D 2-16D 2-17D	5782 25718	2.8346 72	1 25.4	15/16 23.8	1/4 6.4	1/4 6.4	2 51	1 55/64 47.2	.040 1.02	5/16-24	1.5 .68
1 1/2 1 9/16	2-18D 2-19D	7340 32648	3.1496 80	1 5/32 29.4	1 3/32 27.8	5/16 7.9	19/64 7.5	2 5/16 59	2 1/16 52.4	.062 1.57	5/16-24	1.9 .86
1 11/16 1 3/4	2-111D 2-112D	7901 35144	3.3465 85	1 3/16 30.2	1 3/32 27.8	11/32 8.7	19/64 7.5	2 3/8 60	2 19/64 58.3	.062 1.57	5/16-24	2.2 1.00
1 7/8 1 15/16	2-114D 2-115D	7889 35090	3.5433 90	1 1/4 31.8	1 1/8 28.6	11/32 8.7	17/64 6.7	2 1/2 64	2 15/32 62.7	.062 1.57	3/8-24	2.4 1.09
2 2 1/8 2 3/16	2-2D 2-22D 2-23D	9752 43377	3.9370 100	1 5/16 33.3	1 3/16 30.2	5/16 7.9	19/64 7.5	2 5/8 67	2 23/32 69.1	.080 2.03	3/8-24	2.8 1.27
2 1/4 2 3/8 2 7/16	2-24D 2-26D 2-27D	11789 52437	4.3307 110	1 9/16 39.7	1 1/4 31.8	13/32 10.3	21/64 8.3	3 1/8 79	2 63/64 75.8	.080 2.03	3/8-24	3.7 1.68
2 11/16	2-211D	13971 62143	4.9213 125	1 3/4 44.5	1 3/8 34.9	15/32 11.9	3/8 9.5	3 1/2 89	3 7/16 87.3	.080 2.03	7/16-20	5.8 2.63
2 7/8 2 15/16	2-214D 2-215D	14839 66004	5.1181 130	1 3/4 44.5	1 1/2 38.1	7/16 11.1	3/8 9.5	3 1/2 89	3 41/64 92.5	.080 2.03	7/16-20	6.8 3.08
3 3/16	2-33D	17412 77449	5.5118 140	1 15/16 49.2	1 11/16 42.9	9/16 14.3	13/32 10.3	3 7/8 98	3 59/64 99.6	.120 3.05	7/16-20	7.2 3.27
3 1/4 3 3/8 3 7/16	2-34D 2-36D 2-37D	18681 83093	5.9055 150	2 1/32 51.6	1 15/16 49.2	1/2 12.7	17/32 13.5	4 1/16 103	4 5/32 105.6	.120 3.05	7/16-20	9.3 4.22
3 1/2	2-38D	21566 95926	6.2992 160	2 7/32 56.4	2 50.8	1/2 12.7	15/32 11.9	4 7/16 113	4 25/64 111.5	.120 3.05	1/2-20	11.7 5.31

SEALMASTER® Performance Mounted Ball Bearings


Duty: Medium **Rolling Elements:** Ball

> Lock: Setscrew

> > Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

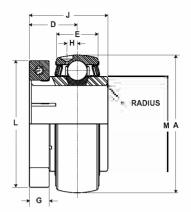
Medium Duty Bearing Insert – Setscrew

Rore D	iameter		Basic			Dimer	sions inc	h / mm					
inch	mm	Bearing Insert No.	Dynam c Rating Ib/N	A	4)	D	E	L	G	н	Mee Rad Turchear	Sets crew Thrond	Don't Will Don't
15/16 1	25	3-015 3-1 5305	4381 19487	2.4409 62	1 1/2 38.1	7/8 22.2	7/8 22.2	1 19/32 40.5	7/32 5.6	7/32 5.6	.040 1.02	1/4-28	1.0 .45
1 3/16		3-13	5782	2.8346	1 11/16	1	15/16	1 55/64	1/4	1/4	.040	5/16-24	1.5
1.181	30	5306	25718	72	42.9	25.4	23.8	47.2	6.4	6.4	1.02		.68
1 7/16	35	3-17 5307	7340 32648	3.1496 80	1 15/16 49.2	1 3/16 30.2	1 3/32 27.8	2 1/16 52.4	5/16 7.9	19/64 7.5	.062 1.57	5/16-24	1.9 .86
1 1/2	40	3-18 5308	7901 35144	3.3465 85	1 15/16 49.2	1 3/16 30.2	1 3/32 27.8	2 19/64 58.3	5/16 7.9	19/64 7.5	.062 1.57	5/16-24	2.2 1.00
1 11/16 1 3/4	45	3-111 3-112 5309	7889 35090	3.5433 90	2 1/32 51.6	1 9/32 32.5	1 1/8 28.6	2 15/32 62.7	3/8 9.5	17/64 6.7	.062 1.57	3/8-24	2.4 1.09
1 15/16	50	3-115 5310	9752 43377	3.9370 100	2 3/16 55.6	1 5/16 33.3	1 3/16 30.2	2 23/32 69.1	3/8 9.5	19/64 7.5	.080 2.03	3/8-24	3.2 1.45
2 3/16	55	3-23 5311	11789 52437	4.3307 110	2 9/16 65.1	1 9/16 39.7	1 1/4 31.8	2 63/64 75.8	7/16 11.1	21/64 8.3	.080 2.03	3/8-24	4.2 1.91
2 7/16 2 1/2	65	3-27 3-28 5313	13971 62143	4.9213 125	2 3/4 69.9	1 11/16 42.9	1 3/8 34.9	3 7/16 87.3	7/16 11.1	3/8 9.5	.080 2.03	7/16-20	6.5 2.95
2 11/16	70	3-211 5314	14839 66004	5.1181 130	3 1/16 77.8	1 3/4 44.5	1 1/2 38.1	3 41/64 92.5	7/16 11.1	3/8 9.5	.080 2.03	7/16-20	7.1 3.22
2 15/16 3	75	3-215 3-3 5315	17412 77449	5.5118 140	3 1/4 82.6	1 15/16 49.2	1 11/16 42.9	3 59/64 99.6	17/32 13.5	13/32 10.3	.120 3.05	7/16-20	8.2 3.72
3 3/16	80	3-33 5316	18681 83093	5.9055 150	3 3/8 85.7	2 1/32 51.6	1 15/16 49.2	4 5/32 105.6	15/32 11.9	17/32 13.5	.120 3.05	7/16-20	10.0 4.54
3 7/16		3-37	21566 95926	6.2992 160	3 25/32 96.0	2 7/32 56.4	2 50.8	4 25/64 111.5	5/8 15.9	15/32 11.9	.120 3.05	1/2-20	11.7 5.31
3 15/16 4	100	3-315 3-4 5320	29905 133017	7.4803 190	4 5/8 117.5	2 11/16 68.3	2 1/2 63.5	5 11/64 131.4	3/4 19.1	19/32 15.1	.120 3.05	5/8-18	20.4 9.25

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.



Duty: Medium **Rolling Elements:** Ball

Lock: SKWEZLOC Locking Collar

Seal: Felt
Optional Seal: Contact

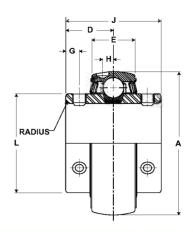
Temperature: -20° to 220°F

Medium Duty Bearing Insert - SKWEZLOC Locking Collar

llam III	777		5349			Dilla	entelmer.	tion?	111	_				
Inch	min	Ont the	Dylumiu Earlin LW	2	8	n		9	E.	1	W	To disease	furn, Little Reserve	tivin
10	4240	3-24	1711 10487	77.40 100	9216 307	731 722	10° 22°2	11h 9.9	50	02.4	* 192514 4002	1012	535	
1 3/16	30.2	3-13T	5782 25718	2.8346 72	1 3/4 44.5	1 25.4	15/16 23.8	7/16 11.1	1/4 6.4	2 7/16 61.9	1 55/64 47.2	040 1.02	T-27	1 8 82
17546	10,53	9575	7740 25845	3180 31	A ME	1.0° 202	1570 274	25 S. Ugi	10.74	2 11 00 8421	21116	1068 1an/	150	3.3. 1.49
1 1/2	38.1	3-18T	7901 35144	3.3470 85	2 50.8	1 3/16 30.2	1 3/32 27.8	7/16 11.1	19/64 7.5	2 13/16 71.4	2 19/64 58.3	062 1.57	T-27	2 5 1.13
1124	42.1	8 1 T	7559 198601	3542. 20	2 9/30 9/19	1987 1676	S. He	3/4 1/5	1264 11	3 1/4 10 B	2 10002 T	0.362 1 Az	730	300 1.710
1 15/16	49.2	3-115T	9752 43377	3.9370 100	2 1/4 57.2	1 5/16 33.3	1 3/16 30.2	9/16 14.3	19/64 7.5	3 1/2 88.9	2 23/32 69.1	080 2.03	T-30	3 8 1.72
2 946	22.1	9-2-IT	1178 10422	48907	256 163	1975 307	51M 513	11/10	2169 00	4790 B	2377 3 65/94	087 277	T-45	4.2 2.2.1

SEALMASTER_{® Performance Mounted Ball Bearings}

Duty: Medium


Rolling Elements: Ball

> Lock: Double Setscrew

Seal:

Optional Seal: Contact

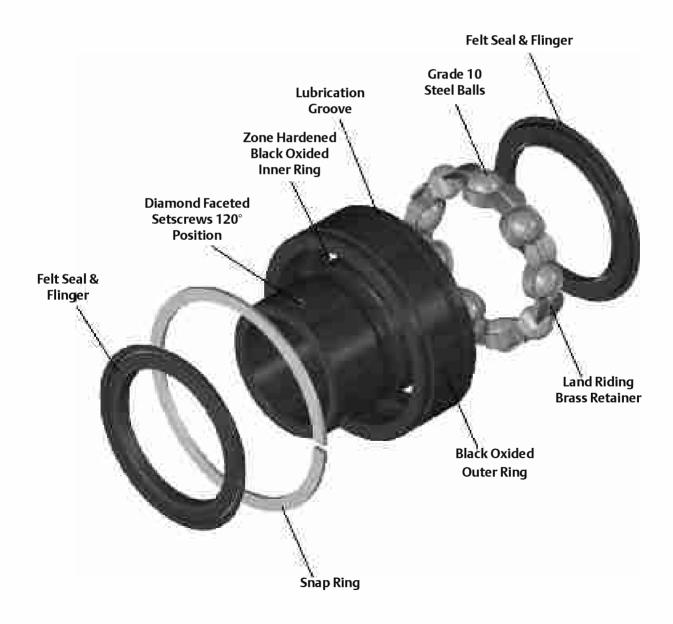
Temperature: -20° to 220°F

Medium Duty Bearing Insert - Double Setscrew

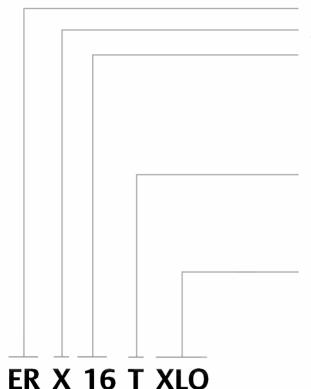
Basic Dynar					Dime	nsions inch	/ mm					
Biamoter	Partillo.	Rating Ib/N	Α	D	Е	G	Н	L	J	Max Rad. To Clear	Sets crew Thread	Wast Wt.
1	3-1D	4381	2.4409	7/8	7/8	7/32	7/32	1 19/32	1 3/4	.040	1/4-28	1.0
	J-1U	19487	62	22.2	22.2	5.6	5.6	40.5	44.5	1.02	1/4-20	.45
1 3/16	3-13D	5782	2.8346	1	15/16	1/4	1/4	1 55/64	2	.040	5/16-24	1.5
1 3/10	3-13D	3702	72	25.4	23.8	6.4	6.4	47.2	50.8	1.02	3/10-24	.68
1 7/16	3-17D	7340	3.1496	1 5/32	1 3/32	31/99	19/64	2 1/16	2 5/16	.062	5/16-24	2.0
1 1/10		32648	80	29.4	27.8	8.0	7.5	52.4	58.7	1.57	3/10-24	.91
1 1/2	3-18D	7901	3.3470	1 3/16	1 3/32	11/32	19/64	2 19/64	2 3/8	.062	5/16-24	2.5
1 1/2	3-10D	7901	85	30.2	27.8	8.7	7.5	58.3	60.3	1.57	3/10-24	1.13
1 11/16	3-111D	7889	3.5433	1 1/4	1 1/8	11/32	17/64	2 15/32	2 1/2	.062	3/8-24	2.7
1 3/4	3-112D	35090	90	31.8	28.6	8.7	6.7	62.7	63.5	1.57	3/0-24	1.22
1 15/16	3-115D	9752	3.9370	1 5/16	1 3/16	31/99	19/64	2 23/32	2 5/8	.080	3/8-24	3.5
1 13/10	3-1130	9132	100	33.3	30.2	8.0	7.5	69.1	66.7	2.03	3/8-24	1.59
2 7/16	3-27D	13971	4.9207	1 3/4	1 3/8	15/32	3/8	3 7/16	3 1/2	.080	7/16-20	7.1
2 1/2	3-28D	62143	125	44.5	34.9	11.9	9.5	87.3	88.9	2.03	1/10-20	3.22
2 11/16	3-211D	14839	5.1181	1 3/4	1 1/2	39/89	3/8	3 41/64	3 1/2	.080	1/2-20	7.3
2 11/10	J-211D	14039	130	44.5	38.1	11.1	9.5	92.5	88.9	2.03	1/2-20	3.31
2 15/16	3-215D	17412	5.5118	1 15/16	1 11/16	49/87	13/32	3 59/64	3 7/8	.120	1/2-20	9
3	3-3D	77449	140	49.2	42.9	14.3	10.3	99.6	98.4	3.05	1/2-20	4.08
3 3/16	3-33D	18681	5.9055	2 1/32	1 15/16	1/2	17/32	4 5/32	4 1/16	.120	1/2-20	10.8
3 3/10	3-33D	10001	150	51.6	49.2	12.7	13.5	105.6	103.2	3.05	1/2-20	4.90
3 7/16	3-37D	21566	6.2992	2 7/32	2	1/2	15/32	4 25/64	4 7/16	.120	1/2-20	12.6
3 1/10	3-370	95926	160	56.4	50.8	12.7	11.9	111.5	112.7	3.05	1/2-20	5.72
3 15/16	3-315D	29905	7.4803	2 11/16	2 1/2	64/89	19/32	5 11/64	5 3/8	.120	5/8-18	21.6
4	3-4D	133017	190	68.3	63.5	18.3	15.1	131.4	136.5	3.05	3/0-10	9.80
4 7/16	3-47D	37482	9.0551	2 7/8	2 5/8	5/8	5/8	6 11/32	5 3/4	.120	5/8-18	40
4 15/16	3-415D	166720	230	73.0	66.7	15.9	15.9	161.1	146.1	3.05	3/0-10	18.14

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.


For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Mounted B	Mounted Ball Bearing Engineering see page G-220.										


Sealmaster ER Style Ball Bearings

Sealmaster Gold ER bearings feature a cylindrical OD and snap ring for easy installation in a roll assembly. Shaft lock is achieved by either setscrew or Skwezloc® concentric locking collar. The felt seal with flinger provide a good balance between contaminant entry, GoldPlex HP™ grease loss and friction. Depending on your preference, these bearings are available in both inch and metric shaft sizes with a wide variety of sealing and lubrication options or ERX-TREME industry specific solutions as illustrated on the pages to follow.

ER Style Nomenclature

ER - Cylindrical O.D. Bearing With Snap Ring X - ERX-TREME Option

Bore Size

Inch - #/16 (ex. 20/16 = 11/4") R for 1 1/4" and 2" Reduced Only Metric - Standard Duty - 2##, ## x 5 mm (ex. 05 = 25 mm)

Standard Option

T - Skwezloc® Locking Collar

M - Metric Hardware (Metric - SKWEZ[™])

C - Contact Seal

Common Option* (see table below)

Common Option

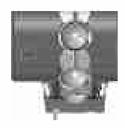
3C Triple Lip Contact Seal - replaced by DRT in most sizes

DRT High Contamination

HI ERX-Treme High Temperature Krytox* Grease

HIY ERX-Treme High Temperature Krytox* Grease Expansion

LO **ERX-Treme Low Drag**


Χ Labyrinth Seal

XLO ERX-Treme Extra Low Drag

SEALMASTER_®

ASTER® Performance Cylindrical OD Bearings (ER)

Features and Benefits

Outer Race With Tapered Lands

The Sealmaster ER Bearings Outer Ring is black oxided and comes standard with a locating ring and lubrication groove and lubrication inlet. In addition, they have the Sealmaster patented Tapered Lands bearing race profile which means that critical lubricant is circulated more efficiently, while requiring no regular service intervals. The outer land surface in a conventional bearing is parallel to the axis of the inner ring. The Tapered Lands surface is tapered in a radial direction toward the bearing race. This subtle yet crucial design change allows lubricant to more easily flow back to the raceway. With improved bearing lubricant circulation comes significantly longer bearing service life. This improved circulation and service life comes without any reductions in bearing radial or thrust capacities.

* For bearings that are maintained and relubricated on a regular basis, there is no significant difference in expected life.

Multiple Sealing Options Felt Seal With Flinger

The standard felt seal provides a tight labyrinth seal which retains lubrication and acts as a filter to exclude contamination. The external stamping is a flinger which shields the felt from large contaminants and directs them away from the sealing surface. The design operates with less drag and less heat generation than rubber contact seals.

Single Lip Contact Seal

Single Lip Contact Seal consists of a nitrile rubber washer in metal shroud to shield the lip from large contaminants. The seal is designed to balance drag and protection in wet and dry environments. This can be specified by adding the suffix C to the part number.

Additional Sealing Options can be found on pages G-103 to G-106.

Features and Benefits continued

Multiple Locking Methods Setscrew Locking

120° spaced, balanced three point contact minimizes inner ring distortion vibration, reduces noise, and improves reliability. Precision manufactured diamond faceted setscrews contribute to improved clamping and resistance to back out.

Sealmaster Skwezloc® Concentric Locking Collar

SKWEZLOC is a concentric locking collar clamp design that results in nearperfect concentricity of the shaft to the bearing bore and maintains near perfect ball path roundness, while reducing fretting corrosion. This design eliminates the shaft damage of setscrew locking, and minimizes bearing induced vibration for smoother quieter operation. The collar has a TORX head cap screw that outlasts stripping 12 times longer than hex head cap screws.

Zone Hardened Inner Race

Sealmaster incorporates a unique heat treat process that hardens the inner race only where it is needed...under the ball path. The black oxided zone hardened inner race results in improved lock reliability as a result of less distortion at the setscrew location and improved thread conformity resulting in improved clamping and resistance to setscrew back-out.

Land Riding Retainer

The Sealmaster unique land riding metal retainer design provides superior pocket clearance allows for 360° oil circulation around the rolling elements resulting in better retained and utilized lubrication.

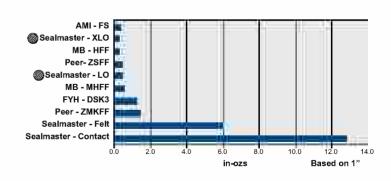
Options

Bearings are typically selected using L10 fatigue life calculations based on ideal operating conditions. However, most bearing problems are not fatigue related, but occur due to contamination, lubrication starvation, or other environmental issues. As a result our Bearing engineers have developed custom solutions to meet the varying severity, operating parameters and maintenance regularity, such as ERX-TREME and Custom Select.

ERX-TREME Options Low Drag

Suffix	Description	Temperature	Environment	Speed Limits
LO	Low Drag	-20°F to 180°F	Drv/Dustv	Pages G-235 to G-240
XLO	Extra Low Drag	-20°F to 100°F	Diy/Dusiy	rayes G-255 to G-240

ERX-TREME Low Draq "LO"


- Felt seal cut down to reduce drag
- Provides excellent barrier that works to retain grease and acts as a filter to reduce the ingress of debris contaminants
- Features a channeling grease that reduces drag while lubricating the bearing

ERX-TREME X-Tra Low Draq "XLO"

- Felt seal cut down and oil soaked for extra low drag
- Oil lubricated

Bearing Rotational Torque - Comparision Chart

	Company	Suffix Option	Seal Type	Lubrication
	AMI®	FS	Non-Contact	Oil
	Sealmaster	XLO	Low Drag Felt	Oil
	MB®	HFF	Steel Labyrinth	Oil
LO Drag Bearing	Peer®	ZSFF	Steel Labyrinth	Oil
Options	Sealmaster	LO	Low Drag Felt	Grease
	MB	MHFF	Steel Labyrinth	Grease
	FYH®	DSK3	Non-Contact	Oil
	Peer	ZMKFF	Steel Labyrinth	Grease
Standard	Sealmaster	-	Felt	Grease
Bearing Drag (Reference)	Sealmaster	С	Contact	Grease

^{*}The following trade names, trademarks and/or registered trademarks that follow are used in this material by Emerson for comparison purposes only, are NOT owned or controlled by Emerson and are believed to be owned by the following parties: Dodge: Baldor Electric Company; AMI: Asahi Tec Corp. of japan; MB: Rexnord Industries, inc.; Peer: Peer Bearing Company; FYH: Nippon Pillow Block Co., Ltd Fafnir: Timken US Corporation. Emerson cannot and does not represent or warrant the accuracy of this information

ERX-TREME Options continued

High Temperature

Suffix	Description	Temperature	Environment	Speed Limits
HI*	High Performance High Temp	200°F to 400°F	Drv/Dustv	Pages G-235 to G-240
HIY	High Feholmance High lemp	200 F 10 400 F	Diy/Dusty	Fayes G-233 to G-240

ERX-TREME High Temperature "HI"

- High temperature bearing with increased internal clearance to accommodate thermal expansion of components
- High temperature Nomex seal* and Krytox*-226 grease

ERX-TREME Expansion - High Temperature "HIY"

- Expansion type HI Temperature utilizes a half-dog setscrew combined with a lock wire and is recommended for applications that require expansion capability.
- High temperature bearing with increased radial internal clearance to accommodate thermal expansion of components
- High temperature Nomex seal and Krytox*-226 grease
- Specify as ERX-xx HIY

This may be essential when shafts grow in length due to temperature changes. The single half-dog setscrew has a cylindrical nub that protrudes out of the bottom of the setscrew. The nub is used to mate loosely with a slot milled into the shafting. As the shaft spins, the nub interferes with the slot and positively turns the inner ring. See HIY installation instructions.

Note: All expansion bearings must be used in conjunction with a fixed bearing to stabilize the system.

KRYTOX Extended Lube Grease

- Used in HI and HIY suffix modified bearings
- KYRTOX GPL 226, an extremely high performance perflourinated oil and PTFE thickened grease
- KRYTOX grease has a superior service life and therefore diminishes relubrication frequency and extends life
- Engineers have found that, compared to other high temperature greases, the thermal stability and lubricity of the KRYTOX can improve high temperature bearing life by a factor of 4 to 45 times

The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: NOMEX and Krytox: El du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information

MASTER Performance Cylindrical OD Bearings (ER)

Custom Select

High Contamination

Suffix	Description	Temperature	Environment	Speed Limits
DRT	Highly Contaminated	-20°F to 200°F	Highly Contaminated	Pages G-235 to G-240

2C Seal 3C Seal

High Contamination "DRT" Heavy Duty Multi-Lip contact seal (depending on size and series, either supplied with "2C" double lip or "3C" triple lip seal), 100% Grease Fill with Sealmaster GoldPlex HP Grease.

Options Availability*

	ERX-TREME Options												
Bore Di		Nomenclature Size	Low Drag "LO"			.ow Drag (LO"		Temp. HI"	High Te	emp. Exp. HY"		tamination RT"	
inch	mm					,							
1/2		8	0		0		0						
5/8		10	0		0		0						
11/16		11	0		0		_		_				
3/4		12	0	X	0		0	X	0				
	20	204	0	Х	0	Х	_	Х	_				
7/8		14	0		0		0		0				
15/16		15	0		0		0		0		_		
1		16	0	Х	0	X	0	X	0		0	X	
	25	205	0	Х	0	Х	0				0		
1 1/8		18	0	Х	0	Х	0		0				
1 3/16		19	0	Х	0	X	0		0				
1 1/4R		20R	0	Х	0	Х	0		0				
	30	206	0	Х	0	Х					0	Х	
1 1/4		20	0	Х	0	Х	0	X	0		0		
1 5/16		21	0										
1 3/16		22	0	Х	0	Х	0		0				
1 7/16		23	0	Х	0	Х	0		0		0	Х	
	35	207	0	Х	0	Х	0	X					
1 8/16		24	0	Х	0	Х	0	Х	0		0		
1 9/16		25	0		0		0		0		0		
	40	208	0	Х	0	Х	0		0				
1 5/8		26		Х	0		0				0		
1 11/16		27			0		0		0				
1 3/4		28	0	Х	0	Х	0		0		0	Х	
	45	209	0	Х	0	Х							
1 7/8		30	0				0		0		0		
1 15/16		31	0	Х	0	Х	0	Х	0		0	Х	
2		32	0	Х	0	Х	0		0		0		
	50	210	0	Х	0	Х	0						
2 1/8		34	0										
2 3/16		35	0	Х	0	Х	0		0		0	Х	
2 1/4		36	0	Х	0		0		0				
2 3/8		38			0		0		0				
2 7/16		39	0	Х	0	Х	0	Х	0		0	Х	
	60	212					0						
2 1/2		40					0		0				
2 11/16		43					0		0		0		
	70	214									1		
2 15/16		47	0	Х	0	Х	0		0		0		
3		48					0		0				
3 3/16		51					0		0		0		
3 1/4		52					0						
3 7/16		55					0		0				
3 15/16		63					0						
4		64					0						

X Skwezloc Locking Collar
* Sizes and configurations listed in table are subject to change without notice. For sizes or configurations not listed, contact Bearing Technical Customer Service.

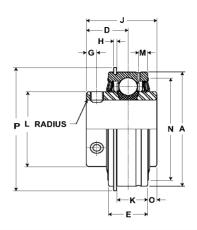
ASTER® Performance Cylindrical OD Bearings (ER)

Duty: Standard

Rolling Elements: Ball

Housing: Cylindrical OD Insert

Lock: Setscrew


Seal: Felt

Optional Seal: Contact

Temperature: -20° to 220°F

Relube: Relube Through Outer

Ring Groove

ER Cylindrical O.D. Bearing Insert - Setscrew Locking

		_															
Bore Di	ameter	Bearing	Basic Dynamic					Din	nension	s inch /	mm					Max. Rad.	Unit
inch	mm	Insert No.	Rating Ib/N	A	D	E	G	Ħ	23))	к	(E)	M	PNE	6	P.	To Clear	Wt. b/kg
1/2 9/16 5/8 11/16 3/4	20	ER-8 ER-9 ER-10 ER-11 ER-12 ER-204	2611 11614	1.8504 47	13/16 20.6	5/8 15.9	3/16 4.8	3/64 1.2	1 7/32 31.0	31/64 12.3	1 3/16 30.2	11/64 4.4	1 5/8 41.3	.094 2.39	2 1/16 52.4	.040 1.02	.56 .25
7/8 15/16 1	25	ER-14 ER-15 ER-16 ER-205	2801 12459	2.0472 52	55/64 21.8	3/4 19.1	7/32 5.6	3/64 1.2	1 3/8 34.9	39/64 15.5	1 3/8 34.9	13/64 5.2	1 55/64 47.2	.135 3.43	2 17/64 57.5	.040 1.02	.68 .31
1 1/16 1 1/8 1 3/16 1 1/4	30	ER-17 ER-18 ER-19 ER-20R ER-206	4381 19487	2.4409 62	7/8 22.2	7/8 22.2	7/32 5.6	1/16 1.6	1 1/2 38.1	11/16 17.5	1 19/32 40.5	7/32 5.6	2 5/32 54.8	.188 4.78	2 21/32 67.5	.040 1.02	.93 .42
1 1/4 1 5/16 1 3/8 1 7/16	35	ER-20 ER-21 ER-22 ER-23 ER-207	5782 25718	2.8364 72	1 25.4	15/16 23.8	1/4 6.4	1/16 1.6	1 11/16 42.9	3/4 19.1	1 55/64 47.2	7/32 5.6	2 17/32 64.3	.219 5.56	3 5/64 78.2	.040 1.02	1.37 .62
1 1/2 1 9/16	40	ER-24 ER-25 ER-208	5307 23606	3.1496 80	1 3/16 30.2	1 3/32 27.8	5/16 7.9	1/16 1.6	1 15/16 49.2	29/32 23.0	2 1/16 52.4	1/4 6.4	2 53/64 71.8	.203 5.16	3 13/32 86.5	.062 1.57	.91
1 5/8 1 11/16 1 3/4	45	ER-26 ER-27 ER-28 ER-209	7901 35144	3.3465 85	1 3/16 30.2	1 3/32 27.8	5/16 7.9	1/16 1.6	1 15/16 49.2	29/32 23.0	2 19/64 58.3	1/4 6.4	3 1/16 77.8	.203 5.16	3 19/32 91.3	.062 1.57	2.31 1.05
1 13/16 1 7/8 1 15/16 2	50	ER-29 ER-30 ER-31 ER-32R ER-210	7889 35090	3.5433 90	1 9/32 32.5	1 1/8 28.6	3/8 9.5	3/32 2.4	2 1/32 51.6	29/32 23.0	2 15/32 62.7	19/64 7.5	3 7/32 81.8	.188 4.78	3 25/32 96.0	.062 1.57	2.43 1.10
2 2 1/8 2 3/16	55	ER-32 ER-34 ER-35 ER-211	9752 43377	3.9370 100	1 5/16 33.3	1 3/16 30.2	3/8 9.5	3/32 2.4	2 3/16 55.6	31/32 24.6	2 23/32 69.1	19/64 7.5	3 9/16 90.5	.281 7.14	4 3/16 106.4	.080 2.03	3 1.36
2 1/4 2 3/8 2 7/16	60	ER-36 ER-38 ER-39 ER-212	11789 52437	4.3307 110	1 9/16 39.7	1 1/4 31.8	7/16 11.1	3/32 2.4	2 9/16 65.1	1 1/32 26.2	2 63/64 75.8	19/64 7.5	3 29/32 99.2	.375 9.53	4 37/64 116.3	.080 2.03	4 1.81
2 1/2 2 11/16	70	ER-40 ER-43 ER-214	13971 62143	4.9213 125	1 11/16 42.9	1 3/8 34.9	7/16 11.1	7/64 2.8	2 3/4 69.9	1 7/64 28.2	3 7/16 87.3	5/16 7.9	4 7/16 112.7	.375 9.53	5 9/32 134.1	.080 2.03	5.56 2.52
2 7/8 2 15/16	75	ER-46 ER-47 ER-215	14839 66004	5.1181 130	1 3/4 44.5	1 1/2 38.1	7/16 11.1	7/64 2.8	3 1/16 77.8	1 15/16 31.5	1 15/64 92.5	3/8 9.5	4 5/8 117.5	.563 14.30	5 7/16 138.1	.080 2.03	6.37 2.89
3 3 3/16	80	ER-48 ER-51 ER-216	17412 77449	5.5118 140	1 15/16 49.2	1 11/16 42.9	17/32 13.5	7/64 2.8	3 1/4 82.6	1 25/64 35.3	3 59/64 99.6	7/16 11.1	4 63/64 126.6	.469 11.91	5 13/16 147.6	.120 3.05	7.85 3.56
3 1/4 3 3/8 3 7/16		ER-52 ER-54 ER-55	18681 83093	5.9055 150	2 1/32 51.6	1 15/16 49.2	15/32 11.9	7/64 2.8	3 3/8 85.7	1 41/64 41.7	4 5/32 105.6	7/16 11.1	5 19/64 134.5	.375 9.53	6 9/32 159.5	.120 3.05	9.5 4.31
3 15/16 4		ER-63 ER-64	29905 133017	7.4803 190	2 11/16 68.3	2 1/2 63.5	3/4 19.1	1/8 3.2	4 5/8 117.5	2 5/32 54.8	5 11/64 131.4	11/16 17.5	6 21/32 169.1	.688 17.48	8 203.2	.120 3.05	22 9.98

For Housing fit guidelines see page G-259.

Felt seal standard. For contact seal add sufix "C" ER-16C.


Outside diameter may be oversized due to seal press fit.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

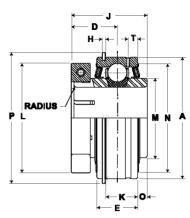
Bearing Selection Page G-3

Duty: Standard

Rolling Elements: Ball

> Cylindrical OD Insert Housing:

> > Lock: SKWEZLOC Locking Collar


Seal: Felt

Optional Seal: Contact

-20° to 220°F Temperature:

> Relube: Relube Through Outer

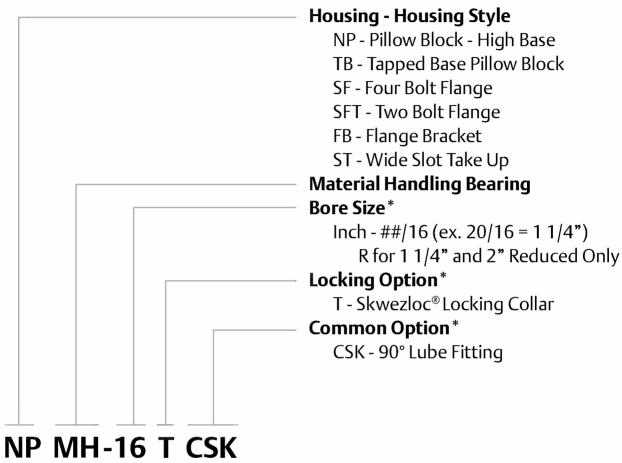
Ring Groove

ER-T Cylindrical O.D. Bearing - SKWEZLOC Locking Collar - Inch

							ca. O			J -					Condi	
Hore	Bearing	Basic Dynamic					Dir	nension	s inch / r	nm					Max. Rad.	Unit Wt.
inch	Insert No.	Řating lb/N	(A)	D	m	н	31	K	(E)	M	N	0	P	Ti	To Clear	lb/kg
3/4	ER-12T	2611 11614	1.8504 47.0	7/8 19.8	5/8 15.9	3/64 1.2	1 9/32 32.5	31/64 12.3	1 3/4 44.5	1 3/16 30.2	1 5/8 41.3	.094 2.39	2 1/16 52.4	1/8 3.2	.04 1.02	.56 .25
1	ER-16T	2801 12459	2.0472 52.0	59/64 22.1	3/4 19.1	3/64 1.2	1 7/16 36.5	39/64 15.5	1 15/16 49.2	1 3/8 34.9	1 27/32 46.8	.135 3.43	2 17/64 57.5	13/64 5.2	.04 1.02	.68 .31
1 1/8 1 3/16 1 1/4	ER-18T ER-19T ER-20RT	4381 19487	2.4409 62.0	15/16 23.8	7/8 22.2	1/16 1.6	1 9/16 39.7	11/16 17.5	2 3/16 55.6	1 19/32 40.5	2 5/32 54.8	.188 4.78	2 21/32 67.5	7/32 5.6	.04 1.02	.93 .42
1 1/4	ER-20T	5782 25718	2.8346 72.0	1 1/16 27.0	15/16 23.8	1/16 1.6	1 3/4 44.5	3/4 19.1	2 7/16 61.9	1 55/64 47.2	2 17/32 64.3	.219 5.56	3 5/64 78.2	7/32 5.6	.04 1.02	1.37 .62
1 3/8 1 7/16	ER-22T ER-23T	5782 25718	2.8346 72.0	1 1/16 27.0	15/16 23.8	1/16 1.6	1 3/4 44.5	3/4 19.1	2 9/16 65.1	1 55/64 47.2	2 17/32 64.3	.219 5.56	3 5/64 78.2	7/32 5.6	.04 1.02	1.37 .62
1 1/2	ER-24T	7340 32648	3.1496 80.0	1 1/4 31.8	1 3/32 27.8	1/16 1.6	2 50.8	29/32 23.0	2 11/16 68.3	2 1/16 52.4	2 53/64 71.8	.203 5.16	3 13/32 86.5	1/4 6.4	.06 1.57	2.00 .91
1 5/8	ER-26T	7901 35144	3.3465 85.0	1 1/4 31.8	1 3/32 27.8	1/16 1.6	2 50.8	29/32 23.0	2 13/16 71.4	2 19/64 58.3	3 1/32 77.0	.203 5.16	3 19/32 91.3	1/4 6.4	.06 1.57	2.31 1.05
1 11/16 1 3/4	ER-27T ER-28T	7901 35144	3.3465 85.0	1 1/4 31.8	1 3/32 27.8	1/16 1.6	2 50.8	29/32 23.0	2 15/16 74.6	2 19/64 58.3	3 1/32 77.0	.203 5.16	3 19/32 91.3	1/4 6.4	.06 1.57	2.31 1.05
1 15/16	ER-31T	7889 35090	3.5433 90.0	1 11/32 34.1	1 1/8 28.6	3/32 2.4	2 3/32 53.2	29/32 23.0	3 3/8 85.7	2 15/32 62.7	3 7/32 81.8	.188 4.78	3 25/32 96.0	19/64 7.5	.06 1.57	2.43 1.10
2	ER-32T	9752 43377	3.9370 100.0	1 3/8 34.9	1 3/16 30.2	3/32 2.4	2 1/4 57.2	31/32 24.6	3 1/2 88.9	2 23/32 69.1	3 9/16 90.5	.281 7.14	4 3/16 106.4	19/64 7.5	.08 2.03	3.00 1.36
2 3/16	ER-35T	9752 43377	3.9370 100.0	1 3/8 34.9	1 3/16 30.2	3/32 2.4	2 1/4 57.2	31/32 24.6	3 5/8 92.1	2 23/32 69.1	3 9/16 90.5	.281 7.14	4 3/16 106.4	19/64 7.5	.08 2.03	3.00 1.36
2 1/4	ER-36T	11789 52437	4.3307 110.0	1 5/8 41.3	1 1/4 31.8	3/32 2.4	2 5/8 66.7	1 1/32 26.2	4 1/16 103.2	2 63/64 75.8	3 29/32 99.2	.375 9.53	4 37/64 116.3	19/64 7.5	.08 2.03	4.00 1.81
2 3/8 2 7/16	ER-38T ER-39T	11789 52437	4.3307 110.0	1 5/8 41.3	1 1/4 31.8	3/32 2.4	2 5/8 66.7	1 1/32 26.2	4 1/8 104.8	2 63/64 75.8	3 29/32 99.2	.375 9.53	4 37/64 116.3	19/64 7.5	.08 2.03	4.00 1.81

ER-T Cylindrical O.D. Bearing - SKWEZLOC Locking Collar - Metric - SKWEZ™

				icai c			<u>. </u>				9					
Bore Diameter	Bearing	Basic Dynamic					Di	mension	s mm / ir	nch					Max. Rad.	Unit W
mm	Insert No.	Řating N/lb	A	D	E	L	H	J	К	M	N	0	P	(1)	To Clear	kg/lb
20	ER-204TMC	11614 2611	47.0 1.8504	19.8 7/8	15.9 5/8	44.5 1 3/4	1.2 3/64	32.5 1 9/32	12.3 31/64	30.2 1 3/16	41.3 1 5/8	2.39 .094	52.4 2 1/16	3.2 1/8	1.02 .04	.25 .56
25	ER-205TMC	12459 2801	52.0 2.0472	22.1 59/64	19.1 3/4	49.2 1 15/16	1.2 3/64	36.5 1 7/16	15.5 39/64	34.9 1 3/8	46.8 1 27/32	3.43 .135	57.5 2 17/64	5.2 13/64	1.02 .04	.31 .68
30	ER-206TMC	19487 4381	62.0 2.4409	23.8 15/16	22.2 7/8	55.6 2 3/16	1.6 1/16	39.7 1 9/16	17.5 11/16	40.5 1 19/32	54.8 2 5/32	4.75 .187	67.5 2 21/32	5.6 7/32	1.02 .04	.42 .93
35	ER-207TMC	25718 5782	72.0 2.8346	27.0 1 1/16	23.8 15/16	65.1 2 9/16	1.6 1/16	44.5 1 3/4	19.1 3/4	47.2 1 55/64	64.3 2 17/32	5.56 .219	78.2 3 5/64	5.6 7/32	1.02 .04	.62 1.37
40	ER-208TMC	32648 7340	80.0 3.1496	31.8 1 1/4	27.8 1 3/32	68.3 2 11/16	1.6 1/16	50.8 2	23.0 29/32	52.4 2 1/16	71.8 2 53/64	4.76 .188	86.5 3 13/32	6.4 1/4	1.57 .06	.91 2.00
45	ER-209TMC	35144 7901	85.0 3.3465	31.8 1 1/4	27.8 1 3/32	74.6 2 15/16	1.6 1/16	50.8 2	23.0 29/32	58.3 2 19/64	77.0 3 1/32	4.76 .188	91.3 3 19/32	6.4 1/4	1.57 .06	1.05 2.31
50	ER-210TMC	35090 7889	90.0 3.5433	34.1 1 11/32	28.6 1 1/8	85.7 3 3/8	2.4 3/32	53.2 2 3/32	23.0 29/32	62.7 2 15/32	81.8 3 7/32	4.78 .188	96.0 3 25/32	7.5 19/64	1.57 .06	1.10 2.43
55	ER-211TMC	43377 9752	100.0 3.9370	34.9 1 3/8	30.2 1 3/16	92.1 3 5/8	2.4 3/32	57.2 2 1/4	24.6 31/32	69.1 2 23/32	90.5 3 9/16	7.14 .281	106.4 4 3/16	7.5 19/64	2.03 .08	1.36 3.00
60	ER-212TMC	52437 11789	110.0 4.3307	41.3 1 5/8	31.8 1 1/4	104.8 4 1/8	2.4 3/32	66.7 2 5/8	26.2 1 1/32	75.8 2 63/64	99.2 3 29/32	9.53 .375	116.3 4 37/64	7.5 19/64	2.03 .08	1.81 4.00


For Housing fit guidelines see page G-259.

Sealmaster Material Handling Mounted Ball Bearings

Sealmaster material handling mounted ball bearings feature cast iron housings, an extended inner race insert bearing with ball riding nylon retainer. The insert features a rivet to prevent outer ring rotation and is available with setscrew or SKWEZLOC ® concentric locking collar and optional snap on end cover. The contact seal, with black oxide treated flinger provides a good balance between contaminant resistance, grease loss and friction. Depending on your preference, these bearings are available in common unit material handling industry bore sizes and housing configurations as illustrated on the pages to follow.

Material Handling Mounted Ball Nomenclature Housing Units

Inserts

SEAL MASTER .

Features and Benefits

Multiple Locking Methods

Skwezloc® Concentric Locking Collar

SKWEZLOC is a concentric locking collar clamp design that results in near-perfect concentricity of the shaft to the bearing bore and maintains near perfect ball path roundness, while reducing fretting corrosion. This design eliminates the shaft damage of setscrew locking, and minimizes bearing induced vibration for smoother quieter operation. The collar has a TORX head cap screw that outlasts stripping 12 times longer than hex head cap screws.

Setscrew Locking

120° spaced, balanced three point contact minimizes inner ring distortion vibration, reduces noise, and improves reliability. Precision manufactured diamond faceted setscrews contributes to improved clamping and resistance to back out.

Sealing

Positive contact molded nitrile rubber contact seal with an auxiliary flinger element standard. The contact seal allows grease purge and helps keep contamination out of the bearing while the flinger provides a rotating shield that directs contamination away from the seal.

Sealed for Life

The Sealmaster Material Handling Bearings are supplied with a plug in the housing to prevent relubrication. A standard lubrication fitting is supplied loose in the box for those customers who prefer relubricating the bearings.

End Caps

The Sealmaster Material Handling Bearings housing are machined to accept an optional safety yellow polymer snap on end cap to cover rotating shafts, allowing users to better conform to OSHA requirements for personal protection from rotating shafts. The end cap can easily snap into the housing without the need for special tooling.

Features and Benefits continued

Anti-Rotation Rivet

An Anti-rotation rivet prevents outer ring creep, or rotation, within the housing.

Zone Hardened Inner Race

Sealmaster incorporates a unique heat treat process that hardened the inner race only where it is needed...under the ball path. The zone hardened inner race results in improved lock reliability as a result of less distortion at setscrew location and improved thread conformity resulting in improved clamping and resistance to setscrew back-out.

Solid Cast Iron Base

Solid bases are standard on Sealmaster Material Handling ball bearing pillow blocks. The solid base provides improved stability, resistance to shock and vibration and prevents frame buckling under base compared to semi-solid and hollow mounting bases.

Nameplate

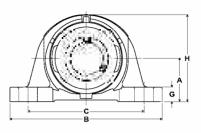
Metal nameplate riveted to the housing allows for easy identification even after years of operation.

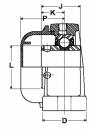
Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Pillow Block

Self Alignment: +/- 1.5 Degrees


> Lock: Setscrew


Seal: Contact Seal and Flinger

-20° to 200°F Temperature:

> Relube: Plugged, Grease Fitting

Included

NPMH Series Standard Duty Pillow Block - Setscrew Locking

Bom	a strawe	2400000	20000000	Back				10	Dinni.		ek (mm						e de la companion de la compan
Jenneder Hein	line (The	dam ng Poort Vo	Gobernal End Cap!	Restrict Turns	Ä	В	Mar.	1/1	P E	/ / (# =	žН	3	100	Œ.	伊	800	Date:
31	MARKET	93/163	900-10	2524 12455	17° = 96.6	2 1/2 189.7	878 08.4	-54 11	127	12.7	2 3 0 714	1 98 340	15/16 27.6	7 3/6 34/0	1 1 1 1 5 42.5	3/9	2.0 2.1
1 3/16 1 1/4	NPMH-19 NPMH-20R	MH-19 MH-20R	ECC-19	4381 19487	1 11/16 42.9	6 1/2 165.1	4 7/16 112.7	5 1/16 128.6	1 7/8 47.6	9/16 14.3	3 3/8 85.7	1 1/2 38.1	7/8 22.2	1 19/32 40.5	1 3/4 44.5	1/2	3 6 1.62
1.00 350	H 821 20 H793-21	9.150 94.51	300.13	5782 201 3	1.770 47.0	6 0.46 165,7	4 H.76 111.1	5510 1945		\$10 15 ?	3.54 053	1 11/15 -20	32,4	1:55(4 47.5	1/2/0 42/1	0等	2,2 :03
1 1/2	NPMH-24	MH-24	ECC-24	7340 32648	1 15/16 49.2	7 1/4 184.2	4 7/8 123.8	5 7/8 149.2	2 1/8 54.0	11/16 17.5	3 15/16 100.0	1 15/16 49.2	1 3/16 30.2	2 1/16 52.4	2 1/16 52.4	1/2	5 4 2.45
H62	3849 (3)	9 0300	10000	757# 76444	5411 5411	7 165 1861 n	5-25 T 171 T	15 1,146 15 1 11	5.50 540	11,16)- \	t M Dilli	1 (1515) 2162	# 1415 #* 1	TANTA NATA	3-447 -23-4	177	1.1 1.50
1 15/16	NPMH-31	MH-31	ECC-31	7889 35090	2 1/4 57.2	8 1/8 206.4	6 152.4	6 1/2 165.1	2 3/8 60.3	3/4 19.1	4 9/16 115.9	2 1/32 51.6	1 9/32 32.5	2 15/32 62.7	2 1/16 52.4	5/8	7 4 3.34
22/16	NEW HOSE WHITE III	H1.6	(inc. ii	9059 1077	16175 16176	#3## \$880	10 1656 379: 1	eren.	7300 1013	01606 1555	4 36/00 66 -	1:2000 1850	1*10 1711	100±92 188-1	/ E+0)	•••	6-) (00)

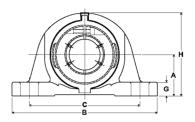
^{*}Closed End Cap part number is shown for Open End Cap. See page L-4 in the Accessories section.

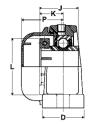
Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Pillow Block

Self Alignment: +/- 1.5 Degrees


> Lock: Skwezloc Locking Collar


Seal: Contact Seal and Flinger

-20° to 200°F Temperature:

> Relube: Plugged, Grease Fitting

> > Included

NPMH-T Series Standard Duty Pillow Block - Skwezloc Locking Collar

Bore			0 11 1	Basic					Dimens	sions inc	ch / mm					Bolt	Unit
Diameter inch	Part No.	Bearing Insert No.	Optional End Cap*	Dynamic Rating Ib/N	A	8	Min.	Max	D	G)(()	J.	ĸ	L	P	Size	Wt. lb/kg
1	NPMH-16T	MH-16T	ECC-16	2801 12459	1 7/16 36.5	5 1/2 139.7	3 7/8 98.4	4 3/8 111.1	1 1/2 38.1	1/2 12.7	2 13/16 71.4	1 7/16 36.5	7/8 22.2	1 15/16 49.2	1 11/16 42.9	3/8	2.1 .96
1 3/16 1 1/4	NPMH-19T NPMH-20RT	MH-19T MH-20RT	ECC-19 ECC-19	4381 19487	1 11/16 42.9	6 1/2 165.1	4 7/16 112.7	5 1/16 128.6	1 7/8 47.6	9/16 14.3	3 3/8 85.7	1 9/16 39.7	15/16 23.8	2 3/16 55.6	1 3/4 44.5	1/2	3.8 1.70
1 1/4	NPMH-20T	MH-20T	ECC-23	5782 25718	1 7/8 47.6	6 9/16 166.7	4 11/16 119.1	5 5/16 134.9	1 7/8 47.6	5/8 15.9	3 3/4 95.3	1 3/4 44.5	1 1/16 27.0	2 7/16 61.9	1 7/8 47.6	1/2	4.6 2.08
1 7/16	NPMH-23T	MH-23T	ECC-23	5782 25718	1 7/8 47.6	6 9/16 166.7	4 11/16 119.1	5 5/16 134.9	1 7/8 47.6	5/8 15.9	3 3/4 95.3	1 3/4 44.5	1 1/16 27.0	2 9/16 65.1	1 7/8 47.6	1/2	4.5 2.02
1 1/2	NPMH-24T	MH-24T	ECC-24	7340 32648	1 15/16 49.2	7 1/4 184.2	4 7/8 123.8	5 7/8 149.2	2 1/8 54.0	11/16 17.5	3 15/16 100.0	2 50.8	1 1/4 31.8	2 11/16 68.3	2 1/6 52.4	1/2	5.7 2.57
1 11/16	NPMH-27T	MH-27T	ECC-27	7901 35144	2 1/8 54.0	7 1/2 190.5	5 7/16 138.1	6 1/16 154.0	2 1/8 54.0	11/16 17.5	4 1/4 108.0	2 50.8	1 1/4 31.8	2 15/16 74.6	2 1/16 52.4	1/2	6.4 2.88
1 15/16	NPMH-31T	MH-31T	ECC-31	7889 35090	2 1/4 57.2	8 1/8 206.4	6 152.4	6 1/2 165.1	2 3/8 60.3	3/4 19.1	4 9/16 115.9	2 3/32 53.2	1 11/32 34.1	3 3/8 85.7	2 1/16 52.4	5/8	8.0 3.62
2	NPMH-32T	MH-32T	ECC-35	9752 43377	2 1/2 63.5	8 5/8 219.1	6 1/2 165.1	7 177.8	2 3/8 60.3	11/16 17.5	4 15/16 125.4	2 1/4 57.2	1 3/8 34.9	3 1/2 88.9	2 15/64 56.8	5/8	9.9 4.50
2 3/16	NPMH-35T	MH-35T	ECC-35	9752 43377	2 1/2 63.5	8 5/8 219.1	6 1/2 165.1	7 177.8	2 3/8 60.3	11/16 17.5	4 15/16 125.4	2 1/4 57.2	1 3/8 34.9	3 5/8 92.1	2 15/64 56.8	5/8	9.6 4.37

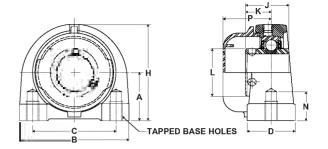
^{*}Closed End Cap part number is shown for Open End Cap. See page L-4 in the Accessories section.

Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Tapped Base

Self Alignment: +/- 1.5 Degrees


> Lock: Setscrew

Seal: Contact Seal and Flinger

-20° to 200°F Temperature:

> Relube: Plugged, Grease Fitting

> > Included

TBMH Series Tapped Base Pillow Block - Setscrew Locking

5ap	9202221	Service Control of	Terror de la Constitución	Bable				2	entiralia.	a inch	nusy)			Tax control	y y	Uhm
Diameter entre	THE IA	Pare Via	Gipteria) ≘i(4 G43	Tigramie Stading Hali	700	W	Æ	00	1100	100	16	93	10000	Mart. 1842 Departs	Torox.	20.15
Si:	T68 F-10	34.46	E0010	3801 1400	7,10 E. 1	76 Z	2 208	1 7.2 39 1	2:13/16 T) 4	\$5 940	511 206	7.000 84.0	124 11	1/2 12/7	936-16	1.5 .72
1 3/16 1 1/4	TBMH-19 TBMH-20R	MH-19 MH-20R	ECC-19	4381 19487	1 3/4 44.5	4 101.6	3 76.2	1 1/2 38.1	3 13/32 86.5	1 1/2 38.1	7/8 22.2	1 19/32 40.5	1 49/64 44.8	5/8 15.9	7/16-14	2 9 1.30
7.0	IPKT 30 TEKF-08	Marian Marian	FCC-29	1975 20240	136 0.5	64d 1926	9 (4 ‡8.0	1.58	332 850	20 15 (10 15 (10)	† 35.4	1:5354 12:2	120 435	34/ (51)	W.W	10.00
1 1/2	TBMH-24	MH-24	ECC-24	7340 32648	1 15/16 49.2	4 5/8 117.5	3 1/2 88.9	1 7/8 47.6	3 15/16 100.0	1 15/16 49.2	1 3/16 30.2	2 1/16 52.4	2 3/32 53.2	3/4 19.1	1/2-13	4 6 2.10
9.000	80.09	3 (3)	100.07	79071 31517-4	2 161	4	1,5	3 (1) 20	diden- ung in-	4 1 2	1,945 201,4	/ (uniq (A7))	MARK All I	(4)	69000	2.5
1 15/16	TBMH-31	MH-31	ECC-31	7889 35090	2 1/4 57.2	5 1/2 139.7	4 101.6	2 50.8	4 5/8 117.5	2 1/32 51.6	1 9/32 32.5	2 15/32 62.7	2 1/8 53.9	7/8 22.2	5/8-11	6 7 3.05

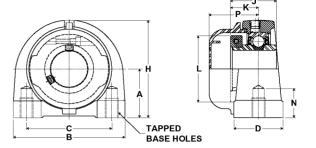
^{*}Closed End Cap part number is shown for Open End Cap. See page L-4 in the Accessories section.

Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Tapped Base

Self Alignment: +/- 1.5 Degrees


> Lock: Skwezloc Locking Collar

Seal: Contact Seal and Flinger

-20° to 200°F Temperature:

> Relube: Plugged, Grease Fitting

Included

TBMH-T Series Tapped Base Pillow Block - Skwezloc Locking Collar

									imensio	na imala /						_
Bore Diameter inch	Part No.	Bearing Insert No.	Optional End Cap*	Basic Dynamic Ratin Ib/N	A	В	C	D	H	inch /	K	ij	P	N Min. Tap Depth	Bolt UNC-2B Thread	Unit Wt. lb/kg
1	ТВМН-16Т	MH-16T	ECC-16	2801 12459	1 7/16 36.5	3 76.2	2 50.8	1 1/2 38.1	2 13/16 71.4	1 7/16 36.5	7/8 22.2	1 15/16 49.2	1 3/4 44.5	1/2 12.7	3/8-16	1.7 .78
1 3/16 1 1/4	TBMH-19T TBMH-20RT	MH-19T MH-20RT	ECC-19	4381 19487	1 3/4 44.5	4 101.6	3 76.2	1 1/2 38.1	3 13/32 86.5	1 9/16 39.7	15/16 23.8	2 3/16 55.6	1 49/64 44.8	5/8 15.9	7/16-14	3.0 1.37
1 1/4	ТВМН-20Т	MH-20T	ECC-23	5782 25718	1 7/8 47.6	4 1/4 108.0	3 1/4 82.6	1 7/8 47.6	3 3/4 95.3	1 3/4 44.5	1 1/16 27.0	2 7/16 61.9	1 7/8 47.6	3/4 19.1	1/2-13	4.1 1.85
1 7/16	ТВМН-23Т	MH-23T	ECC-23	5782 25718	1 7/8 47.6	4 1/4 108.0	3 1/4 82.6	1 7/8 47.6	3 3/4 95.3	1 3/4 44.5	1 1/16 27.0	2 9/16 65.1	1 7/8 47.6	3/4 19.1	1/2-13	3.9 1.79
1 1/2	ТВМН-24Т	MH-24T	ECC-24	7340 32648	1 15/16 49.2	4 5/8 117.5	3 1/2 88.9	1 7/8 47.6	3 15/16 100.0	2 50.8	1 1/4 31.8	2 11/16 68.3	2 3/32 53.2	3/4 19.1	1/2-13	4.9 2.22
1 11/16	ТВМН-27Т	MH-27T	ECC-27	7901 35144	2 1/8 54.0	5 127.0	3 3/4 95.3	2 50.8	4 1/4 108.0	2 50.8	1 1/4 31.8	2 15/16 74.6	2 5/32 54.8	3/4 19.1	1/2-13	6.0 2.70
1 15/16	ТВМН-31Т	MH-31T	ECC-31	7889 35090	2 1/4 57.2	5 1/2 139.7	4 101.6	2 50.8	4 5/8 117.5	2 3/32 53.2	1 11/32 34.1	3 3/8 85.7	2 1/8 53.9	7/8 22.2	5/8-11	7.3 3.32

^{*}Closed End Cap part number is shown for Open End Cap. See page L-4 in the Accessories section.

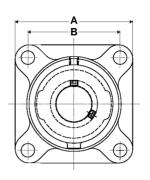
ASTER® Material Handling Bearings

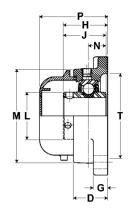
Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Four Bolt Flange

Self Alignment: +/- 1.5 Degrees


> Lock: Setscrew


Seal: Contact Seal and Flinger

Temperature: -20° to 200°F

> Relube: Plugged, Grease Fitting

Included

SFMH Series Standard Duty 4-Bolt Flange - Setscrew Locking

Bore Diameter	110000000000	Bearing	Optional	Basic					Dimens	sions inc	h/mm					Bolt	Unit
inch	Part No.	Insert No.	End Cap*	Dynamic Ratin Ib/N	Ä	B	D	0	Œ	4)) L	W	2	P	Ť	Size	Wt. lb/kg
1	SFMH-16	MH-16	ECC-16	2801 12459	3 3/4 95.3	2 3/4 69.9	1 1/32 26.2	17/32 13.5	1 7/16 36.5	1 3/8 34.9	1 3/8 34.9	2 23/32 69.1	9/16 14.3	2 19/64 58.3	2 3/8 60.3	7/16	1.9 .87
1 3/16	SFMH-19	MH-19	ECC-19	4381	4 1/4	3 1/4	1 11/64	17/32	1 9/16	1 1/2	1 19/32	3 7/32	5/8	2 27/64	27/8	7/16	2.7
1 1/4R	SFMH-20R	MH-20R	200-10	19487	108.0	82.6	29.8	13.5	39.7	38.1	40.5	81.8	15.9	61.5	73.0	1710	1.23
1 1/4	SFMH-20	MH-20	ECC-23	5782	4 5/8	3 5/8	1 11/32	9/16	1 3/4	1 11/16	1 55/64	3 23/32	11/16	2 43/64	3 5/16	1/2	3.7
1 7/16	SFMH-23	MH-23	ECC-23	25718	117.5	92.1	34.1	14.3	44.5	42.9	47.2	94.5	17.5	67.8	84.1	1/2	1.68
1 1/2	SFMH-24	MH-24	ECC-24	7340 32648	5 1/8 130.2	4 101.6	1 1/2 38.1	9/16 14.3	2 1/64 51.2	1 15/16 49.2	2 1/16 52.4	4 5/64 103.6	3/4 19.1	2 15/16 74.6	3 1/2 88.9	1/2	4.8 2.18
1 11/16	SFMH-27	MH-27	ECC-27	7901 35144	5 3/8 136.5	4 1/8 104.8	1 9/16 39.7	9/16 14.3	2 3/64 52.0	1 15/16 49.2	2 19/64 58.3	4 21/64 109.9	3/4 19.1	3 76.2	3 3/8 85.7	1/2	5.4 2.43
1 15/16	SFMH-31	MH-31	ECC-31	7889 35090	5 5/8 142.9	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 5/32 54.8	2 1/32 51.6	2 15/32 62.7	4 33/64 114.7	3/4 19.1	2 63/64 75.8	4 101.6	9/16	5.7 2.60
2	SFMH-32	MH-32	ECC-35	9752	6 3/8	5 1/8	1 3/4	13/16	2 5/16	2 3/16	2 23/32	5 3/16	7/8	3 23/64	4 1/4	5/8	9.9
2 3/16	SFMH-35	MH-35	ECC-35	43377	161.9	130.2	44.5	20.6	58.7	55.6	69.1	131.8	22.2	85.3	108.0	3/6	4.48
2 7/16	SFMH-39	MH-39	ECC-39	11789 52437	6 7/8 174.6	5 5/8 142.9	1 15/16 49.2	13/16 20.6	2 11/16 68.3	2 34/61 65.0	2 63/64 75.8	5 7/16 138.1	1 25.4	3 45/64 94.1	4 1/4 108.0	5/8	10.6 4.80

^{*}Closed End Cap part number is shown for Open End Cap. See page L-4 in the Accessories section.

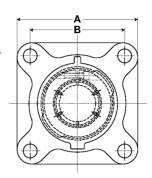
Material Handling Bearings **SEAL**

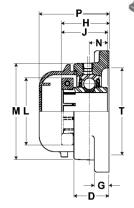
Duty: Standard

Rolling Elements: Bal

Housing: Cast Iron Four Bolt Flange

Self Alignment: +/- 1.5 Degrees


Lock: Skwezloc


Seal: Contact Seal and Flinger

Temperature: -20° to 200°F

Relube: Plugged, Grease Fitting

Included

SFMH-T Series Standard Duty 4-Bolt Flange - Skwezloc Locking Collar

Bore Diameter		Danwan	Optīonal	B isic Dy iamic					Dimens	sions inc	ch / mm					Bolt	Unit
inch	Part No.	Bearing Insert No	End Cap®	Rating	A	В	0	6	4	ij,	2	*	2	P	Ţ	Size	Wt. lb/kg
1	SFMH-16T	MH-16T	ECC-16	2801 12459	3 3/4 95.3	2 3/4 69.9	1 1/32 26.2	17/32 13.5	1 1/2 38.1	1 7/16 36.5	1 15/16 49.2	2 23/32 69.1	9/16 14.3	2 19/64 58.3	2 3/8 60.3	7/16	2.0 .92
1 3/16 1 1/4R	SFMH-19T SFMH-20RT	MH-19T MH-20RT	ECC-19	4381 19487	4 1/4 108.0	3 1/4 82.6	1 11/64 29.8	17/32 13.5	1 5/8 41.3	1 9/16 39.7	2 3/16 55.6	3 7/32 81.8	5/8 15.9	2 27/64 61.5	2 7/8 73.0	7/16	2.9 1.31
1 1/4	SFMH-20T	MH-20T	ECC-23	5782 25718	4 5/8 117.5	3 5/8 92.1	1 11/32 34.1	9/16 14.3	1 13/16 46.0	1 3/4 44.5	2 7/16 61.9	3 23/32 94.5	11/16 17.5	2 43/64 67.8	3 5/16 84.1	1/2	3.9 1.78
1 7/16	SFMH-23T	MH-23T	ECC-23	5782 25718	4 5/8 117.5	3 5/8 92.1	1 11/32 34.1	9/16 14.3	1 13/16 46.0	1 3/4 44.5	2 9/16 65.1	3 23/32 94.5	11/16 17.5	2 11/16 68.3	3 5/16 84.1	9/16	3.8 1.72
1 1/2	SFMH-24T	MH-24T	ECC-24	7340 32648	5 1/8 130.2	4 101.6	1 1/2 38.1	9/16 14.3	2 5/64 52.8	2 50.8	2 11/16 68.3	4 5/64 103.6	3/4 19.1	2 15/16 74.6	3 1/2 88.9	1/2	5.1 2.30
1 11/16	SFMH-27T	MH-27T	ECC-27	7901 35144	5 3/8 136.5	4 1/8 104.8	1 9/16 39.7	9/16 14.3	2 7/64 53.6	2 50.8	2 15/16 74.6	4 21/64 109.9	3/4 19.1	3 76.2	3 7/8 98.4	1/2	5.7 2.56
1 15/16	SFMH-31T	MH-31T	ECC-31	7889 35090	5 5/8 142.9	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 7/32 56.4	2 3/32 53.2	3 3/8 85.7	4 33/64 114.7	3/4 19.1	2 63/64 75.8	4 101.6	9/16	6.3 2.88
2	SFMH-32T	MH-32T	ECC-35	9752 43377	6 3/8 161.9	5 1/8 130.2	1 3/4 44.5	13/16 20.6	2 3/8 60.3	2 3/32 53.2	3 1/2 88.9	5 3/16 131.8	7/8 22.2	3 23/64 85.3	4 1/4 108.0	5/8	10.5 4.74
2 3/16	SFMH-35T	MH-35T	ECC-35	9752 43377	6 3/8 161.9	5 1/8 130.2	1 3/4 44.5	13/16 20.6	2 3/8 60.3	2 1/4 57.2	3 5/8 92.1	5 3/16 131.8	7/8 22.2	3 23/64 85.3	4 1/4 108.0	5/8	10.9 4.94
2 7/16	SFMH-39T	MH-39T	ECC-39	11789 52437	6 7/8 174.6	5 5/8 142.9	1 15/16 49.2	13/16 20.6	2 11/16 68.3	2 34/61 65.0	4 1/8 104.8	1 25.4	5 7/16 138.1	3 45/64 94.1	4 1/4 108.0	5/8	11.7 5.32

^{*}Closed End Cap part number is shown for Open End Cap. See page L-4 in the Accessories section.

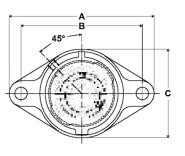
ASTER® Material Handling Bearings

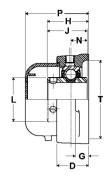
Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Two Bolt Flange

Self Alignment: +/- 1.5 Degrees


> Lock: Setscrew


Seal: Contact Seal and Flinger

Temperature: -20° to 200°F

> Relube: Plugged, Grease Fitting

> > Included

SFTMH Series Standard Duty 2-Bolt Flange - Setscrew Locking

50	- contract	***********	2000000	Back					2000	a mail in	eti (mm						(he) me district
Old mesar inc	Pariffic.	House Ho.	Setuma Sid Cop	Resting Light	×	Bill	100	(i)	#3	MANA	W	E	8	9	i i i i i	Slac	
	3F7194. E	99248	£35/10	2801 12493	47.8 23.9	2 67%4 15.2	2 %- 90 0	7 1/22 23/8	795 195	7,50 56 1	24.5 24.5	1.55 340	0.70 4.7	2 10 j.4 50 g	2.24 73.3	1006	4 80
1 3/16 1 1/4R	SFTMH-19 SFTMH-20R	MH-19 MH-20R	ECC-19	4381 19487	5 9/16 141.3	4 19/32 116.7	3 1/4 82.6	1 11/64 29.8	17/32 13.5	1 9/16 39.7	1 1/2 38.1	1 19/32 40.5	5/8 15.9	2 27/64 61.5	2 7/8 73.0	7/16	2 0 0.92
1114 1210	G PARTY BETTALLS	90 => 94925	297 ZA	5741; \$5743	01.0 35.5	A CONTRACTOR OF THE PARTY OF TH	3.352 66.5	1 1 ,32 34,1	5/16 142	1/54 46.5	1,30 42,5	175/64 270	to t	2,6954 97,6	0 546 337	12	92 685
1 1/2	SFTMH-24	MH-24	ECC-24	7340 32648	6 3/4 171.5	5 21/32 143.7	4 1/8 104.8	1 1/2 38.1	9/16 14.3	2 1/64 51.2	1 15/16 49.2	2 1/16 52.4	3/4 19.1	2 15/16 74.6	3 1/2 88.9	1/2	3 9 1.79
(38	NO PROCESS	90.645	303.91	1901 17444	7-197	n Pisti And A	410.5 110.5	1 H.16 ,/3.	3.86 13.3	1000 1200	35° 6 46° 1	7 (24) 441	#	± 2019	174 214	3-10:	44. 2/12
1 15/16	SFTMH-31	MH-31	ECC-31	7889 35090	7 7/16 188.9	6 3/16 157.2	4 9/16 115.9	1 9/16 39.7	9/16 14.3	2 5/32 54.8	2 1/32 51.6	2 15/32 62.7	3/4 19.1	2 63/64 75.8	4 101.6	5/8	4 7 2.12
9 258.	SPECIAL CHARGE	34.55 34.55	40 A	96-5- 19577	0.60 5000	/ in	##/ (3) (12 m	201.0	25/30	3/11/0 8/20)-31-99 16-1	SPA HUT	1-2727 10139	()) () ((())	-11	// ##0

^{*}Closed End Cap part number is shown for Open End Cap. See page L-4 in the Accessories section.

Material Handling Bearings **SEAL**

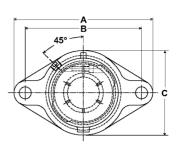
Duty: Standard

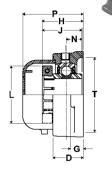
Rolling Elements: Bal

Housing: Cast Iron Two Bolt Flange

Self Alignment: +/- 1.5 Degrees

Lock: Skwezloc Locking Collar


Seal: Contact Seal and Flinger


Temperature: -20° to 200°F

Relube:

Plugged, Grease Fitting

Included

SFTMH-T Series Standard Duty 2-Bolt Flange - Skwezloc Locking Collar

Bore Diame		Bearing	Optional	Basic Dynamic					Dimens	ions inc	ch / mm					Bolt	Unit Wt.
inch	Part No.	Insert No.	End Cap*	Rating Ib/N	A	8	C	D	6	H	3 Å	£	N	P	$\bar{\pi}^{\scriptscriptstyle \Lambda}$	Size	lb/kg
1	SFTMH-16T	MH-16T	ECC-16	2801 12459	4 7/8 123.8	3 57/64 98.8	2 3/4 69.9	1 1/32 26.2	17/32 13.5	1 1/2 38.1	1 7/16 36.5	1 15/16 49.2	9/16 14.3	2 19/64 58.3	2 3/8 60.3	7/16	1.5 .67
1 3/16 1 1/4R	SFTMH-19T SFTMH-20RT	MH-19T MH-20RT	ECC-19	4381 19487	5 9/16 141.3	4 19/32 116.7	3 1/4 82.6	1 11/64 29.8	17/32 13.5	1 5/8 41.3	1 9/16 39.7	2 3/16 55.6	5/8 15.9	2 27/64 61.5	2 7/8 73.0	7/16	2.2 .99
1 1/4	SFTMH-20T	MH-20T	ECC-23	5782 25718	6 1/8 155.6	5 1/8 130.2	3 3/4 95.3	1 11/32 34.1	9/16 14.3	1 13/16 46.0	1 3/4 44.5	2 7/16 61.9	11/16 17.5	2 43/64 67.8	3 5/16 84.1	1/2	3.5 1.58
1 7/16	SFTMH-23T	MH-23T	ECC-23	5782 25718	6 1/8 155.6	5 1/8 130.2	3 3/4 95.3	1 11/32 34.1	9/16 14.3	1 13/16 46.0	1 3/4 44.5	2 9/16 65.1	11/16 17.5	2 43/64 67.8	3 5/16 84.1	1/2	3.3 1.49
1 1/2	SFTMH-24T	MH-24T	ECC-24	7340 32648	6 3/4 171.5	5 21/32 143.7	4 1/8 104.8	1 1/2 38.1	9/16 14.3	2 5/64 52.8	2 50.8	2 11/16 68.3	3/4 19.1	2 15/16 74.6	3 1/2 88.9	1/2	4.2 1.91
1 11/16	SFTMH-27T	MH-27T	ECC-27	7901 35144	7 1/16 179.4	5 27/32 148.4	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 7/64 53.6	2 50.8	2 15/16 74.6	3/4 19.1	3 76.2	3 7/8 98.4	9/16	4.7 2.14
1 15/16	SFTMH-31T	MH-31T	ECC-31	7889 35090	7 7/16 188.9	6 3/16 157.2	4 9/16 115.9	1 9/16 39.7	9/16 14.3	2 7/32 56.4	2 3/32 53.2	3 3/8 85.7	3/4 19.1	2 63/64 75.8	4 101.6	5/8	5.3 2.39
2	SFTMH-32T	MH-32T	ECC-35	9752 43377	8 1/2 215.9	7 1/4 184.2	5 1/4 133.4	1 3/4 44.5	13/16 20.6	2 3/8 60.3	2 3/32 53.2	3 1/2 88.9	7/8 22.2	3 5/32 80.2	4 1/4 108.0	5/8	8.3 3.77
2 3/16	SFTMH-35T	MH-35T	ECC-35	9752 43377	8 1/2 215.9	7 1/4 184.2	5 1/4 133.4	1 3/4 44.5	13/16 20.6	2 3/8 60.3	2 1/4 57.2	3 5/8 92.1	7/8 22.2	3 5/32 80.2	4 1/4 108.0	5/8	8.1 3.66

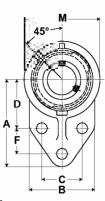
^{*}Closed End Cap part number is shown for Open End Cap. See page L-4 in the Accessories section.

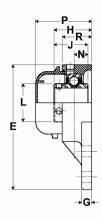
Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Flange Bracket

Self Alignment: +/- 1.5 Degrees


> Lock: Setscrew


Seal: Contact Seal and Flinger

Temperature: -20° to 200°F

> Relube: Plugged, Grease Fitting

> > Included

FBMH Series Standard Duty Flange Bracket - Setscrew Locking

Sar-	100000000	Bearing	ennica.	Bart:						Diri	Willia.	1911	na min					<u> </u>	100000	Wat
Demaler det	Partitio.		Emil Com	Falmy E74	W.	B	10	() (15	100		, AN	730		<i>it</i> ti) (2011)		lia.	Elac Elac	all the
1 3	EBWHE	VI-16	B0540	260 12477	3 AU 87.7	245 337	155	10/ (45.0	4.85- 20.7	7 16 20 6	16 16	173 1870	53 940	1345 140	2.3.4 00,0	0/10 14,3	2 21 5 4 7 1 5	1300	348	1.5 .58
1 3/16 1 1/4R	FBMH-19 FBMH-20R	MH-19 MH-20R	ECC-19	4381 19487	3 3/4 95.3		1 7/8 47.6		5 23/64 136.1	1 1/4 31.8	3/8 9.5	1 5/8 41.3	1 1/2 38.1	1 19/32 40.5	3 7/32 81.8	5/8 15.9	2 15/32 62.7	1 15/64 31.4	3/8	2 1 0.96
17:45	FEMALES	MARD.	e e e	*7/h+ >6/10		7.19 7.97	99	tna pro	64a) 36.7	† 4/3 DE Fi) (10 12 /	770 -276	renent.	(255) (237)	THE PART OF THE	10/12 14/3	(3) (3)	el (ada dy 2	1	3E
1 15/16	FBMH-31	MH-31	ECC-31	7889 35090	5 3/16 131.8	4 101.6			7 15/32 189.7	1 5/8 41.3	1/2 12.7	2 5/32 54.8	2 1/32 51.6		4 9/16 115.9	3/4 19.1	2 31/32 75.4	1 35/64 39.3	1/2	5 4 2.44

^{*}Closed End Cap part number is shown for Open End Cap. See page L-4 in the Accessories section.

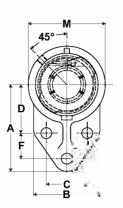
Material Handling Bearings **SEAL**

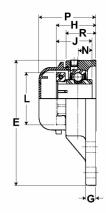
Duty: Standard

Rolling Elements: Ball

Housing: Cast Iron Flange Bracket

Self Alignment: +/- 1.5 Degrees


Lock: Skwezloc Locking Collar


Seal: Contact Seal and Flinger

Temperature: -20° to 200°F

Relube: Plugged, Grease Fitting

Included

FBMH-T Series Standard Duty Flange Bracket - Skwezloc Locking Collar

Bo.	0000000	Seeing	Qui gran	Basik						DI			Linin							000000
Corruba	Pare Sex	Secretary Appears No.	out!	Opniorie Ozolog Ush	X	#	Ø	:DN	#		U.F.	HE	4	60)	78	ijΙ	21	100	500	Rook D
23	P301- VII	H-1-157	B0C- 6	2801 1245)) 3/7 90 7	7 /2 63.5	;e 41.	110000000000000000000000000000000000000	4 54 1837	1 138 25,6	3.F 0.5	6-6 86.7	1 7 10 30 :	1 17 6 403	00.0 2 XL	0/ 5 4 5	2235- 720	13.52 27.6	20	13.79
1 3/16 1 1/4R	FBMH-19T FBMH-20RT	MH-19T MH-20RT	ECC-19	4381 19487		2 3/4 69.9	1 7/8 47.6		5 23/64 136.1	1 1/4 31.8	3/8 9.5	1 11/16 42.9	1 9/16 39.7	2 3/16 55.6	3 7/32 81.8	5/8 15.9	2 15/32 62.7	1 15/64 31.4	3/8	2.3 1.04
(10)	FE 138	H + 1000	kce #	5000 25700	154 1566	7 - 32 37 (0	500 S	374) (0.1	0.147 131.0	1.100 2100	10 10.7	THE PART AND ADDRESS.	10-1 44-1	2 U.C. C1:5	No. of the last of		2 357.0 170.0	15472 2011	180	200 133
1 7/16	FBMH-23T	MH-23T	ECC-23	5782 25718	4 1/4 108.0	3 1/4 82.6	2 50.8	2 3/8 60.3	6 1/8 155.6	1 1/4 31.8	1/2 12.7	1 15/16 49.2	1 3/4 44.5	2 9/16 65.1	3 3/4 95.3	11/16 17.5	2 25/32 70.6	1 15/32 37.3	1/2	3 7 1.66
17:40	0000000	witte	1000	mina)	5 '96 1714	ot Uni	2 Peq. 3 Dec	2 IS.	/ (Sc) (Sc)		j		7 (52) 617		- idea table). u j	3.31019 71.7	1841 18	(95	6.0 1.79

^{*}Closed End Cap part number is shown for Open End Cap. See page L-4 in the Accessories section.

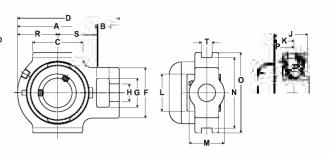
SEAL MASTER

Duty: Standard

Rolling Elements: Ball

Housing: Cast Iron Wide Slot Take Up

Self Alignment: +/- 1.5 Degrees


Lock: Setscrew

Seal: Contact Seal and Flinger

Temperature: -20° to 200°F

Relube: Plugged, Grease Fitting

Included

STMH Series Standard Duty Wide Slot Take Up - Setscrew Locking

Bolton	TANKS NO.	Parman	Органия	1								Dimen	e erre	ticle tar								
Distance:	Page Ho	100	Spaces Ship Satt		100	W)	W.	07	12	00	or Care	100,	100	00	74	**	196	86	(000)	89	10	UBB VVI UP (1)
(0)	8 S F-1 L	Mess.	±2710	Jahr Gro	Arthur St.A.	148	1	1784, PE 181-18	u,	TOTAL WILL	1000	3 439 9600	1550 476	77.00 7.00	27	a me	3 54 3 6 6	15/6 24 /	77.W	1 049 141	Water	2
1 3/16 1 1/4R	STMH-19 STMH-20R		ECC-19	4381 19487								1 1/2 38.1		1 19/32 40.5	1 3/4 44.5	3 1/2 88.9	4 101.6	1 25/32 45.2	1 11/16 42.9	1 7/16 36.5	17/32	3 1 1 41
- 40- 1 (186	era er Sarab	-1 2. 11.22	-»µ•	A STATE OF THE PARTY OF THE PAR	8 0 in	No. 100 (1990)	ACCOUNT OF THE PARTY.	Broken Control of	The Act of the Control	THE PROPERTY.	NAME OF TAXABLE PARTY.			t Holo N/ =		1000000	The second second	71/e	100	(6) (6)		-0 177
1 1/2	STMH-24	MH-24	ECC-24	7340 32648								1 5/16 33.3		2 1/16 52.4							11/16	3 8 1 71
0065	ST 4 S*	H(-38)	7565 pm	7901 12 3 -	7.196 1785) (10) 						* 56 0	 86 °	-110	100	17 Am.	4-0 7-1	700 31.	548.0	.σ *
1 15/16	STMH-31	MH-31	ECC-31	7889 35090	4 1/2 114.3									2 15/32 62.7							11/16	5 8 2.64
2 199		year year	eca	erge Ester	12.6			9.M (76.5	300.6	76.3 49.5	24) 26,4	10.4 10.4	19.5	271% 74	#114 37.7	25.7 25.7	2.W V/A	1: 596 30.7	1.5. (2)2. (# 279K € #	40	24 8.37

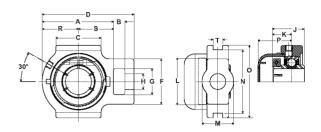
^{*}Closed End Cap part number is shown for Open End Cap. See page L-4 in the Accessories section.

Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Wide Slot Take Up

+/- 1.5 Degrees Self Alignment:


> Lock: Skwezloc

Contact Seal and Flinger Seal:

Temperature: -20° to 200°F

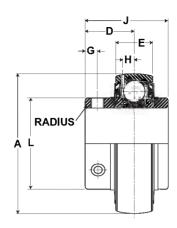
> Relube: Plugged, Grease Fitting

Included

STMH-T Series Standard Duty Wide Slot Take Up - Skwezloc Locking Collar

Bore Diameter		Bearing	Optiona	Basic Dynamic								Dimen	sions ir	nch / mn	n							Unit
inch	Part No.	Insert No.	End Cap*	Rating Ib/N	*	m	u	۵	F	G	H Core	1000	8	Ü	M	íN.	0	(4)	æ	00	Ť	Wt. lb/kg
1	STMH-16T	MH-16T	ECC-16	2801 12459	2 13/16 71.4	5/8 15.9	2 50.8	3 13/16 96.8	2 50.8	1 1/4 31.8	3/4 19.1	1 7/16 36.5	7/8 22.2	1 15/16 49.2	1 1/2 38.1	3 76.2	3 1/2 88.9	1 23/32 43.7	1 3/8 34.9	1 7/16 36.5	17/32	1.9 .88
1 3/16 1 1/4	STMH-19T STMH-20RT			4381 19487	3 7/16 87.3	5/8 15.9		4 7/16 112.7	2 3/16 55.6	1 7/16 36.5	7/8 22.2	1 9/16 39.7	15/16 23.8	2 3/16 55.6	1 3/4 44.5	3 1/2 88.9	4 101.6	1 25/32 45.2	1 11/16 42.9	1 3/4 44.5	17/32	3.1 1.41
1 1/4	STMH-20T	MH-20T	ECC-23	5782 25718	3 15/16 100.0	5/8 15.9	2 1/2 63.5	5 1/16 128.6	2 1/2 63.5	1 7/16 36.5	7/8 22.2	1 3/4 44.5	1 1/16 27.0	2 7/16 61.9	1 3/4 44.5	3 1/2 88.9	4 101.6	1 55/64 47.2	2 50.8	1 15/16 49.2	17/32	3.9 1.77
1 7/16	STMH-23T	MH-23T	ECC-23	5782 25718	3 15/16 100.0	5/8 15.9		5 1/16 128.6	2 1/2 63.5	1 7/16 36.5	7/8 22.2	1 3/4 44.5	1 1/16 27.0	2 9/16 65.1	1 3/4 44.5	3 1/2 88.9	4 101.6	1 55/64 47.2	2 50.8	1 15/16 49.2	17/32	3.8 1.71
1 1/2	STMH-24T	MH-24T	ECC-24	7340 32648	4 5/16 109.5	3/4 19.1		5 11/16 144.5	3 1/4 82.6	1 15/16 49.2	1 1/8 28.6	2 50.8	1 1/4 31.8	2 11/16 68.3	2 1/8 54.0	4 101.6	4 1/2 114.3	1 63/64 50.4	2 3/16 55.6	2 1/8 54.0	11/16	5.8 2.65
1 11/16	STMH-27T	MH-27T	ECC-27	7901 35144	4 5/16 109.5	3/4 19.1	3 1/4 82.6	5 11/16 144.5	3 1/4 82.6	1 15/16 49.2	1 1/8 28.6	2 50.8	1 1/4 31.8	2 15/16 74.6	2 3/16 55.6	4 101.6	4 5/8 117.5	2 1/16 52.4	2 1/4 57.2	2 1/16 52.4	11/16	5.8 2.64
1 15/16	STMH-31T	MH-31T	ECC-31	7889 35090	4 1/2 114.3	3/4 19.1	3 3/8 85.7	5 7/8 149.2	3 1/4 82.6	1 15/16 49.2	1 1/8 28.6	2 3/32 53.2	1 11/32 34.1	3 3/8 85.7	2 3/16 55.6		4 5/8 117.5	2 1/16 52.4	2 5/16 58.7	2 3/16 55.6	11/16	6.1 2.78
2	STMH-32T	MH-32T	ECC-35	9752 43377	5 127.0	1 25.4	3 3/4 95.3	6 3/4 171.5	4 101.6	2 1/2 63.5	1 3/8 34.9	2 1/4 57.2	1 3/8 34.9	3 1/2 88.9	2 1/4 57.2	I	5 3/4 146.1	2 5/16 58.7	2 9/16 65.1	2 7/16 61.9	1 1/16	9.9 4.50
2 3/16	STMH-35T	MH-35T	ECC-35	9752 43377	5 127.0	1 25.4	3 3/4 95.3	6 3/4 171.5	4 101.6	2 1/2 63.5	1 3/8 34.9	2 1/4 57.2	1 3/8 34.9	3 5/8 92.1		l	5 3/4 146.1	2 5/16 58.7	2 9/16 65.1	2 7/16 61.9	1 1/16	10.4 4.69

^{*}Closed End Cap part number is shown for Open End Cap. See page L-4 in the Accessories section.


Duty: Standard

Rolling Elements: Ball

> Lock: Setscrew

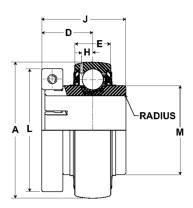
Seal: Contact Seal and Flinger

Temperature: -20° to 200°F

MH Series Standard Duty Insert - Setscrew Locking

Bore Diameter				Dim		Max. Rad. To	Setscrew	Unit Wt			
inch	Part No.	A	Ö	Ē	G	H	la l	£	Clear	Thread	lb/kg
1	MH-16	2.0472 52.0	13/16 20.6	.591 15.0	7/32 5.6	5/32 4.0	1 3/8 34.9	1 3/8 34.9	.040 1.0	1/4-28	.6 .27
1 3/16 1 1/4	MH-19 MH-20R	2.4409 62.0	7/8 22.2	39/55 18.0	7/32 5.6	13/64 5.2	1 1/2 38.1	1 19/32 40.5	.040 1.0	1/4-28	.9 .41
1 1/4	MH-20	2.8346	1	.748	1/4	15/64	1 11/16	1 55/64	.040		1.2
1 7/16	MH-23	72.0	25.4	19.0	6.4	6.0	42.9	47.2	1.0	5/16-24	.54
1 1/2	MH-24	3.1496 80.0	1 3/16 30.2	.866 22.0	5/16 7.9	17/64 6.7	1 15/16 49.2	2 1/16 52.4	.062 1.6	5/16-24	1.5 .68
1 11/16	MH-27	3.3465 85.0	1 3/16 30.2	.866 22.0	5/16 7.9	17/64 6.7	1 15/16 49.2	2 19/64 58.3	.062 1.6	5/16-24	1.6 .73
1 15/16	MH-31	3.5433 90.0	1 9/32 32.5	.906 23.0	3/8 9.5	9/32 7.1	2 1/32 51.6	2 15/32 62.7	.062 1.6	3/8-24	1.8 .82
2	MH-32	3.9370	1 5/16	.984	3/8	5/16	2 3/16	2 23/32	.080	2/0.24	2.3
2 3/16	MH-35	100.0	33.3	25.0	9.5	7.9	55.6	69.1	2.0	3/8-24	1.04
2 7/16	MH-39	4.3303 110.0	1 9/16 39.6	1.060 26.9	7/16 11.1	21/64 8.3	2 9/16 65.0	2 63/64 75.8	.080 2.0	3/8-24	3.14 1.42

Material Handling Bearings **SEAL**

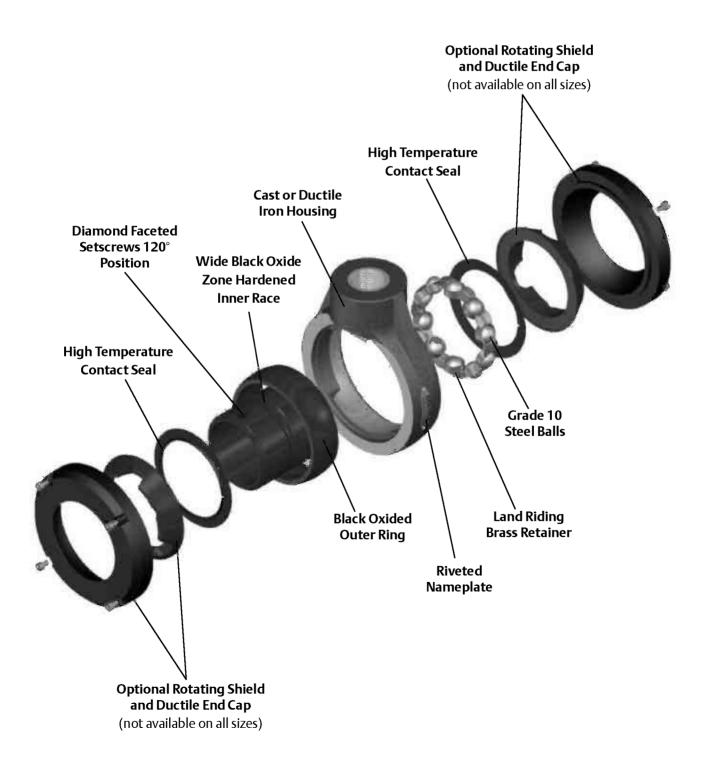

Duty: Standard

Rolling Elements: Ball

Lock: Skwezloc Locking Collar

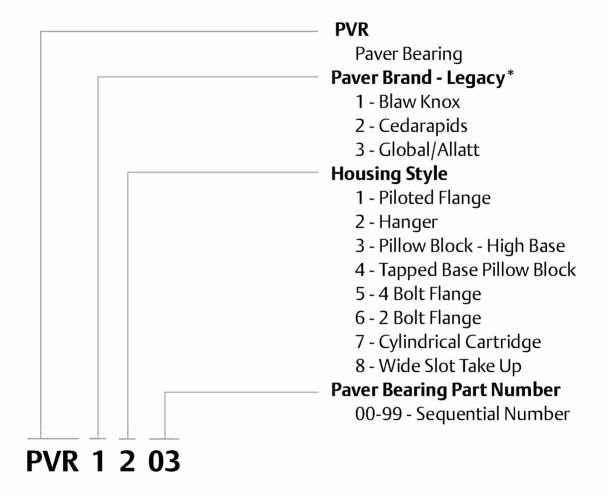
Seal: Contact Seal and Flinger

Temperature: -20° to 200°F



MH-T Series Standard Duty Insert - Skwezloc Locking Collar

Bore				Dime	nsions inch	/ mm					3	
Diameter inch	Part No.	*	D	ш	*		(L)	M	Max. Rad. To Clear	Torx Cap Screw	Unit Wt. Ib/kg	Lock Collar No.
1	MH-16T	2.0472 52.0	7/8 22.2	19/32 15.1	5/32 4.0	1 7/16 36.5	1 15/16 49.2	1 3/8 34.9	.040 1.0	T-25	.8 .36	2-015A Lock Collar
1 3/16 1 1/4	MH-19T MH20RT	2.4409 62.0	15/16 23.8	45/64 17.9	13/64 5.2	1 9/16 39.7	2 3/16 55.6	1 19/32 40.5	.040 1.0	T-25	1.1 .50	2-13B Lock Collar
1 1/4	MH-20T	2.8346 72.0	1 1/16 27.0	3/4 19.1	15/64 6.0	1 3/4 44.5	2 7/16 61.9	1 55/64 47.2	.040 1.0	T-27	1.5 .68	2-17A Lock Collar
1 7/16	MH-23T	2.8346 72.0	1 1/16 27.0	3/4 19.1	15/64 6.0	1 3/4 44.5	2 9/16 65.1	1 55/64 47.2	.040 1.0	T-27	1.5 .68	2-17B Lock Collar
1 1/2	MH-24T	3.1496 80.0	1 1/4 31.8	7/8 22.2	17/64 6.7	2 50.8	2 11/16 68.3	2 1/16 52.4	.062 1.6	T-27	1.8 .82	2-19A Lock Collar
1 11/16	MH-27T	3.3465 85.0	1 1/4 31.8	7/8 22.2	17/64 6.7	2 50.8	2 15/16 74.6	2 19/64 58.3	.062 1.6	T-27	1.9 .86	2-111B Lock Collar
1 15/16	MH-31T	3.5433 90.0	1 11/32 34.1	29/32 23.0	9/32 7.1	2 3/32 53.2	3 3/8 85.7	2 15/32 62.7	.062 1.6	T-30	2.4 1.09	2-115B Lock Collar
2	MH-32T	3.9370 90.0	1 3/8 34.1	63/64 23.0	5/16 7.1	2 1/4 53.2	3 1/2 85.7	2 23/32 62.7	.080 1.6	T-30	2.90 1.09	2-23A Lock Collar
2 3/16	MH-35T	3.9370 100.0	1 3/8 34.9	63/64 25.0	5/16 7.9	2 1/4 57.2	3 5/8 92.1	2 23/32 69.1	.080 2.0	T-30	2.9 1.32	2-23B Lock Collar
2 7/16	MH-39	4.3303 110.0	1 9/16 39.9	1 1/16 26.9	7/16 11.1	2 9/16 65.0	4 1/8 104.8	2 63/64 75.8	.080 2.0	T-45	3.14 1.42	2-27B Lock Collar


Sealmaster Paver Bearings

Paver bearings utilize standard Sealmaster features and improved sealing technology to meet the continuing performance needs of industrial paving equipment. Paver bearings were developed by working closely with OEM's in order to provide reliability and uptime for these severe duty applications.

Paver Bearings Nomenclature

Features and Benefits

Sealmaster Paver Bearings have been developed in conjunction with original equipment manufacturers and features vary by part number. Some common features are listed below.

High Temperature Contact Seal

The double lip high temperature contact seal is the most popular design used, some designs incorporate a high temperature single lip contact seal, or combination of different seals for the front and back side of the bearing.

Nomex* Seal with Flinger

The Nomex seal provides a high temperature, tight labyrinth seal which retains lubrication and acts as a filter to exclude contamination. The external stamping is a flinger which shields the felt from large contaminants and directs them away from the sealing surface.

Ductile Iron End Cap

A tough, wear resistant end cap that helps keep asphalt from forcing its way into the bearing. The ductile-iron, bolt-on end cap mates with the casting providing the first barrier against abrasive asphalt.

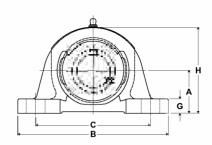
Rotating Shield

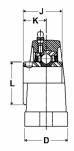
The black oxided shield is fixed to the extended inner ring and precision machined to run with a small clearance with the end cap. The shield resists asphalt erosion and helps protect the inner sealing elements.

Self-Adjusting Washer

A conical-shaped mechanical seal is located directly behind the rotating shield supplying the bearing with a third contamination barrier. The stainless steel washer attaches to the bearing's inner ring.

Paver Bearings


Duty: Varies


Rolling Elements: Ball

> Housing: Pillow Block

> > Lock: Varies

Seal: Varies

PVR x 3xx Pillow Block Assembly

Bore Districted	ell/waytet					Dimendich	i idak i mm					####	TOHOWE
11115	William.	(8)	((BE)		WAY:	0%	0.05	100	40	- 11	60		1088
1.30	#28.45.J	11.2 E 122	5 fré 16	4739 37	5.15 17.2	rit. A tu	546 143	7 (00) 105 T	,2 ,12 ji	25	1905 400	1/2	3.6
1 3/4	PVR-1325	2 1/8 54.0	7 1/2 190.5	5 7/16 138.1	6 1/16 154.0	2 1/8 54.0	11/16 17.5	4 1/4 108.0	1 15/16 49.2	1 3/16 30.2	2 19/64 58.3	1/2	6 5 2.95

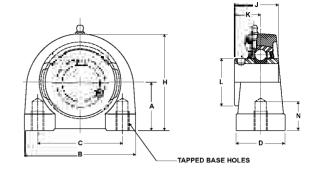
Popular Paver bearing designs are listed, if you require information on another part number or size please consult Bearing Technical Customer Service. The basic dimensions as listed are for guidance only, the image shown may not exactly represent the unit, many units have special machining or special casting designs.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard of fering, please contact Application Engineering (800) 626-2093.

SEALMASTER Paver Bearings



Duty: Varies

Rolling Elements: Ball

Housing: Tapped Base

Lock: Varies **Seal:** Varies

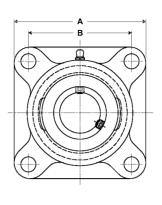
PVR x 4xx Tapped Base Pillow Block Assembly

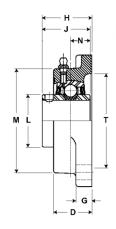
adra .	10000000				Dimi	manifest inch	Firm.			474	Bute.	10000000000000000000000000000000000000
Duero ar usch	sheet No.	((A))	0)	0	Œ.	10	J. W.	136	((E)	Mir. Tapi	URDONS Throad	timi Wi Ibileg
	PAR 415	7/16 7/2	-0.2	707	w.#	2.11/16 11 4	14.0 34,5	1,8517 2017	13.0 74,5	12 12.7	500,00	2.7 91
1 7/16	PVR-1417	1 7/8 47.6	4 1/4 108.0	3 1/4 82.6	1 7/8 47.6	3 3/4 95.3	1 11/16 42.9	1 25.4	1 55/64 47.2	3/4 19.1	1/2-13	4.5 2.04
*)	1936 T 4 -30	2014 22.4	e Serb (nore:	(7) 36(11)	- 945 117.0	3000 300	isti m K	1/im1	(et (3000)	3401	201

Popular Paver bearing designs are listed, if you require information on another part number or size please consult Bearing Technical Customer Service.

The basic dimensions as listed are for guidance only, the image shown may not exactly represent the unit, many units have special machining or special casting designs.

Paver Bearings **SEA**




Duty: Varies

Rolling Elements: Ball

Housing: Four Bolt Flange

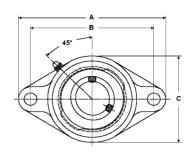
Lock: Varies **Seal:** Varies

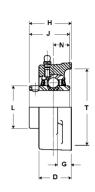
PVR x 5xx Four Bolt Flange Assembly

Bore		-				Dimension	s inch / mm					<u>, </u>	19
Diameter inch	Part No.	A	В	D	G	Ĥ	J.	N	Ê	M	T Core	Bolt Size	Unit Wt. lb/kg
1 1/2	PVR-1504	5 1/8 130.2	4 101.6	1 1/2 38.1	9/16 14.3	2 1/64 51.2	1 15/16 49.2	3/4 19.1	2 1/16 52.4	4 5/64 103.6	3 1/2 88.9	1/2	5.5 2.49
1 9/16	PVR-1518	5 1/8 130.2	4 101.6	1 1/2 38.1	9/16 14.3	2 1/64 51.2	1 15/16 49.2	3/4 19.1	2 1/16 52.4	4 5/64 103.6	3 1/2 88.9	1/2	5.5 2.49
1 3/4	PVR-3546	5 3/8 136.5	4 1/8 104.8	1 9/16 39.7	9/16 14.3	2 3/64 52.0	1 15/16 49.2	3/4 19.1	2 19/64 58.3	4 11/32 110.3	3 7/8 98.4	9/16	5.7 2.59
1 3/4	PVR-1501	5 3/8 136.5	4 1/8 104.8	1 9/16 39.7	9/16 14.3	2 3/64 52.0	1 15/16 49.2	3/4 19.1	2 19/64 58.3	4 21/64 109.9	3 7/8 98.4	9/16	5.7 2.59
1 7/8	PVR-1509	5 5/8 142.9	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 5/32 54.8	2 1/32 51.6	3/4 19.1	2 15/32 62.7	4 33/64 114.7	4 101.6	9/16	6.4 2.90
2	PVR-1507	6 3/8 161.9	5 1/8 130.2	1 3/4 44.5	13/16 20.6	2 5/16 58.7	2 3/16 55.6	7/8 22.2	2 23/32 69.1	5 3/16 131.8	4 1/4 108.0	5/8	10.5 4.76
2 3/16	PVR-2533	5 3/4 146.1	4 7/16 112.7	1 3/4 44.5	13/16 20.6	2 3/8 60.3	2 3/16 55.6	7/8 22.2	3 5/8 92.1	5 3/16 131.8	4 1/4 108.0	9/16	11.1 5.03
2 3/16	PVR-2538	5 3/4 146.1	4 39/89 112.7	1 49/64 44.8	25/32 19.8	2 31/32 75.4	2 13/16 71.4	1 3/32 27.8	3 76.2	5 1/4 133.4	4 1/4 108.0	9/16	11.1 5.03
2 1/2	PVR-1551	7 3/8 187.3	5 7/8 149.2	2 5/16 58.7	11/16 17.5	3 76.1	2 3/4 69.9	1 1/16 27.0	3 7/16 87.3	6 1/8 155.6	5 1/8 130.2	5/8	16.4 7.44
2 11/16	PVR-1522	7 3/4 196.9	6 152.4	2 3/8 60.3	1 25.4	3 3/16 81.0	3 1/16 77.8	1 5/16 33.3	3 41/64 92.5	6 1/2 165.1	5 7/8 149.2	3/4	20.6 9.34

Popular Paver bearing designs are listed, if you require information on another part number or size please consult Bearing Technical Customer Service.

The basic dimensions as listed are for guidance only, the image shown may not exactly represent the unit, many units have special machining or special casting designs.


SEALMASTER® Paver Bearings



Duty: VariesRolling Elements: Ball

Housing: Two Bolt Flange

Lock: Varies **Seal:** Varies

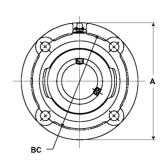
PVR x 6xx Two Bolt Flange Assembly

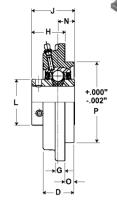
Bore						Dimension	s inch / mm						
Diameter inch	Part No.	A	В	O	O	6	Ĥ	J	N	Ĺ	T Core	Bolt Siz≘	Unit Wt. Ib/kg
1 7/16	PVR-3647	6 1/8 155.6	5 1/8 130.2	3 3/4 95.3	1 11/32 34.1	9/16 14.3	1 3/4 44.5	1 11/16 42.9	11/16 17.5	1 27/32 46.8	3 5/16 84.1	1/2	3.2 1.45
1 9/16	PVR-1605	6 3/4 171.5	5 21/32 143.7	4 1/8 104.8	1 1/2 38.1	35/64 13.9	2 1/64 51.2	1 15/16 49.2	3/4 19.1	2 1/16 52.4	3 1/2 88.9	1/2	4.5 2.04
1 11/16	PVR-3648	7 1/16 179.4	5 27/32 148.4	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 3/64 52.0	1 15/16 49.2	3/4 19.1	2 5/16 58.7	3 7/8 98.4	9/16	5.0 2.27
1 3/4	PVR-1624	7 1/16 179.4	5 65/77 148.4	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 3/64 52.0	1 15/16 49.2	3/4 19.1	2 5/16 58.7	3 7/8 98.4	9/16	5.0 2.27
1 3/4	PVR-1626	7 7/16 188.9	6 16/85 157.2	4 9/16 115.9	1 9/16 39.7	9/16 14.3	2 5/32 54.8	2 1/32 51.6	3/4 19.1	2 15/32 62.7	4 101.6	9/16	5.6 2.54
1 7/8	PVR-1615	7 7/16 188.9	6 16/85 157.2	4 9/16 115.9	1 9/16 39.7	9/16 14.3	2 5/32 54.8	2 1/32 51.6	3/4 19.1	2 15/32 62.7	4 101.6	9/16	5.4 2.45
1 15/16	PVR-1608	7 7/16 188.9	6 16/85 157.2	4 9/16 115.9	1 9/16 39.7	9/16 14.3	2 5/32 54.8	2 1/32 51.6	3/4 19.1	2 15/32 62.7	4 101.6	9/16	5.4 2.45
2	PVR-1612	8 1/2 215.9	7 1/4 184.2	5 1/4 133.4	1 3/4 44.5	13/16 20.6	2 5/16 58.7	2 3/16 55.6	7/8 22.2	2 23/32 69.1	4 1/4 108.0	5/8	8.4 3.81

Popular Paver bearing designs are listed, if you require information on another part number or size please consult Bearing Technical Customer Service.

The basic dimensions as listed are for guidance only, the image shown may not exactly represent the unit, many units have special machining or special casting designs.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of ferring, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$





Duty: Varies **Rolling Elements:** Ball

> Housing: Flange Cartridge

> > Lock: Varies Seal: Varies

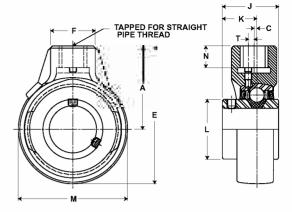
PVR x 1xx Piloted Flange Assembly

Bore Diameter	Mr. Section					Bolt	- Commence	Unit Wt.						
inch	Part No.	Ä	ВС	D	6	H	3	L	N	0	P	Size	End Cap	lb/kg
1 15/16	PVR-2137	6 1/8 155.6	5 1/8 130.2	1 25/64 35.3	61/64 24.2	2 50.8	2 1/32 51.6	2 15/32 62.7	23/32 18.3	7/16 11.1	4 1/4 108.0	7/16	No	7.1 3.22
2	PVR-1127	6 3/8 161.9	5 3/8 136.5	1 19/32 40.5	1 25.4	2 5/32 54.8	2 3/16 55.6	2 23/32 69.1	27/32 21.4	19/32 15.1	4 1/2 114.3	7/16	No	7.5 3.40
2 3/16	PVR-1102	7 3/4 196.9	6 1/2 165.1	1 43/64 42.5	9/16 14.3	2 3/8 60.3	2 9/16 65.1	2 63/64 75.8	1 25.4	5/16 7.9	5 1/4 133.4	1/2	Yes	10.5 4.76
2 3/16	PVR-1106	7 3/4 196.9	6 1/2 165.1	2 50.8	9/16 14.3	2 3/4 69.9	2 9/16 65.1	2 63/64 75.8	1 5/8 41.3	5/16 7.9	5 1/4 133.4	1/2	No	10.5 4.76
2 3/16	PVR-1113	7 3/4 196.9	6 1/2 165.1	2 50.8	9/16 14.3	2 3/8 60.3	2 9/16 65.1	2 63/64 75.8	1 25.4	5/16 7.9	5 1/4 133.4	1/2	No	10.5 4.76
2 3/16	PVR-1121	7 3/4 196.9	6 1/2 165.1	1 43/64 42.5	9/16 14.3	2 3/8 60.3	2 9/16 65.1	2 63/64 75.8	1 25.4	5/16 7.9	5 1/4 133.4	1/2	Yes	10.5 4.76
2 3/16	PVR-1128	7 3/4 196.9	6 1/2 165.1	2 50.8	9/16 14.3	2 3/8 60.3	2 9/16 65.1	2 63/64 75.8	1 25.4	5/16 7.9	5 1/4 133.4	1/2	No	10.5 4.76
2 3/16	PVR-3151	7 1/8 181.0	6 152.4	1 25/32 45.2	59/64 23.4	2 17/32 64.3	2 9/16 65.1	2 63/64 75.8	31/32 24.6	27/32 21.4	5 127.0	1/2	Yes	10.5 4.76

Popular Paver bearing designs are listed, if you require information on another part number or size please consult Bearing Technical Customer Service.

The basic dimensions as listed are for guidance only, the image shown may not exactly represent the unit, many units have special machining or special casting designs.

SEALMASTER® Paver Bearings



Duty: Varies

Rolling Elements: Ball

Housing: Hanger Bearing

Lock: Varies **Seal:** Varies

PVR x 2xx Hanger Bearing Assembly

Bo.T					Thinks.	eline: I man				2000000000	10 m	NAME OF TAXABLE PARTY.
timres.	Verrieu	969	(i)	#	:#	47	10	1	4620	Here lags NPS.M	Length	timir#Vii (talog
2 %	PURING	3.1H 52.4	3.96 4.5	9.7716 125	7.9 47.9	5 (30) 5 ()	1 552 32.5	£1532 627	11.1	20	1310 211	4.7 204
2 7/16	PVR-3243	4 101.6	11/32 8 7	6 13/16 173.0	2 5/16 58.7	2 9/16 65.1	1 9/16 39.7	2 63/64 75.8	5 5/8 142.9	1 1/4-11 1/2	1 1/8 28.6	9,2 4.17
v sin,	548° off 948° 270	110 00 a	3500 13	2.65 603	7,76f 6/E-C	TAT	1 4:40 197	90'an 26.0	7,63	97145	110 111	Hal
2 11/16	PVR-1219	4 5/8 117.5	3/8 9 5	7 7/8 200.0	2 3/4 69.9	3 1/16 77.8	1 3/4 44.5	3 41/64 92.5	6 1/2 165.1	1 1/2-11 1/2	1 1/4 31.8	14.6 6.62

Popular Paver bearing designs are listed, if you require information on another part number or size please consult Bearing Technical Customer Service.

The basic dimensions as listed are for guidance only, the image shown may not exactly represent the unit, many units have special machining or special casting designs.

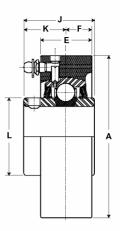
*Use Straight Pipe Thread.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of ferring, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Paver Bearings



Duty: Varies

Rolling Elements: Ball

Housing: Cylindrical Cartridge

Lock: Varies **Seal:** Varies

PVR x 7xx Cylindrical Cartridge Assembly

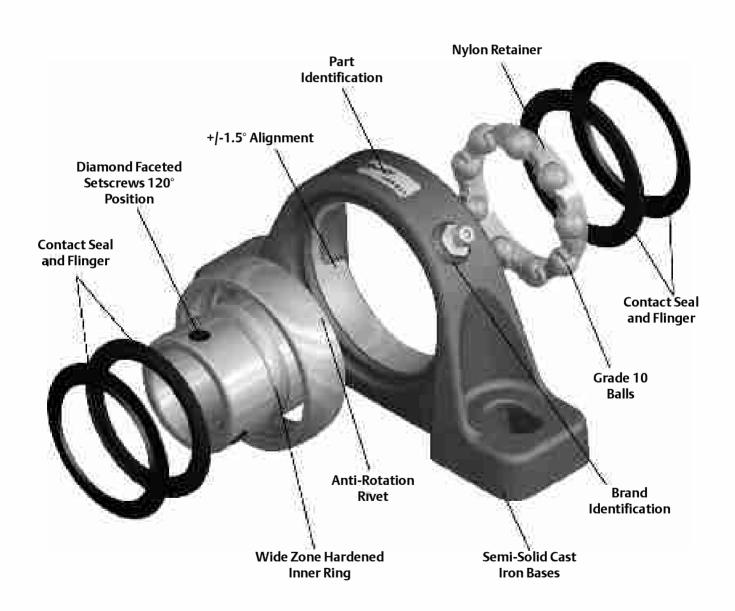
Born Clarector	200777437			15immilli	ar teach trees			A STORMAN
T THE	Part Ho	****	100	B)	10	10.	(00)	Jul Will 1985
:19	-636 (236)	4355 16.15	127 T	500	1 (Matri. Visi (1)	proety Satin	T. Jetti Sat 16	12 21

Popular Paver bearing designs are listed, if you require information on another part number or size please consult Bearing Technical Customer Service.

The basic dimensions as listed are for guidance only, the image shown may not exactly represent the unit, many units have special machining or special casting designs.

Original Equipment Manufacture Substitution Guide

Paver Manufacturer*	Model	Manufacturer Part No.	Sealmaster Part No.	Bearing Description	Location on Paver
Global/Allatt/Champion	Various	13031950	PVR-3840	Take up	Conveyor
Global/Allatt/Champion	Various	13031943	PVR-3841	Take up	Conveyor
Global/Allatt/Champion	Various	13031919	PVR-3142	Piloted Flange	Auger Inner
Global/Allatt/Champion	Various	13031091	PVR-3243	Hanger	Auger Outer
Global/Allatt/Champion	Various	13117833	PVR-3144	Piloted Flange	Auger Inner
Global/Allatt/Champion	Various	13054846	PVR-3245	Hanger	Auger Outer
Global/Allatt/Champion	575T	13116702	PVR-3546	4 Bolt Flange	Conveyor
Global/Allatt/Champion	575T	13131974	PVR-3647	2 Bolt Flange	Auger
Global/Allatt/Champion	575T	13038591	PVR-3648	2 Bolt Flange	Auger
Global/Allatt/Champion	Various	13031927	PVR-3149	Piloted Flange	Auger Inner
Global/Allatt/Champion	Various	13031091	PVR-3250	Hanger	Auger Outer
Global/Allatt/Champion	Various	13031919, 13117833	PVR-3151	Piloted Flange	Auger Inner
Blaw Knox	PF-400A	116-112	PVR-1711	AR Style	Auger Box
Blaw Knox	Various	116-099	PVR-1710	AR Style	Auger Box
Blaw Knox	PF-150/150H	116-118	PVR-1626	2 Bolt Flange	Auger Outer
Blaw Knox	PF-172/172B	116-119,116-026	PVR-1314	Pillow Block	Screed
Blaw Knox	Various	116-011,116-083	PVR-1325	Pillow Block	Screed
Blaw Knox	PF-115	116-036	PVR-1624	2 Bolt Flange	Auger/Conveyor Drive
Blaw Knox	PF-180/180H/180X	116-051	PVR-1612	2 Bolt Flange	Auger/Conveyor Drive
Blaw Knox	Various	116-093	PVR-1723	SC Cartridge	Auger Box
Blaw Knox	Various	116-092	PVR-1522	4 Bolt Flange	Chain Box
Blaw Knox	PF-115, PF-120H, PF-500	116-015, 116-034, 116-103	PVR-1504	4 Bolt Flange	Conveyor/Screed
Blaw Knox	PF-161, PF-180H	116-131	PVR-1113	Piloted Flange	Conveyor Drive Screed
Blaw Knox	PF-161, PF-410, PF-3172, PF-3180, PF-3200, PF-4410, PF-5500, PF-5510	116-139	PVR-1106	Piloted Flange	Conveyor Outer Rear
Blaw Knox	PF-161, PF-172/172B, PF-180/180X, PF-510,PF-200/200B, PF-410, PF- 500, PF-3200, PF-4410,PF-3172, PF- 3180, PF-5500, PF-5510	116-114	PVR-1229	Hanger	Auger Outer
Blaw Knox	PF-161, PF-172/172B, PF-180/180X, PF-200/200B, PF-410, PF-500, PF- 510, PF-3200, PF-4410, PF-3172, PF- 3180, PF-5500, PF-5510	116-123, 116-127, 116-129, 116-141	PVR-1203	Hanger	Auger Outer
Blaw Knox	PF-200/200B, PF-172/172B, PF-161, PF-410, PF-500, PF-510, PF-3172, PF-3180, PF-4410, PF-5500, PF-5510	116-113, 116-128, 116-130, 116-143	PVR-1128	Piloted Flange	Auger Inner/Conveyor Rear Inner
Blaw Knox	PF-200/200B, PF-172/172B, PF-161, PF-410, PF-500, PF-510, PF-3172, PF-3180, PF-4410, PF-5500, PF-5510	116-142	PVR-1102	Piloted Flange	Auger Inner/Conveyor Rear Inner


Original Equipment Manufacture Substitution Guide continued

Paver Manufacturer*	Model	Manufacturer Part No.	Sealmaster Part No.	Bearing Description	Location on Paver
Blaw Knox	PF-3200, PF-3180, PF-3172	116-144	PVR-1121	Piloted Flange	Auger Inner-Power Flight Auger
Blaw Knox	PF-115,PF-120H, PF-161, PF- 172/172B, PF-180/180X, PF- 200/200B, PF-410, PF-510, PF-3180, PF-3200, PF-4410, PF-5500, PF-5510	116-035, 116-070, 116-071, 116-072, 116-133, 116-137, 116-138	PVR-1501	4 Bolt Flange	Conveyor
Blaw Knox	PF-150/150H	116-117	PVR-1720	SC Cartridge	Auger Inner/Conveyor Drive
Blaw Knox	Various	115-328,116-094	PVR-1219	Hanger	Auger Outer
Blaw Knox	Various	116-068,116-109	PVR-1518	4 Bolt Flange	Auger
Blaw Knox	PF-115	116-063	PVR-1509	4 Bolt Flange	Conveyor
Blaw Knox	PF-180/180H	116-032,116-041	PVR-1507	4 Bolt Flange	Conveyor
Blaw Knox	PF-115, PF120H, PF-161, PF-180/180X	116-033	PVR-1127	Piloted Flange	Conveyor
Blaw Knox	PF-180H, PF-120	116-031,116-090	PVR-1608	2 Bolt Flange	Auger/Conveyor Drive
Blaw Knox	Various	116-069	PVR-1605	2 Bolt Flange	Auger
Blaw Knox	PF-115, PF-400A	116-064,116-122	PVR-1615	2 Bolt Flange	Auger
Blaw Knox	Various	116-145	PVR-1416	Tapped Base	Screed
Blaw Knox	PF-150/150H	116-067	PVR-1417	Tapped Base	Conveyor Front
Blaw Knox	Various	116-098	PVR-1450	Tapped Base	Conveyor
Blaw Knox	Various	116-091	PVR-1551	4 Bolt Flange	Conveyor
Blaw Knox	Road Wideners	116-095	MSF-28	4 Bolt Flange	Conveyor
Blaw Knox	Road Wideners	116-084	MSF-24	4 Bolt Flange	Conveyor
Blaw Knox	Most	115-021	ER-23	ER Style	Push Roller
Cedarapids	Various	45134-010-37	PVR-2431	Tapped Base	Auger Inner
Cedarapids	Various	45134-010-41	PVR-2130	Piloted Flange	Auger Inner
Cedarapids	Various	45134-010-39	PVR-2432	Tapped Base	Auger Remix
Cedarapids	Various	45134-010-47	PVR-2533	4 Bolt Flange	Conveyor
Cedarapids	CR-351	45134-010-40	PVR-2534	4 Bolt Flange	Conveyor
Cedarapids	CR-351, CR-451, CR-461, CR-551, CR-561	F0115-FGA	PVR-2535	4 Bolt Flange	Conveyor
Cedarapids	Various	45134-010-37	PVR-2436	Tapped Base	Auger Outer
Cedarapids	Various	45134-010-41	PVR-2137	Piloted Flange	Auger Inner
Cedarapids	Various	45134-010-47, F0203FGA	PVR-2538	4 Bolt Flange	Conveyor
Cedarapids	CR-351, CR-451, CR461, CR-551, CR-561	45134-010-40, F0115-FGA	PVR-2539	4 Bolt Flange	Conveyor

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation for comparison purposes only, are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Blaw Knox: Blaw Knox Construction Corporation, Cedarapids: Cedarapids, Inc., and Global: Vogele America, Inc. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

Browning Mounted Ball Bearings

Browning mounted ball bearings feature multiple housing styles, materials and configurations, an extended inner race insert bearing with ball riding nylon retainer. The insert features a rivet to prevent outer ring rotation and is available with setscrew, eccentric, or BOA concentric locking collar. The contact seal, with black oxide treated flinger provides a good balance between contaminant resistance, grease loss and friction. Depending on your preference, these bearings are available in inch and metric bore with a wide variety of cast iron, stamped steel or rubber mount housings or specific industry solutions as illustrated on the pages to follow.

Browning Mounted Ball Nomenclature Housing Units

Housing Styles* (see below) **Locking Option**

- **B** BOA Concentric
- F Fccentric
- S Setscrew

Bearing Duty

Omit for Metric

- 1 Light or Intermediate Duty / 100 Series
- 2 Standard Duty / 200 Series
- 3 Medium Duty / 300 Series

Bore Size

Inch - ##/16 (ex. 20/16 = 1 1/4") S for 1 1/4" and 2" Reduced

Metric - ex. 25 MM

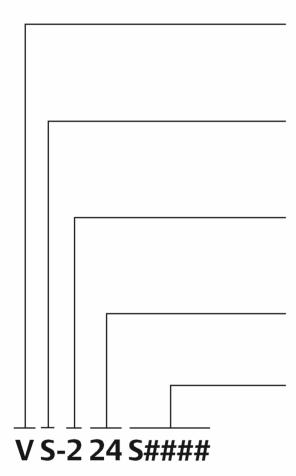
Material Option

M - Malleable 2 Bolt and 4 Bolt 100 Series only

Common Option

AH - Air Handling

CTY - Plugged Lubed Hole


CSK - 90° Lube Fitting

S-### - Special Design

Housing	Housing Style	Material
RUBR	Grommet	Rubber
SSF2	Two Bolt Flange	Stamped Sm. 1
SSF3	Three Bolt Flange	Stamped 1111
SSF3T	Three Bolt Flange	Stampe 31: 1
SSF4	Four Bolt Flange	Starr: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SSP	Pillow Block	Carried Need
SSRP	Pillow Block	Parental Sold States
VF2	Two Bolt Flange	Cestion
VF3	Three Bolt Flange	SCATION
VF4	Four Bolt Flange	194.1mm
VFB	Flange Bracket	Caracillosic
VFC	Piloted Flange Ca 🚻 🕒	- 250 (from
VP	Pillow Block - High han	Caschine
VPD	Pillow Block - Alterna 🗀 💶 👚	-2 stimu
VPL	Pillow Block - Low Base	Cection
VTB	Tapped Base Pillow Block	California
VTW	Wide Slot Take Up	Casi Iron

Browning Mounted Ball Bearings

Browning Mounted Ball Nomenclature Inserts

Prefix

- V Spherical O.D. Bearing Insert
- L Spherical O.D. Bearing Insert No Relube
- LR Spherical O.D. Bearing Insert No Relube
- LRS Spherical O.D. Bearing Insert No Relube
- SL Cylindrical O.D. Bearing Insert No Relube

Locking Option

- **B** BOA Concentric
- F Fccentric
- S Setscrew

Insert Duty

Omit for Metric

- 1 Light or Intermediate Duty / 100 Series
- 2 Standard Duty / 200 Series
- 3 Medium Duty / 300 Series

Bore Size


Inch - ##/16 (ex. 20/16 = 1 1/4") S for 1 1/4" and 2" Reduced

Metric - ex. 25 MM

Options

SK### - Special Design

Browning Mounted Ball Nomenclature Take up Frames

Adjustment Length

1 - 1 1/2"

3 - 3"

6 - 6"

9 - 9"

12 - 12"

18 - 18"

Frame Design

SF - Center Pull Take Up

TFT - Top Mount Protected Screw Take Up

G-142

Frame Series

Bore Size	Frame Size
3/4" to 1"	16
1 1/8" to 1 7/16"	23
1 1/2" to 2S"	31
2" to 2 3/16"	39

Features and Benefits

Multiple Methods Locking

Setscrew Locking

120° spaced, balanced three point contact minimizes inner ring distortion vibration, reduces noise, and improves reliability. Precision manufactured diamond faceted setscrews contribute to improved clamping and resistance to back out.

BOA Concentric

BOA is a concentric locking collar clamp design that results in near-perfect concentricity of the shaft to the bearing bore and maintains near perfect ball path roundness, while reducing fretting corrosion. This design eliminates the shaft damage of setscrew locking, and minimizes bearing induced vibration for smoother quieter operation. The collar has a TORX head cap screw that outlasts stripping 12 times longer than hex head cap screws.

Eccentric Locking

Eccentric locking design incorporates a precision eccentric collar to mate with the inner ring extension for shaft hold.

Note: The eccentric is designed for single direction of rotation and should not be used when two direction rotation is present.

Sealing

Positive contact molded nitrile rubber contact seal with an auxiliary flinger element standard. The contact seal allows grease purge and helps keep contamination out of the bearing while the flinger provides a rotating shield that helps direct contamination away from the seal.

Anti-Rotation Rivet

An anti-rotation rivet prevents outer ring creep, or rotation, within the housing.

Features and Benefits continued

Semi-Solid Cast Iron Base

The rugged base design provides an excellent mounting foundation. This is integral to prevent sheet metal "buckling"

Zone Hardening Inner Race

Browning incorporates a unique heat treat process that hardens the inner race only where it is needed...under the ball path. The zone hardened inner race results in improved lock reliability as a result of less distortion at setscrew location and improved thread conformity resulting in improved clamping and resistance to setscrew back-out.

Identification Marking

Browning cast iron housing bearing units have a sticker with part description and brand washer under the lubrication fitting. This allows for easy verification of the part number during installation and for replacement.

Air Handling "AH" Option

The Browning Air Handling mounted ball bearing has the same features as the standard Browning mounted ball bearing expect for the following air handling features.

AH Housing Fit

Air Handling "AH" ball bearings are manufactured with a controlled housing fit that allows the bearing to properly self-align when mounted on lightweight frames commonly found on air handling equipment.

Noise Test

All Air Handling "AH" bearings must pass a two stage noise testing verification for quiet operation to meet the noise level standards of the air handling industry.

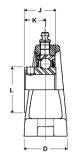
Popular shaft sizes and housing configurations in the normal and medium duty series are available "off-the-shelf" these air handling features (designated by the AH suffix). These products are offered in both setscrew and BOA concentric locking.

Browning **Mounted Ball Bearings**

Duty: Intermediate

Rolling Elements: Ball

> Housing: Cast Iron Pillow Block


Self Alignment: +/- 1.5 Degrees

> Lock: Setscrew

Seal: Contact

Temperature: -20° to 200°F

VPS 100 Series Intermediate Duty Pillow Blocks - Setscrew Locking

Bore Diameter inch	Part No.	Bearing Insert No.	Examp Dynamic Rating IbiN	Dimensions inch / mm									2000			
				A		min.	imax.	۵	G	H	*	ĸ	7	Bolt Size	Unit Wt. lb/kg	
1/2	VPS-108	VS-108	2108 9377	1 3/16	4 7/8 123.8	3 1/8 79.4	4 1/8 104.8	1 7/32 31.0	15/32 11.9	2 7/32 56.4	15/16 23.8	5/8 15.9	31/32 24.6	3/8	.80	
5/8	VPS-110	VS-110		30.2											.36	
3/4	VPS-112	VS-1112	2611 11614	1 5/16 33.3	5 127.0	3 15/32 88.1	4 9/32 108.7	1 11/32 34.1	17/32 13.5	2 17/32 64.3	1 1/16 27.0	23/32 18.3	1 3/16 30.2	3/8	1.4 .64	
7/8	VPS-114	VS-114														
15/16	VPS-115	VS-115	2801 12459	1 7/16 36.5	5 1/2 139.7	3 11/16 93.7	4 9/16 115.9	1 13/32 35.7	19/32 15.1	2 13/16 71.4	1 7/64 28.2	49/64 19.4	1 3/8 34.9	3/8	1.6 .73	
1	VPS-116	VS-116														
1 1/8	VPS-118	VS-118														
1 3/16	VPS-119	VS-119	4381 19487	1 11/16 42.9	6 3/16 157.2	4 3/16 106.4	5 1/16 128.6	1 3/4 44.5	21/32 16.7	3 9/32 83.3	1 5/32 29.4	25/32 19.8	1 19/32 40.5	1/2	2.6 1.18	
1 1/4	VPS-120S	VS-120S														
1 1/4	VPS-120	VS-120														
1 3/8	VPS-122	VS-122	5782 25718	1 7/8 47.6	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	23/32 18.3	3 11/16 93.7	1 9/32 32.5	55/64 21.8	1 55/64 47.2	1/2	3.5 1.59	
1 7/16	VPS-123	VS-123														
1 1/2	VPS-124	VS-124	7340 32648	2 50.8	7 1/8 181.0	4 7/8 123.8	5 7/8 149.2	1 15/16 49.2	13/16 20.6	4 101.6	1 27/64 36.1	15/16 23.8	2 1/16 52.4	1/2	4.4 2.00	
1 11/16	VPS-127	VS-127	7901	2 1/8	7 3/8	5 1/4	6 1/16	2	3/4	4 1/4	1 7/16	61/64	2 19/64	4/0	5.3	
1 3/4	VPS-128	VS-128	35144	54.0	187.3	133.4	154.0	50.8	19.1	108.0	36.5	24.2	58.3	1/2	2.40	
1 15/16	VPS-131	VS-131	7889 35090	7889	2 1/4	8	5 7/8	6 1/2	2 3/16	3/4	4 9/16	1 35/64	1 3/64	2 15/32	5/8	5.8
2	VPS-132S	VS-132S		57.2	203.2	149.2	165.1	55.6	19.1	115.9	39.3	26.6	62.7	3/0	147.3	
2	VPS-132	VS-132	9752 43377	2 1/2	8 13/16	6 9/16	7 5/16	2 5/16	7/8	4 31/32	1 21/32	17/64	2 23/32	5/8	7.7	
2 3/16	VPS-135	VS-135		43377	63.5	223.8	166.7	185.7	58.7	22.2	126.2	42.1	28.2	69.1	310	3.49

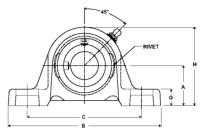
Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Duty: Intermediate

Rolling Elements: Ball


> Housing: Cast Iron Pillow Block


Self Alignment: +/- 1.5 Degrees

> Lock: Eccentric

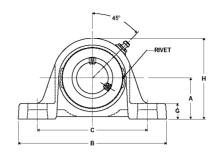
Seal: Contact

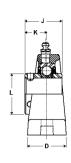
-20° to 200°F Temperature:

VPE 100 Series Intermediate Duty Pillow Blocks - Eccentric Locking

Bore Diameter		Bearing	Series.				D	imensions	s inch / m	m				Bolt	ียก≀Wt
inch	Parriell.	Insert No.	1	A	В	min.	max.	D	G	H	3	K	1	Size	lb/kg
1/2	VPE-108	VE-108	2108	1 3/16	4 7/8	3 1/8	4 1/8	1 7/32	15/32	27/32	1 3/16	7/8	1 3/16	0.40	1.0
5/8	VPE-110	VE-110	9377	30.2	123.8	79.4	104.8	31.0	11.9	56.4	30.2	22.2	30.2	3/8	.45
3/4	VPE-112	VE-112	2611 11614	1 5/16 33.3	5 127.0	3 15/32 88.1	4 9/32 108.7	1 11/32 34.1	17/32 13.5	2 17/32 64.3	1 17/64 32.1	59/64 23.4	1 5/16 33.3	3/8	1.5 .68
7/8	VPE-114	VE-114													
15/16	VPE-115	VE-115	2801 12459	1 7/16 36.5	5 1/2 139.7	3 11/16 93.7	4 9/16 115.9	1 13/32 35.7	19/32 15.1	2 13/16 71.4	1 17/64 32.1	59/64 23.4	1 1/2 38.1	3/8	1.8 .82
1	VPE-116	VE-116													
1 1/8	VPE-118	VE-118													
1 3/16	VPE-119	VE-119	4381 19487	1 11/16 42.9	6 3/16 157.2	4 3/16 106.4	5 1/16 128.6	1 3/4 44.5	21/32 16.7	3 9/32 83.3	1 27/64 36.1	1 3/64 26.6	1 3/4 44.5	1/2	2.9 1.32
1 1/4	VPE-120S	VE-120S													
1 1/4	VPE-120	VE-120													
1 3/8	VPE-122	VE-122	5782 25718	1 7/8 47.6	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	23/32 18.3	3 11/16 93.7	1 37/64 40.1	1 5/32 29.4	2 3/16 55.6	1/2	3.8 1.72
1 7/16	VPE-123	VE-123													
1 1/2	VPE-124	VE-124	7340 32648	2 50.8	7 1/8 181.0	4 7/8 123.8	5 7/8 149.2	1 15/16 49.2	13/16 20.6	4 101.6	1 49/64 44.8	1 9/32 32.5	2 3/8 60.3	1/2	5.0 2.27
1 11/16	VPE-127	VE-127	7901	2 1/8	7 3/8	5 1/4	6 1/16	2	3/4	4 1/4	1 49/64	1 9/32	2 1/2	1/2	5.7
1 3/4	VPE-128	VE-128	35144	54.0	187.3	133.4	154.0	50.8	19.1	108.0	44.8	32.5	63.5	1/2	2.59
1 15/16	VPE-131	VE-131	7889	2 1/4	8	5 7/8	6 1/2	2 3/16	3/4	4 9/16	1 25/32	1 9/32	2 3/4	5/8	6.3
2	VPE-132S	VE-132S	35090	57.2	203.2	149.2	165.1	55.6	19.1	115.9	45.2	32.5	69.9	3/6	2.86
2	VPE-132	VE-132	9752	2 1/2	8 13/16	6 9/16	7 5/16	2 5/16	7/8	4 31/32	1 63/64	1 7/16	3	5/8	8.1
2 3/16	VPE-135	VE-135	43377	63.5	223.8	166.7	185.7	58.7	22.2	126.2	50.4	36.5	76.2	3/0	3.67

Rolling Elements: Ball


Housing: Cast Iron Pillow Block


Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact and Flinger

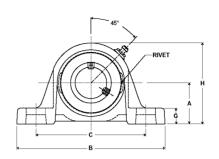
Temperature: -20° to 200°F

VPS 200 Series Standard Duty Pillow Blocks - Setscrew Locking - Inch

Bore Diameter		Bearing	Basic Dynamic					imensions	s inch / m	ım				Bolt≾	Unit Wt
inch	Part No.	Insert No.	Rating Ib/N	A	В	min.	max.	D	G	H	Ü	K	ũ	Size	lb/kg
1/2 5/8	VPS-208 VPS-210	VS-208 VS-210	2108 9377	1 3/16 30.2	4 7/8 123.8	3 1/8 79.4	4 1/8 104.8	1 7/32 31.0	15/32 11.9	2 7/32 56.4	1 1/32 26.2	5/8 15.9	31/32 24.6	3/8	.9 .41
3/4	VPS-212	VS-212	2611 11614	1 5/16 33.3	5 127.0	3 3/8 85.7	4 3/16 106.4	1 11/32 34.1	17/32 13.5	2 17/32 64.3	1 7/32 31.0	23/32 18.3	1 3/16 30.2	3/8	1.4 .64
7/8 15/16 1	VPS-214 VPS-215 VPS-216	VS-214 VS-215 VS-216	2801 12459	1 7/16 36.5	5 1/2 139.7	3 11/16 93.7	4 9/16 115.9	1 13/32 35.7	19/32 15.1	2 13/16 71.4	1 3/8 34.9	13/16 20.6	1 3/8 34.9	3/8	1.5 .68
1 1/8 1 3/16 1 1/4	VPS-218 VPS-219 VPS-220S	VS-218 VS-219 VS-220S	4381 19487	1 11/16 42.9	6 3/16 157.2	4 3/16 105.6	5 1/16 128.6	1 3/4 44.5	21/32 16.7	3 9/32 83.3	1 1/2 38.1	7/8 22.2	1 19/32 40.5	1/2	2.5 1.13
1 1/4 1 3/8 1 7/16	VPS-220 VPS-222 VPS-223	VS-220 VS-222 VS-223	5782 25718	1 7/8 47.6	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	23/32 18.3	3 11/16 93.7	1 11/16 42.9	1 25.4	1 55/64 47.2	1/2	3.5 1.59
1 1/2	VPS-224	VS-224	7340 32648	2 50.8	7 1/8 181.0	4 7/8 123.8	5 7/8 149.2	1 15/16 49.2	13/16 20.6	4 101.6	1 15/16 49.2	1 3/16 30.2	2 1/16 52.4	1/2	4.7 2.13
1 5/8 1 11/16 1 3/4	VPS-226 VPS-227 VPS-228	VS-226 VS-227 VS-228	7901 35144	2 1/8 54.0	7 3/8 187.3	5 1/4 133.4	6 1/16 154.0	2 50.8	3/4 19.1	4 1/4 108.0	1 15/16 49.2	1 3/16 30.2	2 19/64 58.3	1/2	5.5 2.49
1 15/16 2	VPS-231 VPS-232S	VS-231 VS-232S	7889 35090	2 1/4 57.2	8 203.2	5 7/8 149.2	6 1/2 165.1	2 3/16 55.6	3/4 19.1	4 9/16 115.9	2 1/32 51.6	1 9/32 32.5	2 15/32 62.7	5/8	6.0 3.5
2 2 3/16	VPS-232 VPS-235	VS-232 VS-235	9752 43377	2 1/2 63.5	8 13/16 223.8	6 9/16 166.7	7 5/16 185.7	2 5/16 58.7	7/8 22.2	4 31/32 126.2	2 3/16 55.6	1 5/16 33.3	2 23/32 69.1	5/8	7.8 3.54
2 1/4 2 7/16	VPS-236 VPS-239	VS-236 VS-239	11789 52437	2 3/4 69.9	9 1/2 241.3	6 7/8 174.6	7 15/16 201.6	2 3/8 60.3	7/8 22.2	5 9/16 141.3	2 9/16 65.1	1 9/16 39.7	2 63/64 75.8	5/8	10.1 3.5
2 15/16	VPS-247	VS-247	14839 66004	3 5/16 84.1	12 304.8	9 1/8 231.8	9 7/8 250.8	2 7/8 73.0	1 25.4	6 5/8 168.3	3 1/16 77.8	1 3/4 44.5	3 11/64 42.5	7/8	16.9 7.67

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Rolling Elements:


Cast Iron Pillow Block Housing:

+/- 1.5 Degrees Self Alignment:

> Lock: Setscrew

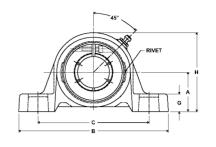
Contact and Flinger Seal:

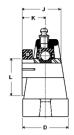
Temperature: -20° to 200°F

VPS-200 Series Standard Duty Pillow Blocks - Setscrew Locking - Metric

Bore Diameter		Geaning	Basic Dynamic				200	imension	s mm / inc	h				Bolt	Unit Wt.
mm	Part No.	Irraert No.	Rating N/Ib	Äv	B	min.	max	D	G	H	75	К	114	Size	kg/lb
20	VPS-20 MM	VS-20 MM	11614 2611	33.3 1 5/16	127.0 5	85.7 3 3/8	106.4 4 3/16	34.1 1 11/32	13.5 17/32	64.3 2 17/32	31.0 1 7/32	18.3 23/32	30.2 1 3/16	M10	.6 1.4
25	VPS-25 MM	VS-25 MM	12459 2801	36.5 1 7/16	139.7 5 1/2	93.7 3 11/16	115.9 4 9/16	35.7 1 13/32	15.1 19/32	71.4 2 13/16	34.9 1 3/8	20.6 13/16	34.9 1 3/8	M10	.7 1.5
30	VPS-30 MM	VS-30 MM	19487 4381	42.9 1 11/16	157.2 6 3/16	105.6 4 3/16	128.6 5 1/16	44.5 1 3/4	16.7 21/32	83.3 3 9/32	38.1 1 1/2	22.2 7/8	40.5 1 19/32	M12	1.1 2.5
35	VPS-35 MM	VS-35 MM	25718 5782	47.6 1 7/8	171.5 6 3/4	117.5 4 5/8	136.5 5 3/8	44.5 1 3/4	18.3 23/32	93.7 3 11/16	42.9 1 11/16	25.4 1	47.2 1 55/64	M12	1.6 3.5
40	VPS-40 MM	VS-40 MM	32648 7340	49.2 1 89/95	181.0 7 1/8	123.8 4 7/8	149.2 5 7/8	49.2 1 15/16	20.6 13/16	100.0 3 89/95	49.2 1 15/16	30.2 1 3/16	52.4 2 1/16	M12	2.1 4.7
45	VPS-45 MM	VS-45 MM	35144 7901	54.0 2 1/8	187.3 7 3/8	133.4 5 1/4	154.0 6 1/16	50.8 2	19.1 3/4	108.0 4 1/4	49.2 1 15/16	30.2 1 3/16	58.3 2 19/64	M12	2.5 5.5
50	VPS-50 MM	VS-50 MM	35090 7889	57.2 2 1/4	203.2 8	149.2 5 7/8	165.1 6 1/2	55.6 2 3/16	19.1 3/4	115.9 4 9/16	51.6 2 1/32	32.5 1 9/32	62.7 2 15/32	M16	3.5 6
55	VPS-55 MM	VS-55 MM	43377 9752	63.5 2 1/2	223.8 8 13/16	6.7 6 9/16	185.7 7 5/16	58.7 2 5/16	22.2 7/8	126.2 4 31/32	55.6 2 3/16	33.3 1 5/16	69.1 2 23/32	M16	3.5 7.8
60	VPS-60 MM	VS-60 MM	52437 11789	69.9 2 3/4	241.3 9 1/2	174.6 6 7/8	201.6 7 15/16	60.3 2 3/8	22.2 7/8	141.3 5 9/16	65.1 2 9/16	39.7 1 9/16	75.8 2 63/64	M16	3.5 10.1

Rolling Elements: Ball


Housing: Cast Iron Pillow Block


Self Alignment: +/- 1.5 Degrees

Lock: BOA Concentric

Seal: Contact and Flinger

Temperature: -20° to 200°F

VPB 200 Series Standard Duty Pillow Blocks - BOA Concentric Locking

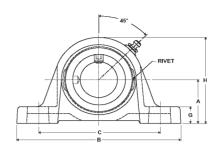
	iameter			Basic					imension					5	1	
inch	mm	Part No	Bearing Insert No.	Dynami∈ Rating lb/N	Ä	В	min.	max.	0	G	H	-J)	K	4	Bolt Size	Unit Wt. lb/kg
3/4	- 20	VPB-212 VPB-20MM	VB-212 VB-20MM	2611 11614	1 5/16 33.3	5 127.0	3 3/8 85.7	4 3/16 106.4	1 11/32 34.1	17/32 13.5	2 17/32 64.3	1 9/32 32.5	25/32 19.8	1 3/4 44.5	3/8	1.6 .73
7/8 15/16 1	- - - 25	VPB-214 VPB-215 VPB-216 VPB-25MM	VB-214 VB-215 VB-216 VB-25MM	2801 12459	1 7/16 36.5	5 1/2 139.7	3 11/16 93.7	4 9/16 115.9	1 13/32 35.7	19/32 15.1	2 13/16 71.4	1 7/16 36.5	7/8 22.2	1 15/16 49.2	3/8	1.9 .86
1 1/8 1 3/16 1 1/4	- - - 30	VPB-218 VPB-219 VPB-220S VPB-30MM	VB-218 VB-219 VB-220S VB-30MM	4381 19487	1 11/16 42.9	6 3/16 157.2	4 3/16 106.4	5 1/16 128.6	1 3/4 44.5	21/32 16.7	3 9/32 83.3	1 9/16 39.7	15/16 23.8	2 3/16 55.6	1/2	2.9 1.32
1 1/4	-	VPB-220	VB-220	5782 25718	1 7/8 47.6	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	23/32 18.3	3 11/16 93.7	1 3/4 44.5	1 1/16 27.0	2 7/16 61.9	1/2	3.8 1.72
1 3/8 1 7/16	- - 35	VPB-222 VPB-223 VPB-35MM	VB-222 VB-223 VB-35MM	5782 25718	1 7/8 47.6	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	23/32 18.3	3 11/16 93.7	1 3/4 44.5	1 1/16 27.0	2 9/16 65.1	1/2	3.8 1.72
1 1/2	- 40	VPB-224 VPB-40MM	VB-224 VB-40MM	7340 32648	2 50.8	7 1/8 181.0	4 7/8 123.8	5 7/8 149.2	1 15/16 49.2	13/16 20.6	4 101.6	2 50.8	1 1/4 31.8	2 11/16 68.3	1/2	4.9 2.22
1 5/8	-	VPB-226	VB-226	7901 35144	2 1/8 54.0	7 3/8 187.3	5 1/4 133.4	6 1/16 154.0	2 50.8	3/4 19.1	4 1/4 108.0	2 50.8	1 1/4 31.8	2 13/16 71.4	1/2	5.6 2.54
1 11/16 1 3/4 -	- - 45	VPB-227 VPB-228 VPB-45MM	VB-227 VB-228 VB-45MM	7901 35144	2 1/8 54.0	7 3/8 187.3	5 1/4 133.4	6 1/16 154.0	2 50.8	3/4 19.1	4 1/4 108.0	2 50.8	1 1/4 31.8	2 15/16 74.6	1/2	5.6 2.54
1 15/16 2 -	- - 50	VPB-231 VPB-232S VPB-50MM	VB-231 VB-232S VB-50MM	7889 35090	2 1/4 57.2	8 203.2	5 7/8 149.2	6 1/2 165.1	2 3/16 55.6	3/4 19.1	4 9/16 115.9	2 3/32 53.2	1 11/32 34.1	3 3/8 85.7	5/8	6.2 2.81
2	-	VPB-232	VB-232	9752 43377	2 1/2 63.5	8 13/16 223.8	6 9/16 166.7	7 5/16 185.7	2 5/16 58.7	7/8 22.2	4 31/32 126.2	2 1/4 57.2	1 3/8 34.9	3 1/2 88.9	5/8	8.0 3.63
2 3/16	- 55	VPB-235 VPB-55MM	VB-235 VB-55MM	9752 43377	2 1/2 63.5	8 13/16 223.8	6 9/16 166.7	7 5/15 185.7	2 5/16 58.7	7/8 22.2	4 31/32 126.2	2 1/4 57.2	1 3/8 34.9	3 5/8 92.1	5/8	8.0 3.63
2 1/4	-	VPB-236	VB-236	11789 52437	2 3/4 69.9	9 1/2 241.3	6 7/8 174.6	7 15/16 201.6	2 3/8 60.3	7/8 22.2	5 9/16 141.3	2 5/8 66.7	1 5/8 41.3	4 1/16 103.2	5/8	10.1 4.58
2 7/16	- 60	VPB-239 VPB-60MM	VB-239 VB-60MM	11789 52437	2 3/4 69.9	9 1/2 241.3	6 7/8 174.6	7 15/16 201.6	2 3/8 60.3	7/8 22.2	5 9/16 141.3	2 5/8 66.7	1 5/8 41.3	4 1/8 104.8	5/8	10.1 4.58

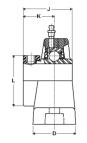
Metric dimensions for reference only.

 $Not all \ parts \ are \ available \ from \ stock. \ Please \ contact \ customer \ service \ for \ availability \ (800) \ 626-2120.$

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering. \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Rolling Elements: Ball


> Housing: Cast Iron Pillow Block


Self Alignment: +/- 1.5 Degrees

> Lock: Eccentric

Seal: Contact and Flinger

-20° to 200°F Temperature:

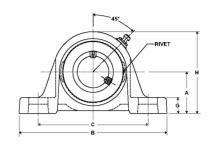
VPE 200 Series Standard Duty Pillow Blocks - Eccentric Locking

Bore		D	Basic					imensions	s inch / m	ım				0.44	
Diameter	Part No.	Bearing Insert No	Dynamic Rating lb/	Ä	В	min.	max.	D	G	H	j	K	Ŋ <u>.</u>	Bolt Size	⊎nit Wt lb/kg
1/2	VPE-208	VE-208	2108	1 3/16	4 7/8	3 1/8	4 1/8	1 7/32	15/32	2 7/32	1 15/32	59/64	1 3/16		1.0
5/8	VPE-210	VE-210	9377	30.2	123.8	79.4	104.8	31.0	11.9	56.4	37.3	23.4	30.2	3/8	.45
3/4	VPE-212	VE-212	2611 11614	1 5/16 33.3	5 127.0	3 3/8 85.7	4 3/16 106.4	1 11/32 34.1	17/32 13.5	2 17/32 64.3	1 23/32 43.7	1 3/64 26.6	1 5/16 33.3	3/8	1.5 .68
7/8	VPE-214	VE-214													
15/16	VPE-215	VE-215	2801 12459	1 7/16 36.5	5 1/2 139.7	3 11/16 93.7	4 9/16 115.9	1 13/32 35.7	19/32 15.1	2 13/16 71.4	1 3/4 44.5	1 1/16 27.0	1 1/2 38.1	3/8	1.8 .82
1	VPE-216	VE-216	12 100	00.0	100.1	00.1	110.0	00.1	10.1	'''	11.0	21.0	00.1		.02
1 1/8	VPE-218	VE-218													
1 3/16	VPE-219	VE-219	4381 19487	1 11/16 42.9	6 3/16 157.2	4 3/16 106.4	5 1/16 128.6	1 3/4 44.5	21/32 16.7	3 9/32 83.3	1 29/32 48.4	1 3/16 30.2	1 3/4 44.5	1/2	2.9 1.32
1 1/4	VPE-220S	VE-220S		12.0						00.0		00.2			
1 1/4	VPE-220	VE-220													
1 3/8	VPE-222	VE-222	5782 25718	1 7/8 47.6	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	23/32 18.3	3 11/16 93.7	2 1/64 51.2	1 9/32 32.5	2 3/16 55.6	1/2	3.8 1.72
1 7/16	VPE-223	VE-223	20110	11.0		111.0	100.0	11.0	10.0	00.1	01.2	02.0	00.0		2
1 1/2	VPE-224	VE-224	7340 32648	2 50.8	7 1/8 181.0	4 7/8 123.8	5 7/8 149.2	1 15/16 49.2	13/16 20.6	4 101.6	2 7/32 56.4	1 3/8 34.9	2 3/8 60.3	1/2	5.0 2.27
1 5/8	VPE-226	VE-226													
1 11/16	VPE-227	VE-227	7901 35144	2 1/8 54.0	7 3/8 187.3	5 1/4 133.4	6 1/16 154.0	2 50.8	3/4 19.1	4 1/4 108.0	2 7/32 56.4	1 3/8 34.9	2 1/2 63.5	1/2	5.7 2.59
1 3/4	VPE-228	VE-228	33					00.0				55	00.0		2.00
1 15/16	VPE-231	VE-231	7889 35090	2 1/4 57.2	8 203.2	5 7/8 149.2	6 1/2 165.1	2 3/16 55.6	3/4 19.1	4 9/16 115.9	2 15/32 62.7	1 1/2 38.1	2 3/4 69.9	5/8	6.3 2.86
2	VPE-232	VE-232	9752	2 1/2	8 13/16	6 9/16	7 5/16	2 5/16	7/8	4 31/32	2 13/16	1 23/32	3	E/0	8.1
2 3/16	VPE-235	VE-235	4377	63.5	223.8	166.7	185.7	58.7	22.2	126.2	71.4	43.7	76.2	5/8	3.67
2 1/4	VPE-236	VE-236	13971	2 3/4	9 1/2	6 7/8	7 15/16	2 3/8	7/8	5 9/16	3 1/16	1 27/32	3 3/8	5/8	10.2
2 7/16	VPE-239	VE-239	62143	69.9	241.3	174.6	201.6	60.3	22.2	141.3	77.8	46.8	85.7	3/0	4.63

Mounted Ball Bearings

Medium

Rolling Elements: Ball


Housing: Cast Iron Pillow Block

Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact and Flinger

Temperature: -20° to 200°F

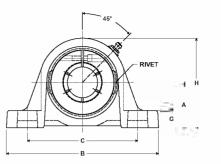
VPS 300 Series Medium Duty Pillow Blocks - Setscrew Locking

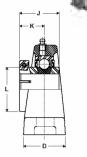
Jore Demotio	15-20150s	Bistony Inter	Eask Januarie					inn maken	Marine Inc	···				- taan	1000-006
	-	Hix	Paging Huth	W	(10)	1500	entr	((00)	900	00	15500	(80)	100	Slar	lista)
=	77:9-218	V&STE	3221 1948/	1 ac c25	6 1.76 57.4	43/19 163.4	n 1714 125,0	李丰	1300 163	+727	11.58 We.	7A 253	antes A. S	30	3.6 190
1 3/16	VPS-319	VS-319	5782 25718	1 7/8 47.6	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	23/32 18.3	3 11/16 93.7	1 11/16 42.9	1 25.4	1 55/64 47.2	1/2	4.8 2.18
17#	VF5.329	76.82	7245 2245	21% 5=0	*16 312	6 G10 1289	2.5d 148,	2 : 202	1500 200	1546 1662	16hE 45.2	13/65 853	2 5/15 02,4	112	52 38)
1 1/2	VPS-324	VS-324	7901 35144	2 5/16 58.7	7 13/16 198.4	5 19/32 142.1	6 11/32 161.1	2 3/16 55.6	13/16 20.6	4 9/16 115.9	1 15/16 49.2	1 3/16 30.2	2 19/64 58.3	5/8	8 0 3.63
1.02id 1841	908 (2) 975 328	\$16877 \$78-665	73177 1918)*	35.4	2 1546 2016	554 147	1,64 167	7. T. T.	42-05 200	4 200 117 5	919 3 635	1927 375	3 14592 67.7	130	55 300
1 15/16 2	VPS-331 VPS-332	VS-331 VS-232	7889 35090	2 1/2 63.5	8 13/16 223.8	6 9/16 166.7	7 5/16 185.7	2 5/16 58.7	7/8 22.2	4 31/32 126.2	2 3/16 55.6	1 5/16 33.3	2 23/32 69.1	5/8	10.5 4.76
2,919 7 d	78:335 700 774	48-95 V3-37) 1/100 =5/30/	7/1= 300	90.1 20.1	3.55 1715	/ ⇒.# Writ	#1.00 (13.0)	66	5=10 HTD	24-10-10-1 C+1	1 143) 1007.	75088 647	- 217	063 679

Metric dimensions for reference only.

Duty: Medium

Rolling Elements: Ball


> Housing: Cast Iron Pillow Block


Self Alignment: +/- 1.5 Degrees

> Lock: **BOA Concentric**

Seal: Contact and Flinger

-20° to 200°F Temperature:

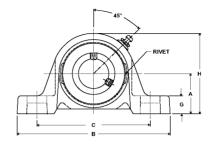
VPB 300 Series Medium Duty Pillow Blocks - BOA Concentric Locking

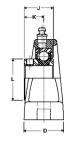
Born	percentages	Security	(18 km)				ä.	ne siuc	andille	W				Bott	JOE MI
District.	Partlet	January January	Consuma (Cathoni	16	10	alia.	er Herau	30)	(8)	100	(4)	MODE	0	Dise	
76	V+4335	V 48% 5	438 1937 /	1184- 565	6 3cts m/ ≠	1206 ***3	Sarts Palls	1 sel 2. k	22/92 (20)	3 fr 93 	i tra is	15:16	2 / € 314	900	E: City
1 3/16 1 1/4	VPB-319 VPB-320	VB-319 VB-220	5782 25718	1 7/8 47.6	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	23/32 18.3	3 11/16 93.7	1 3/4 44.5	1 1/16 27.0	2 7/16 61.9	1/2	3_1 1.41
- 000	erec.	(Federal	2340. 245.00	2 1.8 540	2.14 uni	3.0% (44.3	7 89 063	÷01	-20€ 40€	4350 101 1	2 W:11	1.94	2 10/16 lifeti	D.	3.9 17/-
1 1/2	VPB-324	VB-324	7901 35144	2 5/16 58.7	7 13/16 198.4	5 19/32 142.1	6 11/32 161.1	2 3/16 55.6	13/16 20.6	4 9/16 115.9	2 50.8	1 1/4 31.8	2 13/16 71.4	1/2	4 8 2.18
14.45 150	988 337 98 (95)	98 527 V 4020	1985 (24.80	30-€ 88-0	30°K	5.24 (8.)	6 12 186.1	= 144 200	15d2 20d	-5E	2146 n#2	11/25	\$ 1/4 10/6	345	5.8 2.95
1 15/16 2	VPB-331 VPB-332	VB-331 VB-232	9752 43377	2 1/2 63.5	8 13/16 223.8	6 9/16 166.7	7 5/16 185.7	2 5/16 58.7	7/8 22.2	4 31/32 126.2	2 1/4 57.2	1 3/8 34.9	3 1/2 88.9	5/8	8_1 3.67
2339	*****	6.445	1789	2 %4 180 M	5.62 (20.1)	978 7773	50° B	233 N/A	7/E 9/11	6-200 -11-1	2.98 80 /	138	10€ 183	÷	19 # 7 #31

Browning[®] Mounted Ball Bearings

Rolling Elements: Ball

Housing: Cast Iron Pillow Block – Low


Base


Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact

Temperature: -20° to 200°F

VPLS 100 Series Intermediate Duty Low Base Pillow Blocks - Setscrew Locking

Horse Diameter		D	Bess					mension	s inch / m	ım			_	Bolt	Unit Wt.
men	Part No.	Bearing Insert No.	Oynamis Azimg IbN	A	B	min.	max.	D	G	Ħ	ú	ĸ	10	Size	lb/kg
1/2	VPLS-108	VS-108	2108	1 1/16	4 7/8	3 1/8	4 1/8	1 7/32	11/32	2 3/32	15/16	5/8	31/32	3/8	.7
5/8	VPLS-110	VS-110	9377	27.0	123.8	79.4	104.8	31.0	8.7	53.2	23.8	15.9	24.6		.32
3/4	VPLS-112	VS-112	2611 11614	1 1/4 31.8	5 127.0	3 15/32 88.1	4 9/32 108.7	1 11/32 34.1	15/32 11.9	2 15/32 62.7	1 1/16 27.0	23/32 18.3	1 3/16 30.2	3/8	1.3 .59
7/8	VPLS-114	VS-114													
15/16	VPLS-115	VS-115	2801 12459	1 5/16 33.3	5 1/2 139.7	3 11/16 93.7	4 9/16 115.9	1 13/32 35.7	15/32 11.9	2 11/16 68.3	1 7/64 28.2	49/64 19.4	1 3/8 34.9	3/8	1.4 .64
1	VPLS-116	VS-116													
1 1/8	VPLS-118	VS-118													
1 3/16	VPLS-119	VS-119	4381 19487	1 9/16 39.7	6 3/16 157.2	4 3/16 106.4	5 1/16 128.6	1 3/4 44.5	17/32 13.5	3 5/32 80.2	1 5/32 29.4	25/32 19.8	1 19/32 40.5	1/2	2.4 1.09
1 1/4	VPLS-120S	VS-120S													
1 1/4	VPLS-120	VS-120													
1 3/8	VPLS-122	VS-122	5782 25718	1 13/16 46.0	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	21/32 16.7	3 5/8 92.1	1 9/32 32.5	55/64 21.8	1 55/64 47.2	1/2	3.5 1.59
1 7/16	VPLS-123	VS-123													
1 1/2	VPLS-124	VS-124	7340 32648	1 15/16 49.2	7 1/8 181.0	4 7/8 123.8	5 7/8 149.2	1 15/16 49.2	3/4 19.1	3 15/16 100.0	1 27/64 36.1	15/16 23.8	2 1/16 52.4	1/2	4.5 2.04
1 11/16	VPLS-127	VS-127	7901	2 1/16	7 3/8	5 7/16	5 7/8	2	11/16	4 3/16	1 7/16	61/64	2 19/64	4.00	5.5
1 3/4	VPLS-128	VS-128	35144	52.4	187.3	138.1	149.2	50.8	17.5	106.4	36.5	24.2	58.3	1/2	2.49
1 15/16	VPLS-131	VS-131	7889	2 3/16	8	5 7/8	6 1/2	2 3/16	11/16	4 1/2	1 35/64	1 3/64	2 15/32		5.9
2	VPLS-132S	VS-132S	35090	55.6	203.2	149.2	165.1	55.6	17.5	114.3	39.3	26.6	62.7	5/8	2.68
2	VPLS-132	VS-132	9752	2 7/16	8 13/16	6 9/16	7 5/16	2 5/16	13/16	4 29/32	1 21/32	1 7/64	2 23/32	F (0	7.6
2 3/16	VPLS-135	VS-135	43377	61.9	223.8	166.7	185.7	58.7	20.6	124.6	42.1	28.2	69.1	5/8	3.45

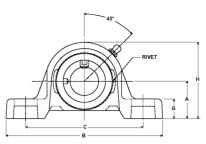
Metric dimensions for reference only.

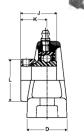
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Duty: Intermediate

Rolling Elements: Ball


> Housing: Cast Iron Pillow Block - Low


Self Alignment: +/- 1.5 Degrees

> Lock: Eccentric

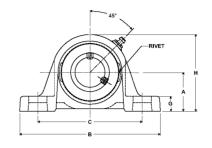
Seal: Contact

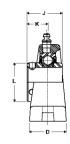
-20° to 200°F Temperature:

VPLE 100 Series Intermediate Duty Low Base Pillow Blocks - Eccentric Locking

		Bearing	Basic Dynamic					imensions	s inch / m	m				Bolt	Unit Wt.
inch	Part No.	Insert No.	Rating Ib/N	A	В	min.	max.	D	G	Ĥ	7	к	Ŀ	Size	lb/kg
1/2	VPLE-108	VE-108	2108	1 1/16	4 7/8	3 1/8	4 1/8	1 7/32	11/32	2 3/32	1 3/16	7/8	1 3/16	0.10	.8
5/8	VPLE-110	VE-110	9377	27.0	123.8	79.4	104.8	31.0	8.7	53.2	30.2	22.2	30.2	3/8	.36
3/4	VPLE-112	VE-112	2611 11614	1 1/4 31.8	5 127.0	3 15/32 88.1	4 9/32 108.7	1 11/32 34.1	15/32 11.9	2 15/32 62.7	1 17/64 32.1	59/64 23.4	1 5/16 33.3	3/8	1.4 .64
7/8	VPLE-114	VE-114													
15/16	VPLE-115	VE-115	2801 12459	1 5/16 33.3	5 1/2 139.7	3 11/16 93.7	4 9/16 115.9	1 13/32 35.7	15/32 11.9	2 11/16 68.3	1 17/64 32.1	59/64 23.4	1 1/2 38.1	3/8	1.7 .77
1	VPLE-116	VE-116	12.00	00.0				00		00.0	02	20	00		
1 1/8	VPLE-118	VE-118													
1 3/16	VPLE-119	VE-119	4381 19487	1 9/16 39.7	6 3/16 157.2	4 3/16 106.4	5 1/16 128.6	1 3/4 44.5	17/32 13.5	3 5/32 80.2	1 27/64 36.1	1 3/64 26.6	1 3/4 44.5	1/2	2.8 1.27
1 1/4	VPLE-120S	VE-120S													
1 1/4	VPLE-120	VE-120													
1 3/8	VPLE-122	VE-122	5782 25718	1 13/16 46.0	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	21/32 16.7	3 5/8 92.1	1 37/64 40.1	1 5/32 29.4	2 3/16 55.6	1/2	3.7 1.68
1 7/16	VPLE-123	VE-123													
1 1/2	VPLE-124	VE-124	7340 32648	1 15/16 49.2	7 1/8 181.0	4 7/8 123.8	5 7/8 149.2	1 15/16 49.2	3/4 19.1	3 15/16 100.0	1 49/64 44.8	1 9/32 32.5	2 3/8 60.3	1/2	4.8 2.18
1 11/16	VPLE-127	VE-127	7901	2 1/16	7 3/8	5 7/16	5 7/8	2	11/16	4 3/16	1 49/64	1 9/32	2 1/2	4/0	5.6
1 3/4	VPLE-128	VE-128	35144	52.4	187.3	138.1	149.2	50.8	17.5	106.4	44.8	32.5	63.5	1/2	2.54
1 15/16	VPLE-131	VE-131	7889	2 3/16	8	5 7/8	6 1/2	2 3/16	11/16	4 1/2	1 25/32	1 9/32	2 3/4	5/8	6.2
2	VPLE-132S	VE-132S	35090	55.6	203.2	149.2	165.1	55.6	17.5	114.3	45.2	32.5	69.9	5/8	2.81
2	VPLE-132	VE-132	9752	2 7/16	8 13/16	6 9/16	7 5/16	2 5/16	13/16	4 29/32	1 63/64	1 7/16	3	5/8	7.9
2 3/16	VPLE-135	VE-135	43377	61.9	223.8	166.7	185.7	58.7	20.6	124.6	50.4	36.5	76.2	3/0	3.58

Rolling Elements: Ball


> Housing: Cast Iron Pillow Block - Low


Self Alignment: +/- 2 Degrees

> Lock: Setscrew

Contact and Flinger Seal:

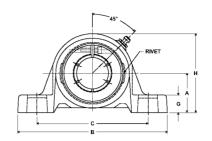
-20° to 200°F Temperature:

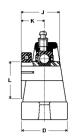
VPLS 200 Series Standard Duty Low Base Pillow Blocks - Setscrew Locking

Hore			Basic				D	imensions	s inch / m	ım					
Diameter	Part No.	Bearing Insert No.	Dynamic Rating lb/N	Ä	8	min.	max	D	G	H	9	ĸ	E.	Bolt Size	Unit Wt. lb/kg
1/2	VPLS-208	VS-208	2108	1 1/16	4 7/8	3 1/8	4 1/8	1 7/32	11/32	2 3/32	1 1/32	5/8	31/32	3/8	.7
5/8	VPLS-210	VS-210	9377	27.0	123.8	79.4	104.8	31.0	8.7	53.2	26.2	15.9	24.6	3/0	.32
3/4	VPLS-212	VS-212	2611 11614	1 1/4 31.8	5 127.0	3 3/8 85.7	4 3/16 106.4	1 11/32 34.1	15/32 11.9	2 15/32 62.7	1 7/32 31.0	23/32 18.3	1 3/16 30.2	3/8	1.3 .59
7/8	VPLS-214	VS-214													
15/16	VPLS-215	VS-215	2801 12459	1 5/16 33.3	5 1/2 139.7	3 11/16 93.7	4 9/16 115.9	1 13/32 35.7	15/32 11.9	2 11/16	1 3/8 34.9	13/16 20.6	1 3/8 34.9	3/8	1.4 .64
1	VPLS-216	VS-216	12400	00.0	100.1	00.1	110.0	00.1	11.0	00.0	04.0	20.0	04.0		.04
1 1/8	VPLS-218	VS-218													
1 3/16	VPLS-219	VS-219	4381 19487	1 9/16 39.7	6 3/16 157.2	4 3/16 106.4	5 1/16 128.6	1 3/4 44.5	17/32 13.5	3 5/32 80.2	1 1/2 38.1	7/8 22.2	1 19/32 40.5	1/2	2.4 1.09
1 1/4	VPLS-220S	VS-220S	10401	00.1	101.2	100.4	120.0	11.0	10.0	00.2	00.1		10.0		1.00
1 1/4	VPLS-220	VS-220													
1 3/8	VPLS-222	VS-222	5782 25718	1 13/16 46.0	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	21/32 16.7	3 5/8 92.1	1 11/16 42.9	1 25.4	1 55/64 47.3	1/2	3.5 1.59
1 7/16	VPLS-223	VS-223	20110	10.0			100.0	11.0		02	12.0	20.1			1.00
1 1/2	VPLS-224	VS-224	7340 32648	1 15/16 49.2	7 1/8 181.0	4 7/8 123.8	5 7/8 149.2	1 15/16 49.2	3/4 19.1	3 15/16 100.0	1 15/16 49.2	1 3/16 30.2	2 1/16 52.4	1/2	4.5 2.04
1 5/8	VPLS-226	VS-226													
1 11/16	VPLS-227	VS-227	7901 35144	2 1/16 52.4	7 3/8 187.3	5 1/4 133.4	6 1/16 154.0	2 50.8	11/16 17.5	4 3/16 106.4	1 15/16 49.2	1 3/16 30.2	2 19/64 58.3	1/2	5.5 2.49
1 3/4	VPLS-228	VS-228	33111	52				00.0				00.2	55.5		2
1 15/16	VPLS-231	VS-231	7889	2 3/16	8	5 7/8	6 1/2	2 3/16	11/16	4 1/2	2 1/32	1 9/32	2 15/32	5/8	5.9
2	VPLS-232S	VS-232S	35090	55.6	203.2	149.2	165.1	55.6	17.5	114.3	51.6	32.5	62.7	3/6	2.68
2	VPLS-232	VS-232	9752	2 7/16	8 13/16	6 9/16	7 5/16	2 5/16	13/16	4 29/32	2 3/16	1 19/64	2 23/32	5/8	7.6
2 3/16	VPLS-235	VS-235	43377	61.9	223.8	166.7	185.7	58.7	20.6	124.6	55.6	32.9	69.1	3/6	3.45
2 1/4	VPLS-236	VS-236	11789	2 11/16	9 1/2	6 7/8	7 15/16	2 3/8	13/16	5 1/2	2 9/16	1 9/16	2 63/64	5/8	9.7
2 7/16	VPLS-239	VS-239	52437	68.3	241.3	174.6	201.6	60.3	20.6	139.7	65.1	39.7	75.8	310	4.40

Metric dimensions for reference only.

Rolling Elements: Ball


> Housing: Cast Iron Pillow Block - Low


Self Alignment: +/- 1.5 Degrees

> Lock: **BOA Concentric**

Contact and Flinger Seal:

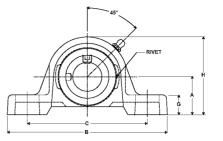
-20° to 200°F Temperature:

VPLB 200 Series Standard Duty Low Base Pillow Blocks - BOA Concentric Locking

								mension	s inch / m	ım				Bott	Un Wt.
Rest	Part No.	1	j	A		min	max.	D	ø	Ŧ	7	ĸ	¥.	Size	b/kg
3/4	VPLB-212	VB-212	2611 11614	1 1/4 31.8	5 127.0	3 3/8 85.7	4 3/16 106.4	1 11/32 34.1	15/32 11.9	2 15/32 62.7	1 9/32 32.5	25/32 19.8	1 3/4 44.5	3/8	1.4 .64
7/8	VPLB-214	VB-214													
15/16	VPLB-215	VB-215	2801 12459	1 5/16 33.3	5 1/2 139.7	3 11/16 93.7	4 9/16 115.9	1 13/32 35.7	15/32 11.9	2 11/16 68.3	1 7/16 36.5	7/8 22.2	1 15/16 49.2	3/8	1.6 .73
1	VPLB-216	VB-216	12 100	00.0	100.1	00.1	110.0	00.1	11.0	00.0	00.0		10.2		
1 1/8	VPLB-218	VB-218													
1 3/16	VPLB-219	VB-219	4381 19487	1 9/16 39.7	6 3/16 157.2	4 3/16 106.4	5 1/16 128.6	1 3/4 44.5	17/32 13.5	3 5/32 80.2	1 9/16 39.7	15/16 23.8	2 3/16 55.6	1/2	2.6 1.18
1 1/4	VPLB-220S	VB-220S	10401	00.1	107.2	100.4	120.0	44.0	10.0	00.2	00.1	20.0	00.0		1.10
1 1/4	VPLB-220	VB-220	5782 25718	1 13/16 46.0	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	21/32 16.7	3 5/8 92.1	1 3/4 44.5	1 1/16 27.0	2 7/16 61.9	1/2	3.8 1.72
1 3/8	VPLB-222	VB-222	5782	1 13/16	6 3/4	4 5/8	5 3/8	1 3/4	21/32	3 5/8	1 3/4	1 1/16	2 9/16	1/2	3.8
1 7/16	VPLB-223	VB-223	25718	46.0	171.5	117.5	136.5	44.5	16.7	92.1	44.5	27.0	65.1	1/2	1.72
1 1/2	VPLB-224	VB-224	7340 32648	1 15/16 49.2	7 1/8 181.0	4 7/8 123.8	5 7/8 149.2	1 15/16 49.2	3/4 19.1	3 15/16 100.0	2 50.8	1 1/4 31.8	2 11/16 68.3	1/2	4.8 2.18
1 5/8	VPLB-226	VB-226	7901 35144	2 1/16 52.4	7 3/8 187.3	5 1/4 133.4	6 1/16 154.0	2 50.8	11/16 17.5	4 3/16 106.4	2 50.8	1 1/4 31.8	2 13/16 71.4	1/2	5.8 2.63
1 11/16	VPLB-227	VB-227	7901	2 1/16	7 3/8	5 1/4	6 1/16	2	11/16	4 3/16	2	1 1/4	2 15/16	1/2	6.5
1 3/4	VPLB-228	VB-228	35144	52.4	187.3	133.4	154.0	50.8	17.5	106.4	50.8	31.8	74.6	1/2	2.95
1 15/16	VPLB-231	VB-231	7889	2 3/16	8	5 7/8	6 1/2	2 3/16	11/16	4 1/2	2 3/32	1 11/32	3 3/8	5/8	6.5
2	VPLB-232S	VB-232S	35090	55.6	203.2	149.2	165.1	55.6	17.5	114.3	53.2	34.1	85.7	0,0	2.95
2	VPLB-232	VB-232	9752 43377	2 7/16 61.9	8 13/16 223.8	6 9/16 166.7	7 5/16 185.7	2 5/16 58.7	13/16 20.6	4 29/32 124.6	2 1/4 57.2	1 3/8 34.9	3 1/2 88.9	5/8	8.2 3.72
2 3/16	VPLB-235	VB-235	9752 43377	2 7/16 61.9	8 13/16 223.8	6 9/16 166.7	7 5/16 185.7	2 5/16 58.7	13/16 20.6	4 29/32 124.6	2 1/4 57.2	1 3/8 34.9	3 5/8 92.1	5/8	10.9 4.94
2 1/4	VPLB-236	VB-236	11789 52437	2 11/16 68.3	9 1/2 241.3	6 7/8 174.6	7 15/16 201.6	2 3/8 60.3	13/16 20.6	5 1/2 139.7	2 5/8 66.7	1 5/8 41.3	4 1/16 103.2	5/8	10.9 4.94
2 7/16	VPLB-239	VB-239	11789 52437	2 11/16 68.3	9 1/2 241.3	6 7/8 174.6	7 15/16 201.6	2 3/8 60.3	13/16 20.6	5 1/2 139.7	2 5/8 66.7	1 5/8 41.3	4 1/8 104.8	5/8	10.9 4.94

Rolling Elements: Ball

Housing: Cast Iron Pillow Block – Low


Base

Self Alignment: +/- 1.5 Degrees

Lock: Eccentric

Seal: Contact and Flinger

Temperature: -20° to 200°F

VPLE 200 Series Standard Duty Low Base Pillow Blocks - Eccentric Locking

Bore			Basic					imension	s inch / m	m				Belli	
Dia meter inch	Part No.	Bearing Insert No.	Dynamic Rating Ib/N	A	8	min.	max.	O	G	Ĥ	3	K	G.	Bolt Size	Unit Wt. lb/kg
1/2	VPLE-208	VE-208	2108	1 1/16	4 7/8	3 1/8	4 1/8	1 7/32	11/32	2 3/32	1 15/32	59/64	1 3/16	3/8	.8
5/8	VPLE-210	VE-210	9377	27.0	123.8	79.4	104.8	31.0	8.7	53.2	37.3	23.4	30.2	3/0	.36
3/4	VPLE-212	VE-212	2611 11614	1 1/4 31.8	5 127.0	3 3/8 85.7	4 3/16 106.4	1 11/32 34.1	15/32 11.9	2 15/32 62.7	1 23/32 43.7	1 3/64 26.6	1 5/16 33.3	3/8	1.4 .64
7/8	VPLE-214	VE-214													
15/16	VPLE-215	VE-215	2801 12459	1 5/16 33.3	5 1/2 139.7	3 11/16 93.7	4 9/16 115.9	1 13/32 35.7	15/32 11.9	2 11/16 68.3	1 3/4 44.5	1 1/16 27.0	1 1/2 38.1	3/8	1.7
1	VPLE-216	VE-216													
1 1/8	VPLE-218	VE-218													
1 3/16	VPLE-219	VE-219	4381 19487	1 9/16 39.7	6 3/16 157.2	4 3/16 106.4	5 1/16 128.6	1 3/4 44.5	17/32 13.5	3 5/32 80.2	1 29/32 48.4	1 3/16 30.2	1 3/4 44.5	1/2	2.8 1.27
1 1/4	VPLE-220S	VE-220S													
1 1/4	VPLE-220	VE-220													
1 3/8	VPLE-222	VE-222	5782 25718	1 13/16 46.0	6 3/4 171.5	4 5/8 117.5	5 3/8 136.5	1 3/4 44.5	21/32 16.7	3 5/8 92.1	2 1/64 51.2	1 9/32 32.5	2 3/16 55.6	1/2	3.7 1.68
1 7/16	VPLE-223	VE-223													
1 1/2	VPLE-224	VE-224	7340 32648	1 15/16 49.2	7 1/8 181.0	4 7/8 123.8	5 7/8 149.2	1 15/16 49.2	3/4 19.1	3 15/16 100.0	2 7/32 56.4	1 3/8 34.9	2 3/8 60.3	1/2	4.8 2.18
1 5/8	VPLE-226	VE-226													
1 11/16	VPLE-227	VE-227	7901 35144	2 1/16 52.4	7 3/8 187.3	5 1/4 133.4	6 1/16 154.0	2 50.8	11/16 17.5	4 3/16 106.4	2 7/32 56.4	1 3/8 34.9	2 1/2 63.5	1/2	5.6 2.54
1 3/4	VPLE-228	VE-228													
1 15/16	VPLE-231	VE-231	7889 35090	2 3/16 55.6	8 203.2	5 7/8 149.2	6 1/2 165.1	2 3/16 55.6	11/16 17.5	4 1/2 114.3	2 15/32 62.7	1 1/2 38.1	2 3/4 69.9	5/8	6.2 2.81
2	VPLE-232	VE-232	9752	2 7/16	8 13/16	6 9/16	7 5/16	2 5/16	13/16	4 29/32	2 13/16	1 23/32	3	5/8	7.9
2 3/16	VPLE-235	VE-235	43377	61.9	223.8	166.7	185.7	188.9	58.7	20.6	124.6	71.4	43.7	3/6	.28
2 1/4	VPLE-236	VE-236	11789	2 11/16	9 1/2	6 7/8	7 15/16	2 3/8	13/16	5 1/2	3 1/16	1 27/32	3 3/8	5/8	10
2 7/16	VPLE-239	VE-239	52437	68.3	241.3	174.6	201.6	60.3	20.6	139.7	77.8	46.8	85.7	3/0	4.54

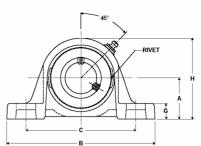
Metric dimensions for reference only.

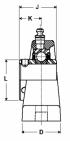
 $Not all \ parts \ are \ available \ from \ stock. \ Please \ contact \ customer \ service \ for \ availability \ (800) \ 626-2120.$

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Rolling Elements: Ball

> Housing: Cast Iron Pillow Block -


Alternate Base


Self Alignment: +/- 1.5 Degrees

> Lock: Setscrew

Seal: Contact

-20° to 200°F Temperature:

VPDS 200 Series Standard Duty Pillow Blocks - Setscrew Locking

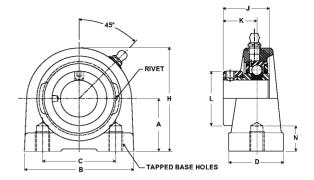
Hora	55010061	(Billion)	Book Umunite				ם	1001100	n inch/in	ni)				i i i i i i i i i i i i i i i i i i i	THE RESERVE
Inerrece	F#1#	Section 1	Rading that	A.	15)	min	trops	7.0	San	48100	49)	(6)	B	514	linka
4 346 139	V903.245 V904.406	788 F 787 F	Aces Aces	108	Parth 15-7	r arth UK	1,2,8	:ХП 1944	have.	270 % 200.29	109 3961	.''d 200	(1002) (0))	(4)	8
1 1/2	VPDS-224	VS-224	7340 32648	2 1/8 54.0	7 1/4 184.2	5 7/32 132.6	5 27/32 148.4	2 50.8	13/16 20.6	4 3/16 106.4	1 15/16 49.2	1 3/16 30.2	2 1/16 52.4	1/2	5.3 2.40

Browning Mounted Ball Bearings

Duty: Intermediate

Rolling Elements: Ball

> Housing: Cast Iron Tapped Base Pillow


Block

Self Alignment: +/- 1.5 Degrees

> Lock: Eccentric

Seal: Contact

Temperature: -20° to 200°F

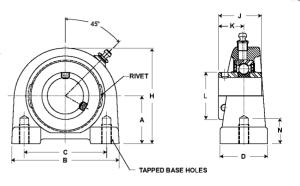
VTBE 100 Series Intermediate Duty Tapped Base Pillow Blocks - Eccentric Locking

						C	imension	s inch / mr	n			Tapped	N	00-0-7776
Di er	Part No.	227	į.	À	B	C	D	æ		×	4	Hole Thread Size	Min Tap Depth	Unit Wt. Ib/kg
3/4	VTBE-112	VE-112	2611 11614	1 5/16 33.3	2 7/8 73.0	2 50.8	1 1/2 38.1	2 9/16 65.1	1 17/64 32.1	59/64 23.4	1 5/16 33.3	3/8-16	1/2	1.5 .68
7/8	VTBE-114	VE-114												
15/16	VTBE-115	VE-115	2801 12459	1 7/16 36.5	3 76.2	2 50.8	1 1/2 38.1	2 13/16 71.4	1 17/64 32.1	59/64 23.4	1 1/2 38.1	3/8-16	1/2	1.6 .73
1	VTBE-116	VE-116												
1 1/8	VTBE-118	VE-118												
1 3/16	VTBE-119	VE-119	4381 19487	1 11/16 42.9	4 101.6	3 76.2	1 1/2 38.1	3 3/8 85.7	1 27/64 36.1	1 3/64 26.6	1 3/4 44.5	7/16-14	5/8	2.5 1.13
1 1/4	VTBE-120S	VE-120S												
1 1/4	VTBE-120	VE-120												
1 3/8	VTBE-122	VE-122	5782 25718	1 7/8 47.6	4 1/4 108.0	3 1/4 82.6	1 7/8 47.6	3 3/4 95.3	1 37/64 40.1	1 5/32 29.4	2 3/16 55.6	1/2-13	3/4	3.4 1.54
1 7/16	VTBE-123	VE-123												
1 1/2	VTBE-124	VE-124	7340 32648	1 15/16 49.2	4 5/8 117.5	3 1/2 88.9	1 7/8 47.6	3 15/16 100.0	1 49/64 44.8	1 9/32 32.5	2 3/8 60.3	1/2-13	3/4	3.8 1.72
1 11/16	VTBE-127	VE-127	7901	2 1/8	5	3 3/4	2	4 1/4	1 49/64	1 9/32	2 1/2	4/0.40	0/4	4.7
1 3/4	VTBE-128	VE-128	35144	54.0	127.0	95.3	50.8	108.0	44.8	32.5	63.5	1/2-13	3/4	2.13
1 15/16	VTBE-131	VE-131	7889	2 1/4	5 1/2	4	2	4 5/8	1 25/32	1 9/32	2 3/4	5/8-11	7/8	5.7
2	VTBE-132S	VE-132S	35090	57.2	139.7	101.6	50.8	117.5	45.2	32.5	69.9	3,0-11	110	2.59

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Rolling Elements: Ball

> Housing: Cast Iron Tapped Base Pillow


Block

Self Alignment: +/- 1.5 Degrees

> Lock: Setscrew

Seal: Contact and Flinger

Temperature: -20° to 200°F

VTBS 200 Series Standard Duty Tapped Base Pillow Blocks - Setscrew Locking

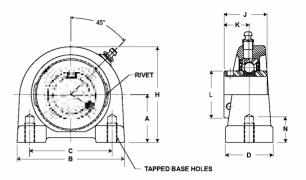
			oo sen									J C C J C I		
Bore Diameter	Part No.	Bearing	Basic Dynamic			C	Dimension	s inch / mr	n			Tapped Hole	N Min Tap	Unit Wt.
inch		Insert No.	Řating lb/N	A	8	C	D	H	- 4	K	L	Thread Size	Depth	lb/kg
1/2	VTBS-208	VS-208	2108	1 5/16	2 7/8	2	1 1/2	2 9/16	1 1/32	5/8	31/32	3/8-16	1/2	1.3
5/8	VTBS-210	VS-210	9377	33.3	73.0	50.8	38.1	65.1	26.2	15.9	24.6	3/0-10	1/2	.59
3/4	VTBS-212	VS-212	2611 11614	1 5/16 33.3	2 7/8 73.0	2 50.8	1 1/2 38.1	2 9/16 65.1	1 7/32 31.0	23/32 18.3	1 3/16 30.2	3/8-16	1/2	1.5 .68
7/8	VTBS-214	VS-214												
15/16	VTBS-215	VS-215	2801 12459	1 7/16 36.5	3 76.2	2 50.8	1 1/2 38.1	2 13/16 71.4	1 3/8 34.9	13/16 20.6	1 3/8 34.9	3/8-16	1/2	1.6 .73
1	VTBS-216	VS-216	12 100	00.0	10.2	00.0	00.1		0 1.0	20.0	0 1.0			
1 1/8	VTBS-218	VS-218												
1 3/16	VTBS-219	VS-219	4381 19487	1 11/16 42.9	4 101.6	3 76.2	1 1/2 38.1	3 3/8 85.7	1 1/2 38.1	7/8 22.2	1 19/32 40.5	7/16-14	5/8	2.5 1.13
1 1/4	VTBS-220S	VS-220S	10 101	12.0	101.0	10.2	00.1	00.1	00.1		10.0			1.10
1 1/4	VTBS-220	VS-220												
1 3/8	VTBS-222	VS-222	5782 25718	1 7/8 47.6	4 1/4 108.0	3 1/4 82.6	1 7/8 47.6	3 3/4 95.3	1 11/16 42.9	1 25.4	1 55/64 47.2	1/2-13	3/4	3.4 1.54
1 7/16	VTBS-223	VS-223												
1 1/2	VTBS-224	VS-224	7340 32648	1 15/16 49.2	4 5/8 117.5	3 1/2 88.9	1 7/8 47.6	3 15/16 100.0	1 15/16 49.2	1 3/16 30.2	2 1/16 52.4	1/2-13	3/4	3.8
1 5/8	VTBS-226	VS-226												
1 11/16	VTBS-227	VS-227	7901 35144	2 1/8 54.0	5 127.0	3 3/4 95.3	2 50.8	4 1/4 108.0	1 15/16 49.2	1 3/16 30.2	2 19/64 58.3	1/2-13	3/4	4.7 2.13
1 3/4	VTBS-228	VS-228			.2									2
1 15/16	VTBS-231	VS-231	7889	2 1/4	5 1/2	4	2	4 5/8	2 1/32	1 9/32	2 15/32	5/8-11	7/8	5.7
2	VTBS-232S	VS-232S	35090	57.2	139.7	101.6	50.8	117.5	51.6	32.5	62.7			2.59

Browning Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball

Housing: Cast Iron Tapped Base Pillow


Block

Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact and Flinger

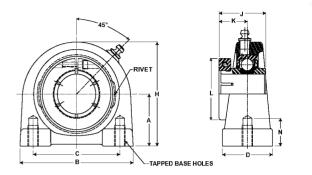
Temperature: -20° to 200°F

VTBS 200 Series Standard Duty Tapped Base Pillow Blocks - Setscrew Locking - Metric

up a Displayer	18800	Carning	Ba/se Dynamic			ij	берицин	anne e	e.			Tappec iste	144	The Cont.
(1900)	Pirks	line title	Soul g. Mais	×.		(4)		Manage.	#	18-	į į	Throad Sure	Ge other	NA2MI
397	v nscenw	45-2000N	Tab Sen	783 1 m/s	Sec.	30 78	34.	:5.1 70 00	7 m.	75/V (#44/	287 1878	Sign	三家	**
25	VTBS-25MM	VS-25MM	12459 2801	36.5 1 7/16	76.2 3	50.8 2	38.1 1 1/2	71.4 2 13/16	34.9 1 3/8	20.6 13/16	34.9 1 3/8	M25	12.7	73 1.6
	а тектии	Versage of C	5290 \ -588	199 199	in w	783	367	23c2	- 383 1 har	y is No	(125 17567	Kin	Ťe+	inta ×A
35	VTBS-35MM	VS-35MM	25718 5782	47.6 1 7/8	108.0 4 1/4	82.6 3 1/4	47.6 1 7/8	95.3 3 3/4	42.9 1 11/16	25.4 1	47.2 1 55/64	M10	19.1	1 5 3 4
(96)	\$1188 -11 14	System :	815-98 - 25-4	1053M	11:3- 1:16	55 J	46/A 1,32	1000 01212	1.85-16 58-5	Set or Legality	2.00 2.00	W66	H4H1	6.5.F X.33
45	VTBS-45MM	VS-45MM	35144 7901	54.0 2 1/8	127.0 5	95.3 3 3/4	50.8 2	108.0 4 1/4	49.2 1 15/16	30.2 1 3/16	58.3 2 19/64	M12	19.1	2.13 4.7
Sir	SA RESCHA	SE-SHOW	315:50 784.	9.10 9.10	1,381 - :=9	icte	3631 9	10 % 1.24	91 H = 1,34	39,4 1,753	#/S	K/O	2.00	6123 141

Rolling Elements:

Cast Iron Tapped Base Pillow Housing:


Block

Self Alignment: +/- 1.5 Degrees

Lock:

Seal: Contact and Flinger

-20° to 200°F Temperature:

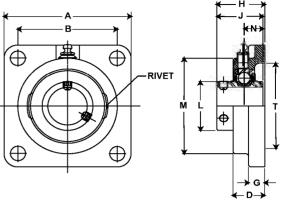
VTBB 200 Series Standard Duty Tapped Base Pillow Blocks - BOA Concentric Locking

Bore			Basic	namic				s inch / mn	n		ľ	Tapped	(N)	00-00 mm
Diameter inch	Part No.	Bearing Insert No.	Rating Ib/N	Ä	B	O	D	H	3	ĸ	1	Hole Thread Size	Min Tap Depth	⊎nit Wt. lb/kg
3/4	VTBB-212	VB-212	2611 11614	1 5/16 33.3	2 7/8 73.0	2 50.8	1 1/2 38.1	2 9/16 65.1	1 9/32 32.5	25/32 19.8	1 3/4 44.5	3/8-16	1/2	1.7 .77
7/8	VTBB-214	VB-214												
15/16	VTBB-215	VB-215	2801 12459	1 7/16 36.5	3 76.2	2 50.8	1 1/2 38.1	2 13/16 71.4	1 7/16 36.5	7/8 22.2	1 15/16 49.2	3/8-16	1/2	1.8 .82
1	VTBB-216	VB-216												
1 1/8	VTBB-218	VB-218												
1 3/16	VTBB-219	VB-219	4381 19487	1 11/16 42.9	4 101.6	3 76.2	1 1/2 38.1	3 3/8 85.7	1 9/16 39.7	15/16 23.8	2 3/16 55.6	7/16-14	5/8	2.8 1.27
1 1/4	VTBB-220S	VB-220S												
1 1/4	VTBB-220	VB-220	5782 25718	1 7/8 47.6	4 1/4 108.0	3 1/4 82.6	1 7/8 47.6	3 3/4 95.3	1 3/4 44.5	1 1/16 27.0	2 7/16 61.9	1/2-13	3/4	4.0 1.81
1 3/8	VTBB-222	VB-222	5782	1 7/8	4 1/4	3 1/4	1 7/8	3 3/4	1 3/4	1 1/16	2 9/16	1/2-13	3/4	4.0
1 7/16	VTBB-223	VB-223	25718	47.6	108.0	82.6	47.6	95.3	44.5	27.0	65.1	1/2-13	3/4	1.81
1 1/2	VTBB-224	VB-224	7340 32648	1 15/16 49.2	4 5/8 117.5	3 1/2 88.9	1 7/8 47.6	3 15/16 100.0	2 50.8	1 1/4 31.8	2 11/16 68.3	1/2-13	3/4	4.5 2.04
1 5/8	VTBB-226	VB-226	7901 35144	2 1/8 54.0	5 127.0	3 3/4 95.3	2 50.8	4 1/4 108.0	2 50.8	1 1/4 31.8	2 13/16 71.4	1/2-13	3/4	5.6 2.54
1 11/16	VTBB-227	VB-227	7901	2 1/8	5	3 3/4	2	4 1/4	2	1 1/4	2 15/16	1/2-13	3/4	5.6
1 3/4	VTBB-228	VB-228	35144	54.0	127.0	95.3	50.8	108.0	50.8	31.8	74.6	1/2-13	3/4	2.54
1 15/16	VTBB-231	VB-231	7889	2 1/4	5 1/2	4	2	4 5/8	2 3/32	1 11/32	3 3/8	5/8-11	7/8	6.9
2	VTBB-232S	VB-232S	35090	57.2	139.7	101.6	50.8	117.5	53.2	34.1	85.7	3/0-11	110	3.13

Browning **Mounted Ball Bearings**

Duty: Intermediate

Rolling Elements: Ball


> Housing: Cast Iron Four Bolt Flange

Self Alignment: +/- 1.5 Degrees

> Lock: Setscrew

Seal: Contact and Flinger

Temperature: -20° to 200°F

VF4S 100 Series Intermediate Duty Four Bolt Flanges - Setscrew Locking

OWN	= =		Busic				Di	mension	s inch / m	ım			-		*****
Hiamoter iosh	Part No	Bearing Insert No	Dy⊐amic Rating I⊃/N	À	8*	D	G	100	×2,	¥	M	Ŋ	T Cored	Bolt Size	Unit Wt. Ib/kg
1/2	VF4S-108	VS-108	2108	3	2 1/8	23/32	3/8	1 5/64	15/16	31/32	2 1/8	5/16	1 3/4	0.40	1.0
5/8	VF4S-110	VS-110	9377	76.2	54.0	18.3	9.5	27.4	23.8	24.6	54.0	7.9	44.5	3/8	.45
3/4	VF4S-112	VS-112	2611 11614	3 3/8 85.7	2 1/2 63.5	57/64 22.6	7/16 11.1	1 9/32 32.5	1 1/16 27.0	1 3/16 30.2	2 1/2 63.5	11/32 8.7	2 50.8	3/8	1.3 .59
7/8	VF4S-114	VS-114													
15/16	VF4S-115	VS-115	2801 12459	3 3/4 95.3	2 3/4 69.9	61/64 24.2	1/2 12.7	1 25/64 35.3	1 7/64 28.2	1 3/8 34.9	2 3/4 69.9	11/32 8.7	2 1/2 63.5	7/16	1.7 .77
1	VF4S-116	VS-116													
1 1/8	VF4S-118	VS-118													
1 3/16	VF4S-119	VS-119	4381 19487	4 1/4 108.0	3 1/4 82.6	1 5/64 27.4	17/32 13.5	1 15/32 37.3	1 5/32 29.4	1 19/32 40.5	3 1/8 79.4	3/8 9.5	2 7/8 73.0	7/16	2.4 1.09
1 1/4	VF4S-120S	VS-120S													
1 1/4	VF4S-120	VS-120													
1 3/8	VF4S-122	VS-122	5782 25718	4 5/8 117.5	3 5/8 92.1	1 5/32 29.4	19/32 15.1	1 39/64 40.9	1 9/32 32.5	1 55/64 47.2	3 5/8 92.1	27/64 10.7	3 1/4 82.6	1/2	3.4 1.54
1 7/16	VF4S-123	VS-123													
1 1/2	VF4S-124	VS-124	7340 32648	5 1/8 130.2	4 101.6	1 19/64 32.9	5/8 15.9	1 49/64 44.8	1 27/64 36.1	2 1/16 52.4	4 1/8 104.8	31/64 12.3	3 1/2 88.9	1/2	4.4 2.00
1 11/16	VF4S-127	VS-127	7901	5 3/8	4 1/8	1 21/64	5/8	1 13/16	1 7/16	2 19/64	4 3/8	31/64	3 7/8	9/16	4.7
1 3/4	VF4S-128	VS-128	35144	136.5	104.8	33.7	15.9	46.0	36.5	58.3	111.1	12.3	98.4	9/16	2.13
1 15/16	VF4S-131	VS-131	7889	5 5/8	4 3/8	1 23/64	5/8	1 59/64	1 35/64	2 15/32	4 9/16	1/2	4	9/16	5.4
2	VF4S-132S	VS-132S	35090	142.9	111.1	34.5	15.9	48.8	39.3	62.7	115.9	12.7	101.6	סו /פ	2.45
2	VF4S-132	VS-132	9752	6 3/8	5 1/8	1 33/64	13/16	2 7/64	1 21/32	2 23/32	5 1/4	35/64	4 1/4	E/0	7.7
2 3/16	VF4S-135	VS-135	43377	161.9	130.2	38.5	20.6	53.6	42.1	69.1	133.4	13.9	108.0	5/8	3.49

^{*} To obtain bolt circle multiply B x 1.414".

Metric dimensions for reference only.

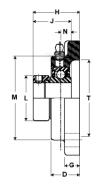
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Duty: Intermediate

Rolling Elements:

Housing: Cast Iron Four Bolt Flange


Self Alignment: +/- 1.5 Degrees

> Lock: Eccentric

Seal: Contact

-20° to 200°F Temperature:

VF4E 100 Series Intermediate Duty Four Bolt Flanges - Eccentric Locking

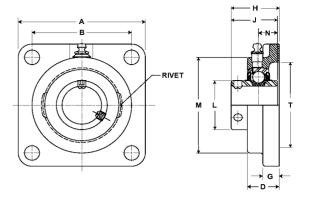
Dote			Basic				Di	mension	s inch / m	ım				28.8	- W-
Diameter	Part No.	Bearing Insert No.	Dynamic Rating Ib/N	A	B*	D	G	H	4	10.	M	N	Cored	Bolt Size	Unit Wt. lb/kg
1/2	VF4E-108	VE-108	2108	3	2 1/8	23/32	3/8	1 21/64	1 3/16	1 3/16	2 1/8	5/16	1 3/4	0.40	1.1
5/8	VF4E-110	VE-110	9377	76.2	54.0	18.3	9.5	33.7	30.2	30.2	54.0	7.9	44.5	3/8	.50
3/4	VF4E-112	VE-112	2611 11614	3 3/8 85.7	2 1/2 63.5	57/64 22.6	7/16 11.1	1 31/64 37.7	1 17/64 32.1	1 5/16 33.3	2 1/2 63.5	11/32 8.7	2 50.8	3/8	1.4 .64
7/8	VF4E-114	VE-114													
15/16	VF4E-115	VE-115	2801 12459	3 3/4 95.3	2 3/4 69.9	61/64 24.2	1/2 12.7	1 35/64 39.3	1 17/64 32.1	1 1/2 38.1	2 3/4 69.9	11/32 8.7	2 1/2 63.5	7/16	1.8 .82
1	VF4E-116	VE-116													
1 1/8	VF4E-118	VE-118													
1 3/16	VF4E-119	VE-119	4381 19487	4 1/4 108.0	3 1/4 82.6	1 5/64 27.4	17/32 13.5	1 47/64 44.1	1 27/64 36.1	1 3/4 44.5	3 1/8 79.4	3/8 9.5	2 7/8 73.0	7/16	2.6 1.18
1 1/4	VF4E-120S	VE-120S													
1 1/4	VF4E-120	VE-120													
1 3/8	VF4E-122	VE-122	5782 25718	4 5/8 117.5	3 5/8 92.1	1 5/32 29.4	19/32 15.1	1 29/32 48.4	1 37/64 40.1	2 3/16 55.6	3 5/8 92.1	27/64 10.7	3 1/4 82.6	1/2	3.6 1.63
1 7/16	VF4E-123	VE-123													
1 1/2	VF4E-124	VE-124	7340 32648	5 1/8 130.2	4 101.6	1 19/64 32.9	5/8 15.9	2 7/64 53.6	1 49/64 44.8	2 3/8 60.3	4 1/8 104.8	31/64 12.3	3 1/2 88.9	1/2	4.7 2.13
1 11/16	VF4E-127	VE-127	7901	5 3/8	4 1/8	1 21/64	5/8	2 9/64	1 49/64	2 1/2	4 3/8	31/64	3 7/8	9/16	5.0
1 3/4	VF4E-128	VE-128	35144	136.5	104.8	33.7	15.9	54.4	44.8	63.5	111.1	12.3	98.4	9/10	2.27
1 15/16	VF4E-131	VE-131	7889	5 5/8	4 3/8	1 23/64	5/8	2 5/32	1 25/32	2 3/4	4 9/16	1/2	4	9/16	5.6
2	VF4E-132S	VE-132S	35090	142.9	111.1	34.5	15.9	54.8	45.2	69.9	115.9	12.7	101.6	פו /פ	2.54
2	VF4E-132	VE-132	9752	6 3/8	5 1/8	1 33/64	13/16	2 7/16	1 63/64	3	5 1/4	35/64	4 1/4	5/8	7.7
2 3/16	VF4E-135	VE-135	43377	161.9	130.2	38.5	20.6	61.9	50.4	76.2	133.4	13.9	108.0	3/6	3.49

^{*} To obtain bolt circle multiply B x 1.414".

Browning Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball


> Housing: Cast Iron Four Bolt Flange

Self Alignment: +/- 1.5 Degrees

> Lock: Setscrew

Seal: Contact and Flinger

Temperature: -20° to 200°F

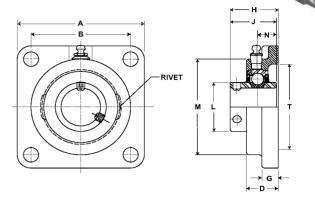
VF4S 200 Series Standard Duty Four Bolt Flanges - Setscrew Locking - Inch

Bore D	iameter		-	Basic				Di	mension	s inch / n	nm				4.0	
inch	mm	Part No.	Bearing Insert No.	Dynamic Rating Ib/N	M:	B	0	G	H	y	110	M	N	T Cared	Bolt Size	Unit Wt. lb/kg
1/2	12.7	VF4S-208	VS-208	2108	3	2 1/8	23/32	3/8	1 5/64	1 1/32	31/32	2 1/8	13/32	1 3/4	3/8	1.1
5/8	15.9	VF4S-210	VS-210	9377	76.2	54.0	18.3	9.5	27.4	26.2	24.6	54.0	10.3	44.5	3/0	.50
3/4	19.1	VF4S-212	VS-212	2611 11614	3 3/8 85.7	2 1/2 63.5	57/64 22.6	7/16 11.1	1 9/32 32.5	1 7/32 31.0	1 3/16 30.2	2 1/2 63.5	1/2 12.7	2 50.8	3/8	1.4 .64
7/8	22.2	VF4S-214	VS-214													
15/16	23.8	VF4S-215	VS-215	2801 12459	3 3/4 95.3	2 3/4 69.9	61/64 24.2	1/2 12.7	1 7/16 36.5	1 3/8 34.9	1 3/8 34.9	2 3/4 69.9	9/16 14.3	2 1/2 63.5	7/16	1.6 .73
1	25.4	VF4S-216	VS-216	12 100	00.0	00.0	21.2	12	00.0	01.0	01.0	00.0	11.0	00.0		
1 1/8	28.6	VF4S-218	VS-218													
1 3/16	30.2	VF4S-219	VS-219	4381 19487	4 1/4 108.0	3 1/4 82.6	1 5/64 27.4	17/32 13.5	1 9/16 39.7	1 1/2 38.1	1 19/32 40.5	3 1/8 79.4	5/8 15.9	2 7/8 73.0	7/16	2.6 1.18
1 1/4	31.8	VF4S-220S	VS-220S	10401	100.0	02.0	21.4	10.0	00.1	00.1	40.0	10.4	10.0	10.0		1.10
1 1/4	31.8	VF4S-220	VS-220													
1 3/8	34.9	VF4S-222	VS-222	5782 25718	4 5/8 117.5	3 5/8 92.1	1 5/32 29.4	19/32 15.1	1 3/4 44.5	1 11/16 42.9	1 55/64 47.2	3 5/8 92.1	11/16 17.5	3 1/4 82.6	1/2	3.6 1.63
1 7/16	36.5	VF4S-223	VS-223	20110	''''	OZ.	20.1	10.1	11.0	12.0		OL. I	11.0	02.0		1.00
1 1/2	38.1	VF4S-224	VS-224	7340 32648	5 1/8 130.2	4 101.6	1 19/64 32.9	5/8 15.9	2 1/64 51.2	1 15/16 49.2	2 1/16 52.4	4 1/8 104.8	3/4 19.1	3 1/2 88.9	1/2	4.9 2.22
1 5/8	41.3	VF4S-226	VS-226	7004	F 0/0	4.400	4 04/04	F (0	0.0/04	4.45(40)	0.40/04	4.00	0/4	0.7/0		F 0
1 11/16	42.9	VF4S-227	VS-227	7901 35144	5 3/8 136.5	4 1/8 104.8	1 21/64 33.7	5/8 15.9	2 3/64 52.0	1 15/16 49.2	2 19/64 58.3	4 3/8 111.1	3/4 19.1	3 7/8 98.4	9/16	5.2 2.36
1 3/4	44.5	VF4S-228	VS-228		100.0	10 110	••		02.0		00.0					2.00
1 15/16	49.2	VF4S-231	VS-231	7889	5 5/8	4 3/8	1 23/64	5/8	2 5/32	2 1/32	2 15/32	4 9/16	3/4	4	9/16	5.6
2	50.8	VF4S-232S	VS-232S	35090	142.9	111.1	34.5	15.9	54.8	51.6	62.7	115.9	19.1	101.6	9/10	2.54
2	50.8	VF4S-232	VS-232	9752	6 3/8	5 1/8	1 33/64	13/16	2 5/16	2 3/16	2 23/32	5 1/4	7/8	4 1/4	5/8	7.9
2 3/16	55.6	VF4S-235	VS-235	43377	161.9	130.2	38.5	20.6	58.7	55.6	69.1	133.4	22.2	108.0	3/0	3.58
2 1/4	57.2	VF4S-236	VS-236	11789	6 7/8	5 5/8	1 11/16	13/16	2 11/16	2 3/16	2 63/64	5 7/16	1	5	5/8	9.6
2 7/16	61.9	VF4S-239	VS-239	52437	174.6	142.9	42.9	20.6	68.3	55.6	75.8	138.1	25.4	127.0	3/0	4.35

^{*} To obtain bolt circle multiply B x 1.414".

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Rolling Elements: Ball


> Housing: Cast Iron Four Bolt Flange

+/- 1.5 Degrees **Self Alignment:**

> Lock: Setscrew

Seal: Contact and Flinger

-20° to 200°F Temperature:

VF4S 200 Series Standard Duty Four Bolt Flanges - Setscrew Locking - Metric

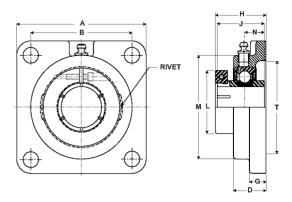
satu			Basic				Di	mension	s mm / in	ch				~	The same
Plameter	Part No.	Bearing Insert No.	Dynamic Rating N/lb	*	B	Ď	G	H)	1	M	Ň	T Cored	Bolt Size	Unit Wt. kg/lb
20	VF4S-20 MM	VS-20 MM	11614	85.7	63.5	22.6	11.1	32.5	31.0	30.2	63.5	12.7	50.8	M10	.64
20	V1 43-20 WIW	V3-20 IVIIVI	2611	3 3/8	2 1/2	57/64	7/16	1 9/32	1 7/32	1 3/16	2 1/2	1/2	2	IVITO	1.4
25	VF4S-25 MM	VS-25 MM	12459	95.3	69.9	24.2	12.7	36.5	34.9	34.9	69.9	14.3	63.5	M10	.73
25	VF43-23 WIWI	V S-25 IVIIVI	2801	3 3/4	2 3/4	61/64	1/2	1 7/16	1 3/8	1 3/8	2 3/4	9/16	2 1/2	IVITO	1.6
30	VF4S-30 MM	VS-30 MM	19487	108.0	82.6	27.4	13.5	39.7	38.1	40.5	79.4	15.9	73.0	M10	1.18
30	VF45-30 MM	V 5-30 MINI	4381	4 1/4	3 1/4	1 5/64	17/32	1 9/16	1 1/2	1 19/32	3 1/8	5/8	2 7/8	IVITO	2.6
35	VF4S-35 MM	VS-35 MM	25718	117.5	92.1	29.4	15.1	44.5	42.9	47.2	92.1	17.5	82.6	M12	1.63
35	VF45-33 WIWI	V 3-33 IVIIVI	5782	4 5/8	3 5/8	1 5/32	19/32	1 3/4	1 11/16	1 55/64	3 5/8	11/16	3.25	IVIIZ	3.6
40	VF4S-40 MM	VS-40 MM	32648	130.2	101.6	32.9	15.9	51.2	49.2	52.4	104.8	19.1	88.9	M12	2.22
40	VF43-40 WIW	V 3-40 IVIIVI	7340	5 1/8	4	1 19/64	5/8	2 1/64	1 15/16	2 1/16	4 1/8	3/4	3 1/2	IVIIZ	4.9
45	VF4S-45 MM	VS-45 MM	35144	136.5	104.8	33.7	15.9	52.0	49.2	58.3	111.1	19.1	98.4	M14	2.36
45	V1 43-43 WIW	V O-40 IVIIVI	7901	5 3/8	4 1/8	1 21/64	5/8	2 3/64	1 15/16	2 19/64	4 3/8	3/4	3 7/8	10114	5.2
50	VF4S-50 MM	VS-50 MM	35090	142.9	111.1	34.5	15.9	54.8	51.6	62.7	115.9	19.1	101.6	M16	2.54
30	VF43-30 WIW	V 3-30 IVIIVI	7889	5 5/8	4 3/8	1 23/64	5/8	2 5/32	2 1/32	2 15/32	4 9/16	3/4	4	IVITO	5.6
55	VF4S-55 MM	VS-55 MM	43377	161.9	130.2	38.5	20.6	58.7	55.6	69.1	133.4	22.2	108.0	M16	3.58
	V1 40-00 WIW	V O-OO IVIIVI	9752	6 3/8	5 1/8	1 33/64	13/16	2 5/16	2 3/16	2 23/32	5 1/4	7/8	4 1/4	IVITO	7.9
60	VF4S-60 MM	VS-60 MM	52437	174.6	142.9	42.9	20.6	68.3	55.6	75.8	138.1	25.4	127.0	M16	4.35
30	V1 43-00 WIW	V 3-00 IVIIVI	11789	6 7/8	5 5/8	1 11/16	13/16	2 11/16	2 3/16	2 63/64	5 7/16	1	5	IVITO	9.6

^{*} To obtain bolt circle multiply B x 1.414".

Browning® Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball


Housing: Cast Iron Four Bolt Flange

Self Alignment: +/- 1.5 Degrees

Lock: BOA Concentric

Seal: Contact and Flinger

Temperature: -20° to 200°F

VF4B 200 Series Standard Duty Four Bolt Flanges - BOA Concentric Locking

Bon Dian ter			Basic Dynamic				Di	mension	s inch / m	ım				Bolt	Unit Wt.
inen	Part Ne.	Bearing Irrinart No.	Rating Ib/N	Ä	8*	D	G	B	J	Ĭ.	M	N	T Cored	Size	lb/kg
3/4	VF4B-212	VB-212	2611 11614	3 3/8 85.7	2 1/2 63.5	57/64 22.6	7/16 11.1	1 11/32 34.1	1 9/32 32.5	1 3/4 44.5	2 1/2 63.5	1/2 12.7	2 50.8	3/8	1.5 .68
7/8 15/16 1	VF4B-214 VF4B-215 VF4B-216	VB-214 VB-215 VB-216	2801 12459	3 3/4 95.3	2 3/4 69.9	61/64 24.2	1/2 12.7	1 1/2 38.1	1 7/16 36.5	1 15/16 49.2	2 3/4 69.9	9/16 14.3	2 1/2 63.5	7/16	1.8 .82
1 1/8 1 3/16 1 1/4	VF4B-218 VF4B-219 VF4B-220S	VB-218 VB-219 VB-220S	4381 19487	4 1/4 108.0	3 1/4 82.6	1 5/64 27.4	17/32 13.5	1 5/8 41.3	1 9/16 39.7	2 3/16 55.6	3 1/8 79.4	5/8 15.9	2 7/8 73.0	7/16	2.8 1.27
1 1/4	VF4B-220	VB-220	5782 25718	4 5/8 117.5	3 5/8 92.1	1 5/32 29.4	19/32 15.1	1 13/16 46.0	1 3/4 44.5	2 7/16 61.9	3 5/8 92.1	11/16 17.5	3 1/4 82.6	1/2	3.9 1.77
1 3/8 1 7/16	VF4B-222 VF4B-223	VB-222 VB-223	5782 25718	4 5/8 117.5	3 5/8 92.1	1 5/32 29.4	19/32 15.1	1 13/16 46.0	1 3/4 44.5	2 9/16 65.1	3 5/8 92.1	11/16 17.5	3 1/4 82.6	1/2	3.9 1.77
1 1/2	VF4B-224	VB-224	7340 32648	5 1/8 130.2	4 101.6	1 19/64 32.9	5/8 15.9	2 5/64 52.8	2 50.8	2 11/16 68.3	4 1/8 104.8	3/4 19.1	3 1/2 88.9	1/2	5.2 2.36
1 5/8	VF4B-226	VB-226	7901 35144	5 3/8 136.5	4 1/8 104.8	1 21/64 33.7	5/8 15.9	2 7/64 53.6	2 50.8	2 13/16 71.4	4 3/8 111.1	3/4 19.1	3 7/8 98.4	9/16	5.5 2.49
1 11/16 1 3/4	VF4B-227 VF4B-228	VB-227 VB-228	7901 35144	5 3/8 136.5	4 1/8 104.8	1 21/64 33.7	5/8 15.9	2 7/64 53.6	2 50.8	2 15/16 74.6	4 3/8 111.1	3/4 19.1	3 7/8 98.4	9/16	5.5 2.49
1 15/16 2	VF4B-231 VF4B-232S	VB-231 VB-232S	7889 35090	5 5/8 142.9	4 3/8 111.1	1 23/64 34.5	5/8 15.9	2 7/32 56.4	2 3/32 53.2	3 3/8 85.7	4 9/16 115.9	3/4 19.1	4 101.6	9/16	6.2 2.81
2	VF4B-232	VB-232	9752 43377	6 3/8 161.9	5 1/8 130.2	1 33/64 38.5	13/16 20.6	2 3/8 60.3	2 1/4 57.2	3 1/2 88.9	5 1/4 133.4	7/8 22.2	4 1/4 108.0	5/8	8.5 3.86
2 3/16	VF4B-235	VB-235	9752 43377	6 3/8 161.9	5 1/8 130.2	1 33/64 38.5	13/16 20.6	2 3/8 60.3	2 1/4 57.2	3 5/8 92.1	5 1/4 133.4	7/8 22.2	4 1/4 108.0	5/8	8.5 3.86
2 1/4	VF4B-236	VB-236	11789 52437	6 7/8 174.6	5 5/8 142.9	1 11/16 42.9	13/16 20.6	2 3/4 69.9	2 5/8 66.7	4 1/16 103.2	5 7/16 138.1	1 25.4	5 127.0	5/8	10.8 4.90
2 7/16	VF4B-239	VB-239	11789 52437	6 7/8 174.6	5 5/8 142.9	1 11/16 42.9	13/16 20.6	2 3/4 69.9	2 5/8 66.7	4 1/8 104.8	5 7/16 138.1	1 25.4	5 127.0	5/8	10.8 4.90

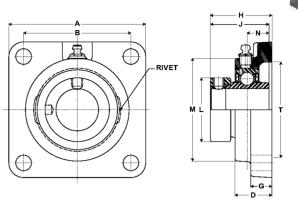
^{*} To obtain bolt circle multiply B x 1.414".

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Rolling Elements:


Housing: Cast Iron Four Bolt Flange

Self Alignment: +/- 1.5 Degrees

> Lock: Eccentric

Seal: Contact and Flinger

-20° to 200°F Temperature:

VF4E 200 Series Standard Duty Four Bolt Flanges - Eccentric Locking

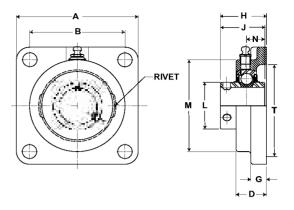
Hore		D	Bisic				Di	mension	s inch / m	m				(Dall)	DOWNER SAME
inch	Part No.	Bearing Insert No	Dynamic Rating	Ä	8*	G	D	H	Ú	4	M	N.	T Cored	Bolt Size	Unit Wt lb/kg
1/2	VF4E-208	VE-208	2108	3	2 1/8	1/2	7/8	1 33/64	1 15/32	1 3/16	2 1/8	35/64	1 3/4		1.2
5/8	VF4E-210	VE-210	9377	76.2	54.0	12.7	22.2	38.5	37.3	30.2	54.0	13.9	44.5	3/8	.54
3/4	VF4E-212	VE-212	2611 11614	3 3/8 85.7	2 1/2 63.5	1/2 12.7	1 5/64 27.4	1 51/64 45.6	1 23/32 43.7	1 5/16 33.3	2 1/2 63.5	43/64 17.1	2 50.8	3/8	1.5 .68
7/8	VF4E-214	VE-214													
15/16	VF4E-215	VE-215	2801 12459	3 3/4 95.3	2 3/4 69.9	9/16 14.3	1 7/64 28.2	1 27/32 46.8	1 3/4 44.5	1 1/2 38.1	2 3/4 69.9	11/16 17.5	2 1/2 63.5	7/16	2.0 .91
1	VF4E-216	VE-216	12400	00.0	00.0	14.0	20.2	40.0	44.0	00.1	00.0	11.0	00.0		.01
1 1/8	VF4E-218	VE-218													
1 3/16	VF4E-219	VE-219	4381 19487	4 1/4 108.0	3 1/4 82.6	5/8 15.9	1 13/64 30.6	2 50.8	1 29/32 48.4	1 3/4 44.5	3 1/8 79.4	23/32 18.3	2 7/8 73.0	7/16	3.0 1.36
1 1/4	VF4E-220S	VE-220S	10 101	100.0	02.0	10.0	00.0	00.0	10.1	11.0	10.1	10.0	10.0		1.00
1 1/4	VF4E-220	VE-220													
1 3/8	VF4E-222	VE-222	5782 25718	4 5/8 117.5	3 5/8 92.1	21/32 16.7	1 1/4 31.8	2 1/8 54.0	2 1/64 51.2	2 3/16 55.6	3 5/8 92.1	3/4 19.1	3 1/4 82.6	1/2	3.8 1.72
1 7/16	VF4E-223	VE-223	20110	111.0	02.1	10.1	01.0	01.0	01.2	00.0	02.1	10.1	02.0		1.12
1 1/2	VF4E-224	VE-224	7340 32648	5 1/8 130.2	4 101.6	11/16 17.5	1 13/32 35.7	2 5/16 58.7	2 7/32 56.4	2 3/8 60.3	4 1/8 104.8	27/32 21.4	3 1/2 88.9	1/2	5.1 2.31
1 5/8	VF4E-226	VE-226													
1 11/16	VF4E-227	VE-227	7901 35144	5 3/8 136.5	4 1/8 104.8	11/16 17.5	1 13/32 35.7	2 5/16 58.7	2 7/32 56.4	2 1/2 63.5	4 3/8 111.1	27/32 21.4	3 7/8 98.4	9/16	5.4 2.45
1 3/4	VF4E-228	VE-228	00111	100.0	10		00.1	00.1	00.1	00.0		2	00.1		2.10
1 15/16	VF4E-231	VE-231	7889 35090	5 5/8 142.9	4 3/8 111.1	23/32 18.3	1 39/64 40.9	2 5/8 66.7	2 15/32 62.7	2 3/4 69.9	4 9/16 115.9	31/32 24.6	4 101.6	9/16	5.9 2.68
2	VF4E-232	VE-232	9752	6 3/8	5 1/8	25/32	1 49/64	2 31/32	2 13/16	3	5 1/4	1 3/32	4 1/4	5/8	8.2
2 3/16	VF4E-235	VE-235	43377	161.9	130.2	19.8	44.8	75.4	71.4	76.2	133.4	27.8	108.0	3/6	3.72
2 1/4	VF4E-236	VE-236	11789	6 7/8	5 5/8	13/16	1 31/32	3 1/4	3 1/16	3 3/8	5 7/16	1 7/32	4 7/8	5/8	9.9
2 7/16	VF4E-239	VE-239	52437	174.6	142.9	20.6	50.0	82.6	77.8	85.7	138.1	31.0	123.8	3/0	4.49

^{*} To obtain bolt circle multiply B x 1.414".

Browning Mounted Ball Bearings

Duty: Medium

Rolling Elements: Ball


Housing: Cast Iron Four Bolt Flange

Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact and Flinger

Temperature: -20° to 200°F

VF4S 300 Series Medium Duty Four Bolt Flanges - Setscrew Locking

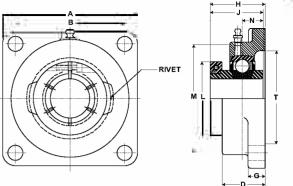
Born	1923/2020)36kmes	55/46					mansish	a inchéa		ر			Table	Valentini.
Dienrogo	Park.	Lik lik	Railing Initi	7,000	D)	(6)	10	1941	95	10	30	((08)	Cotto	膦	
9 (0	y reasts	3547 E	-38f (3.00)	2 4 C	20 Tel 504 S	-1481 27	1/452 14-8	y 2018 2023	**** ***	T 10000 5010	31.18 10.4	18 10 D	239 239	resa.	20 14
1 3/16	VF4S-319	VS-319	5782 25718	4 5/8 117.5	3 5/8 92.1	1 5/32 29.4	19/32 15.1	1 3/4 44.5	1 11/16 42.9	1 55/64 47.2	3 5/8 92.1	11/16 17.5	3 1/4 82.6	1/2	2 9 1.32
· • #	y syes	owe.	7547 24744	151.6) (case	A Section	58 164	2 feet Jrt	L Jarre	100 100	4.48	30%	9 (s./ 5907	₩.	100 37
1 1/2	VF4S-324	VS-324	7901 35144	5 3/8 136.5	4 1/8 104.8	1 21/64 33.7	5/8 15.9	2 3/64 52.0	1 15/16 49.2	2 19/64 58.3	4 3/8 111.1	3/4 19.1	3 7/8 98.4	9/16	5 0 2.27
143.6 179	v=es 327 e + 5 5 5	NS-027	3008 (3574)	Selection (Selection)	1 25 1 1 1	1 cost 5/3	Ber Text	niga Mari	PS/ DIA	P Inche Ke, i	erre Taci	жп ш (n 103.4	eta	54X 24
1 15/16 2	VF4S-331 VF4S-332	VS-331 VS-232S	9752 43377	6 3/8 161.9	5 1/8 130.2	1 33/64 38.5	13/16 20.6	2 5/16 58.7	2 3/16 55.6	2 23/32 69.1	5 1/4 133.4	7/8 22.2	4 1/4 108.0	5/8	8 0 3.63
3946 2946	(5=8-90) # -1516F	(48.00) (48.00)	78 0 57,07	85.548 178.2)(545)(4-)(1,77°2 42°2	120.319 	er.	÷19 #12,1	2450M 038	= //°€ =38,1	(i) 36+1	\$ 10000	2479	991 600

^{*} To obtain bolt circle multiply B x 1.414".

Metric dimensions for reference only.

Duty: Medium

Rolling Elements:


Housing: Cast Iron Four Bolt Flange

Self Alignment: +/- 1.5 Degrees

> Lock: **BOA Concentric**

Seal: Contact and Flinger

-20° to 200°F Temperature:

VF4B 300 Series Medium Duty Four Bolt Flanges - BOA Concentric Locking

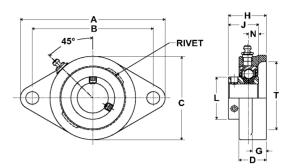
Som Dianatan	28000.000	31068300g	Saci:				, o	inavisisii	a inchés					Titke	Vanewis.
	Rinks.	Incom No	Egnames: Ratio arti	1860	(00)	(8)	25	1011	0.0	100	500	(180)	Contro	N/P	THE STATE OF THE S
16 1	2030 7-510	91-C#	458 10072	经	X 104 5045	- 5 8 9	1/152 Yanz	Tow en-e	7 +170 1824	742 104	31.13% 20.4	14.85 10:19	7.05 289	32%	20 122
1 3/16	VF4B-319	VB-319	5782	4 5/8 117.5	3 5/8 92.1	1 5/32 29.4	19/32 15.1	1 13/16 46.0	1 3/4 44.5	2 7/16 61.9	3 5/8 92.1	11/16 17.5	3 1/4 82.6	1/2	3 0
1 1/4	VF4B-320	VB-220	25718	111.0	02.1	20.1	10.1	10.0	71.0	01.0	oz.,	11.0	02.0		1.00
róm	W4163	7 (4.8)	7.40 7.40	15 Lee 28 X) Coper	A Caret	50 164	2504 114	ics.	# 11/18 MH /S	4.18 1.203	200 2003	300.07 300.07	te	101 1441
1 8/16	VF4B-324	VB-324	7901 35144	5 3/8 136.5	4 1/8 104.8	1 21/64 33.7	5/8 15.9	2 7/64 53.6	2 50.8	2 13/16 71.4	4 3/8 111.1	3/4 19.1	3 7/8 98.4	9/16	5 1 2.31
216	VF43 72"	99.025	7500	0.005	Con	1 - 2-2	842	11142	200	7.947	duce.	4896		575	::37
394	51 01 220	94374	566(55)	12.2	1771	.4.3	75.7	149	11578	1.41	1947	3000	314	1290	and one
1 15/16	VF4B-331	VB-331	9752	6 3/8	5 1/8	1 33/64	13/16	2 3/8	2 1/4	3 1/2	5 1/4	7/8	4 1/4	5/8	8.2
2	VF4B-332	VB-232S	43377	161.9	130.2	38.5	20.6	60.3	57.2	88.9	133.4	22.2	108.0	3/6	3.72
a sets	'MAIII ost	V i-cs	1701 h/41	9 (d) 1993	i sa	l mre Pos	130 189 0 228	e chi MLHI	ii Ard Mark	† 7-13 1250 F	5 // 5 138 (in South	\$ - 1/4	648	10.7

^{*} To obtain bolt circle multiply B x 1.414".

Browning **Mounted Ball Bearings**

Duty: Intermediate

Rolling Elements:


Housing: Cast Iron Two Bolt Flange

Self Alignment: +/- 1.5 Degrees

> Lock: Setscrew

Seal: Contact

Temperature: -20° to 200°F

VF2S 100 Series Intermediate Duty Two Bolt Flanges - Setscrew Locking

Ban			Basic				Di	mension	s inch / m	ım					W. Colon
Diameter	Part No	Dennog Intertible	Dynamic Rating lb/N	A	8	¢	Ď	G	н	¥	Ţ	2	T Cored	Bolt Size	Unit Wt. Ib/kg
1/2	VF2S-108	VS-108	2108	3 7/8	3	2 1/8	23/32	3/8	1 5/64	15/16	31/32	5/16	1 3/4	3/8	.8
5/8	VF2S-110	VS-110	9377	98.4	76.2	54.0	18.3	9.5	27.4	23.8	24.6	7.9	44.5	3/6	.36
044	V/500 440	1/0 440	2611	4 13/32	3 17/32	2 1/2	57/64	7/16	1 9/32	1 1/16	1 3/16	11/32	2	0.50	.9
3/4	VF2S-112	VS-112	11614	111.9	89.7	63.5	22.6	11.1	32.5	27.0	30.2	8.7	50.8	3/8	.41
7/8	VF2S-114	VS-114													
15/16	VF2S-115	VS-115	2801 12459	4 7/8 123.8	3 57/64 98.8	2 3/4 69.9	61/64 24.2	1/2 12.7	1 25/64 35.3	1 7/64 28.2	1 3/8 34.9	11/32 8.7	2 5/16 58.7	7/16	1.0 .45
1	VF2S-116	VS-116													
1 1/8	VF2S-118	VS-118													
1 3/16	VF2S-119	VS-119	4381 19487	5 9/16 141.3	4 19/32 116.7	3 1/8 79.4	1 5/64 27.4	17/32 13.5	1 15/32 37.3	1 5/32 29.4	1 19/32 40.5	3/8 9.5	2 3/4 69.9	7/16	1.6 .73
1 1/4	VF2S-120S	VS-120S													
1 1/4	VF2S-120	VS-120													
1 3/8	VF2S-122	VS-122	5782 25718	6 1/8 155.6	5 1/8 130.2	3 5/8 92.1	1 5/32 29.4	19/32 15.1	1 39/64 40.9	1 9/32 32.5	1 55/64 47.2	27/64 10.7	3 3/16 81.0	1/2	2.6 1.18
1 7/16	VF2S-123	VS-123													
1 1/2	VF2S-124	VS-124	7340	6 3/4	5 21/32	4 1/8	1 19/64	5/8	1 49/64	1 27/64	2 1/16	31/64	3 1/2	1/2	3.4
1 1/2	VF23-124	V3-124	32648	171.5	143.7	104.8	32.9	15.9	44.8	36.1	52.4	12.3	88.9	1/2	1.54
1 11/16	VF2S-127	VS-127	7901	7 1/16	5 27/32	4 3/8	1 21/64	5/8	1 13/16	1 7/16	2 19/64	31/64	3 3/4	9/16	3.5
1 3/4	VF2S-128	VS-128	35144	179.4	148.4	111.1	33.7	15.9	46.0	36.5	58.3	12.3	95.3	9/10	1.59
1 15/16	VF2S-131	VS-131	7889	7 7/16	6 3/16	4 9/16	1 23/64	5/8	1 59/64	1 35/64	2 15/32	1/2	4	9/16	4.4
2	VF2S-132S	VS-132S	35090	188.9	157.2	115.9	34.5	15.9	48.8	39.3	62.7	12.7	101.6	9/10	2.00
2	VF2S-132	VS-132	9752	8 1/2	7 1/4	5 1/4	1 33/64	13/16	2 7/64	1 21/32	2 23/32	35/64	4 1/4	5/8	5.7
2 3/16	VF2S-135	VS-135	43377	215.9	184.2	133.4	38.5	20.6	53.6	42.1	69.1	13.9	108.0	3/0	2.59

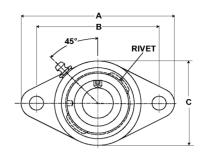
Metric dimensions for reference only.

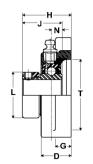
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Duty: Intermediate

Rolling Elements:


Housing: Cast Iron Two Bolt Flange


Self Alignment: +/- 1.5 Degrees

> Lock: Eccentric

Seal: Contact

-20° to 200°F Temperature:

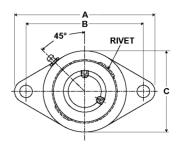
VF2E 100 Series Intermediate Duty Two Bolt Flanges - Eccentric Locking

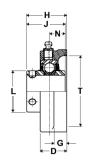
Hore Diameter		O towns	Basic				Di	mension	s inch / m	ım				Dwll	Unit Wt.
Diameter,	Part No.	Bearing Insert No.	Dynamic Rating Ib/N	Ä		O	D	Ğ	#	9	1/4	N	Cored	Bolt Size	lb/kg
1/2	VF2E-108	VE-108	2108	3 7/8	3	2 1/8	23/32	3/8	1 21/64	1 3/16	1 3/16	5/16	1 3/4	0.40	1.0
5/8	VF2E-110	VE-110	9377	98.4	76.2	54.0	18.3	9.5	33.7	30.2	30.2	7.9	44.5	3/8	.45
3/4	VF2E-112	VE-112	2611 11614	4 13/32 111.9	3 17/32 89.7	2 1/2 63.5	57/64 22.6	7/16 11.1	1 31/64 37.7	1 17/64 32.1	1 5/16 33.3	11/32 8.7	2 50.8	3/8	1.1 .50
7/0	VEOE 44.4	VE 444	11014												
7/8	VF2E-114	VE-114	2801	4 7/8	3 57/64	2 3/4	61/64	1/2	1 35/64	1 17/64	1 1/2	11/32	2 5/16		1.5
15/16	VF2E-115	VE-115	12459	123.8	98.8	69.9	24.2	12.7	39.3	32.1	38.1	8.7	58.7	7/16	.68
1	VF2E-116	VE-116													
1 1/8	VF2E-118	VE-118													
1 3/16	VF2E-119	VE-119	4381 19487	5 9/16 141.3	4 19/32 116.7	3 1/8 79.4	1 5/64 27.4	17/32 13.5	1 47/64 44.1	1 27/64 36.1	1 3/4 44.5	3/8 9.5	2 3/4 69.9	7/16	1.9 .86
1 1/4	VF2E-120S	VE-120S													
1 1/4	VF2E-120	VE-120													
1 3/8	VF2E-122	VE-122	5782 25718	6 1/8 155.6	5 1/8 130.2	3 5/8 92.1	1 5/32 29.4	19/32 15.1	1 29/32 48.4	1 37/64 40.1	2 3/16 55.6	27/64 10.7	3 3/16 81.0	1/2	2.8 1.27
1 7/16	VF2E-123	VE-123													
1 1/2	VF2E-124	VE-124	7340 32648	6 3/4 171.5	5 21/32 143.7	4 1/8 104.8	1 19/64 32.9	5/8 15.9	2 7/64 53.6	1 49/64 44.8	2 3/8 60.3	31/64 12.3	3 1/2 88.9	1/2	3.6 1.63
1 11/16	VF2E-127	VE-127	7901	7 1/16	5 27/32	4 3/8	1 21/64	5/8	2 5/32	1 49/64	2 1/2	31/64	3 3/4		3.8
1 3/4	VF2E-128	VE-128	35144	179.4	148.4	111.1	33.7	15.9	54.8	44.8	63.5	12.3	95.3	9/16	1.72
1 15/16	VF2E-131	VE-131	7889	7 7/16	6 3/16	4 9/16	1 23/64	5/8	2 5/32	1 25/32	2 3/4	1/2	4	0/40	4.5
2	VF2E-132S	VE-132S	35090	188.9	157.2	115.9	34.5	15.9	54.8	45.2	69.9	12.7	101.6	9/16	2.04
2	VF2E-132	VE-132	9752	8 1/2	7 1/4	5 1/4	1 33/64	13/16	2 7/16	1 63/64	3	35/64	4 1/4	5/8	6.1
2 3/16	VF2E-135	VE-135	43377	215.9	184.2	133.4	38.5	20.6	61.9	50.4	76.2	13.9	108.0	0,0	2.77

Browning Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball


Housing: Cast Iron Two Bolt Flange


Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

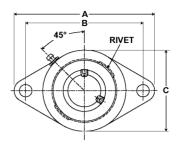
Seal: Contact and Flinger

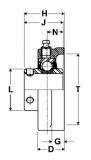
Temperature: -20° to 200°F

VF2S 200 Series Standard Duty Two Bolt Flanges - Setscrew Locking - Inch

				,											
Bon Diameter		B	Basic				Di	mension	s inch / m	ım				Bolt	⊎n⊢Wt.
ines	Part No.	Bearing Insert No.	Dynamic Rating Ib/N	A		٥	D	G	H	-3)	1	N	T Cored	Size	lb/kg
1/2	VF2S-208	VS-208	2108	3 7/8	3	2 1/8	23/32	3/8	1 5/64	1 1/32	31/32	13/32	1 3/4	3/8	.9
5/8	VF2S-210	VS-210	9377	98.4	76.2	54.0	18.3	9.5	27.4	26.2	24.6	10.3	44.5	0/0	.41
3/4	VF2S-212	VS-212	2611	4 13/32	3 17/32	2 1/2	57/64	7/16	1 9/32	1 7/32	1 3/16	1/2	2	3/8	1.0
0/4	VI 20-212	VO-212	11614	111.9	89.7	63.5	22.6	11.1	32.5	31.0	30.2	12.7	50.8	0/0	.45
7/8	VF2S-214	VS-214		4.7/0	0 57/04	0.0/4	04/04	4.0	4 7/40	4.0/0	4.0/0	0/40	0.5440		
15/16	VF2S-215	VS-215	2801 12459	4 7/8 123.8	3 57/64 98.8	2 3/4 69.9	61/64 24.2	1/2 12.7	1 7/16 36.5	1 3/8 34.9	1 3/8 34.9	9/16 14.3	2 5/16 58.7	7/16	1.1 .50
1	VF2S-216	VS-216													
1 1/8	VF2S-218	VS-218		- a/1a			1.5/0.1	17/00				- 10			
1 3/16	VF2S-219	VS-219	4381 19487	5 9/16 141.3	4 19/32 116.7	3 1/8 79.4	1 5/64 27.4	17/32 13.5	1 9/16 39.7	1 1/2 38.1	1 19/32 40.5	5/8 15.9	2 3/4 69.9	7/16	1.7 .77
1 1/4	VF2S-220S	VS-220S								33.1			00.0		
1 1/4	VF2S-220	VS-220	F700	0.440	F 4/0	0.540	4.5/00	40/00	4.04		4 55 (0.4	44/40	0.0440		0.7
1 3/8	VF2S-222	VS-222	5782 25718	6 1/8 155.6	5 1/8 130.2	3 5/8 92.1	1 5/32 29.4	19/32 15.1	1 3/4 44.5	1 11/16 42.9	1 55/64 47.2	11/16 17.5	3 3/16 81.0	1/2	2.7 1.22
1 7/16	VF2S-223	VS-223	201.10			V2	20			12.14			0 1.10		
1 1/2	VF2S-224	VS-224	7340	6 3/4	5 21/32	4 1/8	1 19/64	5/8	2 1/64	1 15/16	2 1/16	3/4	3 1/2	1/2	3.6
			32648	171.5	143.7	104.8	32.9	15.9	51.2	49.2	52.4	19.1	88.9		1.63
1 5/8	VF2S-226	VS-226	7901	7 1/16	5 27/32	4 3/8	1 21/64	5/8	2 3/64	1 15/16	2 19/64	3/4	3 3/4		3.7
1 11/16	VF2S-227	VS-227	35144	179.4	148.4	111.1	33.7	15.9	52.0	49.2	58.3	19.1	95.3	9/16	1.68
1 3/4	VF2S-228	VS-228													
1 15/16	VF2S-231	VS-231	7889	7 7/16	6 3/16	4 9/16	1 23/64	5/8	2 5/32	2 1/32	2 15/32	3/4	4	9/16	4.6
2	VF2S-232S	VS-232S	35090	188.9	157.2	115.9	34.5	15.9	54.8	51.6	62.7	19.1	101.6	0,10	2.09
2	VF2S-232	VS-232	9752	8 1/2	7 1/4	5 1/4	1 33/64	13/16	2 5/16	2 3/16	2 23/32	7/8	4 1/4	5/8	5.9
2 3/16	VF2S-235	VS-235	43377	215.9	184.2	133.4	38.5	20.6	58.7	55.6	69.1	22.2	108.0	0/0	2.68
2 1/4	VF2S-236	VS-236	11789	9 1/4	7 15/16	5 7/16	1 11/16	13/16	2 11/16	2 9/16	2 63/64	1	4 3/4	5/8	9.6
2 7/16	VF2S-239	VS-239	52437	235.0	201.6	138.1	42.9	20.6	68.3	65.1	75.8	25.4	120.7	3/0	4.35

Rolling Elements:


Housing: Cast Iron Two Bolt Flange


Self Alignment: +/- 1.5 Degrees

> Lock: Setscrew

Seal: Contact and Flinger

-20° to 200°F Temperature:

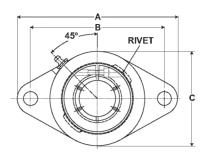
VF2S 200 Series Standard Duty Two Bolt Flanges - Setscrew Locking - Metric

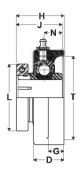
Hors			Basic				Di	mension	s mm / ind	ch					00-00-000
Diameter	Part.No.	Bearing Insert No.	Dynamic Rating N/lb	A	•	O	Ď	G	H	3	#	N	T Cored	Bolt Size	Unit Wt. kg/lb
20	VF2S-20MM	VS-20MM	11614	111.9	90.0	63.5	22.6	11.1	32.5	31.0	30.2	12.7	50.8	M10	.45
	11.20.2011111	V 0 20111111	2611	4 13/32	3 17/32	2 1/2	57/64	7/16	1 9/32	1 7/32	1 3/16	1/2	2		1.0
25	VF2S-25MM	VS-25MM	12459	123.8	99.0	69.9	24.2	12.7	36.5	34.9	34.9	14.3	58.7	M10	.50
20	V1 20 2011111	VO ZOMINI	2801	4 7/8	3 79/88	2 3/4	61/64	1/2	1 7/16	1 3/8	1 3/8	9/16	2 5/16		1.1
30	VF2S-30MM	VS-30MM	19487	141.3	116.5	79.4	27.4	13.5	39.7	38.1	40.5	15.9	69.9	M10	.77
00	V1 20-001VIIVI	VO-OOIVIIVI	4381	5 9/16	4 44/75	3 1/8	1 5/64	17/32	1 9/16	1 1/2	1 19/32	5/8	2 3/4	WITO	1.7
35	VF2S-35MM	VS-35MM	25718	155.6	130.0	92.1	29.4	15.1	44.5	42.9	47.2	17.5	81.0	M12	1.22
	V 20 0011111	V 0 00111111	5782	6 1/8	5 11/93	3 5/8	1 5/32	19/32	1 3/4	1 11/16	1 55/64	11/16	3.1875		2.7
40	VF2S-40MM	VS-40MM	32648	171.5	143.5	104.8	32.9	15.9	51.2	49.2	52.4	19.1	88.9	M12	1.63
	V1 20 10111111	70 10111111	7340	6 3/4	5 63/97	4 1/8	1 19/64	5/8	2 1/64	1 15/16	2 1/16	3/4	3 1/2		3.6
45	VF2S-45MM	VS-45MM	35144	179.4	148.5	111.1	33.7	15.9	52.0	49.2	57.2	19.1	95.3	M14	1.68
	V1 20 10111111	V 0 10111111	7901	7 1/16	5 11/13	4 3/8	1 21/64	5/8	2 3/64	1 15/16	2 1/4	3/4	3 3/4		3.7
50	VF2S-50MM	VS-50MM	35090	188.9	157.0	115.9	34.5	15.9	54.8	51.6	62.7	19.1	101.6	M16	2.09
	V1 20 00111111	V & 66111111	7889	7 7/16	6 17/94	4 9/16	1 23/64	5/8	2 5/32	2 1/32	2 15/32	3/4	4		4.6
55	VF2S-55MM	VS-55MM	43377	215.9	184.0	133.4	38.5	20.6	58.7	55.6	69.1	22.2	108.0	M16	2.68
	V1 20-00IVIIVI	V O-OOIVIIVI	9752	8 1/2	7 21/86	5 1/4	1 33/64	13/16	2 5/16	2 3/16	2 23/32	7/8	4 1/4	IVITO	5.9
60	VF2S-60MM	VS-60MM	52437	235.0	202.0	138.1	42.9	20.6	68.3	65.1	75.8	25.4	120.7	M16	4.35
30	V1 20-00IVIIVI	V O-OOIVIIVI	11789	9 1/4	7 81/85	5 7/16	1 11/16	13/16	2 11/16	2 9/16	2 63/64	1	4.75	19110	9.6

Browning Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball


Housing: Cast Iron Two Bolt Flange


Self Alignment: +/- 1.5 Degrees

Lock: BOA Concentric

Seal: Contact and Flinger

Temperature: -20° to 200°F

VF2B 200 Series Standard Duty Two Bolt Flanges - BOA Concentric Locking

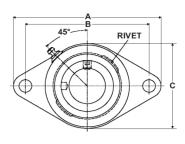
Бегн			Basic				Di	mension	s inch / m	m		9			
Diameter	Part No.	Bearing Insert No.	Dynamic Rating lb/N	Ã	8	C	D	G	H	ã	ik:	N	T Cored	Bolt Size	Unit Wt. lb/kg
3/4	VF2B-212	VB-212	2611 11614	4 13/32 111.9	3 17/32 89.7	2 1/2 63.5	57/64 22.6	7/16 11.1	1 11/32 34.1	1 9/32 32.5	1 3/4 44.5	1/2 12.7	2 50.8	3/8	1.1 .50
7/8	VF2B-214	VB-214													
15/16	VF2B-215	VB-215	2801 12459	4 7/8 123.8	3 57/64 98.8	2 3/4 69.9	61/64 24.2	1/2 12.7	1 1/2 38.1	1 7/16 36.5	1 15/16 49.2	9/16 14.3	2 5/16 58.7	7/16	1.3 .59
1	VF2B-216	VB-216	12 100	120.0	00.0	00.0	2 1.2	12.1	00.1	00.0	10.2	1 1.0	00.1		.00
1 1/8	VF2B-218	VB-218													
1 3/16	VF2B-219	VB-219	4381 19487	5 9/16 141.3	4 19/32 116.7	3 1/8 79.4	1 5/64 27.4	17/32 13.5	1 5/8 41.3	1 9/16 39.7	2 3/16 55.6	5/8 15.9	2 3/4 69.9	7/16	2.0 .91
1 1/4	VF2B-220S	VB-220S					2		11.0	00	00.0	10.0	00.0		
1 1/4	VF2B-220	VB-220	5782	6 1/8	5 1/8	3 5/8	1 5/32	19/32	1 13/16	1 3/4	2 7/16	11/16	3 3/16	1/2	3.0
			25718	155.6	130.2	92.1	29.4	15.1	46.0	44.5	61.9	17.5	81.0		1.36
1 3/8	VF2B-222	VB-222	5782	6 1/8	5 1/8	3 5/8	1 5/32	19/32	1 13/16	1 3/4	2 9/16	11/16	3 3/16	1/2	3.0
1 7/16	VF2B-223	VB-223	25718	155.6	130.2	92.1	29.4	15.1	46.0	44.5	65.1	17.5	81.0	.,	1.36
1 1/2	VF2B-224	VB-224	7340 32648	6 3/4 171.5	5 21/32 143.7	4 1/8 104.8	1 19/64 32.9	5/8 15.9	2 5/64 52.8	2 50.8	2 11/16 68.3	3/4 19.1	3 1/2 88.9	1/2	3.3 1.50
			7901	7 1/16	5 27/32	4 3/8	1 21/64	5/8	2 7/64	2	2 13/16	3/4	3 3/4		4.0
1 5/8	VF2B-226	VB-226	35144	179.4	148.4	111.1	33.7	15.9	53.6	50.8	71.4	19.1	95.3	9/16	1.81
1 11/16	VF2B-227	VB-227	7901	7 1/16	5 27/32	4 3/8	1 21/64	5/8	2 7/64	2	2 15/16	3/4	3 3/4	0/40	4.0
1 3/4	VF2B-228	VB-228	35144	179.4	148.4	111.1	33.7	15.9	53.6	50.8	74.6	19.1	95.3	9/16	1.81
1 15/16	VF2B-231	VB-231	7889	7 7/16	6 3/16	4 9/16	1 23/64	5/8	2 7/32	2 3/32	3 3/8	3/4	4	0/40	4.2
2	VF2B-232S	VB-232S	35090	188.9	157.2	115.9	34.5	15.9	56.4	53.2	85.7	19.1	101.6	9/16	1.91
2	VE3D 333	VD 222	9752	8 1/2	7 1/4	5 1/4	1 33/64	13/16	2 3/8	2 1/4	3 1/2	7/8	4 1/4	E /0	7.1
2	VF2B-232	VB-232	43377	215.9	184.2	133.4	38.5	20.6	60.3	57.2	88.9	22.2	108.0	5/8	3.22
2 2/16	VE3B 33E	VD 225	9752	8 1/2	7 1/4	5 1/4	1 33/64	13/16	2 3/8	2 1/4	3 5/8	7/8	4 1/4	5/8	7.1
2 3/16	VF2B-235	VB-235	43377	215.9	184.2	133.4	38.5	20.6	60.3	57.2	92.1	22.2	108.0	3/6	3.22

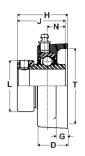
Metric dimensions for reference only.

 $Not all \ parts \ are \ available \ from \ stock. \ Please \ contact \ customer \ service \ for \ availability \ (800) \ 626-2120.$

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Rolling Elements: Ball


> Housing: Cast Iron Two Bolt Flange


Self Alignment: +/- 1.5 Degrees

> Lock: Eccentric

Seal: Contact and Flinger

-20° to 200°F Temperature:

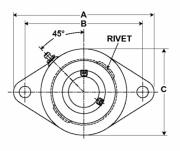
VF2E 200 Series Standard Duty Two Bolt Flanges - Eccentric Locking

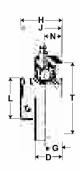
trota.			Basic				Di	mension	s inch / m	m				0.4	0
inch	Part No.	Bearing Insert No.	Dynamic Rating Ib/N	À	B	C	0	G	H	· •	, de	N	T Cored	Bolt Size	Uni Wi Ib/kg
1/2	VF2E-208	VE-208	2108	3 7/8	3	2 1/8	1 1/32	1/2	1 43/64	1 15/32	1 3/16	35/64	1 3/4	3/8	1.0
5/8	VF2E-210	VE-210	9377	98.4	76.2	54.0	26.2	12.7	42.5	37.3	30.2	13.9	44.5	3/0	.45
3/4	VF2E-212	VE-212	2611 11614	4 13/32 111.9	3 17/32 89.7	2 1/2 63.5	1 5/64 27.4	1/2 12.7	1 51/64 45.6	1 23/32 43.7	1 5/16 33.3	43/64 17.1	2 50.8	3/8	1.1 .50
7/8	VF2E-214	VE-214													
15/16	VF2E-215	VE-215	2801	4 7/8	3 57/64	2 3/4	1 5/64	17/32	1 13/16	1 3/4	1 1/2	11/16	2 5/16	7/16	1.5
1	VF2E-216	VE-216	12459	123.8	98.8	69.9	27.4	13.5	46.0	44.5	38.1	17.5	58.7	1710	.68
1 1/8	VF2E-218	VE-218													
1 3/16	VF2E-219	VE-219	4381 19487	5 9/16 141.3	4 19/32 116.7	3 1/8 79.4	1 13/64 30.6	17/32 13.5	2 50.8	1 29/32 48.4	1 3/4 44.5	23/32 18.3	2 3/4 69.9	7/16	2.1 .95
1 1/4	VF2E-220S	VE-220S	10401	141.0	110.1	10.4	00.0	10.0	00.0	40.4	44.0	10.0	00.0		.50
1 1/4	VF2E-220	VE-220													
1 3/8	VF2E-222	VE-222	5782 25718	6 1/8 155.6	5 1/8 130.2	3 5/8 92.1	1 1/4 31.8	5/8 15.9	2 1/8 54.0	2 1/64 51.2	2 3/16 55.6	3/4 19.1	3 3/16 81.0	1/2	2.9 1.32
1 7/16	VF2E-223	VE-223	20710	100.0	150.2	32.1	31.0	10.5	34.0	31.2	33.0	10.1	01.0		1.02
1 1/2	VF2E-224	VE-224	7340 32648	6 3/4 171.5	5 21/32 143.7	4 1/8 104.8	1 13/32 35.7	5/8 15.9	2 5/16 58.7	2 7/32 56.4	2 3/8 60.3	27/32 21.4	3 1/2 88.9	1/2	3.8 1.72
1 5/8	VF2E-226	VE-226													
1 11/16	VF2E-227	VE-227	7901 35144	7 1/16 179.4	5 27/32 148.4	4 3/8 111.1	1 13/32 35.7	5/8 15.9	2 5/16 58.7	2 7/32 56.4	2 1/2 63.5	27/32 21.4	3 3/4 95.3	9/16	3.9 1.77
1 3/4	VF2E-228	VE-228	55111		. 10.1		00.1	10.0	00	00.1	00.0		00.0		
1 15/16	VF2E-231	VE-231	7889 35090	7 7/16 188.9	6 3/16 157.2	4 9/16 115.9	1 39/64 40.9	11/16 17.5	2 5/8 66.7	2 15/32 62.7	2 3/4 69.9	31/32 24.6	4 101.6	9/16	4.8 2.18
2	VF2E-232	VE-232	9752	8 1/2	7 1/4	5 1/4	1 49/64	13/16	2 31/32	2 13/16	3	1 3/32	4 1/4	5/8	6.2
2 7/16	VF2E-235	VE-235	43377	215.9	184.2	133.4	44.8	20.6	75.4	71.4	76.2	27.8	108.0	5/8	2.81
2 1/4	VF2E-236	VE-236	11789	9 1/4	7 15/16	5 7/16	1 31/32	13/16	3 1/4	3 1/16	3 3/8	1 7/32	4 3/4	5/8	9.6
2 7/16	VF2E-239	VE-239	52437	235.0	201.6	138.1	50.0	20.6	82.6	77.8	85.7	31.0	120.7	5/8	4.35

Browning Mounted Ball Bearings

Duty: Medium

Rolling Elements: Ball


Housing: Cast Iron Two Bolt Flange


Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact and Flinger

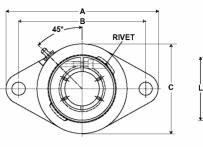
Temperature: -20° to 200°F

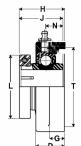
VF2S 300 Series Medium Duty Two Bolt Flanges - Setscrew Locking

Bu e Disuese:	19070404		54600 Ugunutu				Di	mvinten	a indivia	m				Bett	antwic
ujen	Partition	He xik	Furting Hard	38	10	ME:	0.	10.7	(0)	#0	10	10001	Copie		News)
30	2708401E	V8481E	ezta Dentz	14.2	= 19052 113,7	204 204	7.004 27.4	1504 23	1995 200	1 10 55.1	110.47 -415	340 110	234 100	7200	724
1 3/16 1 1/4	VF2S-319 VF2S-320	VS-319 VS-220	5782 25718	6 1/8 155.6	5 1/8 130.2	3 5/8 92.1	1 5/32 29.4	19/32 15.1	1 3/4 44.5	1 11/16 42.9	1 55/64 47.2	11/16 17.5	3 3/16 81.0	1/2	2.7 1.22
TOO	√733.821s	V2 381	orin Janus	1/34 17-2	52.30 49.7	- 10 104.6	1 18%± 200	98 153	2 XM 191.2	30 G 45.2	2 38 82 4	3# 5#	3 1-2 00 0	1/2	4.0 2.10
1 1/2	VF2S-324	VS-324	7901 35144	7 1/16 179.4	5 27/32 148.4	4 3/8 111.1	1 21/64 33.7	5/8 15.9	2 3/64 52.0	1 15/16 49.2	2 19/64 58.3	3/4 19.1	3 3/4 95.3	9/16	4 8 2.18
3089# 3080	9-99-8-7 9733-326		7290 35667	Pojtsi tus v	**** ***	duni NoN	1300# 545	55 [153	Tast# Son	9 1.79 51.7	10. 5 (62)	13.	10	10603	. of 2.25
1 15/16 2	VF2S-331 VF2S-332	VS-331 VS-232S	9752 43377	8 1/2 215.9	7 1/4 184.2	5 1/4 133.4	1 33/64 38.5	13/16 20.6	2 5/16 58.7	2 3/16 55.6	2 23/32 69.1	7/8 22.2	4 1/4 108.0	5/8	9 6 4.35

Duty: Medium

Rolling Elements: Ball


> Housing: Cast Iron Two Bolt Flange


Self Alignment: +/- 1.5 Degrees

> **BOA Concentric** Lock:

Contact and Flinger Seal:

Temperature: -20° to 200°F

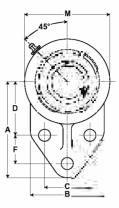
VF2B 300 Series Medium Duty Two Bolt Flanges - BOA Concentric Locking

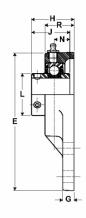
Blome Etamorio (00000990	BELL 1955	Home: Dissentife				30	ikin iso	a kazarta (m					380	Direvie
Lan.	Parker	Prisant 45	Station Hall	(A)	i ii	9763	160	10	W	30	//ESS	(1907)	Garage.	200	
00 8	Sã america.	3 th	4641 16487	n.1 •>1	71477 14.77	1 n 44	204 77.5	1245 14	int his	(Air. 194	Figur	~	у <u>та</u> 94	(chii)	**
1 3/16 1 1/4	VF2B-319 VF2B-320	VB-319 VB-220	5782 25718	6 1/8 155.6	5 1/8 130.2	3 5/8 92.1	1 5/32 29.4	19/32 15.1	1 13/16 46.0	1 3/4 44.5	2 7/16 61.9	11/16 17.5	3 3/16 81.0	1/2	3 0 1.36
,vie	va 300, 200)	e i mi	1012. 121di	6.091 (*) 8	90 679 1877	0.00 0e00	1182) 528	507 208	(54)) (2)	500)	340 E 303	4.2	3.63	ijġ	531 190
1 1/2	VF2B-324	VB-324	7901 35144	7 1/16 179.4	5 27/32 148.4	4 3/8 111.1	1 21/64 33.7	5/8 15.9	2 7/64 53.6	2 50.8	2 13/16 71.4	3/4 19.1	3 3/4 95.3	9/16	4 0 1.81
1 1046 1 5-7	9678-389 14686-730	%\$-207 **#220	7823 25080	12-10 0019	0.12 M	1157	Oha Vih	1	1 (3)) 167	2 NW 91.7	524/4 +12 h	4	hti h	H)¢	p sh
1 15/16 2	VF2B-331 VF2B-332	VB-331 VB-232S	9752 43377	8 1/2 215.9	7 1/4 184.2	5 1/4 133.4	1 33/64 38.5	13/16 20.6	2 3/8 60.3	2 1/4 57.2	3 1/2 88.9	7/8 22.2	4 1/4 108.0	5/8	7 1 3.22

Browning Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball


Housing: Cast Iron Flange Bracket


Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

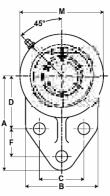
Seal: Contact and Flinger

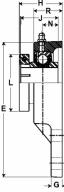
Temperature: -20° to 200°F

VFBS 200 Series Standard Duty Flange Brackets - Setscrew Locking

Store Diagram	gereen))	History	Back					- 1	D		es Amin						1380	Marin Marin
inch	PHEAM	Incita No	Dynamic Shifting spile	ŘΑ	B i	(3)	0	i Es	麒	98	98	20	HE:	16	800	Ηś	5010	Hang
	₹ 108-30¢	198217	(96)F	AK	356 #4.2	1.167 38.1	1 1017± 121.	0 H16 1287	78 20.7	(57.2 11.11)	34.°	1 3.35 24.2	20 M	- 556 - 4-14	ro Div	Majer G	3	16.1 14.00
7/8	VFBS-214	VS-214																
15/16	VFBS-215	VS-215	2801 12459	3 3/8 85.7	2 1/2 63.5	1 5/8 41.3	1 13/16 46.0	4 3/4 120.7	1 1/8 28.6	3/8 9.5	1 1/2 38.1	1 3/8 34.9	1 3/8 34.9	2 3/4 69.9	9/16 14.3	1 1/64 25.8	3/8	1,9 86
1	VFBS-216	VS-216																
1.35	PP7-216	433 K																
1.510	MERT 210	92.3 4	4301 19467	374F 55.3	E 84 05,9	136. 276	23/16. 31:4	5 0004 1701	116 18	35. 65	-2.00 4 -2 ·	12 301	3 FC2 45-1	3 7582. 04 <i>0</i> 4	3.8 16.0	1 9/64	攰	28 127
1.94	Multip Soles	1/04 (406)	2010	2,000	-0.100	0.200	L. T. Piles	LIGHTON	7.000), 1 (10, 10)	35,567	EAA	.300.000		1,700	3000		J.C.
1 1/4	VFBS-220	VS-220																
1 3/8	VFBS-222	VS-222	5782 25718	4 1/4 108.0	3 1/4 82.6	2 50.8	2 3/8 60.3	6 1/8 155.6	1 1/4 31.8	1/2 12.7	1 7/8 47.6	1 11/16 42.9	1 55/64 47.2	3 3/4 95.3	11/16 17.5	1 9/32 32.5	1/2	2.6 1.18
1 7/16	VFBS-223	VS-223																
#5.	oppolate oppolate	945-384 905-9089	7503 28/146	5 36 18 581 2	4 121.F	2 34 80 D	raine Hid	i incol 1900	1535 113	137 137	25.7 34.4	109/ 5 H	fini.	1 015 1150	.256 10-1	tiks er II.a	100	4. (10)

Rolling Elements: Ball


> Housing: Cast Iron Flange Bracket


Self Alignment: +/- 1.5 Degrees

> Lock: **BOA Concentric**

Seal: Contact and Flinger

-20° to 200°F Temperature:

VFBB 200 Series Standard Duty Flange Brackets - BOA Concentric Locking

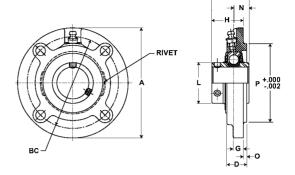
do T	UTDERWOOD	Supramative Control	Bode						Olimans	Most in	ah Lawa						- December	Unit
Eigh ole-	F.P.	Hawang Incort No	Rates Rates Inth	10	:=	#	240	j¥	100	(4)	100	E.	16	W	(100)	98	Bull Since	Unit Unit Unit Unit Unit Unit Unit Unit
3.4	9°B6-2°2	V6&1	201	162	7.95 50.5	114 361	1 11/15 (2.0	4 2 70 115,4	7.58 #2.2	3.15 7.0	1 13652 35 7	1 0.35 32.5	5.04 645	235 103	19.7	07.464 24.3	3.8	(%) (54)
7/8	VFBB-214	VB-214	2801	3 3/8	2 1/2	1 5/8	1 13/16	4 3/4	1 1/8	3/8	1 9/16	1 7/16	1 15/16	2 3/4	9/16	1 1/64		2 1
15/16 1	VFBB-215 VFBB-216	VB-215 VB-216	12459	85.7	63.5	41.3	46.0	120.7	28.6	9.5	39.7	36.5	49.2	69.9	14.3	25.8	3/8	95
1 14 1 14	e tenonia Albertonia	STORY STORY SEASON	1997 Haron	37.84 -25.5	zet Ste	120	4 TTE:	5- : 3-5* - 150, 1	T IM SEE	S.M Han) 41/30 193)	1 1004 3817	Poster Siste	1 58 31.5	-36 hrp	10%1 200	38	320
1 1/4	VFBB-220	VB-220	4381 19487	4 1/4 108.0	3 1/4 82.6	2 50.8	2 3/8 60.3	6 1/8 155.6	1 1/4 31.8	1/2 12.7	1 15/16 49.2	1 3/4 44.5	2 7/16 61.9	3 3/4 95.3	11/16 17.5	1 9/32 32.5	3/8	2 9 1.32
1786 786	ए १५:५७१ ४:नहरू ट्या	55-500 36-520	5 < 37710	161 462.6	5-6-6 19-1	-01	200 Dire	6,64 *654	1.181 2011	(1/2) (9)	1 (%)10 (%)2	154	taced to t	105.4 16.5	itali COS	19511 52-6		120
1 15/16 2	VFBB-231 VFBB-232S	VB-231 VB-232S	7889 35090	5 3/16 131.8	4 101.6	2 3/4 69.9	2 15/16 74.6	7 15/32 189.7	1 5/8 41.3	1/2 12.7	2 7/32 56.4	2 3/32 52.2	3 3/8 85.7	4 9/16 115.9	3/4 19.1	1 23/64 34.5	1/2	4 8 2.18

Browning Mounted Ball Bearings

Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Piloted Flange


Cartridge

Self Alignment: +/- 1.5 Degrees

Lock:

Contact and Flinger Seal:

Temperature: -20° to 200°F

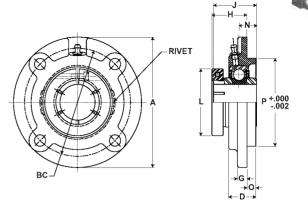
VFCS 200 Series Standard Duty Piloted Flange Cartridges - Setscrew Locking

Bow Diameter		Descriper	Banic				D	mension	s inch / m	ım				Bolt	Unit Wt.
inch	Part No.	Bearing Insert No.	Hating Sale	A	BC	D	G	Ĥ.	ű	4	N	0	P	Size	lb/kg
1 1/8	VFCS-218	VS-218													
1 3/16	VFCS-219	VS-219	4381 19487	4 3/8 111.1	3 5/8 92.1	1 63/64 50.4	13/32 10.3	1 1/4 31.8	1 1/2 38.1	1 19/32 40.5	5/8 15.9	7/32 5.6	3.000 76.20	5/16	2.4 1.09
1 1/4	VFCS-220S	VS-220S													
1 1/4	VFCS-220	VS-220													
1 3/8	VFCS-222	VS-222	5782 25718	5 127.0	4 1/8 104.8	1 1/16 27.0	13/32 10.3	1 5/16 33.3	1 11/16 42.9	1 55/64 47.2	11/16 17.5	11/32 8.7	3.375 85.73	3/8	3.2 1.45
1 7/16	VFCS-223	VS-223													
1 1/2	VFCS-224	VS-224	7340 32648	5 1/4 133.4	4 3/8 111.1	1 3/16 30.2	13/32 10.3	1 1/2 38.1	1 15/16 49.2	2 1/16 52.4	3/4 19.1	13/32 10.3	3.625 92.08	3/8	3.6 1.63
1 5/8	VFCS-226	VS-226													
1 11/16	VFCS-227	VS-227	7901 35144	6 1/8 155.6	5 1/8 130.2	1 3/16 30.2	13/32 10.3	1 1/2 38.1	1 15/16 49.2	2 19/64 58.3	3/4 19.1	13/32 10.3	4.250 107.95	7/16	4.9 2.22
1 3/4	VFCS-228	VS-228													
1 15/16	VFCS-231	VS-231	7889	6 1/8	5 1/8	1 15/64	13/32	1 19/32	2 1/16	2 15/32	3/4	7/16	4.250	740	5.7
2	VFCS-232S	VS-232S	35090	155.6	130.2	31.4	10.3	40.5	52.4	62.7	19.1	11.1	107.95	7/16	2.59
2	VFCS-232	VS-232	9752	6 3/8	5 3/8	1 3/8	13/32	1 37/64	2 13/64	2 23/32	7/8	19/32	4.500	7/40	6.0
2 3/16	VFCS-235	VS-235	43377	161.9	136.5	34.9	10.3	40.1	56.0	69.1	22.2	15.1	114.30	7/16	2.72
2 1/4	VFCS-236	VS-236	11789	7 1/8	6	1 27/32	17/32	2	2 7/8	2 63/64	1	23/32	5.000	1/2	7.1
2 7/16	VFCS-239	VS-239	52437	181.0	152.4	46.8	13.5	50.8	73.0	75.8	25.4	18.3	127.00	1/2	3.22

Duty: Standard

Rolling Elements: Ball

> Housing: Cast Iron Piloted Flange


Cartridge

Self Alignment: +/- 1.5 Degrees

> Lock: **BOA Concentric**

Contact and Flinger Seal:

-20° to 200°F Temperature:

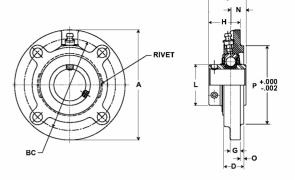
VFCB 200 Series Standard Duty Piloted Flange Cartridges - BOA Concentric Locking

Hore		_	Basic		,		Di	imension	s inch / m	ım					
Minmeter sumb	Part No.	Bearing Insert No.	Dynamic Rating Ib/N	٨	BC	Ō	G	W.	j.	ï.	N	0	P	Bolt Size	Unit Wt. Ib/kg
1 1/8	VFCB-218	VB-218	4381	4 3/8	3 5/8	63/64	13/32	1 5/16	1 9/16	2 3/16	5/8	7/32	3.000	0.40	2.6
1 3/16	VFCB-219	VB-219	19487	111.1	92.1	25.0	10.3	33.3	39.7	55.6	15.9	5.6	76.20	3/8	1.18
1 1/4	VFCB-220	VB-220	5782	5	4 1/8	1 1/16	13/32	1 3/8	1 3/4	2 7/16	11/16	11/32	3.375	3/8	3.5
	VI 0B 220	VB 223	25718	127.0	104.8	27.0	10.3	34.9	44.5	61.9	17.5	8.7	85.73	0,0	1.59
1 3/8	VFCB-222	VB-222	5782	5	4 1/8	1 1/16	13/32	1 3/8	1 3/4	2 9/16	11/16	11/32	3.375	3/8	3.5
1 7/16	VFCB-223	VB-223	25718	127.0	104.8	27.0	10.3	34.9	44.5	65.1	17.5	8.7	85.73	5/0	1.59
1 1/2	VFCB-224	VB-224	7340	5 1/4	4 3/8	1 3/16	13/32	1 9/16	2	2 11/16	3/4	13/32	3.625	3/8	3.9
	05 22 .	15 22 1	32648	133.4	111.1	30.2	10.3	39.7	50.8	68.3	19.1	10.3	92.08	0,0	1.77
1 5/8	VFCB-226	VB-226	7901	6 1/8	5 1/8	1 3/16	13/32	1 9/16	2	2 13/16	3/4	13/32	4.250	7/16	5.2
. 6.6	05 220	15 223	35144	155.6	130.2	30.2	10.3	39.7	50.8	71.4	19.1	10.3	107.95	.,,,,	2.36
1 11/16	VFCB-227	VB-227	7901	6 1/8	5 1/8	1 3/16	13/32	1 9/16	2	2 15/16	3/4	13/32	4.250	7/16	5.2
1 3/4	VFCB-228	VB-228	35144	155.6	130.2	30.2	10.3	39.7	50.8	74.6	19.1	10.3	107.95	.,,,,	2.36
1 15/16	VFCB-231	VB-231	7889	6 1/8	5 1/8	1 15/64	13/32	1 21/32	2 3/32	3 3/8	3/4	7/16	4.250	7/16	6.3
2	VFCB-232S	VB-232S	35090	155.6	130.2	31.4	10.3	42.1	53.2	85.7	19.1	11.1	107.95	1710	2.86
2	VFCB-232	VB-232	9752	6 3/8	5 3/8	1 3/8	13/32	1 41/64	2 1/4	3 1/2	7/8	19/32	4.500	7/16	6.6
_	05 202	15 202	43377	161.9	136.5	34.9	10.3	41.7	57.2	88.9	22.2	15.1	114.30	.,,,,	2.99
2 3/16	VFCB-235	VB-235	9752	6 3/8	5 3/8	1 3/8	13/32	1 41/64	2 1/4	3 5/8	7/8	19/32	4.500	7/16	6.6
2 0/10	VI 02 200	15 200	43377	161.9	136.5	34.9	10.3	41.7	57.2	92.1	22.2	15.1	114.30	1710	2.99
2 1/4	VFCB-236	VB-236	11789	7 1/8	6	1 27/32	17/32	2 1/16	2 5/8	4 1/16	1	23/32	5.000	1/2	8.3
2 174	VI OB-200	V D 200	52437	181.0	152.4	46.8	13.5	52.4	66.7	103.2	25.4	18.3	127.00	172	3.76
2 7/16	VFCB-239	VB-239	11789	7 1/8	6	1 27/32	17/32	2 1/16	2 5/8	4 1/8	1	23/32	5.000	1/2	8.3
2.710	55 200	. 2 200	52437	181.0	152.4	46.8	13.5	52.4	66.7	104.8	25.4	18.3	127.00	.,_	3.76

Duty: Medium

Rolling Elements: Ball

Housing: Cast Iron Piloted Flange


Cartridge

Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact and Flinger

Temperature: -20° to 200°F

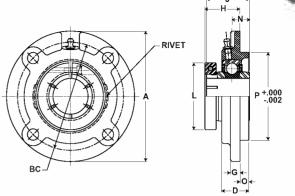
VFCS 300 Series Medium Duty Piloted Flange Cartridges - Setscrew Locking

Bare Danadhii	SOMEON:	Banner	Back				40	imension	sicon/ii	iii .				10686	Defe Wil
angle .	Por I falls	lester Ab.	Dymmal Railing last	.78	1000	0.5	#	00	160))((11)	ij)	(e			Ibake
18 (e essa	mare	4381 **CHO/	Can 111	3145 32 (690' 918	74X	1 CM 85.#	100	1124 (05	1076 1853	715F 28	NAC.	±cre.	73 '32
1 3/16 1 1/4	VFCS-319 VFCS-320	VS-319 VS-220	5782 25718	5 127.0	4 1/8 104.8	1 1/16 27.0	13/32 10.3	1 5/16 33.3	1 11/16 42.9	1 55/64 47.2	11/16 17.5	11/32 8.7	3.375 85.73	3/8	3.2 1.45
2.494	e Caste	Ph. 495	204°	3/10°	135 W.	323	*44 *4,0	1-91 30.	t titra fav	9 (200 	XV TIA.E.	900 1013	334-5 N. 225	EM	30)
1 1/2	VFCS-324	VS-324	7901 35144	6 1/8 155.6	5 1/8 130.2	1 3/16 30.2	13/32 10.3	1 1/2 38.1	1 15/16 49.2	2 19/64 58.3	3/4 19.1	13/32 10.3	4.250 107.95	7/16	5 0 2.27
1.11d5	95080 <u>07</u> 216360	98 325 88 380	2005 pa/46	R fra tand	fe hije hala	I taki Xi ji	48	1.10% 45.51	7 hs7 also	21.7 27.7	87 10.1	7/19 (4.1	dess Welth	3600	5.5 9.80
1 15/16 2	VFCS-331 VFCS-332	VS-331 VS-232	9752 43377	6 3/8 161.9	5 3/8 136.5	1 3/8 34.9	13/32 10.3	1 37/64 40.1	2 3/16 55.6	2 23/32 69.1	7/8 22.2	19/32 15.1	4.500 114.30	7/16	6 0 2.72
23.6	4908 300 4 100 000	98 106 50 Sai	nu.	r le env	184	17639	12-1 13-0	n.A	2/2/16 4133	3 Miller 43.5	5.1	24/48 2000	11002 120.00	17	(i) 300

Duty: Medium

Rolling Elements: Ball

> Housing: Cast Iron Piloted Flange


Cartridge

Self Alignment: +/- 1.5 Degrees

> Lock: **BOA Concentric**

Seal: Contact and Flinger

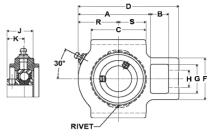
Temperature: -20° to 200°F

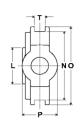
VFCB 300 Series Medium Duty Piloted Flange Cartridges - BOA Concentric Locking

boin Dameiar	SECULAR	THE STATE OF	Sycation 11		,			lisk market	e eritti j	17				(168)	Jat M.
	RimNo	Incom No.	Raling		Herri	(i)		×	u u		(0000)	man	P.	Blac	10/10
T/s	e tasse	Mode	438°	4 E	335 321	62:01 710	8.3	143# 2003	10/2 20.1	2308 1114	The Control	7137 28	1,C39 28.19	a″e	(c) (c)
1 3/16 1 1/4	VFCB-319 VFCB-320	VB-319 VB-220	5782 25718	5 127.0	4 1/8 104.8	1 1/16 27.0	13/32 10.3	1 3/8 34.9	1 3/4 44.5	2 7/16 61.9	11/16 17.5	11/32 8.7	3.375 85.73	3/8	3.7 1.68
7/4	df.h-set	96-525	37aS DWC1u	5.744 1884	=36 17/3	1 2h3 30,0	1960	1 9200 39.7	200.8	88.3 88.3	525 10.1	10.3	1635 1278	3(8)	424 524
1 1/2	VFCB-324	VB-324	7901 35144	6 1/8 155.6	5 1/8 130.2	1 3/16 30.2	13/32 10.3	1 9/16 39.7	2 50.8	2 13/16 71.4	3/4 19.1	13/32 10.3	4.250 107.95	7/16	5 8 2.63
136	#10.632V VP15-328	18 38 18 38	25520 2562	* 10* 152.9	N 15*	t falet a d	\$ 5 45	17703 457	3.000 50.0	9 (54 117-0	3 B	(n)	11.250L 1007.0E	99E	170
1 15/16 2	VFCB-331 VFCB-332	VB-331 VB-232	9752 43377	6 3/8 161.9	5 3/8 136.5	1 3/8 34.9	13/32 10.3	1 51/64 45.6	2 1/4 57.2	3 1/2 88.9	7/8 22.2	19/32 15.1	4.500 114.30	7/16	7 1 3.22
+ ioe	Alparasa.	W Co	585 250	COM.	30 1974	62452 (63)	,15459 1711	91/16 133	25ch Br	11615	5.80V 39.5	2707 34 F	- 1039 125 pt	17	7.5 5.0

Duty: Intermediate

Rolling Elements: Ball


Housing: Cast Iron Wide Slot Take Up


Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact

Temperature: -20° to 200°F

VTWS 100 Series Intermediate Duty Wide Slot Take Ups - Setscrew Locking

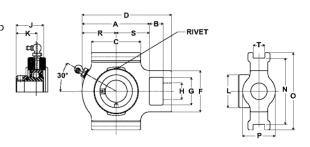
Bore	10050	S ///	Basic								nensions					9				No. of
Diameter	Part No.	Bearing Insert No.	Dynamic Rating	187	(A)	72	(18)	É	750	H	92	146	- 90	1200	15	3 9 %	GW.	28	=	Unit Wt.
inch		macritio.	lb/N	A	В	C	D	V.M	6	Core	J	.K.	20	· N	0	Hub	R	8	T	lb/kg
			2611	3	5/8	2 1/4	4	1 7/8	1 1/4	3/4	1 1/16	23/32	1 3/16	3	3 1/2	1 3/8	1 7/16	1 1/8	17/32	1.6
3/4	VTWS-112	VS-112	11614	76.2	15.9	57.2	101.6	47.6	31.8	19.1	27.0	18.3	30.2	76.2	88.9	34.9	36.5	28.6	13.5	.73
7/8	VTWS-114	VS-114	2801																	
15/16	VTWS-115	VS-115	12459	3 5/64 78.2	ı	2 1/4 57.2	4 3/32 104.0	1 7/8 47.6	1 1/4 31.8	3/4 19.1	1 7/64 28.2	49/64 19.4	1 3/8 34.9	3 76.2	3 1/2 88.9	1 1/2 38.1	1 9/16 39.7	1 1/8 28.6	17/32 13.5	1.7 .77
1	VTWS-116	VS-116																		
1 1/8	VTWS-118	VS-118	4381																	
1 3/16	VTWS-119	VS-119	19487	3 3/8 85.7	l .	2 1/2 63.5		2 1/8 54.0	1 7/16 36.5	7/8 22.2	1 5/32 29.4	25/32 19.8	1 19/32 40.5		4 101.6	1 3/4 44.5	1 25/32 45.2	1 1/4 31.8	17/32 13.5	2.4 1.09
1 1/4	VTWS-120S	VS-120S																		
1 1/4	VTWS-120	VS-120	5782																	
1 3/8	VTWS-122	VS-122	25718	3 3/4 95.3	ı	2 3/4 69.9	5 127.0	2 1/8 54.0	1 7/16 36.5	7/8 22.2	1 9/32 32.5	55/64 21.8	1 55/64 47.2	l	4 101.6	1 3/4 44.5	2 50.8	1 3/8 34.9	17/32 13.5	3.1 1.41
1 7/16	VTWS-123	VS-123																		
4.440	V.T.I.I.O. 40.4	\	7340	4 7/32	3/4	3 1/4	5 19/32	2 3/4	1 15/16	1 1/8	1 27/64	15/16	2 1/16	4	4 1/2	2 1/8	2 3/16	1 5/8	11/16	4.7
1 1/2	VTWS-124	VS-124	32648	107.2	19.1	82.6	142.1	69.9	49.2	28.6	36.1	23.8	52.4	101.6	114.3	54.0	55.6	41.3	17.5	2.13
1 11/16	VTWS-127	VS-127	7901	4 3/8	3/4	3 1/4	5 3/4	2 3/4	1 15/16	1 1/8	1 7/16	61/64	2 19/64	4	4 1/2	2 1/8	2 1/4	1 5/8	11/16	5.2
1 3/4	VTWS-128	VS-128	35144	111.1	19.1	82.6	146.1	69.9	49.2	28.6	36.5	24.2	58.3	101.6	114.3	54.0	57.2	41.3	17.5	2.36
1 15/16	VTWS-131	VS-131	7889	4 17/32	3/4	3 3/8	5 29/32	2 3/4	1 15/16	1 1/8	1 35/64	1 3/64	2 15/32	4	4 1/2	2 1/8	2 5/16	1 11/16	11/16	5.4
2	VTWS-132S	VS-132S	35090	115.1		85.7	150.0			28.6	39.3	26.6			114.3	54.0	58.7	42.9	17.5	2.45
2	VTWS-132	VS-132	9752	5 3/32	1	3 3/4	6 27/32	3 5/8	2 1/2	1 3/8	1 21/32	1 7/64	2 23/32	5 1/8	5 3/4	2 1/2	2 9/16	1 7/8	1 1/16	8.0
2 3/16	VTWS-135	VS-135	43377	129.4	25.4	95.3	173.8	92.1	63.5	34.9	42.1	28.2	69.1	130.2	146.1	63.5	65.1	47.6	27.0	3.63

Refer to page G-190 for Frames.

Bore Size	Frame Series
3/4" to 1"	10
1 1/8" to 1 7/16"	23
1 1/2" to 2S"	31
2" to 2 3/16"	39

Duty: Intermediate

Rolling Elements:


Housing: Cast Iron Wide Slot Take Up

Self Alignment: +/- 1.5 Degrees

> Lock: Eccentric

Seal: Contact

-20° to 200°F Temperature:

VTWE 100 Series Intermediate Duty Wide Slot Take Ups - Eccentric Locking

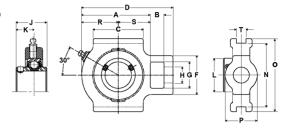
Bore		Bearing	Basic							Din	nensions	inch /	mm							Unit
Diameter inch	Part No.	Insert No.	Dynamic Rating Ib/N	Ā		G	ם	(11)	0	H Core	9	ĸ	#	(8)	0	₽.B	R	8	Ť	Wt. lb/kg
0/4	VETALE 440	\ (F. 440	2611	3	5/8	2 1/4	4	1 7/8	1 1/4	3/4	1 17/64	59/64	1 5/16	3	3 1/2	1 3/8	1 7/16	1 9/16	17/32	1.8
3/4	VTWE-112	VE-112	11614	76.2	15.9	57.2	101.6	47.6	31.8	19.1	32.1	23.4	33.3	76.2	88.9	34.9	36.5	39.7	13.5	.82
7/8	VTWE-114	VE-114	2801																	
15/16	VTWE-115	VE-115	12459	3 5/64 78.2	5/8 15.9		4 3/32 104.0	1 7/8 47.6	1 1/4 31.8	3/4 19.1	1 17/64 32.1	59/64 23.4	1 1/2 38.1	3 76.2	3 1/2 88.9	1 1/2 38.1	1 9/16 39.7	1 17/32 38.9	17/32 13.5	1.9 .86
1	VTWE-116	VE-116																		
1 1/8	VTWE-118	VE-118	4381																	
1 3/16	VTWE-119	VE-119	19487	3 3/8 85.7	3/4 19.1	2 1/2 63.5	4 5/8 117.5	2 1/8 54.0	1 7/16 36.5	7/8 22.2	1 27/64 36.1	1 3/64 26.6	1 3/4 44.5	3 1/2 88.9	4 101.6	1 3/4 44.5	1 25/32 45.2	1 19/32 40.5	17/32 13.5	2.8 1.27
1 1/4	VTWE-120S	VE-120S																		
1 1/4	VTWE-120	VE-120																		
1 3/8	VTWE-122	VE-122	5782 25718	3 3/4 95.3	3/4 19.1	2 3/4 69.9	5 127.0	2 1/8 54.0	1 7/16 36.5	7/8 22.2	1 37/64 40.1	1 5/32 29.4	2 3/16 55.6	3 1/2 88.9	4 101.6	1 3/4 44.5	2 50.8	1 3/4 44.5	17/32 13.5	3.5 1.59
1 7/16	VTWE-123	VE-123																		
4.4/0	VENUE 404	\ (F. 404	7340	4 7/32	3/4	3 1/4	5 19/32	2 3/4	1 15/16	1 1/8	1 49/64	1 9/32	2 3/8	4	4 1/2	2 1/8	2 3/16	2 1/32	11/16	5.2
1 1/2	VTWE-124	VE-124	32648	107.2	19.1	82.6	142.1	69.9	49.2	28.6	44.8	32.5	60.3	101.6	114.3	54.0	55.6	51.6	17.5	2.36
1 11/16	VTWE-127	VE-127	7901	4 3/8	3/4	3 1/4	5-3/4	2 3/4	1 15/16	1 1/8	1 49/64	1 9/32	2 1/2	4	4 1/2	2 1/8	2 1/4	2 1/8	11/16	5.8
1 3/4	VTWE-128	VE-128	35144	111.1	19.1	82.6	146.1	69.9	49.2	28.6	44.8	32.5	63.5	101.6	114.3	54.0	57.2	54.0	17.5	2.63
1 15/16	VTWE-131	VE-131	7889	4 17/32	3/4	3 3/8	5 29/32	2 3/4	1 15/16	1 1/8	1 25/32	1 9/32	2 3/4	4	4 1/2	2 1/8	2 5/16	27/32	11/16	6.1
2	VTWE-132S	VE-132S	35090	115.1	19.1	85.7	150.0	69.9	49.2	28.6	45.2	32.5	69.9	101.6	114.3	54.0	58.7	56.4	17.5	2.77
2	VTWE-132	VE-132	9752	5 3/32	1	3 3/4	6 27/32	3 5/8	2 1/2	1 3/8	1 63/64	1 7/16	3	5 1/8	5 3/4	2 1/2	2 9/16	2 17/32	1 1/16	8.7
2 3/16	VTWE-135	VE-135	43377	129.4	25.4	95.3	173.8	92.1	63.5	34.9	50.4	36.5	76.2	130.2	146.1	63.5	65.1	64.3	27.0	3.95

Refer to page G-190 for Frames.

Bore Size	Frame Series
3/4" to 1"	10
1 1/8" to 1 7/16"	23
1 1/2" to 2S"	31
2" to 2 3/16"	39

Duty: Standard

Rolling Elements: Ball


Housing: Cast Iron Wide Slot Take Up

Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact and Flinger

Temperature: -20° to 200°F

VTWS 200 Series Standard Duty Wide Slot Take Ups - Setscrew Locking

Bore Diameter		Bearing	Basic Dynamic							Dim	ensions	inch / ı	nm						- 1	Unit
inch	Part No.	Insert No.	Rating Ib/N	Α	(B)	c	D))	(F)	G	H Core	10	EK:	E	N	0	P Hub	R	S	1	Wt. lb/kg
1/2	VTWS-208	VS-208	2108	2 11/16	5/8	2	3 11/16	1 7/8	1 1/4	3/4	1 1/32	5/8	31/32	3	3 1/2	1 3/8	1 5/16	1 3/8	17/32	1.5
5/8	VTWS-210	VS-210	9377	68.3	15.9	50.8	93.7	47.6	31.8	19.1	26.2	15.9	24.6	76.2	88.9	34.9	33.3	34.9	13.5	.68
3/4	VTWS-212	VS 212	2611	3	5/8	2 1/4	4	1 7/8	1 1/4	3/4	1 7/32	23/32	1 3/16	3	3 1/2	1 3/8	1 7/16	1 9/16	17/32	1.7
3/4	V 1VV3-212	V3-212	11614	76.2	15.9	57.2	101.6	47.6	31.8	19.1	31.0	18.3	30.2	76.2	88.9	34.9	36.5	39.7	13.5	.77
7/8	VTWS-214	VS-214																		
15/16	VTWS-215	VS-215	2801 12459	3 5/64 78.2	5/8 15.9	2 1/4 57.2		1 7/8 47.6	1 1/4 31.8	3/4 19.1	1 3/8 34.9	13/16 20.6	1 3/8 34.9	3 76.2	3 1/2 88.9	1 1/2 38.1	1 9/16	1 17/32 38.9	17/32 13.5	1.6 .73
1	VTWS-216	VS-216																		
1 1/8	VTWS-218	VS-218	4381	3 3/8	3/4	2 1/2	4 5/8	2 1/8	1 7/16	7/8	1 1/2	7/8	1 19/32	3 1/2	4	1 3/4	1 25/32	1 19/32	17/32	2.4
_ 1 3/16	VTWS-219	VS-219	19487	85.7	19.1	63.5	117.5	54.0	36.5	22.2	38.1	22.2	40.5	88.9	101.6	44.5	45.2	40.5	13.5	1.09
1 1/4	VTWS-220	VS-220																		
1 3/8	VTWS-222	VS-222	5782 25718	3 3/4 95.3	3/4 19.1	2 3/4 69.9	5 127.0	2 1/8 54.0	1 7/16 36.5	7/8 22.2	1 11/16 42.9	1 25.4	1 55/64 47.2	3 1/2 88.9	4 101.6	1 3/4	2 50.8	1 3/4 44.5	17/32 13.5	3.3 1.50
1 7/16	VTWS-223	VS-223																		
1 1/2	VTWS-224	VS 224	7340	4 7/32	3/4		5 19/32	2 3/4	1 15/16	1 1/8	1 15/16	1 3/16	2 1/16	4		1	2 3/16	2 1/32	11/16	5.0
1 1/2	V 1 V V O-224	VO-224	32648	107.2	19.1	82.6	142.1	69.9	49.2	28.6	49.2	30.2	52.4	101.6	114.3	54.0	55.6	51.6	17.5	2.27
1 5/8	VTWS-226	VS-226	7004	4.0/0	0/4		- o.4	0.0/4	4.5440	4.4/0		4 0/40						0.470	44/40	
1 11/16	VTWS-227	VS-227	7901 35144	4 3/8 111.1	3/4 19.1	3 1/4 82.6	5 3/4 146.1	69.9	1 15/16 49.2	1 1/8 28.6	1 15/16 49.2	30.2	2 19/64 58.3	4 101.6	4 1/2 114.3		2 1/4 57.2	2 1/8 54.0	11/16 17.5	5.6 2.54
1 3/4	VTWS-228	VS-228																		
1 15/16	VTWS-231	VS-231	7889	4 17/32			5 29/32		1		2 1/32		2 15/32	4		1	2 5/16	2 7/32	11/16	5.8
1 10/10	V 1 V V O - 2 O 1	VO-201	35090	115.1	19.1	85.7	150.0	69.9	49.2	28.6	51.6	32.5	62.7	101.6	114.3	54.0	58.7	56.4	17.5	2.63
2	VTWS-232	VS-232	9752	5 3/32	1		6 27/32		2 1/2	1 3/8	2 3/16		2 23/32				2 9/16	2 17/32	1 1/16	8.4
2 3/16	VTWS-235	VS-235	43377	129.4	25.4	95.3	173.8	92.1	63.5	34.9	55.6	33.3	69.1	130.2	146.1	63.5	65.1	64.3	27.0	3.81
2 7/16	VTWS-239	VS-239	11789	5 1/2	1	4		3 5/8	2 1/2	1 3/8	2 9/16		2 63/64		l	ı	I	2 21/32		9.3
21710	11110-200	10 200	52437	139.7	25.4	101.6	184.2	92.1	63.5	34.9	65.1	39.7	75.8	130.2	146.1	63.5	72.2	67.5	27.0	4.22

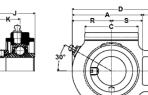
Refer to page G-190 for Frames.

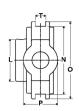
Bore Size	Frame Series
1/2" to 1"	10
1 1/8" to 1 7/16"	23
1 1/2" to 2S"	31
2" to 2 7/16"	39

Mounted Ball Bearings Brown

Duty: Standard

Rolling Elements:


Housing: Cast Iron Wide Slot Take Up


Self Alignment: +/- 1.5 Degrees

> Lock: Eccentric

Seal: Contact and Flinger

-20° to 200°F Temperature:

VTWE 200 Series Standard Duty Wide Slot Take Ups - Eccentric Locking

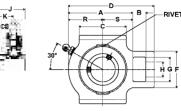
Bore		Bearing	Basic							Di	mensior	s inch /	mm							Unit
Diameter inch	Part Mil.	Insert No.	Dynamic Rating Ib/N	Ā	B	c	D	F	G	H Core	ä	K	E.	N	Ō	P Hub	R	S	Ţ	Wt. lb/kg
3/4	VTWE-212	VE-212	2611 11614	3 76.2	5/8 15.9	2 1/4 57.2	4 101.6	1 7/8 47.6	1 1/4 31.8	3/4 19.1	1 23/32 43.7	1 3/64 26.6	1 5/16 33.3	3 76.2	3 1/2 88.9	1 3/8 34.9	1 7/16 36.5	1 9/16 39.7	17/32 13.5	1.8 .82
7/8	VTWE-214	VE-214																		
15/16	VTWE-215	VE-215	2801 12459	3 5/64 78.2	5/8 15.9	2 1/4 57.2	4 3/32 104.0	1 7/8 47.6	1 1/4 31.8	3/4 19.1	1 3/4 44.5	1 1/16 27.0	1 1/2 38.1	3 76.2	3 1/2 88.9	1 1/2 38.1	1 9/16 39.7	1 17/32 38.9	17/32 13.5	1.9 .86
1	VTWE-216	VE-216																		
1 1/8	VTWE-218	VE-218	4381	3 3/8		2 1/2	4 5/8	2 1/8	1 7/16	7/8	1 29/32		1 3/4	3 1/2	4	1 3/4	1 25/32			2.8
1 3/16	VTWE-219	VE-219	19487	85.7	19.1	63.5	117.5	54.0	36.5	22.2	48.4	30.2	44.5	88.9	101.6	44.5	45.2	40.5	13.5	1.27
1 1/4	VTWE-220	VE-220																		
1 3/8	VTWE-222	VE-222	5782 25718	3 3/4 95.3		2 3/4 69.9	5 127.0	2 1/8 54.0	1 7/16 36.5	7/8 22.2	2 1/64 51.2	1 9/32 32.5	2 3/16 55.6	3 1/2 88.9	4 101.6	1 3/4 44.5	2 50.8	1 3/4 44.5	17/32 13.5	3.5 1.59
1 7/16	VTWE-223	VE-223																		
1 1/2	VTWE-224	VE-224	7340 32648	4 7/32 107.2			5 19/32 142.1	2 3/4 69.9	1 15/16 49.2	1 1/8 28.6	2 7/32 56.4	1 3/8 34.9	2 3/8 60.3	4 101.6	4 1/2 114.3	2 1/8 54.0	2 3/16 55.6	2 1/32 51.6	11/16 17.5	5.2 2.36
1 5/8	VTWE-226	VE-226																		
1 11/16	VTWE-227	VE-227	7901 35144	4 3/8 111.1		3 1/4 82.6	5 3/4 146.1	2 3/4 69.9	1 15/16 49.2	1 1/8 28.6	2 7/32 56.4	1 3/8 34.9	2 1/2 63.5		4 1/2 114.3	2 1/8 54.0	2 1/4 57.2	2 1/8 54.0	11/16 17.5	5.8 2.63
1 3/4	VTWE-228	VE-228																		
1 15/16	VTWE-231	VE-231	7889 35090	4 17/32 115.1			5 29/32 150.0	2 3/4 69.9	1 15/16 49.2	1 1/8 28.6	2 15/32 62.7	1 1/2 38.1	2 3/4 69.9	4 101.6	4 1/2 114.3	2 1/8 54.0	2 5/16 58.7	2 7/32 56.4	11/16 17.5	6.1 2.77
2	VTWE-232	VE-232	9752	5 3/32	1	3 3/4	6 27/32	3 5/8	2 1/2	1 3/8	2 13/16	1 23/32	3	5 1/8	5 3/4	2 1/2	2 9/16	2 17/32	1 1/16	8.7
2 3/16	VTWE-235	VE-235	43377	129.4	25.4	95.3	173.8	92.1	63.5	34.9	71.4	43.7	76.2	I	146.1	63.5	65.1	64.3	27.0	3.95
0.7/40	VTME 222	VE 020	11789	5 1/2	1	4	7 1/4	3 5/8	2 1/2	1 3/8	3 1/16	1 27/32	3 3/8	5 1/8	5 3/4	2 1/2	2 27/32	2 21/32	1 1/16	9.6
2 7/16	VTWE-239	VE-239	52437	139.7	25.4	101.6	184.2	92.1	63.5	34.9	77.8	46.8	85.7	130.2	146.1	63.5	72.2	67.5	27.0	4.35

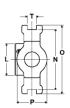
Refer to page G-190 for Frames.

Bore Size	Frame Series
3/4" to 1"	10
1 1/8" to 1 7/16"	23
1 1/2" to 2S"	31
2" to 2 7/16"	39

Mounted Ball Bearings

Rolling Elements: Ball


Housing: Cast Iron Wide Slot Take Up

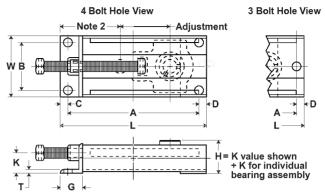

Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact and Flinger

Temperature: -20° to 200°F

VTWS 300 Series Medium Duty Wide Slot Take Ups - Setscrew Locking


Hom Daniel	the same	Bonn g	Bade							Din	enska	i Indhi	min							llus
D mind: (Farr (6)	No.	Saling Saling took	X.	100	J:#3	((0))		33 # 15	com	-60		110	(4)	(100)	14/4	(0)課	*	=	How Life
91	STA2-316	VS-316	(36) 340°	138 857	24	2 .E 689	468 1124	213 920	T: é 30.5	7,8 (2)0	7.8 120.2	112 58-1	1-302 402	5 1 i 2 58 C	ě.	書言	12:32 43	1/92 44.2	(7.22 -3.2	31 -d
1 3/16	VTWS-319	VS-319	5782 25718	3 3/4 95.3	3/4 19.1	2 3/4 69.9	5 127.0	2 1/8 54.0	1 7/16 36.5	7/8 22.2	1 25.4	1 11/16 42.9	1 55/64 47.2	3 1/2 88.9	4 101.6	1 3/4 44.5	2 50.8	1 3/4 44.5	17/32 13.5	4.0 1.81
1438	90884.3	*b***	040 38548		27t	# - X	1 8529 1 87	10 ji 135°	1 85 18 79 9	115 76 F	2017 2017) 167 s 797,	4,7719 297	+ V1 æ	7 pa 11428	7 16 5/ -	*25 IJI 12.2	9 649 21.2	10°2 12.0	# * * 1.
1 1/2	VTWS-324	VS-324	7901 35144	4 3/8 111.1	3/4 19.1	3 1/4 82.6	5 3/4 146.1	2 3/4 69.9	1 15/16 49.2	1 1/8 28.6	1 3/16 30.2	1 15/16 49.2	2 19/64 58.3	4 101.6	4 1/2 114.3	2 1/8 54.0	2 1/4 57.2	2 1/8 54.0	11/16 17.5	5.7 2.59
063 36	2089 19 1 STANSON	201720 186328	1000 1000	ivisa (+)	17	rital Di i	1 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4	91a 1935	1 (%) (8 79.00	1 he 2010	470/ 1875	100 140	2 245 327	() e	# 16) 11 423		755 H	THE PUBLIC BUILDING	H-2	16.9°
1 15/16 2	VTWS-331 VTWS-332	VS-331 VS-232	9752 4337	5 3/32 129.4	1 25.4	3 3/4 95.3	6 27/32 173.8	3 5/8 92.1	2 1/2 63.5	1 3/8 34.9	1 5/16 33.3	2 3/16 55.6	2 23/32 69.1	5 1/8 130.2	5 3/4 146.1	2 1/2 63.5	2 9/16 65.1	2 17/32 64.3	1 1/16 27.0	9.5 4.31
235 C 2367	VENERO VENERO	COLUMN TO A	- 255 1970	1.50 30	SW.	341	X 100 100 2	3%* 614	(4.3 161N	34	675 (8)	i (Mil Io I	a more en "	3 (°	# 747 # 741	100 C 100 C	2 97(12 72 E	5 1 gist 19 4	CALL STREET	IN PROCESSION

Refer to page G-190 for Frames.

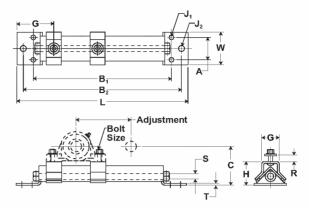
Footel Sides	From Series
TWINE?	20
1 7/16" to 1 3/4"	31
3'5 3214	.50

SF Series Standard Duty Center Pull Take-Up Frame

Bore	Diameter R	ange							sions inc						_	anne
	200 Series		Frame Part No.	Adjustment	L	A	w	8	C	В	G	ĸ	Ť	Bolt	Holes	Unit Wt. lb/kg
100 001100	200 001100	000 001100			-	THE REAL PROPERTY.	1000	10000	180	II sear	2.000	11885		No.	Size	
			1SF10	1 1/2 38.1	7 177.8	6 152.4	4 1/16 103.2	3 3/16 81.0	1/2 12.7	1/2 12.7	1 1/2 38.1	1 3/8 34.9	1/4 6.4	3	9/16 14	3.3 1.50
0/4 4"	4/0 4"	N1/A	3SF16	3 76.2	8 1/2 215.9	7 1/2 190.5	4 1/16 103.2	3 3/16 81.0	1/2 12.7	1/2 12.7	1 1/2 38.1	1 3/8 34.9	1/4 6.4	3	9/16 14	3.9 1.77
3/4 - 1"	1/2 - 1"	N/A	6SF16	6 152.4	11 1/2 292.1	10 1/2 266.7	4 1/16 103.2	3 3/16 81.0	1/2 12.7	1/2 12.7	1 1/2 38.1	1 3/8 34.9	1/4 6.4	3	9/16 14	5.1 2.31
			9SF16	9 228.6	14 1/2 368.3	13 1/2 342.9	4 1/16 103.2	3 3/16 81.0	1/2 12.7	1/2 12.7	1 1/2 38.1	1 3/8 34.9	1/4 6.4	3	9/16 14	6.2 2.81
			3SF23	3 76.2	9 3/8 238.1	8 3/8 212.7	11 3/8 288.9	3 11/16 93.7	1/2 12.7	1/2 12.7	1 1/2 38.1	1 3/8 34.9	1/4 6.4	3	9/16 14	5.4 2.45
1 1/8 -	1 1/8 -	4 4 0/405	6SF23	6 152.4	12 3/8 314.3	11 3/8 288.9	11 3/8 288.9	3 11/16 93.7	1/2 12.7	1/2 12.7	1 1/2 38.1	1 3/8 34.9	1/4 6.4	3	9/16 14	6.7 5.1
1 7/16"	1 7/16"	1 -1 3/16"	9SF23	9 228.6	15 3/8 390.5	14 3/8 365.1	11 3/8 288.9	3 11/16 93.7	1/2 12.7	1/2 12.7	1 1/2 38.1	1 3/8 34.9	1/4 6.4	3	9/16 14	8.1 3.67
			12SF23	12 304.8	18 3/8 466.7	17 3/8 441.3	11 3/8 288.9	3 11/16 93.7	1/2 12.7	1/2 12.7	1 1/2 38.1	1 3/8 34.9	1/4 6.4	3	9/16 14	9.5 4.31
			3SF31	3 76.2	11 279.4	9 7/8 250.8	5 1/16 128.6	3 1/16 77.8	1/2 12.7	5/8 15.9	1 1/2 38.1	1 5/8 41.3	1/4 6.4	4	9/16 14	7.4 3.36
			6SF31	6 152.4	14 355.6	12 7/8 327.0	5 1/16 128.6	3 1/16 77.8	1/2 12.7	5/8 15.9	1 1/2 38.1	1 5/8 41.3	1/4 6.4	4	9/16 14	9.1 4.13
1 1/2 - 2S"	1 1/2 - 2S"	1 7/16 - 1 3/4"	9SF31	9 228.6	17 431.8	15 7/8 403.2	5 1/16 128.6	3 1/16 77.8	1/2 12.7	5/8 15.9	1 1/2 38.1	1 5/8 41.3	1/4 6.4	4	9/16 14	10.8 5.1
			12SF31	12 304.8	20 508.0	18 7/8 479.4	5 1/16 128.6	3 1/16 77.8	1/2 12.7	5/8 15.9	1 1/2 38.1	1 5/8 41.3	1/4 6.4	4	9/16 14	12.5 5.67
			18SF31	18 457.2	26 660.4	24 7/8 631.8	5 1/16 128.6	3 1/16 77.8	1/2 12.7	5/8 15.9	1 1/2 38.1	1 5/8 41.3	1/4 6.4	4	9/16 14	15.9 7.21
			9SF39	9 228.6	18 1/4 463.6	16 7/8 428.6	6 3/8 161.9	4 1/8 104.8	5/8 15.9	3/4 19.1	2 50.8	1 7/8 47.6	5/8 15.9	4	11/16 17	20 5.1
2 - 2 3/16"	2 - 2 7/16"	1 15/16 - 2 1/4"	12SF39	12 304.8	21 1/4 539.8	19 7/8 504.8	6 3/8 161.9	4 1/8 104.8	5/8 15.9	3/4 19.1	2 50.8	1 7/8 47.6	5/8 15.9	4	11/16 17	22.8 5.1
			18SF39	18 457.2	27 1/4 692.2	25 7/8 657.2	6 3/8 161.9	4 1/8 104.8	5/8 15.9	3/4 19.1	2 50.8	1 7/8 47.6	5/8 15.9	4	11/16 17	28.2 5.1

Note:

1. Bearing sold separately.


2. Dimension variable based on housing. To calculate use G in table above + D - R from housing tables shown on prior pages.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

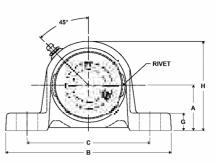
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

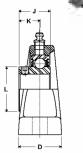
TF Series Standard Duty Top Mount Take-Up Frame

Date Dates	TO COMPANY OF THE							Dimon	term in	ati i Mari						-19900	ant
Fallo	Part No.	Adjustmen.	8	#E(I)	(60))	W	N.	(6)	A.	Ħ	9%]	II.	:=))	Wit	36	SET SET	1110
Aketan	RII IA	/1554/	11-10 11-80	(0 /) (50)	terrali ora i	* 04 397	∑(n) -/3	10.00	Parkit U. L	ing.	61; 11	3-11 443	音音	60 88	izar et	100	50.
36 4	25711	228.0	20 f/S 5at.2	Company of the Party of the Par	100 TO 10	19),E 328	-19 :23	1.54 4-5	3 9/30 54 T	255 (83	345 11	: 3:10 :14:3	9/16 -1/2	3/E 8/a	3/10 ≠\$	362 100	0.0 304
	6TF31	6 152.4	18 3/16 462.0	15 7/16 392.1	16 15/16 430.2	3 1/2 88.9	2 1/2 63.5	2 5/16 58.7	3 3/8 85.7	2 13/16 71.4	7/16 11.1	9/16 14.3	7/8 22.2	3/4 19.1	3/16 4.8	1/2 13	8.9 4.04
4.440. 4.4540.	9TF31	9 228.6	22 5/8 574.7	19 7/8 504.8	21 3/8 542.9	3 1/2 88.9	2 1/2 63.5	2 5/16 58.7	3 3/8 85.7	2 13/16 71.4	7/16 11.1	9/16 14.3	7/8 22.2	3/4 19.1	3/16 4.8	1/2 13	10.3 4.67
1 1/16 - 1 15/16"	12TF31	12 304.8	24 3/16 614.4	21 7/16 544.5	22 15/16 582.6	3 1/2 88.9	2 1/2 63.5	2 5/16 58.7	3 3/8 85.7	2 13/16 71.4	7/16 11.1	9/16 14.3	7/8 22.2	3/4 19.1	3/16 4.8	1/2 13	10.9 4.94
	18TF31	18 457.2	31 5/8 803.3	28 7/8 733.4	30 3/8 771.5	3 1/2 88.9	2 1/2 63.5	2 5/16 58.7	3 3/8 85.7	2 13/16 71.4	7/16 11.1	9/16 14.3	7/8 22.2	3/4 19.1	3/16 4.8	1/2 13	13.3 6.03
c-##/#:	ty i.e	250000	24 7/112	9434/ 790	10555 1738 m	110	10	Sec.	(d) (d)	1500. 6-1	9.0 866	757 166) (6.2 300)	% .90	ii ii	18.5 186) *)))))
2 TV 1	18 FE	18 77.2	34 253 0	30.3% 28. 1	30.374 63.70	4.12 1143) 798	354 267	C1.6	±0, 6 \$=1	2116 143	15.72 15.72	1211 <u>5</u> 29.3	25.4	1/8 0 =	74. 10	1 20 951

Duty: Intermediate

Rolling Elements:


Housing: Ductile Iron Pillow Block


Self Alignment: +/- 1.5 Degrees

> Lock: Setscrew

Seal: Contact

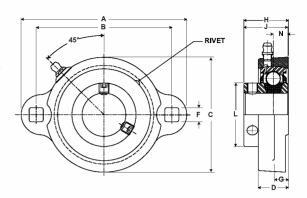
-20° to 200°F Temperature:

VPS 100-M Series Intermediate Duty Ductile Iron Pillow Blocks - Setscrew Locking

Born Distribut	30-20-20-20-31	mirag:	95/46	_				interiorism	ortendo d	iW				BHOOS	Ben W.
1	Parish)	110000	Cyromic Fedding fand	SAN	931		C Higgs: 11	ij/	(E)))((0)	00	130	Ste	Ibik
1/2	VF8/108/H	1:8-26	5.5	1.5(1)	4.004	Span	الدود ه	-8	1967	2%	75-78	nW.	60.62	589	191
1800	3383 100M	360	2057	100	7.7	4.0	7.3	Pod	1	148	3.0	tise!	me	-0-09L	#
3/4	VPS-112M	VS-112	2611	1 5/16	4 3/4	3 15/32	4 1/32	1 1/16	3/8	2 7/16	1 1/16	23/32	1 3/16	3/8	0.9
	VF3-112IVI	V3-112	11614	33.3	120.7	88.1	102.4	27.0	9.5	61.9	27.0	18.3	30.2	3/0	41
15.16	VPS 11511	44	2071	1.5700	165	3206	0.7250	2.54	19/50	211/16	1.20	12.94	2.09	X.DI	1.10 3.00
9))	53-55 Tille?	10.00	254	da,a	= 910	21.21	HGS	26.8	1945	Metal	dis	0771	3571	0.00	3.63
1 3/16	VPS-119M	VS-119	4381	1 11/16	5 15/16	4 3/8	5 1/16	1 5/16	13/32	3 5/32	1 5/32	25/32	1 19/32	1/2	16
1 1/4	VPS-120SM	VS-120S	19487	42.9	150.8	111.1	128.6	33.3	10.3	80.2	29.4	19.8	40.5	1/2	73
734	4F# 100M	(S.F)	594	(2)423	P L ·	120 Se	Salar	28	100	nuwes	11 V5000	Devision:	17-0200		331
138	SEE 1225	43 2E		2126	12582	1112/5			2004	ERGORY	1 5439 . 6339	25/34	55 9 4	5443	2000
7.586	CARSE DATES	- W/J-P*	2508	(404)	16,75%	12.55 pt.		3,000	412/04	194.9	1000	(3550)	427		11,000

Duty: Intermediate

Rolling Elements: Bal


Housing: Ductile Iron Two Bolt Flange

Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact

Temperature: -20° to 200°F

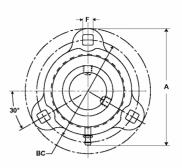
VF2S 100-M Series Intermediate Duty Ductile Iron Two Bolt Flanges - Setscrew Locking

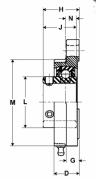
Sore Districtor	HERRIGE:	Hear erg	Sank Janama				į,	remailer val	dien.	in i				men)	nac ra
ine	Porting	Incore Vo	Arcing than	MAN	1000	67	l e	r Sesima	6	W	T.	(4)	W	58	lib-kg.
147	Wednesday	7/8-758	9756	33.0	11.77	f The III	217	111044	TAST	Sin	TIVE	2102	2:38	ne.	10.
196	9/20000	2800	302	24	M4.m	40.3	111	fer.	Test	MA	3/6	34.8	722	June 1	7
3/4	VF2S-112M	VS-112	2611	3 9/16	2 13/16	2 1/4	23/32	23/64	7/16	1 7/64	1 1/16	1 3/16	11/32	5/16	9
3/4	VF23-112IVI		11614	90.5	71.4	57.2	18.3	9.1	11.1	28.2	27.0	30.2	8.7	3/10	41
3/2	1706 1419	77: 114													
12:16	c25 10H	77.117	2201 32455	250 85 1	70.3	24Q 335	27.52	33/94	Yes.	1.945 - 05.3	7,64 20.2	1.50 543	577		10 40
	e warmen	NO BE													
1 1/8	VF2S-118M	VS-118													
1 3/16	VF2S-119M	VS-119	4381 19487	4 7/16 112.7	3 9/16 90.5	2 15/16 74.6	29/32 23.0	27/64 10.7	15/32 11.9	1 17/64 32.1	1 5/32 29.4	1 19/32 40.5	3/8 9.5	3/8	1 5 68
1 1/4	VF2S-120SM	VS-120S													
3349	Y528 100W	795 (20)	11000000	100000000000000000000000000000000000000			-14-0111					III TUOKUUS			
1.78	VF28-122M	WE 122	3710 277 3	6 1245 1222	0 2:49 100 0	995 674	21.72 24.5	37/64 16.7	12.7	1.3334	10.00	3054 353	27.94 · 10.7	25	慧
1 3/0-	¥ 28 € 0 ₩	201-026	8882	MAT:	W58	927	SW	LESS	1683	1990	155	0.5(1)	100		20050

Duty: Intermediate

Rolling Elements: Ball

> Housing: Ductile Iron Three Bolt


Flange


Self Alignment: +/- 1.5 Degrees

> Lock: Setscrew

Seal: Contact

-20° to 200°F Temperature:

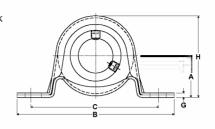
VF3S 100-M Series Intermediate Duty Ductile Iron Three Bolt Flanges - Setscrew Locking

Sam Descript	2.4600000	COMME	Birdt.		,		T dii	nternation	e mali če	iiii	J			SAME TO SE	Banka.
-	Part No.	literi No.	Oyramii Rating EV	380	20000	10	34	0,55	1):	20	10,	(M)	()))	92	Ibbo
-02	WPSS-108to	98408	5105	88.8	4.7.75	1450	1470	1335	#b-00	3775	W1.550	- hinte	25-71	The same	4500
2500	2402911090	\$382007	3500	2	Mean	The A	1	100.3	1,0	W.A.	-7 K	4	25	196.0	#
3/4	VF3S-112M	VS-112	2611	3 9/16	2 13/16	23/32	23/64	7/16	1 7/64	1 1/16	1 3/16	2 1/4	11/32	5/16	.81
3/4	VF33-112IVI	V3-112	11614	90.5	71.4	18.3	9.1	11.1	28.2	27.0	30.2	57.2	8.7	5/10	.37
7,0	14F75 1 44	V3 114													
12.5	2 9 25 1 %	23 15	250 1,347.0	2.74 55.2	10.1	25732 16.5	2354 -0.1	2012	3546 353	1/2/64 39:2	134 348	5 (2 07.2	1,02 2,7	₩.=	4.02
	70.79 L 16	Walter													
1 1/8	VF3S-118M	VS-118													
1 3/16	VF3S-119M	VS-119	4381 19487	4 7/16 112.7	3 9/16 90.5	29/32 23.0	27/64 10.7	15/32 11.9	1 17/64 32.1	1 5/32 29.4	1 19/32 40.5	2 15/16 74.6	3/8 9.5	3/8	1.50 68
1 1/4	VF3S-120SM	VS-120S													7
1.4%	3975 100	¥8.426				LICHTON.	******				T 41-7 (1)				500.000
11,375	WESS 1200	38.135	7762 25717	4 21 7	3 15 16 50 3	24.53 24.5	27/04 15.5	127	37.64 37.0	1900 325	1,000 A 47.2		27.64 107	980	2.00
rrs	10025 Sint	FF 151	VSSAW.	254	1458	39/4	otenii:		65600	THE OF	252	150	68		1000 d

Duty: Light

Rolling Elements: Ball

Housing: Stamped Steel Pillow Block


Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact

Temperature: -20° to 200°F

Relube: No

SSPS 100 Series Light Duty Stamped Steel Pillow Blocks - Setscrew Locking

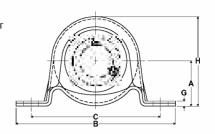
Bore Ejettethit	May Mystal	MINNON.	REMOVING:)	nenclore	almoh 21	Men				6600	Contest
light.	likely.	Part time	historille	(AM)	(100)	KE	Œ()	琪	9%	00,	3);	(1)	Æ	3.7	1670
:3k 19/10 T	/000 1255	3545 (1) -513 (1) -513 (1)	TICSTON TICSTON TICSTON	1781 258	SEC.	y est State	# # # # #	113 113	34	er year ethy	33v 349	-M	2 NOV 28434	30)	*
1 1/8 1 3/16 1 1/4	600 2669	SSPS-118 SSPS-119 SSPS-120S	LRS-118 LRS-119 LRS-120S	1 5/16 33.3	4 5/8 117.5	3 3/4 95.3	1 3/8 34.9	61/64 24.2	5/32 4.0	2 19/32 65.9	1 19/32 40.5	7/8 22.2	1 19/32 40.5	3/8	1 0 45

Duty: Light

Rolling Elements:

Housing: Stamped Steel with Rubber

Grommet Pillow Block


Self Alignment: +/- 1.5 Degrees

> Lock: Setscrew

Contact Seal:

-20° to 200°F Temperature:

> Relube: No

SSRPS 100 Series Light Duty Stamped Steel with Rubber Grommet Pillow Blocks - Setscrew Locking

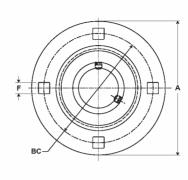
Som Carrolat	Man Heetler	SERECT STATES	DIMAGEST N				D	and the other	installa	1111				DEAGE	Lian Vit
nen.	LW.	Parith	mort ho	981	0.1	100	00	m	讍	00	180	×	(3)	limit Spa	18/kg
%=	96 103-	381/6/1	10,412	7 To 48 S	4 177 1580	3-215 15-7	1 by	-707 -754	1/8 1/9	2 (X84 1624	1 :30 et-a	MA A	1343H	384.1	in S
7/8 15/16 1	300 1334	SSRPS-114 SSRPS-115 SSRPS-116	LRS-114 LRS-115 LRS-116	1 5/16 33.3	4 5/8 117.5	3 3/4 95.3	1 3/8 34.9	61/64 24.2	5/32 4.0	2 19/32 65.9	1 3/8 34.9	55/64 21.8	1 3/8 34.9	3/8	0 8 36

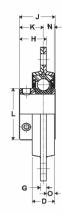
Duty: Light

Rolling Elements: Ball

Housing: Stamped Steel Four Bolt

Flange


Self Alignment: +/- 1.5 Degrees


Lock: Setscrew

Seal: Contact

Temperature: -20° to 200°F

Relube: No

SSF4S 100 Series Light Duty Stamped Steel Four Bolt Flanges - Setscrew Locking

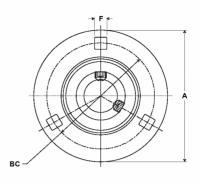
Bom Company	Nextbolei Fiload	Treesew.	Hearth				Ď	ministra	i indire					man)	Dec 68
Dutt.br	i conti initi	Fart IV	Install hou	/ %	1000	Square	(#)	1000	82	011	XI.	(K)	30	52	lbikg.
=32	976C 356T	sa waa	LSC -	n rere trans	1.5	Trus? Taxx	1	Tiefel 73	f protest Next	# 171g -3874)	X чти 4)-2	Star -3	7389 1.1	iio	AT Form
1 11/16 1 3/4	1700 7562	SSF4S-127 SSF4S-128	LS-127 LS-128	5 7/8 149.2	4 3/4 120.7	17/32 13.5	17/64 6.7	1 3/32 27.8	1 7/16 36.5	2 19/64 58.3	3 5/8 92.1	31/64 12.3	11/32 8.7	1/2	3.9 1.77
CHOOK	1906 7-0	ASTAIN-PAT	24.11	e 150-16	9.5	drias Tais	113 44 3.4	*X10	1 X 244 91.2	# 1500P #01 *	27/10 1/4	36	3891	*	422 780

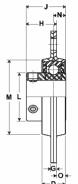
Duty: Light

Rolling Elements: Ball

> Housing: Stamped Steel Three Bolt

Flange


Self Alignment: +/- 1.5 Degrees


> Lock: Setscrew

Seal: Contact

Temperature: -20° to 200°F

> Relube: No

SSF3S 100 Series Light Duty Stamped Steel Three Bolt Flanges - Setscrew Locking

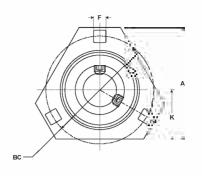
Bort Discount	- Spundy -	AVAITA	Baston					Distan	dayli.	fi Timer					050000	DHEWI.
Diam'ya me	Final land bTV	PARTIE NA	nseriko	50	(000)	0.0	Segun	(6)	E.00.)(3));	10	240	(40))	1003	Flag	Ditt.
:346	=65 • m	AMINSTE	2017	(30)H 2015	(1).1 (1).1	Aser'	**************************************	1147	tare sum	TAM	T. pc18 SXL	寺	1 kg7 8.4	ne He	3,18	ear Th
7/8 15/16 1	800 3558	SSF3S-114 SSF3S-115 SSF3S-116	LS-114 LS-115 LS-116	3 3/4 95.3	3 76.2	43/64 17.1	11/32 8.7	11/64 4.4	55/64 21.8	1 7/64 28.2	1 3/8 34.9	2 7/32 56.4	11/32 8.7	1/4 6.4	5/16	1.3 59
1 276 1 276 1 4	fron tred	ESFEST ∌ FERTY 5 SECTIONS	.546 .546 546	4 VIII 27	9.596 \$17	2123 -230	3/02 10/3	1004 5 T	37.04 22.6	1502 20-4	1502 46.7	2 25-741 07-9	3/6 6.5	12/04 6.7	30	5 (0)
1 1/4 1 3/8 1 7/16	1400 6227	SSF3S-120 SSF3S-122 SSF3S-123	LS-120 LS-122 LS-123	4 13/16 122.2	3 15/16 100.0	53/64 21.0	13/32 10.3	13/64 5.1	31/32 24.6	1 9/32 32.5	1 55/64 47.2	3 1/16 77.8	27/64 10.7	5/16 7.9	3/8	1 8 82

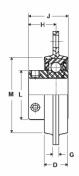
Duty: Light

Rolling Elements: Ball

Housing: Stamped Steel Three Bolt

Triangular Flange


Self Alignment: +/- 1.5 Degrees


Lock: Setscrew

Seal: Contact

Temperature: -20° to 200°F

Relube: No

SSF3TS 100 Series Light Duty Stamped Steel Three Bolt Flanges - Setscrew Locking

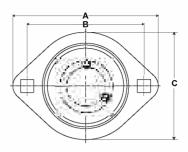
Eofe Damelai	Max findle)	many)	ingarii			D.	randa.	winds/fi	W				ne en en en en en en en en en en en en e	Linn Vit.
Danielli hrh	Total NAT	JiPk.	Irani, No. 💉	:=#0	Ø 0	denni'	10.7	W.,	00	10	[0]	100	8:4	Habita
-04	062 2014	28 102 12	#10	2.0768 - 14	i i kin	100	rica)	H 1016 307 D	000 000	15an 220	ighte Juni	9.11 811	m^{\perp}	802 (F
7/8 15/16 1	800 3558	SSF3TS-114 SSF3TS-115 SSF3TS-116	LS-114 LS-115 3 1/8 79.4 LS-116	3 76.2	21/32 16.7	11/32 8.7	11/64 4.2	1 7/64 28.2	49/64 19.4	1 3/8 34.9	1 3/8 34.9	2 7/32 56.4	5/16	1 1 50
eve eve	1100 4661	100 HOUSE 101 HOUSE 200 HOUSE	0-0°+ 0-0°+ 3-0°+ 0-20€	est o	20°	1130	E(A)	1550	2621 1831		1.0412 315	#3550 62.5	201	10.

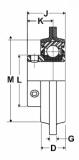
Duty: Light

Rolling Elements:

Housing: Stamped Steel Two Bolt

Flange


Self Alignment: +/- 1.5 Degrees


> Lock: Setscrew

Contact Seal:

-20° to 200°F Temperature:

> Relube: No

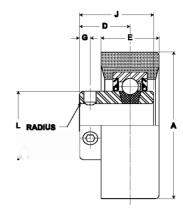
SSF2S 100 Series Light Duty Stamped Steel Two Bolt Flanges - Setscrew Locking

Barn Dunchi	Max Hedial	980600	Hearing:				Dimo	STORY WIL					Titlere	DHIT VIC
The same	1 5596 1174	Red VIII	Incorp. Ho.	86	(0)	330	60)	(#)	(4)	, III,	300	200	. S. H.	Halog
12 28	6d2 11181	88F28-165 85F28-10	18- či 13- č	33.46 *3.5	67.3.	353.8 36.9	13	151 73	19/00 2010	2622 (60)	54 0.8	31000	NF.	猎
3/4	600 2669	SSF2S-112	LS-112	3 9/16 90.5	2 13/16 71.4	2 5/8 66.7	21/32 16.7	11/64 4.3	1 1/16 27.0	1 3/16 30.2	23/32 18.3	2 1/64 51.2	5/16	8 36
7.0 3.3	800 2002	59733-14 29733-16 32733-16	15 4 18- 5 18- 6	129 233	4	51316	2102 714	110	7764 28 2	128 542	4054 194	27.92 50 4	-she	39 341
1 1/8 1 3/16 1 1/4	1100 4893	SSF2S-118 SSF2S-119 SSF2S-120S	LS-118 LS-119 LS-120S	4 7/16 112.7	3 9/16 90.5	3 5/16 84.1	3/4 19.1	13/64 5.2	1 5/32 29.4	1 19/32 40.5	25/32 19.8	2 21/32 67.5	3/8	1 0 45

Duty: Light

Rolling Elements: Ball

> Housing: Cylindrical O.D.


Rubber Grommet

Lock: Setscrew

Seal: Contact

Temperature: -20° to 200°F

Relube:

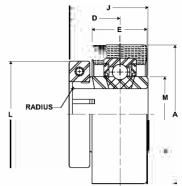
RUBRS 100 Series Light Duty Rubber Grommets - Setscrew Locking

solo Diameter	Sienuy	man()	District			Dimmilian	ndi/mi			1166-68A
etich.	End Libert	was.	nserabo	5000	901	E .	75	30	(1)	1 links
1/2	22:=:	RUSRAL 16	3L96-136	1048859H	1=10	50	4-57/4-4	USSEN	West	-
5%	327 1114	R3985 I	5.58 90	21772 640	7/0 2015	17.0	3/15 4/0	1 332 325	13:15	.5 29
##* :	The second secon	000004758	75-20-102	3.Terost	10/1823		2.00	-200E3	THESE	
15/16	300	RUBRS-115	SLRS-115	2 17/32	7/8	1	3/16	1 3/8	1 3/8	6
1	1334	RUBRS-116	SLRS-116	64.3	22.2	25.4	4 8	34.9	34.9	27

Duty: Light

Rolling Elements: Ball

> Housing: Cylindrical O.D.


Rubber Grommet

Lock: **BOA Concentric**

Seal: Contact

Temperature: -20° to 200°F

Relube:

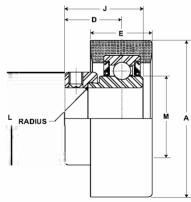
RUBRB 100 Series Light Duty Rubber Grommets - BOA Concentric Locking

Som Dignician	on bready on	- =10000 s	Descryp			Dansansian	rinen) on			Top: Cap	richer (ACC)	=thetam:
(U-14)	Banksi out	Patricks	leozra No	9.60	((0))	1.0	#((1)		Selow	line ste.	Enifickii:
6/4	290 (1-2	PLANES-32	4.007	17-28 87 d	1%. 22.3	7.3	10-12- 11-1	7.89 162	2018 air.	1685	5 31	0.194
1	300 1334	RUBRB-116	SLRB-116	2 17/32 64.3	15/16 23.8	1 25.4	1 7/16 36.5	1 15/16 49.2	1 3/8 34.9	T-25	6 .27	B-15A

Duty: Light

Rolling Elements:

Housing: Cylindrical O.D.


Rubber Grommet

Lock: Eccentric

Seal: Contact

-20° to 200°F Temperature:

Relube:

RUBRE 100 Series Light Duty Rubber Grommets - Eccentric Locking

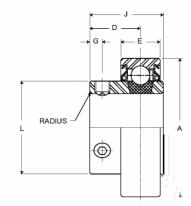
Barre Djametut	History	Constraint.	Balling			Direction	s troh é tiné			= Suballow	- managemen
ant)	Redia Laset	78t#	ticed to	(()	iù	#	#		W :	.Fee	Bistyle
24	165 1860	ALEPE 113	91E 113	7 1002 521	55%4 30,4	24	1.1754 32.1	1516	1 Unit Ca	14-28	27
15/16	300	RUBRE-115	SLE-115	2 17/32	59/64	1	1 17/64	1 1/2	1 3/8	4/4.00	6
1	1334	RUBRE-116	SLE-116	64.3	23.4	25.4	32.1	68	62	1/4-28	27

Replacement collar part numbers can be found on page G-214.

Duty: Light

Rolling Elements: Ball

Outer: Cylindrical O.D.


Self Alignment: +/- 1.5 Degrees

Lock: Setscrew

Seal: Contact

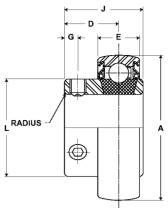
Temperature: -20° to 200°F

Relube: No

SLS 100 Series Light Duty Straight OD Inserts - Setscrew Locking

Core Diameter	100000000	828-0	- 67		Dimension	amen) mm		116	166	S. HARRISTON CO.	THAT WE
Districtor	Water Di	Oynamic Rid g Hab	W	7000	700	*	2 2		To Cacar	The largest	1093
50 50	3.6718 VL9 110	9765 6077	1 5:30: 91	16-9 16-9	97995 41.5	11387 (10	34H 34H	(458 (458	99k 14	1638	10
3/4	SLS-112	2611 11614	1.8504 47	23/32 18.3	19/32 15.1	3/16 4 8	1 1/16 27.0	1 3/16 30.2	0.07 1 8	1/4-28	5 23
15 G	905-01 206-05 905-115	2801 +\$-00	#X42 EE	-0764 10 -) See (4.7)	250 46	17/04 28/2	3 2 6 94.1	6.27	114.25	2**
1 1/8 1 3/16 1 1/4	SLS-118 SLS-119 SLS-120S	4381 19487	2.4409 62	25/32 19.8	45/64 17.9	7/32 5 6	1 5/32 29.4	1 19/32 40.5	0.08 2 0	1/4-28	1 0 45
135	3,51,0 3,5122 3,5120	072± 27712	2 SM\$ 72	5854 31.5	iu k	104 6/2	10.02 22.0	55/04 47/2	0.16 2.0	940.24	13
1 1/2	SLS-124	7340 32648	3.1496 80	15/16 23.8	55/64 21.8	9/32 7 1	1 27/64 36.1	2 1/16 52.4	0.095 2 4	5/16-24	1 8 82

Duty: Light **Rolling Elements:** Ball


> Outer: Spherical O.D.

Lock: Setscrew

Seal: Contact

-20° to 200°F Temperature:

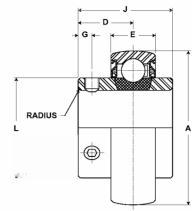
Relube:

LS 100 Series Light Duty Inserts - Setscrew Locking

Here		Basic			Dimensions	s inch / mm					II was a san a san a san a san a san a san a san a san a san a san a san a san a san a san a san a san a san a
Diameter inch	PartiNo.	Dynamic Rating Ib/N	A	D	Ē	G	Ü	D	Man Rad. To Glear	Setscrew Trumpd	Unit Wr lanking
1/2	LS-108	2108	1.5748	5/8	33/64	5/32	15/16	31/32	.055	10-32	.4
5/8	LS-110	9377	40	15.9	13.1	4.0	23.8	24.6	1.4	10 02	.18
3/4	LS-112	2611 11614	1.8504 47	23/32 18.3	19/32 15.1	3/16 4.8	1 1/16 27.0	1 3/16 30.2	.070 1.8	1/4-28	.5 .23
7/8	LS-114										
15/16	LS-115	2801 12459	2.0472 52	49/64 19.4	19/32 15.1	3/16 4.8	1 7/64 28.2	1 3/8 34.9	.070 1.8	1/4-28	.6 .27
1	LS-116										
1 1/8	LS-118										
1 3/16	LS-119	4381 19487	2.4409 62	25/32 19.8	45/64 17.9	7/32 5.6	1 5/32 29.4	1 19/32 40.5	.080 2.0	1/4-28	1.0 .45
1 1/4	LS-120S										
1 1/4	LS-120										
1 3/8	LS-122	5782 25718	2.8346 72	55/64 21.8	3/4 19.1	1/4 6.4	1 9/32 32.5	1 55/64 47.2	.080 2.0	5/16-24	1.6 .73
1 7/16	LS-123										
1 1/2	LS-124	7340 32648	3.1496 80	15/16 23.8	55/64 21.8	9/32 7.1	1 27/64 36.1	2 1/16 52.4	.095 2.4	5/16-24	1.8 .82
1 11/16	LS-127	7901	3.3465	61/64	55/64	5/16	1 7/16	2 19/64	.110	5-16-24	1.4
1 3/4	LS-128	35144	85	24.2	21.8	7.9	36.5	58.3	2.8	3-10-24	.64
1 15/16	LS-131	7889 35090	3.5433 90	1 3/64 26.6	29/32 23.0	3/8 9.5	1 35/64 39.3	2 15/32 62.7	.110 2.8	3/8-24	1.6 .73

Duty: Light

Rolling Elements: Ball


Outer: Spherical O.D.

Lock: Setscrew

Seal: Contact

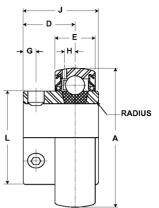
Temperature: -20° to 200°F

Relube: No

LRS 100 Series Light Duty Inserts - Setscrew Locking

Bore Digitalis	Transport.	B24.0			Dinamiku	a lin linkhoa			1000000000	: and a second	-200000000
1727)	- Wirone	Dymmic Radig Hall	#/	(g)	(¢	W.	40	(4	Masi: Raid To Glogs	Thered	tint Williams
584	Ja-ux	ær Ts#	rotes Listati	150H	1.0 1.1	7/14 7/14	7-73- 31-11	1-pc1M 382-	984 503	09-20	+ 2
7/8 15/16 1	LRS-114 LRS-115 LRS-116	2801 12459	52MM 2.0472	55/64 21.8	19/32 15.1	7/32 5 6	1 3/8 34.9	1 3/8 34.9	04 1.0	1/4-28	5 23
138 2 d	_RS-ntif LPS-ntil CH-OAN	4371 5497	Salah Salah	-7,0 222	47-04 -To	7,92 5 5	(4-2 50.1	25/02 45/2	64 10	14 35	79

Duty: Intermediate


Rolling Elements: Ball

> Outer: Spherical O.D.

Lock: Setscrew

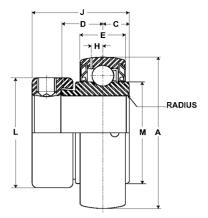
Seal: Contact

Temperature: -20° to 200°F

VS 100 Series Intermediate Duty Inserts - Setscrew Locking

Bore Diameter		Basic Dynamic			Dime	ensions In In	iches			Max. Red.	Setscrew	Unit Wt
inch	Part No.	Rating lb/N	A	D	E	G	H	ű	Ē	To Clear	Thread	lb/kg
1/2	VS-108	2108	1.5748	5/8	.512	5/32	9/64	15/16	31/32	.055	40.00	.3
5/8	VS-110	9377	40	15.9	13	4.0	3.6	23.8	24.6	1.4	10-32	.14
3/4	VS-112	2611 11614	1.8504 47	23/32 18.3	.591 15	3/16 4.8	5/32 4.0	1 1/16 27.0	1 3/16 30.2	.070 1.8	1/4-28	.4 .18
7/8	VS-114											
15/16	VS-115	2801 12459	2.0472 52	49/64 19.4	.591 15	3/16 4.8	5/32 4.0	1 7/64 28.2	1 3/8 34.9	.070 1.8	1/4-28	.5 .23
1	VS-116											
1 1/8	VS-118											
1 3/16	VS-119	4381 19487	2.4409 62	25/32 19.8	.709 18	7/32 5.6	13/64 5.2	1 5/32 29.4	1 19/32 40.5	.080 2.0	1/4-28	.7 .32
1 1/4	VS-120S											
1 1/4	VS-120											
1 3/8	VS-122	5782 25718	2.8346 72	55/64 21.8	.748 19	1/4 6.4	15/64 6.0	1 9/32 32.5	1 55/64 47.2	.080 2.0	5/16-24	1.0 .45
1 7/16	VS-123											
1 1/2	VS-124	7340 32648	3.1496 80	15/16 23.8	.866 22	9/32 7.1	17/64 6.7	1 27/64 36.1	2 1/16 52.4	.095 2.4	5/16-24	1.2 .54
1 11/16	VS-127	7901	3.3465	61/64	.866	5/16	17/64	1 7/16	2 19/64	.110	5/16-24	1.4
1 3/4	VS-128	35144	85	24.2	22	7.9	6.7	36.5	58.3	2.8	3/10-24	.64
1 15/16	VS-131	7889	3.5433	1 3/64	.906	3/8	9/32	1 35/64	2 15/32	.110	3/8-24	1.6
2	VS-132S	35090	90	26.6	23	9.5	7.1	39.3	62.7	2.8	3/0-24	.73
2	VS-132	9752	3.9370	1 7/64	.984	3/8	5/16	1 21/32	2 23/32	.125	3/8-24	2.2
2 3/16	VS-135	43377	100	28.2	25	9.5	7.9	42.1	69.1	3.2	370-24	1.00

Duty: Intermediate


Rolling Elements: Ball

> Outer: Spherical O.D.

Lock: Eccentric

Seal: Contact

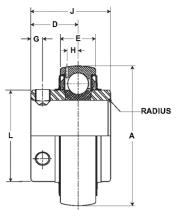
Temperature: -20° to 200°F

VE 100 Series Intermediate Duty Inserts - Eccentric Locking

Воге		Basic		acy iii		Dimension		c.i.i.g				-	
Diameter	Part No.	Dynamic Ratīng Ib/N	Ā	C	D	E)H	Ĵ	121	M	Max -cad. To Great	Betocrew Threed	Unvi WL Ibing
1/2	VE-108	2108	1.5748	5/16	1/2	.512	9/64	1 3/16	1 3/16	31/32	.055	4/4.00	.4
5/8	VE-110	9377	40	7.9	12.7	13	3.6	30.2	30.2	24.6	1.4	1/4-28	.18
3/4	VE-112	2611 11614	1.8504 47	11/32 8.7	35/64 13.9	.591 15	5/32 4.0	1 17/64 32.1	1 5/16 33.3	1 3/16 30.2	.070 1.8	1/4-28	.4 .18
7/8	VE-114												
15/16	VE-115	2801 12459	2.0472 52	11/32 8.7	35/64 13.9	.591 15	5/32 4.0	1 17/64 32.1	1 1/2 38.1	1 3/8 34.9	.070 1.8	1/4-28	.5 .23
1	VE-116	12100	02	0.1	10.0		1.0	02.1	00.1	0 1.0	1.5		.20
1 1/8	VE-118												
1 3/16	VE-119	4381 19487	2.4409 62	3/8 9.5	37/64 14.7	.709 18	13/64 5.2	1 27/64 36.1	1 3/4 44.5	1 19/32 40.5	.080 2.0	5/16-24	.7 .32
1 1/4	VE-120S		, v <u>-</u>	0.0			0.2				2.0		.02
1 1/4	VE-120												
1 3/8	VE-122	5782 25718	2.8346 72	27/64 10.7	5/8 15.9	.748 19	15/64 6.0	1 37/64 40.1	2 3/16 55.6	1 55/64 47.2	.080 2.0	3/8-24	1.1 .50
1 7/16	VE-123												
1 1/2	VE-124	7340 32648	3.1496 80	31/64 12.3	3/4 19.1	.866 22	17/64 6.7	1 49/64 44.8	2 3/8 60.3	2 1/16 52.4	.095 2.4	3/8-24	1.4 .64
1 11/16	VE-127	7901	3.3465	31/64	3/4	.866	17/64	1 49/64	2 1/2	2 19/64	.110	2/0.24	1.6
1 3/4	VE-128	35144	85	12.3	19.1	22	6.7	44.8	63.5	58.3	2.8	3/8-24	.73
1 15/16	VE-131	7889	3.5433	1/2	3/4	.906	9/32	1 25/32	2 3/4	2 15/32	.110	3/8-24	1.8
2	VE-132S	35090	90	12.7	19.1	23	7.1	45.2	69.9	62.7	2.8	3/6-24	.82
2	VE-132	9752	3.937	35/64	13/16	.984	5/16	1 63/64	3	2 23/32	.125	7/16-20	2.5
2 3/16	VE-135	43377	100	13.9	20.6	25	7.9	50.4	76.2	69.1	3.2	1/10-20	1.13

Replacement collar part numbers can be found on page G-214.

Duty: Standard


Rolling Elements: Ball

> Outer: Spherical O.D.

Lock: Setscrew

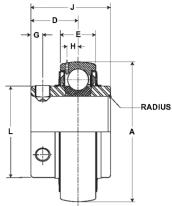
Seal: Contact and Flinger

Temperature: -20° to 200°F

VS 200 Series Standard Duty Inserts - Setscrew Locking - Inch

Bore Dia neter		Basic Dynamic			Dime	nsions inch	/ mm			Max. Rad-	Setsoree	Decries
inch	Part No.	Rating Ib/N	Α	D	E	G	Ĥ	(A)	î	To Clear	Thread	IbNg
1/2 5/8	VS-208 VS-210	2108 9377	1.5748 40	5/8 15.9	.512 13	5/32 4.0	9/64 3.6	1 1/32 26.2	31/32 24.6	.040 1.0	10-32	.4 .18
3/4	VS-212	2611 11614	1.8504 47	23/32 18.3	.591 15	3/16 4.8	5/32 4.0	1 7/32 31.0	1 3/16 30.2	.040 1.0	1/4-28	.4 .18
7/8 15/16 1	VS-214 VS-215 VS-216	2801 12459	2.0472 52	13/16 20.6	.591 15	7/32 5.6	5/32 4.0	1 3/8 34.9	1 3/8 34.9	.040 1.0	1/4-28	.6 .27
1 1/8 1 3/16 1 1/4	VS-218 VS-219 VS-220S	4381 19487	2.4409 62	7/8 22.2	39/55 18	7/32 5.6	13/64 5.2	1 1/2 38.1	1 19/32 40.5	.040 1.0	1/4-28	.9 .41
1 1/4 1 3/8 1 7/16	VS-220 VS-222 VS-223	5782 25718	2.8346 72	1 25.4	.748 19	1/4 6.4	15/64 6.0	1 11/16 42.9	1 55/64 47.2	.040 1.0	5/16-24	1.2 .54
1 1/2	VS-224	7340 32648	3.1496 80	1 3/16 30.2	.866 22	5/16 7.9	17/64 6.7	1 15/16 49.2	2 1/16 52.4	.062 1.6	5/16-24	1.5 .68
1 5/8 1 11/16 1 3/4	VS-226 VS-227 VS-228	7901 35144	3.3465 85	1 3/16 30.2	.866 22	5/16 7.9	17/64 6.7	1 15/16 49.2	2 19/64 58.3	.062 1.6	5/16-24	1.6 .73
1 15/16 2	VS-231 VS-232S	7889 35090	3.5433 90	1 9/32 32.5	.906 23	3/8 9.5	9/32 7.1	2 1/32 51.6	2 15/32 62.7	.062 1.6	3/8-24	1.8 .82
2 2 3/16	VS-232 VS-235	9752 43377	3.9370 100	1 5/16 33.3	.984 25	3/8 9.5	5/16 7.9	2 3/16 55.6	2 23/32 69.1	.080 2.0	3/8-24	2.3 1.04
2 1/4 2 7/16	VS-236 VS-239	11789 52437	4.3307 110	1 9/16 39.7	1.063 27	7/16 11.1	11/32 8.7	2 9/16 65.1	2 63/64 75.8	.080 2.0	3/8-24	3.1 1.41

Duty: Standard


Rolling Elements: Ball

> Outer: Spherical O.D.

Lock: Setscrew

Contact and Flinger Seal:

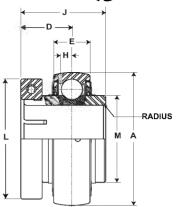
-20° to 200°F Temperature:

VS 200 Series Standard Duty Inserts - Setscrew Locking - Metric

Bore Diameter		Basic Dynamic			Dime	nsions mm /	inch			Max. Rad.	Setscrew	Unit Wt.
mm	Part No.	Rating N/lb	Ä	۵	E	G	π	3	Ē	To Clear	Thread	kg/lb
20	VS-20MM	11614 2611	47.000 1.8504	18.3 23/32	15.0 .591	4.8 3/16	4.0 5/32	31.0 1 7/32	30.2 1 3/16	1.0 .040	M6	.18 .4
25	VS-25MM	12459 2801	52.000 2.0472	20.6 13/16	15.0 .591	5.6 7/32	4.0 5/32	34.9 1 3/8	34.9 1 3/8	1.0 .040	M6	.27 .6
30	VS-30MM	19487 4381	62.000 2.4409	22.2 7/8	18.0 .709	5.6 7/32	5.2 13/64	38.1 1 1/2	40.5 1 19/32	1.0 .040	M6	.41 .9
35	VS-35MM	25718 5782	72.000 2.8346	25.4 1	19.0 .748	6.4 1/4	6.0 15/64	42.9 1 11/16	47.2 1 55/64	1.0 .040	M8	.54 1.2
40	VS-40MM	32648 7340	80.000 3.1496	30.2 1 3/16	22.0 .866	7.9 5/16	6.7 17/64	49.2 1 15/16	52.4 2 1/16	1.6 .062	M8	.68 1.5
45	VS-45MM	35144 7901	85.000 3.3465	30.2 1 3/16	22.0 .866	7.9 5/16	6.7 17/64	49.2 1 15/16	58.3 2 19/64	1.6 .062	M8	.73 1.6
50	VS-50MM	35090 7889	90.000 3.5433	32.5 1 9/32	23.0 .906	9.5 3/8	7.1 9/32	51.6 2 1/32	62.7 2 15/32	1.6 .062	M10	.82 1.8
55	VS-55MM	43377 9752	100.000 3.9370	33.3 1 5/16	25.0 .984	9.5 3/8	7.9 5/16	55.6 2 3/16	69.1 2 23/32	2.0 .080	M10	1.04 2.3
60	VS-60MM	52437 11789	110.000 4.3307	39.7 1 9/16	27.0 1.063	11.1 7/16	8.7 11/32	65.1 2 9/16	75.8 2 63/64	2.0 .080	M10	1.41 3.1

Duty: Standard

Rolling Elements:


Outer: Spherical O.D.

Self Alignment: +/- 1.5 Degrees

> Lock: **BOA Concentric**

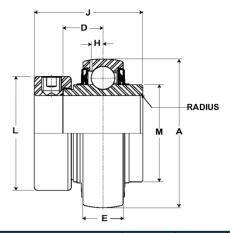
Seal: Contact and Flinger

-20° to 200°F Temperature:

VB 200 Series Standard Duty Inserts - BOA Concentric Locking

Bara Demoter		Basic Dynamic	i i		Dime	nsions inch	/ mm			Max Radi.	Tors Can	Unit Wt	
inch	Part No.	Rating lb/h	Ä	D	E	Ĥ	Ĵ	in.	M	Te Clear	Sorew	Ibikg	Coller No.
3/4	VB-212	2611 11614	1.8504 47	25/32 19.8	.594 15	5/32 4.0	1 9/32 32.5	1 3/4 44.5	1 3/16 30.2	0.04 1.0	T-25	0.5 .23	B-12A
7/8 15/16 1	VB-214 VB-215 VB-216	2801 12459	2.0472 52	7/8 22.2	.594 15	5/32 4.0	1 7/16 36.5	1 15/16 49.2	1 3/8 34.9	0.04 1.0	T-25	0.8 .36	B-15A
1 1/8 1 3/16 1 1/4	VB-218 VB-219 VB-220S	4381 19487	2.4409 62	15/16 23.8	.709 18	13/64 5.2	1 9/16 39.7	2 3/16 55.6	1 19/32 40.5	0.04 1.0	T-25	1.1 .50	B-19A
1 1/4	VB-220	5782 25718	2.8346 72	1 1/16 27.0	.750 19	15/64 6.0	1 3/4 44.5	2 7/16 61.9	1 55/64 47.2	0.04 1.0	T-27	1.5 .68	B-23A
1 3/8 1 7/16	VB-222 VB-223	5782 25718	2.8346 72	1 1/16 27.0	.750 19	15/64 6.0	1 3/4 44.5	2 9/16 65.1	1 55/64 47.2	0.04 1.0	T-27	1.5 .68	B-23B
1 1/2	VB-224	7340 32648	3.1496 80	1 1/4 31.8	.875 22	17/64 6.7	2 50.8	2 11/16 68.3	2 1/16 52.4	0.062 1.6	T-27	1.8 .82	B-25A
1 5/8	VB-226	7901 35144	3.3465 85	1 1/4 31.8	.875 22	17/64 6.7	2 50.8	2 13/16 71.4	2 19/64 58.3	0.062 1.6	T-27	1.9 .86	B-27A
1 11/16 1 3/4	VB-227 VB-228	7901 35144	3.3465 85	1 1/4 31.8	.875 22	17/64 6.7	2 50.8	2 15/16 74.6	2 19/64 58.3	0.062 1.6	T-27	1.9 .86	B-27B
1 15/16 2	VB-231 VB-232S	7889 35090	3.5433 90	1 11/32 34.1	.906 23	9/32 7.1	2 3/32 53.2	3 3/8 85.7	2 15/32 62.7	0.062 1.6	T-30	2.4 1.09	B-31B
2	VB-232	9752 43377	3.9370 100	1 3/8 34.9	.984 25	5/16 7.9	2 1/4 57.2	3 1/2 88.9	2 23/32 69.1	0.08 2.0	T-30	2.9 1.32	B-35A
2 3/16	VB-235	9752 43377	3.9370 100	1 3/8 34.9	.984 25	5/16 7.9	2 1/4 57.2	3 5/8 92.1	2 23/32 69.1	0.08 2.0	T-30	2.9 1.32	B-35B
2 1/4	VB-236	11789 52437	4.3307 110	1 5/8 41.3	1.063 27	11/32 8.7	2 5/8 66.7	4 1/16 103.2	2 63/64 75.8	0.08 2.0	T-45	4.3 1.95	B-39A
2 7/16	VB-239	11789 52437	4.3307 110	1 5/8 41.3	1.063 27	11/32 8.7	2 5/8 66.7	4 1/8 104.8	2 63/64 75.8	0.08 2.0	T-45	4.3 1.95	B-39B

Duty: Standard


Rolling Elements: Ball

> Outer: Spherical O.D.

Lock: Eccentric

Contact and Flinger Seal:

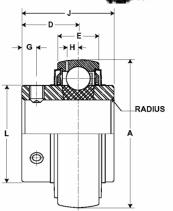
Temperature: -20° to 200°F

VE 200 Series Standard Duty Inserts - Eccentric Locking

Bonn Diameter		Basic Dynamic			Dime	nsions inch	/ mm			Max. Ros.	Setzurw	UntWt
weth	Part No.	Rating Ib/N	Ā	D.	E	Ĥ	Ų.	100	M	To Cinar	Tap:	ila/kg
1/2 5/8	VE-208 VE-210	2108 9377	1.5748 40	35/64 13.9	.512 13	9/64 3.6	1 15/32 37.3	1 3/16 30.2	31/32 24.6	.055 1.4	1/4-28	.6 .27
3/4	VE-212	2611 11614	1.8504 47	43/64 17.1	.591 15	5/32 4.0	1 23/32 43.7	1 5/16 33.3	1 3/16 30.2	.070 1.8	1/4-28	.6 .27
7/8 15/16 1	VE-214 VE-215 VE-216	2801 12459	2.0472 52	11/16 17.5	.591 15	5/32 4.0	1 3/4 44.5	1 1/2 38.1	1 3/8 34.9	.070 1.8	1/4-28	.8 .36
1 1/8 1 3/16 1 1/4	VE-218 VE-219 VE-220S	4381 19487	2.4409 62	23/32 18.3	.709 18	13/64 5.2	1 29/32 48.4	1 3/4 44.5	1 19/32 40.5	.080 2.0	5/16-24	1.1 .50
1 1/4 1 3/8 1 7/16	VE-220 VE-222 VE-223	5782 25718	2.8346 72	3/4 19.1	.748 19	15/64 6.0	2 1/64 51.2	2 3/16 55.6	1 55/64 47.2	.080 2.0	3/8-24	1.4 .64
1 1/2	VE-224	7340 32648	3.1496 80	27/32 21.4	.866 22	17/64 6.7	2 7/32 56.4	2 3/8 60.3	2 1/16 52.4	.095 2.4	3/8-24	1.7 .77
1 5/8 1 11/16 1 3/4	VE-226 VE-227 VE-228	7901 35144	3.3465 85	27/32 21.4	.866 22	17/64 6.7	2 7/32 56.4	2 1/2 63.5	2 19/64 58.3	.110 2.8	3/8-24	1.8 .82
1 15/16	VE-231	7889 35090	3.5433 90	31/32 24.6	.906 23	9/32 7.1	2 15/32 62.7	2 3/4 69.9	2 15/32 62.7	.110 2.8	3/8-24	2.3 1.04
2 2 3/16	VE-232 VE-235	9752 43377	3.9370 100	1 3/32 27.8	.984 25	5/16 7.9	2 13/16 71.4	3 76.2	2 23/32 69.1	.125 3.2	7/16-20	3 1.36
2 1/4 2 7/16	VE-236 VE-239	11789 52437	4.3307 110	1 7/32 31.0	1.063 27	11/32 8.7	3 1/16 77.8	3 3/8 85.7	2 63/64 75.8	.125 3.2	7/16-20	4 1.81

Replacement collar part numbers can be found on page G-214.

Duty: Medium


Rolling Elements: Ball

> Outer: Spherical O.D.

Lock: Setscrew

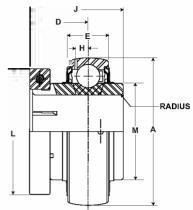
Seal: Contact and Flinger

-20° to 200°F Temperature:

VS 300 Series Medium Duty Inserts - Setscrew Locking

Bore	праватания	Bata	Dimensions from / www.							The second	execution and	OGWIEWED
Diametra me-	Part file	Radig Basi	. W	-30	(4)	<u>6</u> 5.	76	79	E.	To City	Seine nie	(belog
13	47546.9	-(35) 12/8)	yern. Ek	1.0	200	10.8c 5.25c	1394 30	1-79 25,1	1.1505P (1835	1945 1 0	2000	n All
1 3/16	VS-319	5782 25718	2.8346 72	1 25.4	748 19.0	1/4 6 4	15/64 6 0	1 11/16 42.9	1 55/64 47.2	040 1 0	5/16-24	1 2 54
1 orte	43574	012 1 MH	3.179± d5	225F	169 220	ede edy.	ी (क्वर) वेल	Testie 10-	- 19e	360 131	ar Tawkii	ili Vis
1 1/2	VS-324	7901 35144	3.3465 85	1 3/16 30.2	866 22.0	5/16 7 9	17/64 6 7	1 15/16 49.2	2 19/64 58.3	062 1 6	5/16-24	1 6 73
1:16	93 327 03-307	:Xt./ (cf8k)	33/32	-9059 17,5	.4 9 95.8)sa 113-	22F 101	7 ha7 a1#	2 19-39 10 2	14- 11	5869	7.3 3.1
1 15/16	VS-331	9752 43377	3.9370 100	1 5/16 33.3	984 25.0	3/8 9 5	5/16 7_9	2 3/16 55.6	2 23/32 69.1	080 2 0	3/8-24	2.3 1.04
e erte	434819	1°730 1°730	200 200	2000 227	7005 7231	756 152	25.940 6.1	21818 863	Spleni Milk	04C - 23/	chard	16.1 1.40

Duty: Standard


Rolling Elements: Ball

Outer: Spherical O.D.

Lock: BOA Concentric

Seal: Contact and Flinger

Temperature: -20° to 200°F

VB 300 Series Medium Duty Inserts - BOA Concentric Locking

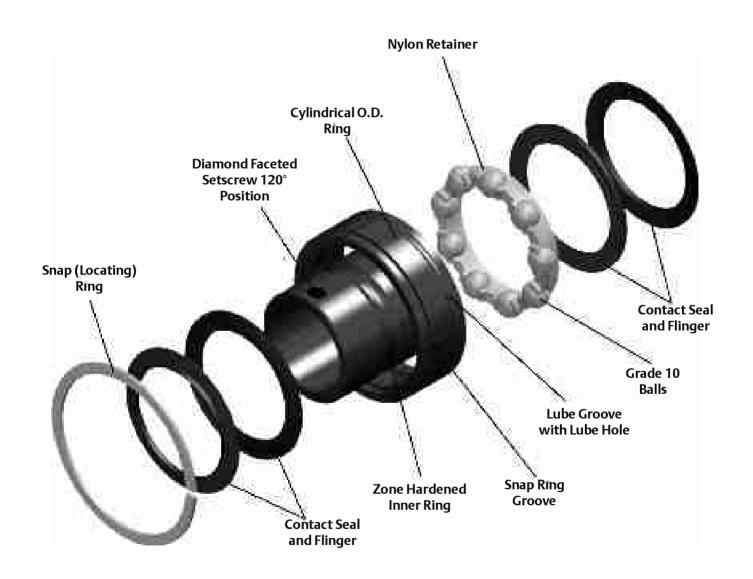
and the second		791577											
Gold Okusutus	HITCHOOL STREET	Battle Dynamics			DIM	*Min William	2 mm			Marc Shift	nego president	OHIOME	Large service
1100	Parlin	Rolling is M	1000	-10	Man.	10467	74	31	22	To Olege	\$4.2m	Mar.	Employ Nac
33	Vicale	36	7 HF	1X 22	511 200	175e 11 M	12744	371.4 371.4	2 N/K 244	20 H	1989	70	34444
1 3/16	VB-319	5782 25718	2.8346 72	1 25.4	748 19.0	1/4 6 4	15/64 6_0	1 3/4 44.5	2 7/16 61.9	.040 -1.0	T-27	1 2 54	B-23A
e dese	¥1:-024	7046 31776	N May	nare arx	989 22,0	i,e	11 MA 837	y w.R	tine ska	SEAT 14	188	(18 28	Aug.
1 1/2	VB-324	7901 35144	3.3465 85	1 3/16 30.2	866 22.0	5/16 7 9	17/64 6 7	2 50.8	2 13/16 71.4	062 1 6	T-27	1 6 73	B-27A
1716	SECOT SECOT	7005 36,776	Seefen (0)	11864 3215	जन अरम	288- 000-		X X	±7/4 2/12	2500 1.4	1450	 20	SERVICE
1 15/16	VB-331	9752 43377	3.9370 100	1 5/16 33.3	984 25.0	3/8 9 5	5/16 7.9	2 1/4 57.2	3 1/2 88.9	.080 2.0	T-30	2 3 1.04	B-35A
3.4	¥10,68 t	en.	83827 102	1.10.5	1925% 2778	ne.	776 83	1086 983	4 649 1002	i desti i Kić	1-17	311	Tetrada.

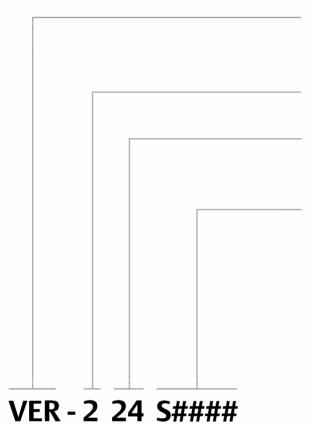
VE Bearing Insert - Eccentric Locking Collars Replacement Table

Bore Diameter		O allian Na				
inch	VE-100	VE-200	SLE-100	RUBRE-100	Collar No.	
1/2	VE-108	VE-208	SLE-108	-	ELC-08	
5/8	VE-110	VE-210	SLE-110	-	ELC-10	
3/4	VE-112	VE-212	SLE-112	RUBRE-112	ELC-12	
7/8	VE-114	VE-214	SLE-114	-	ELC-14	
15/16	VE-115	VE-215	SLE-115	RUBRE-115	ELC-15	
1	VE-116	VE-216	SLE-116	RUBRE-116	ELC-16	
1 1/8	VE-118	VE-218	SLE-118	-	ELC-18	
1 3/16	VE-119	VE-219	SLE-119	-	ELC-19	
1 1/4S	VE-120S	VE-220S	SLE-120S	-	ELC-20S	
1 1/4	VE-120	VE-220	SLE-120	-	ELC-20	
1 3/8	VE-122	VE-222	SLE-122	-	ELC-22	
1 7/16	VE-123	VE-223	SLE-123	-	ELC-23	
1 1/2	VE-124	VE-224	SLE-124	-	ELC-24	
1 5/8	-	VE-226	-	-	ELC-26	
1 11/16	VE-127	VE-227	-	-	ELC-27	
1 3/4	VE-128	VE-228	-	-	ELC-28	
1 15/16	VE-131	VE-231	-	-	ELC-31	
2\$	VE-132S		-	-	ELC-32S	
2	VE-132	VE-232	-	-	ELC-32	
2 3/16	VE-135	VE-235	-	-	ELC-35	
2 1/4	-	VE-236	-	-	ELC-36	
2 7/16	-	VE-239	-	-	ELC-39	

Bearing Selection Page G-3

Nomenclature Aid Page G-140


Features & Benefits Page G-143


Technical Engineering Page G-220

Cylindrical OD Insert Bearings

Browning VER Style Ball Bearings

Browning VER bearings feature black oxide treated inner and outer rings, and extended inner race bearing with ball riding nylon retainer. Shaft lock is achieved by 120° spaced diamond faceted setscrew locking. The contact seal, with black oxide treated flinger provides a good balance between contaminant resistance, grease loss and friction.

VER - Cylindrical O.D. Bearing With **Snap Ring**

Duty

2 - Standard Duty - 200 Series

Bore Size

Inch - #/16 (ex. 20/16 = 1 1/4") S for 1 1/4" and 2" Reduced

Options

S### # - Special Design

Browning Cylindrical OD Insert Bearings

Features and Benefits

Setscrew Locking

120° spaced, balanced three point contact minimizes inner ring distortion vibration, reduces noise, and improves reliability. Precision manufactured diamond faceted setscrews contribute to improved clamping and resistance to back out.

Sealing

Positive contract molded nitrile rubber contact seal with an auxiliary flinger element standard. The contact seal allows grease purge and helps keep contamination out of the bearing while the flinger provides a rotating shield that directs contamination away from the seal.

Zone Hardened Inner Race

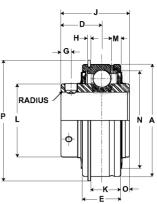
Browning incorporates a unique heat treat process that hardens the inner race only where it is needed...under the ball path. The zone hardened inner race results in improved lock reliability as a result of less distortion at setscrew location and improved thread conformity resulting in improved clamping and resistance to setscrew back-out.

Identification Marking

Browning VER bearings have the part number laser marked on the inner ring for easy verification of the part number during installation and for replacement.

Duty: Standard

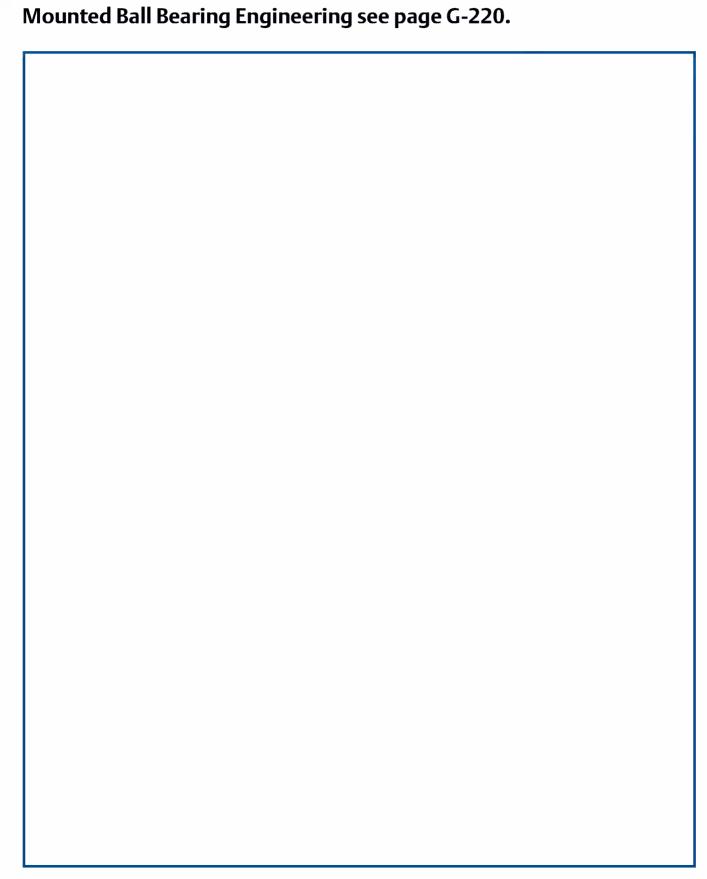
Rolling Elements: Ball


> Outer: Cylindrical O.D. Outer

Lock: Setscrew

Seal: Contact Seal and Flinger

Temperature: -20° to 200°F


> Relube: Through Groove In O.D.

VER 200 Series Standard Duty Cylindrical O.D. Inserts - Setscrew Locking

Bore		Basic					Dimen	sions incl	h/mm				-	Max.	(10) 107 1007
Diameter inch	Part No.	Dynamic Rating lb/N	A	D	6	E	Ĥ	ý	*	L	N	0	P	Rad. To Clear	Unit Wt. Ib/kg
1/2	VER-208	0044	4.050.4	00/00	44/0.4	F 10	0.04	4.7/00	04/04	4.0440	4.40/00	0/40	0.4440	0.40	
5/8	VER-210	2611 11614	1.8504 47	23/32 18.3	11/64 4.4	5/8 15.9	3/64 1.2	1 7/32 31.0	31/64 12.3	1 3/16 30.2	1 19/32 40.5	3/16 4.8	2 1/16 52.4	.040 1.02	.6 .27
3/4	VER-212														
7/8	VER-214	2004	0.0470	40/40	10/04	0/4	0.40.4	4.00	00/04	1.0/0	4 50/04	0/40	0.47/0.4	0.40	-
15/16	VER-215	2801 12459	2.0472 52	13/16 20.6	13/64 5.2	3/4 19.1	3/64 1.2	1 3/8 34.9	39/64 15.5	1 3/8 34.9	1 53/64 46.4	3/16 4.8	2 17/64 57.5	.040 1.02	.7 .32
1	VER-216	.2.00			0.2			0		""					
1 1/16	VER-217														
1 1/8	VER-218	4381	2.4409	7/8	7/32	7/8	1/16	1 1/2	11/16	1 19/32	2 3/32	3/16	2 21/32	.040	.9
1 3/16	VER-219	19487	62	22.2	5.6	22.2	1.6	38.1	17.5	40.5	53.2	4.8	67.5	1.02	.41
1 1/4	VER-220S														
1 1/4	VER-220														
1 3/8	VER-222	5782 25718	2.8346 72	1 25.4	7/32 5.6	15/16 23.8	1/16 1.6	1 11/16 42.9	3/4 19.1	55/64 21.8	2 7/16 61.9	7/32 5.6	3 5/64 78.2	.040 1.02	1.4 .64
1 7/16	VER-223	20110		20.1	0.0	20.0	1.0	12.0	10.1	21.0	01.0	0.0	10.2	1.02	
1 1/2	VER-224	7340	3.1496	1 3/16	1/4	1 3/32	1/16	1 15/16	29/32	2 1/16	2 47/64	13/64	3	.062	2
1 9/16	VER-225	32648	80	30.2	6.4	27.8	1.6	49.2	23.0	52.4	69.5	5.2	86.5	1.57	.91
1 5/8	VER-226	7004	0.0405	4.0440	4.44	4.0/00	440	4.45(40)	00/00	0.40/0.4		40/04	0.40/00	000	0.0
1 11/16	VER-227	7901 35144	3.3465 85	1 3/16 30.2	1/4 6.4	1 3/32 27.8	1/16 1.6	1 15/16 49.2	29/32 23.0	2 19/64 58.3	3 76.2	13/64 5.2	3 19/32 91.3	.062 1.57	2.3 1.04
1 3/4	VER-228														
1 15/16	VER-231	7889 35090	3.5433 90	1 9/32 32.5	19/64 7.5	1 1/8 28.6	3/32 2.4	2 1/32 51.6	29/32 23.0	2 15/32 62.7	3 5/32 80.2	3/16 4.8	3 25/32 96.0	.062 1.57	2.4 1.09
2	VER-232	9752	3.9370	1 5/16	19/64	1 3/16	3/32	2 3/16	31/32	2 23/32	3 15/32	9/32	4 3/16	.080	3
2 3/16	VER-235	43377	100	33.3	7.5	30.2	2.4	55.6	24.6	69.1	88.1	7.1	106.4	2.03	1.36
2 1/4	VER-236	11789	4.3307	1 9/16	19/64	1 1/4	3/32	2 9/16	1 1/32	2 63/64	3 13/16	3/8	4 19/32	.080	4
2 3/8	VER-238	52437	110	39.7	7.5	31.8	2.4	65.1	26.2	75.8	96.8	9.5	116.7	2.03	1.81
2 7/16	VER-239														

Outside diameter may be oversized due to seal press fit. Metric dimensions for reference only.

Table of Contents

Table 16 – Vibration and Geometry Information

Load Ratings and Life	G-221
Table 1 - Life Adjustment Factor for Reliability	
Table 2 - Shock / Vibration Factors	
Table 3 - Equivalent Load Calculation Data - Ball Bearing	
Table 4 - Sealmaster Ball Bearing Load Ratings	
Table 5 - Browning Ball Bearing Load Ratings	
Load and Speed	G-230
Table 6 - Sealmaster Ball Bearing Load / Speed Chart	
Table 7 - Browning Ball Bearing 200 & 300 Series Load / Speed Chart	
Table 8 - Browning Ball Bearing 100 Series Load / Speed Chart	
Speed Rating (Limit) Tables	G-235
Table 9 - Sealmaster Gold Standard Duty Maximum Speed Rating	
Table 10 - Sealmaster Gold Medium Duty Maximum Speed Rating	
Table 11 - Sealmaster Material Handling Maximum Speed Rating	
Table 12 - Browning 100 and 200 Series Maximum Speed Rating	
Table 13 - Browning 300 Series Maximum Speed Rating	
Locking Types	G-244
Installation and Lubrication	G-246
Sealmaster Gold	G-270
Mounting Housed Units (G-246)	
Mounting Sealmaster Gold Cylindrical O.D. Inserts and Cylindrical O.D. Housings (G-248)	
Replacing Existing Sealmaster Gold Inserts (G-250)	
Material Handling	
Mounting Housed Units (G-251)	
Replacing Existing Sealmaster MH Inserts (G-253)	
Sealmaster Gold and Material Handling Bearing Lubrication (G-254)	
Browning Mounted Ball Bearing Installation and Relubrication	
Mounting Housed Units (G-255)	
Mounting Cylindrical O.D. (VER) Inserts (G-256)	
Replacing Existing Browning Inserts (G-256)	
Browning Mounted Ball Lubrication (G-257)	
Cylindrical OD Housing Fit Guidelines	G-259
Table 14 - ER, VER and Cylindrical OD Insert Bearing Housing/Roll Bore (G-259)	
Table 15 - Sealmaster SC and MSC Housing Bore (G-261)	
Vibration Analysis	G-263

Load Ratings and Life

Life Calculations

The L10 (rating) life for any given application and bearing selection can be calculated in terms of millions of revolutions by using the bearing Basic Dynamic Rating and applied radial load (or, equivalent radial load in the case of radial bearing applications having combined radial and thrust loads). The L10 life for any given application can be calculated in terms of hours, using the bearing Basic Dynamic Rating, applied load (or equivalent radial load) and suitable speed factors, by the following equation:

$$L_{10} = \left(\frac{C}{P}\right)^3 x \frac{1,000,000}{60 \times n} = \left(\frac{C}{P}\right)^3 x \frac{16667}{n}$$

Where:

L₁₀ = The # of hours that 90% of identical bearings under ideal conditions will operate at a specific speed and condition before fatique is expected to occur.

C = Basic Dynamic Rating (lbs) 1,000,000 Revolutions

P = Constant Equivalent Radial Load (lbs)

n = Speed(RPM)

Additionally, the ABMA provides application factors for all types of bearings which need to be considered to determine an adjusted Rated Life (Lna). L10 life rating is based on laboratory conditions yet other factors are encountered in actual bearing application that will reduce bearing life. Lna life rating takes into account reliability factors, material type, and operating conditions.

$$L_{na} = a_1 \times a_2 \times a_3 \times L_{10}$$

Where:

L_{na} = Adjusted Rated Life.

a₁ = Reliability Factor. Adjustment factor applied where estimated fatigue life is based on reliability other than 90% (See Table 1).

Table 1 Life Adjustment Factor for Reliability

Reliability %	L _{na}	a ₁
90	L10	1
95	L5	0.62
96	L4	0.53
97	L3	0.44
98	L2	0.33
99	L1	0.21
50	L50	5

 a_2 = Material Factor. Life adjustment for bearing race material. Power Transmission Solutions bearing races are manufactured from bearing quality steel. Therefore the a_2 factor is 1.0.

a₃ = Life Adjustment Factor for Operating Conditions. This factor should take into account the adequacy of lubricant, presence of foreign matter, conditions causing changes in material properties, and unusual loading or mounting conditions. Assuming a properly selected and mounted bearing having adequate seals and lubricant operating below 250°F and tight fitted to the shaft, the a₃ factor should be 1.0.

Mounted bearings are typically "slip fitted" to the shaft and rely on design features such as the inner race length and locking device for support. ABMA recommends an a₃ factor of .456 for "slip fit" ball bearings. See sample calculations on page G-224.

Vibration and shock loading can act as an additional loading to the steady expected applied load. When shock or vibration is present, an a₃ Life Adjustment Factor can be applied. Shock loading has many variables which often are not easily determined. When shock or vibration is present, the following a₃, Life Adjustment Factors are recommended. The shock factor is used in combination with the "slip fit" factor.

The a_3 factor takes into account a wide range of application and mounting conditions as well as bearing features and design. Accurate determination of this factor is normally achieved through testing and infield experience. Power Transmission Solutions offers a wide range of options which can maximize bearing performance. Consult Application Engineering for more information. See sample calculations on page G-224.

Table 2 Shock/Vibration Factor

Туре	a ₃ Factor
Steady Loading	1.0
Light Shock/Vibration	.5
Moderate Shock/Vibration	.3

Combined Load - Ball Bearings

For applications where a combination of both radial and thrust loads are applied to the bearing the equivalent radial load must be calculated and applied to the L10 life formula.

- 1. Use Table 3 (below) and Table 4 (page G-228) to identify the relative axial load factor (ND2).
- 2. Determine the relative axial load (RAL):

RAL =
$$\frac{F_a}{ND^2}$$
 - applied thrust load
- relative axial load factor

3. Match the nearest relative axial load value in Table 3 to the corresponding "e" value. For precise calculation, linearly interpolate the values for "e" for your exact relative axial load value.

Table 3 Equivalent Load Calculation Data - Ball Bearings

Relative		Fa/	Fr≤e	Fa/I	Fr>e
Axial Load	е	х	у	х	у
24.92	0.19				2.30
50.03	0.22				1.99
99.91	0.26				1.71
149.35	0.28				1.55
200.10	0.30	1	0	0.56	1.45
300.15	0.34				1.31
500.25	0.38				1.15
749.65	0.42				1.04
999.05	0.44				1.00

- 4. Calculate Fa/Fr and compare value to the "e" value found in step #3 above.
- 5. Choose values for "X" and "Y" based on step #3 & 4 and from Table 3. Linear interpolation is recommended for exact calculations.
- 6. Calculate equivalent radial load using the following equation:

7. Calculate the adjusted life (Lna) using the life calculation formula above.

Variable Load Formula

Root mean load (RML) is to be used when a number of varying loads are applied to a bearing for varying time limits. Maximum loading still must be considered for bearing size selection.

$$RML^* = \sqrt[3]{\frac{(L_1^3 N_1) + (L_2^3 N_2) + (L_3^3 N_3)}{100}}$$

Where:

RML = Root Mean Load (lbs.)

 L_1 , L_2 , etc. = Load in pounds

 N_1 , N_2 , etc. = Percent of total time operated at loads L_1 , L_2 , etc.

Mean Speed Formula

The following formula is to be used when operating speed varies over time.

Mean Speed =
$$\frac{S_1 N_1 + S_2 N_2 + S_3 N_3}{100}$$

 S_1S_2 , etc = Speeds in RPM

N₁N₂, etc = Percentage of total time operated at speeds S₁S₂, etc

High Load Applications

Applications where the loading approaches the load listed in the rating tables on pages G-230 to G-233 at 5000 hours life and 150/250 RPM, should be reviewed and given special consideration.

Modifications to consider Include:

- Shafting size should be closely controlled for a line to line to a light press fit.
- Skwezloc® Locking Collar or double lock is the preferred lock.
- Lubricants with "EP" extreme pressure additives may be required.
- Care in housing selection, load direction, and mounting techniques should be exercise

^{*}Apply RML to rating at mean speed to determine resultant life.

High Speed Applications

Applications where the speed is in the range of 80-100% of the maximum speeds listed in the rating tables on pages G-230 to G-233, should be reviewed and given special consideration.

Modifications to consider include:

- Shaft size should be controlled to specifications listed in the installation section. See tables above.
- SKWEZLOC Locking Collar and double lock are the preferred lock systems for high speed applications.
- High quality lubricants should be used.
- Grease should be added more frequently and in small amounts. See Page G-254.
- Care in mounting techniques should be exercised. See Page G-246 to G-253.

Bearing Life In Oscillating Applications

The equivalent rotative speed (ERS) is used in life calculations when the bearing does not make complete revolutions during operation. The ERS is then used as the bearing operating speed in the calculation of the L10 (Rating) Life. The formula is based on sufficient angular rotation to have roller paths overlap.

ERS = Equivalent Rotative Speed

N = Total number of degrees per minute through which the bearing will rotate.

$$ERS = \frac{N}{360}$$

In the above formula, allowance is made for the total number of stress applications on the weakest race per unit time, which, in turn, determines fatigue life and the speed factors. The theory behind fretting corrosion is best explained by the fact that the rolling elements in small angles of oscillation retrace a path over an unchanging area of the inner or outer races where the lubricant is prevented by inertia from flowing in behind the roller as the bearing oscillates in one direction. Upon reversal, this small area of rolling contact is traversed by the same roller in the dry state. The friction of the two unlubricated surfaces causes fretting corrosion and produces failures which are unpredictable from a normal life standpoint.

With a given bearing selected for an oscillating application, the best lubrication means is a light mineral oil under positive flow conditions. With a light oil, there is a tendency for all areas in the bearing load zone to be immersed in lubricant at all times. The full flow lubrication dictates that any oxidized material which may form is immediately carried away by the lubricant, and since these oxides are abrasive, further wear tends to be avoided. If grease lubrication must be used, it is best to consult with either the bearing manufacturer or the lubricant manufacturer to determine the best possible type of lubricant. Greases have been compounded to resist the detrimental effect of fretting corrosion for such applications.

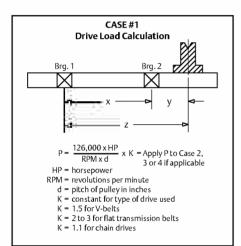
Static Load Rating

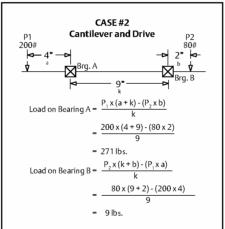
The "static load rating" for rolling element bearings is that uniformly distributed static radial load acting on a non-rotating bearing, which produces a contact stress of 580,000 psi at the center of the most heavily loaded rolling element. At this stress level, plastic deformation begins to be significant. Experience has shown that the plastic deformation at this stress level can be tolerated in most bearing applications without impairment of subsequent bearing operation. In certain applications where subsequent rotation of the bearing is slow and where smoothness and friction requirements are not too exacting, a higher static load limit can be tolerated. Where extreme smoothness is required or friction requirements are critical, a lower static load limit may be necessary.

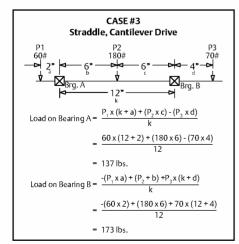
Minimum Bearing Load

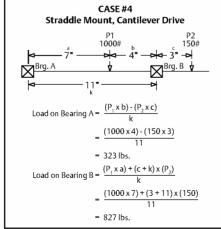
Skidding, or sliding, of the rolling elements on the raceway instead of a true rolling motion can cause excessive wear. Applications with high speeds and light loading are particularly prone to skidding. As a general guideline, rolling element bearings should be radially loaded at least 1% of Basic Dynamic Rating for ball bearings. For applications where load is light relative to the bearings dynamic load rating, consult Application Engineering for assistance.

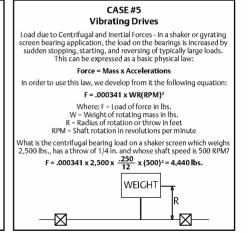
Computing Bearing Loads


In the computation of bearing loads in any application of an Power Transmission Solutions unit, the principal factor determining the selection of the unit is the equivalent radial load to which the bearing will be subjected. These radial loads result from any one or any combination of the following sources:


- 1. Weights of machine parts supported by bearings.
- 2. Tension due to belt or chain pull.
- 3. Centrifugal force from out of balance, eccentric or cam action.


The resulting load from any one, or any combination of the above sources is further determined by know-


- 1. The magnitude of the load.
- 2. Direction of the load.
- 3. The point of load application.
- 4. The distance between bearing centers.


Bearing loads are the result of force acting on the shaft. Direction, magnitude, and location with respect to the bearings must be considered when calculating bearing loads. The following cases are typical examples of loads encountered and methods of calculating bearing loads.

Mounted Ball Bearing Engineering Section

Load Ratings and Life Continued

Mounted Ball Bearing Selection - New Applications:

Using variations of the life formulas and application information, it is possible to select bearings based on desired life, load applied, and shaft speed. **This method can only be applied where axial load is less than or equal to 1/2 the radial load.**

- 1. Determine required application hours (Lna).
- 2. Calculate L_{10} using adjustment factors:

$$L_{10} = \frac{L_a}{a_1 X a_2 X a_3}$$

3. Calculate Basic Dynamic Radial Rating (Creq).

Creq =
$$Px \left(\frac{L_{10} \times N}{16,667} \right)^{1/3}$$

P = Constant Equivalent Radial Load (lbs)

N = Speed(RPM)

- 4. Use Table No. 4 and 5 on page G-227 to G-229, find a basic Dynamic Radial Rating Value greater than or equal to Creq calculated in step # 3.
- 5. Select any bearing from the row in step # 4 or larger. If Creq is greater than the largest Basic Dynamic Radial Rating Value of Table No. 4 or 5, go to the Mounted Roller Bearing Section H and I.
- 6. If Ball bearing is selected, proceed with housing, seal, and lock selection.

Typical operating temperature range for standard bearings is -20° to 200° F for Browning and -20°F to 220°F for Sealmaster Gold. For operating temperatures outside this range, contact Application Engineering. For Maximum speed information, see tables on pages G-235 and G-243

Application Examples:

Example #1 - Pure Radial Load

Ouestion #1:

What is the adjusted bearing life (L_{na} hours) for an NP-39 Sealmaster Ball Bearing with no shock conditions and the following application criteria?

Design Load (P) = 1300 lbs.

Speed(n) = 1000 RPM

Shaft Size = 27/16 in.

Operating Temp. = 125°F

Solution:

1. Begin with the L_{10} life formula:

$$L_{10} = (C/P)^3 \times \frac{16667}{n}$$

Look up the insert of an NP-39 on page G-31. From Table No. 4 on page G-228, the Basic Dynamic Radial Rating is 11,789 lbs.

$$L_{10} = \left(\frac{11789}{1300}\right)^3 \times \frac{16667}{1000} = 12,430 \text{ hours}$$

2. Apply the life adjustment factors:

 L_{na} hours = L_{10} x a_1 x a_2 x a_3

 L_{na} hours = 12,430 x 1 x 1 x 0.456

 L_{n_3} hours = 5,700 hours

Ouestion #2:

What is the adjusted bearing life (L10 hours) for an NP-39 Sealmaster Ball Bearing with moderate shock conditions and the same applications criteria from above?

Solution:

1. From Table 2 on page G-221:

$$a_3 = 0.5 \times 0.456$$

2. Re-Apply the life adjustment factors to the previously calculated L₁₀ life:

$$L_{na}$$
 hours = $L_{10} \times a_1 \times a_2 \times a_3$
 L_{na} hours = 12,430 x 1 x 1 x (0.5 x 0.456)
 L_{na} hours = 2,830 hours

Example #2 - Combined Radial and Thrust Load

Question #1:

What is the adjusted bearing life (L_{na} hours) for an NP-39 Sealmaster Ball Bearing with no shock conditions and the following application criteria?

Design Radial Load $(F_s) = 500 \text{ lbs}.$ Design Thrust Load $(F_3) = 1000 \, lbs$. Speed(n) = 1000 RPMShaft Size = 27/16 in. Operating Temperature = 125°F

Solution:

1. Calculate $F_{al}F_r = 1000/500 = 2$

2. Look up the insert of an NP-39 on page G-31. From Table 4 on page G-228, ND² is 3.969 lbs and Basic Dynamic Rating is 11,789 lbs.

3. Begin by calculating the Relative Axial Load (RAL):

RAL =
$$\frac{F_a}{ND^2} = \frac{1000}{3.9690} = 251 \text{ lbs.}$$

4. From Table 3 on page G-222, interpolate RAL between 200.10 and 300.15 and "e" between 0.30 and 0.34 to obtain "e" value:

$$\frac{251 - 200.10}{300.15 - 200.10} = \frac{e - 0.30}{0.34 - 0.30}$$

Therefore e = .32

5. From Table 3 on page G-222, determine the value of "X" and "Y" through interpolation. Interpolate "e" between 0.30 and 0.34 and "Y" between 1.45 and 1.31 because $F_{ai}F_{r} > e$

$$\frac{0.32 - 0.30}{0.34 - 0.30} = \frac{Y - 1.45}{1.31 - 1.45}$$

Therefore Y = 1.38 and X = .56

6. Determine the equivalent radial load (P)

P =
$$(X F_r) + (Y F_a)$$

= $(0.56 \times 500) + (1.38 \times 1000) = 1660 \text{ lbs.}$
 $L_{10} = (C/P)^3 \times \frac{16667}{n}$

Look up the insert of an NP-39 on page G-31. From Table 4 on page G-228, the Basic Dynamic Rating is 11,789 lbs.

$$L_{na} = .456 \text{ x} \left(\frac{11789}{1660} \right)^3 \text{ x} \frac{16667}{1000} = 2722 \text{ hours}$$

Bearing Load Rating Tables

Table 4 - Sealmaster Ball Bearing Load Ratings

		Standar	d Duty, I	ER and Mate	erial Handl	ing	м	edium D	uty		sic _.		sic	Relativ		Thi	rust
Series	Bore Di	iameter	Unit	Standard Duty	ER	Material Handling	Bore D	iameter	Medium Duty		amic ting		atic ling		Factor D²)		ting
	inch	mm	Size	Insert	EK	Insert	inch	mm	Insert	lb	N	lb	N	lb	N	lb	N
	1/2	-	8	2-08	ER-8	-	-	-	-								
	9/16	-	9	2-09	ER-9	-	-	-	-								
	5/8	-	10	2-010	ER-10	-	-	-	-								
2-012	11/16	-	11	2-011	ER-11	-	-	-	-	2611	11614	1444	6423	.706	3.1	741	3296
	3/4	-	12	2-012	ER-12	MH-12	-	-	-								
	-	20	204	5204	ER-204	MH-204	-	-	-								
	13/16	-	13	2-013	ER-13	-	-	-	-								
	7/8	-	14	2-014	ER-14	-	-	-	-								
2-015	15/16	-	15	2-015	ER-15	-	-	-	-	2801	12459	1651	7344	.784	3.5	490	2180
	-	25	205	5205	ER-205	MH-205	-	-	-								
	1	-	16	2-1	ER-16	MH-16	-	-	-								
	1 1/16	-	17	2-11	ER-17	-	15/16	-	3-015								
	1 1/8	-	18	2-12	ER-18	-	-	25	5305								
2-13	-	30	206	5206	ER-206	MH-206	1	-	3-1	4381	19488	2567	11419	1.300	5.8	1177	5236
	1 3/6	-	19	2-13	ER-19	MH-19	-	-	-								
	1 1/4	-	20R	1-14	ER-20R	MH-20R	-	-	-								
	1 1/4	-	20	2-14	ER-20	MH-20	-	30	5306								
	1 5/16	-	21	2-15	ER-21	-	1 3/16	-	3-13								
2-17	1 3/8	-	22	2-16	ER-22	-	-	-	-	5782	25719	3493	15538	1.742	7.8	1709	7602
	-	35	207	5207	ER-207	-	-	-	-								
	1 7/16		23	2-17	ER-23	MH-23	-	-	-								
	1 1/2	-	24	2-18	ER-24	MH-24	-	35	5307								
2-19	1 9/16	-	25	2-19	ER-25	-	1 7/16	-	3-17	7340	32650	4467	19870	2.250	10.0	2254	10026
	-	40	208	5208	ER-208	-	-	-	-								
	1 5/8	-	26	2-110	ER-26	-	1 1/2	-	3-18								
	1 11/16	-	27	2-111	ER-27	MH-27	-	40	5308	70		F4				00==	10:=:
2-111	1 3/4	-	28	2-112	ER-28	-	-	-	-	7901	35145	5139	22859	2.500	11.1	2350	10453
	-	45	209	5209	ER-209	-	-	-	-								
	1 13/16	-	29	2-113	ER-29	-	1 11/16	-	3-111								
	1 7/8	-	30	2-114	ER-30	-	1 3/4	-	3-112								
2-115	1 15/16	-	31	2-115	ER-31	MH-31	-	45	5309	7889	35092	5216	23202	2.500	11.1	2350	10453
	-	50	210	5210	ER-210	MH-210	-	-	-								
	2	-	32R	1-2	ER-32R	-	-	-	-								

Setscrew locking standard duty, ER cylindrical O.D., Material Handling and Medium Duty bearing are shown.

For Skwezloc and Double Setscrew Locking use the equivalent setscrew lock rating in the table. Example:. 2-1, 2-1D and 2-1T all use the 2-015 series rating For RB inserts use the equivalent ER series bearing listed to determine the capacity. Ex: RB-16, use ER-1

Table 4 - Sealmaster Ball Bearing Load Ratings continued

		Standard	d Duty, I	ER and Mate	erial Handl	ing	М	edium D	uty		sic		sic atic	Relativ Load I		Thi	rust
Series	Bore Di	ameter	Unit	Standard Duty	ER	Material Handling	Bore Di	ameter	Medium Duty	Dyna Rat	amic ting		ting	Load I		Rat	ting
	inch	mm	Size	Insert	EK	Insert	inch	mm	Insert	lb	N	lb	N	lb	N	lb	N
	2	-	32	2-2	ER-32	MH-32	1 15/16	-	3-115								
2-23	2 1/8	-	34	2-22	ER-34	-	-	50	5310	9752	43379	6601	29363	3.316	14.8	2886	12838
2-23	-	55	211	5211	ER-211	-	-	-	-	9/52	43379	0001	29303	3.310	14.0	2000	12030
	2 3/16	-	35	2-23	ER-35	MH-35	-	-	-	1							
	2 1/4	-	36	2-24	ER-36	-	-	55	5311								
0.07	-	60	212	5212	ER-212	-	2 3/16	-	3-23	44700	50440	0450	00050	0.000	47.7	4405	40000
2-27	2 3/8	-	38	2-26	ER-38	-	-	-	-	11789	52440	8150	36253	3.969	17.7	4105	18260
	2 7/16	-	39	2-27	ER-39	MH-39	-	-	-								
	2 1/2	-	40	-	ER-40	-	2 7/16	-	3-27								
2-211	2 11/16	-	43	2-211	ER-43	-	2 1/2	-	3-28	13971	62146	10063	44762	4.761	21.2	4503	20030
	-	70	214	5214	ER-214	-	-	65	5313								
	2 7/8	-	46	2-214	ER-46	-	2 11/16	-	3-211								
2-215	2 15/16	-	47	2-215	ER-47	-	-	70	5314	14839	66007	11224	49927	5.237	23.3	5207	23162
	-	75	215	5215	ER-215	-	-	-	-								
	3	-	48	-	ER-48	-	2 15/16	-	3-215								
2-33	-	80	216	5216	ER-216	-	-	75	5315	17412	77452	13174	58601	6.188	27.5	6032	26832
	3 3/16	-	51	2-33	ER-51	-	3	-	3-3	1							
	3 1/4	-	52	2-34	ER-52	-	-	80	5316								
2-37	3 3/8	-	54	2-36	ER-54	-	3 3/16	-	3-33	18681	83097	14496	64481	6.692	29.8	7474	33246
	3 7/16	-	55	2-37	ER-55	-	-	-	-								
	3 1/2	-	56	2-38	-	-	3 7/16	-	3-37								
2-38	-	90	218	5218		-	-	-	-	21566	95930	16301	72510	7.744	34.4	7839	34869
	3 15/16	-	63	-	ER-63	-	3 15/16	-	3-315								
2-43	-	100	-	-	-	-	-	100	5320	29905	133023	23553	104768	11.236	50.0	11097	49362
	4	-	64	-	ER-64	-	4	-	3-4								
	-	-	-	-	-	-	4 7/16	-	3-47								
3-47	-	-	-	-	-	-	4 15/16	-	3-415	37482	166727	33267	147978	15.625	69.5	16697	74272

Setscrew locking standard duty, ER cylindrical O.D., Material Handling and Medium Duty bearing are shown. For Skwezloc and Double Setscrew Locking use the equivalent setscrew lock rating in the table. Example: 2-1, 2-1D and 2-1T all use the 2-015 series rating For RB inserts use the equivalent ER series bearing listed to determine the capacity. Ex: RB-16, use ER-16

Table 5 - Browning Ball Bearing Load Ratings

	100, 200	& VER				300 S	eries	Rasic F	ynamic	Ra	sic	Relativ			
Series	Bore Di	ameter	100 Series	200 Series	VER	Bore Diameter	Insert	Rat	ting		Rating	Load I (NI	Factor D²)	Thrust	Rating
	inch	mm	Insert	Insert		inch		lb	N	lb	N	lb	N	lb	N
L-10	1/2	-	VS-108	VS-208	-	-	-	2108	9377	1117	4969	.563	2.5	320	1423
2-012	1/2	-	-	-	VER-208	-	-	2611	11614	1444	6423	.706	3.1	741	3296
L-10	5/8	-	VS-110	VS-210	-	-	-	2108	9377	1117	4969	.563	2.5	320	1423
2-012	3/6		-	-	VER-210	-	-	2611	11614	1444	6423	.706	3.1	741	3296
2-012	3/4	-	VS-112	VS-212	VER-212	-	-	2611	11614	1444	6423	.706	3.1	741	3296
2-012	-	20	-	VS-20MM	-	-	-	2011	11014	1444	0423	.700	3.1	741	3290
	7/8	-	VS-114	VS-214	VER-214	-	-								
2-015	15/16	-	VS-115	VS-215	VER-215	-	-	2801	12459	1651	7344	.784	3.5	490	2180
2-013	-	25	-	VS-25MM	-	-	-	2001	12459	1031	1344	.704	3.3	490	2100
	1	-	VS-116	VS-216	VER-216	-	-								
	1 1/8	-	VS-118	VS-218	VER-217										
2-13	-	30	-	VS-30MM	-	1	VS-316	4381	19488	2567	11419	1.300	5.8	1177	5236
2-13	1 3/16 1 1/4S	-	VS-119	VS-219	VER-219	'	VS-310	4301	19400	2301	11419	1.300	3.6	1177	3236
	1 1/4S	-	VS-120S	VS-220S	VER-220S										
	1 1/4	-	VS-120	VS-220	VER-220										
2-17	1 3/8	-	VS-122	VS-222	VER-222	1 3/16	VS-319	5782	25740	3493	15538	1.742	7.8	1709	7602
2-17	-	35	-	VS-35MM	-	1 3/16	1 42-218	3/62	25719	3493	10000	1.742	1.0	1709	1002
	1 7/16	-	VS-123	VS-223	VER-223										
	1 1/2	-	VS-124	VS-224	VER-224										
2-19	1 9/16	-	-	-	VER-225	1 7/16	VS-323	7340	32650	4467	19870	2.250	10.0	2254	10026
	-	40	-	VS-40MM	-										
	1 5/8	-	VS-126	VS-226	VER-226										
2-111	1 11/16	-	VS-127	VS-227	VER-227	1 1/2	VS-324	7901	35145	5139	22859	2.500	11.1	2350	10453
2-111	1 3/4	-	VS-128	VS-228	VER-228	1 1/2	V3-324	7901	33143	3139	22009	2.500	11.1	2330	10455
	-	45	VS-45MM	VS-45MM	-										
	1 15/16	-	VS-131	VS-231	VER-231	1 11/16	VS-327								
2-115	-	50	-	VS-50MM	-	1 11/10	V3-321	7889	35092	5216	23202	2.500	11.1	2350	10453
	28	-	VS-132S	VS-232S	-	1 3/4	VS-328								
	2		VS-132	VS-232	VER-232										
2-23		55	-	VS-55MM	-	1 15/16	VS-331	9752	43379	6601	29363	3.316	14.8	2886	12838
	2 3/16		VS-135	VS-235	VER-235										
	2 1/4	-	-	VS-236	VER-236										
2 27	-	60	-	VS-60MM	-	2.246	VC 225	11700	E2440	8150	26252	3 000	17.7	440E	18260
2-27	2 3/8	-	-	-	VER-238	2 3/16	VS-335	11789	52440	8 150	36253	3.969	17.7	4105	16260
	2 7/16	-	-	VS-239	VER-239										

Setscrew locking 100, 200, 300 series and VER's shown.

For VE-100, RUBRE-100, RUBRS-100, SLS-100, LE-100, LR-100, LRS-100, LS-100 use equivalent ratings and factors for respective 100 series bore.

For VB-200, VE-200 equivalent ratings and factors for respective 200 series bore.

For VB-300 equivalent ratings and factors for respective 300 series bore.

Load and Speed

- 1. Table 6 displays the Sealmaster Gold and Material Handling ball bearing load capacities for a given L10 life, speed and shaft size.
- 2. Values in Table 6 represent radial loads at ideal conditions with press fit mounting to the shaft. ABMA recommends de-rating of slip fit mounted bearings. Elevated operating temperatures can reduce the load capacity of bearing steel where a material de-rating is also recommended.
 - a. For operating temperatures up to 200°F, divide the value in the load table by 1.3 to obtain the slip fit derated value.
 - b. For units designed for operating temperatures 200°F to 400°F, divide the value in the load table by 1.5 to obtain the slip fit/elevated temperature de-rate value.
 - c. Values in Table 6 represent equivalent radial loads only. For combined radial/thrust loads see page G-222.
- 3. The this indicates the maximum speed ratings for Skwezloc concentric locking collar and double setscrew lock bearings (applicable on sizes available). All speeds listed are for the standard felt seal. For speed ratings using alternate seals, see pages G-235 to G-240.
- 4. The double line indicates the maximum speed ratings of material handling bearings.
- 5. The blood mini represents maximum recommended load for given operating speed based on load of 25% BDR. It is NOT recommended to exceed these loads in general industrial applications. See note on page G-222 for high load appications.
- 6. Areas designated by "-" exceed maximum value for standard bearings. See note on page G-223.
- 7. Consult Application Engineering for load and speed applications not covered in this table.

Table 6 - Load/Speed Chart - Sealmaster Ball Bearings

	L10									Revo	lutions	s Per M	inute								
Series	Hours	50	150	500	1000	1250	1500	1750	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	7500	8000	10000
	16,000	**	1983	491	390	362	341	324	310	287	270	257	246	236	228	221	215	209	300	110	HIR
1	TORKY!	6	583	390	310	287	270	257	246	228	215	204	195	188	181	175	170	166	196	126	1941
20.2	1.00	583	404	270	215	199	188	178	170	158	149	141	135	130	126	122	118	115	143-	127	100
1 3	=30kt.	491	341	228	181	168	158	150	144	133	126	119	114	110	106	103	100	97	397	30	3//
	HERMAN	390	270	181	144	133	126	119	114	106	100	95	91	87	84	81	79	77	751	3897	100
	5000	544	700	527	418	388	366	347	332	308	290	276	264	253	245	237	230	120	37.4	196	
	10000		625	418	332	308	290	276	264	245	230	219	209	201	194	188	183	Late:	195	396	
2-015	30000	625	433	290	230	214	201	191	183	170	160	152	145	139	135	130	127	120	32	112	
	50000	527	366	245	194	180	170	161	154	143	135	128	122	118	114	110	107	136	30	30.0	- 60
	100000	418	290	194	154	143	135	128	122	114	107	102	97	93	90	87	85	101	125	377	
	4.000	Mile.	4445	825	654	608	572	543	519	482	454	431	412	396	383	125	79-	751	777	15	-
12.7	200000000000000000000000000000000000000	180	978	654	519	482	454	431	412	383	360	342	327	315	304	25	261	CARL	300	3341	
217	70077	978	678	454	360	334	315	299	286	265	250	237	227	218	211	27.4	105	150	127	150	
	10001	825	572	383	304	282	265	252	241	224	211	200	191	184	178	1/2	367	153	連	152	50
	PC 2481	654	454_	304	241	224	211	200	191	178	167	159	152	146	141	151	12	1734	177	391	-
	5000	TOPE	1444	1 088	864	802	755	717	686	636	599	569	544	523	505	350	A72	163	13	2.4	525
0.47		1 200	1,290	864	686	636	599	569	544	505	475	452	432	415	401	356	364	270			-
2-17		1 290	895	599	475	441	415	394	377	350	330	313	299	288	278	25.0	200	可数			
		1,088	755	505	401	372	350	333	318	295	278	264	253	243	234	125	221	10		3.5	50
_	100000		599	401	318	295	278	264	253	234	221	210	200	193	186	350	1000	M	44.5		_=
3	0500		1 620	1,381	1 096 870	1,018 808	958 760	910	870 691	808 641	760 603	722 ¹ 573	691 548	3	9	E.25	183	- 63		3.5	- 63
1314	HPK. Poks		1,638	1 096 760	603	560		722 501	479	445	418	397		(2)************************************	25	100 1000	188	- 63	(3)	3.5	- 63
1135	100000		1 136 958	641	509	472	527 445	422	404	375	353	335	380 321	336	10	0.000					
1 5	50063 (82200)		760	509	404	375	353	335	321	298	280	266	254	40	205	258	135	- 83		651	1.5
	1.000.00	-		1.487		1,096	1 031	979	937	870	818	777	744	215	751	229		- 63	-		
			1,763	1,180	1 180 937	870	818	777	744	690	650	617	590	110	000 14E			-33		3	- 5-5
2-111	10000 30000	1 763	1,222	818	650	603	567	539	516	479	450	428	409	130	145	: :				. +	-
2-111	50000		1.031	690	548	509	479	455	435	404	380	361	345	132	337						-
	100000	140	-	548	435	404	380	361	345	320	301	286	274	132	214	-		53			- 53

Example A: For a 1" standard duty ball bearing operating at 1000 RPM and desired 100,000 hours L10 life, 154 Lbs is the maximum allowable radial load Example B: If 230 lbs of radial load is applied to a 1" standard duty shaft operating at 1000 RPM, the resulting L10 life is 30,000 hours

Mounted Ball Bearing Engineering Section

Table 6 - Load/Speed Chart - Sealmaster Ball Bearings continued

	L10									Revo	lutions	Per M	inute								
Series	Hours	50	150	500	1000	1250	1500	1750	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	7500	8000	10000
	5000	1,972	1,972	1,485	1,178	1,094	1,029	978	935	868	817	776	742	714	689	-	-	-	-	-	-
	10000	1.972	1,760	1,178	935	868	817	776	742	689	649	616	589	567	547	-	-	-	-	-	-
2-115	30000	1,760	1,221	817	649	602	567	538	515	478	450	427	409	393	379	-	-	-	-	-	-
	50000	1,485	1,029	689	547	508	478	454	434	403	379	360	345	331	320	-	-	-	-	-	-
	100000	1,178	817	547	434	403	379	360	345	320	301	286	273	263	254	-	-	-	-	-	-
		2 438		1,835	1,457	1,352	1,273	1,209	1,156	1,073	1,010	959	918	882	-	-	-	-	-	-	-
	10000			1,457	1,156	1,073	1,010	959	918	852	802	762	728	700	-	-	-	-	-	-	-
2-23	30000		1,509	1,010	802	744	700	665	636	591	556	528	505	486	-	-	-	-	-	-	-
	50000	,		852	676	628	591	561	537	498	469	445	426	410	-	-	-	-	-	-	-
	100000			676	537	498	469	445	426	395	372	353	338	325	-	-	-	-	-	-	-
		2 947		2,219	1,761	1,635	1,538	1,461	1,398	1,298	1,221	1,160	1,109	-	-	-	-	-	-	-	-
0.07	10000		2,631	1,761	1,398	1,298	1,221	1,160	1,109	1,030	969	921	881	-	-	-	-	-	-	-	-
2-27	30000		1,824	1,221	969	900	847	804	769	714	672	638	611	-	-	-	-	-	-	-	-
	50000		1,538	1,030	817 649	759 602	714 567	678 538	649 515	602	567	538	515	-	-	-	-	-	-	-	-
	100000			817			-			478	450	427	409	-	-	-	-	-	-	-	-
	10000	3,493		2,629 2,087	2,087 1,656	1,937	1,823	1,732 1,375	1,656	1,538 1,220	1,447 1,149	1,375 1,091		-	-	-	-	-	-	-	-
2 244	30000			1,447	1,149	1,538 1,066	1,447	953	1,315 912	846	796	756	_	-	-	-	-	-	-	-	-
2-211	50000			1,220	969	899	846	804	769	714	672	638	-	_	_	-	-	_	-	-	-
	100000	,		969	769	714	672	638	610	567	533	506		_	_	[_	-	-	
		3,710		2,793		2,058	1,936	1,839	1,759	1,633	1,537	-	_		_	_		_			
	10000		_	2,217	1,759	1,633	1,537	1,460	1,396	1,296	1,220		_								[
2-215	30000	3,311		1,537	1,220	1,132	1,066	1,012	968	899	846	_	_	_	_	_	_	_	_	_	_
	50000	-		1,296		955	899	854	817	758	713	_	_	_	_	_	_	_	_	_	_
	100000	,		1,029	817	758	713	678	648	602	566	_	_	_	_	_	_	_	l <u>-</u>	_	_
		4,353	_	3,277	2,601	2,415	2,272	2,158	2,064	1,916	1,803	-	-	_	_	-	-	-	-	-	_
	10000			2,601		1,916	1,803	1,713	1,639	1,521	1,431	_	_	_	_	_	_	-	_	_	_
2-33	30000	3,885		1,803		1,329	1,250	1,188	1,136	1,055	992	-	-	_	_	-	_	_	_	-	-
	50000	3,277	2,272	1,521	1,207	1,121	1,055	1,002	958	890	837	-	-	-	-	-	-	-	-	-	-
	100000	2,601	1,803	1,207	958	890	837	795	761	706	664	-	-	-	-	-	-	-	-	-	-
	5000	4,670	4,670	3,516	2,791	2,591	2,438	2,316	2,215	2,056	1,935	-	-	-	-	-	-	-	-	-	-
	10000	4,670	4,169	2,791	2,215	2,056	1,935	1,838	1,758	1,632	1,536	-	-	-	-	-	-	-	-	-	-
2-37	30000	4,169	2,890	1,935	1,536	1,426	1,342	1,274	1,219	1,132	1,065	-	-	-	-	-	-	-	-	-	-
	50000	3,516	2,438	1,632	1,295	1,202	1,132	1,075	1,028	954	898	-	-	-	-	-	-	-	-	-	-
	100000	2,791	1,935	1,295	1,028	954	898	853	816	757	713	-	-	-	-	-	-	-	-	-	-
	5000	5,392		4,059		2,991	2,814	2,673	2,557	2,374	-	-	-	-	-	-	-	-	-	-	-
	10000					2,374	I '	2,122	· 1	1,884	-	-	-	-	-	-	-	-	-	-	-
2-38	30000						I			1,306	-	-	-	-	-	-	-	-	-	-	-
	50000									1,102	-	-	-	-	-	-	-	-	-	-	-
	100000								942	874	-	-	-	-	-	-	-	-	-	-	-
								3,707		-	-	-	-	-	-	-	-	-	-	-	-
	10000									-	-	-	-	-	-	-	-	-	-	-	-
2-43	30000									-	-	-	-	-	-	-	-	-	-	-	-
	50000									-	-	-	-	-	-	-	-	-	-	-	-
	100000								1,306	-	-	-	-	-	-	-	-	-	-	-	-
							4,891		-	-	-	-	-	-	-	-	-	-	-	-	-
	10000								-	-	-	-	-	-	-	-	-	-	-	-	-
3-47	30000								-	-	-	-	-	-	-	-	-	-	-	-	-
	50000								-	-	-	-	-	-	-	-	-	-	-	-	-
	100000	5,599	3,882	2,599	2,063	1,915	1,802	1,712	-	-	-	-	-	-	-		_	-	_	<u> </u>	-

See notes on top of page G-230.

How to Read the Table

Example A: For a 1" standard duty ball bearing operating at 1000 RPM and desired 100,000 hours L10 life, 154 Lbs is the maximum allowable radial load. Example B: If 230 lbs of radial load is applied to a 1" standard duty shaft operating at 1000 RPM, the resulting L10 life is 30,000 hours.

Load and Speed continued

- 1. Table 7 displays the Browning 200 (VS-200) and 300 (VS-300) Series ball bearing load capacities for a given L10 life, speed and shaft size. For VB-200 and VE-200 use equivalent ratings for respective 200 series bore. For VB-300 use equivalent ratings for respective 300 series bore.
- 2. Values in Table 7 represent radial loads at ideal conditions with press fit mounting to the shaft. ABMA recommends de-rating of slip fit mounted bearings. Elevated operating temperatures can reduce the load capacity of bearing steel where a material derating is also recommended.
 - a. For operating temperatures up to 200°F, divide the value in the load table by 1.3 to obtain the slip fit derated value.
 - b. For units designed for operating temperatures 200°F to 400°F, divide the value in the load table by 1.5 to obtain the slip fit/ elevated temperature de-rate value.
 - c. Values in Table 7 represent equivalent radial loads only. For combined radial/thrust loads see page G-222.
- 3. The little (CE) in represents maximum recommended load for given operating speed based on load of 25% BDR. It is NOT recommended to exceed these loads in general industrial applications. See note on page G-222 for high load applications.
- 4. Areas designated by "-" exceed maximum value for standard bearings. See note on page G-223.
- 5. Consult Application Engineering for load and speed applications not covered in this table.

Table 7 - Load/Speed Chart – Browning 200 and 300 Series Ball Bearings

	L10									Rev	olutions	Per Mir	nute								
Series	Hours	50	150	250	500	750	1000	1250	1500	1750	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	7500
	4.50	300	900	500	397	347	315	292	275	261	250	232	218	207	198	191	184	178	173	169	161
	18.4	147	470	397	315	275	250	232	218	207	198	184	173	165	157	151	146	142	138	134	128
D(E)	MED	470	326	275	218	191	173	161	151	144	138	128	120	114	109	105	101	98	95	93	89
	100000	397	275	232	184	161	146	136	128	121	116	108	101	96	92	89	85	83	80	78	75
	100000	315	218	184	146	128	116	108	101	96	92	85	80	76	73	70	68	66	64	62	59
	5000 10000	100	583	619 491	491 390	429 341	390 310	362 287	341 270	324 257	310 246	287 228	270 215	257 204	246 195	236 188	228 181	221 175	215 170	209 166	_
2-012	30000	583	404	341	270	236	215	199	188	178	170	158	149	141	135	130	126	122	118	115	-
	50000	491	341	287	228	199	181	168	158	150	144	133	126	119	114	110	106	103	100	97	-
	100000	390	270	228	181	158	144	133	126	119	114	106	100	95	91	87	84	81	79	77	-
	/)433	700		664	527	461	418	388	366	347	332	308	290	276	264	253	245	237	-	-	-
	300	THO	625	527	418	366	332	308	290	276	264	245	230	219	209	201	194	188	-	-	-
45.00	1.00	625	433	366	290	253	230	214	201	191	183	170	160	152	145	139	135	130	-	-	-
200.000	I TAD	527	366	308	245	214	194	180	170	161	154	143	135	128	122	118	114	110	-	-	-
	5000	418	290	245	194 825	170 720	154 654	143 608	135 572	128 543	122 519	114 482	107 454	102 431	97 412	93 396	90	87	-	-	
	10000	1000	978	1,039 825	654	720 572	519	482	454	431	412	383	360	342	327	396	_		-	_	
2-13	30000	978	678	572	454	396	360	334	315	299	286	265	250	237	227	218			_	_	Ī -
	50000	825	572	482	383	334	304	282	265	252	241	224	211	200	191	184	_	-	-	_	_
	100000	654	454	383	304	265	241	224	211	200	191	178	167	159	152	146	-	-	-	-	-
	4.54	100	1 part	1,371	1,088	951	864	802	755	717	686	636	599	569	544	-	-	-	-	-	-
	116. 3	3.77	1 290	1,088	864	755	686	636	599	569	544	505	475	452	432	-	-	-	-	-	-
36.77		1 290	895	755	599	523	475	441	415	394	377	350	330	313	299	-	-	-	-	-	-
		1 088	755	636	505	441	401	372	350	333	318	295	278	264	253	-	-	-	-	-	-
	F000	864	599	505	401	350	318	295	278 958	264 910	253 870	234 808	221 760	210 722	200	-	-	-	-	-	-
	5000 10000	857	1 638	1,741 1,381	1,381 1,096	1,207 958	1,096 870	1,018 808	760	722	691	641	603	573	-	_	_	-	-	_	-
2-19	30000	1,638	1,136	958	760	664	603	560	527	501	479	445	418	397]		_	_	-
2.0	50000	1,381	958	808	641	560	509	472	445	422	404	375	353	335	-	-	-	_	-	_	-
	100000	1,096	760	641	509	445	404	375	353	335	321	298	280	266	-	-	-	-	-	-	-
	16633	1100	100	1,874	1,487	1,299	1,180	1,096	1,031	979	937	870	818	-	-	-	-	-	-	-	-
	288	200	1 763	1,487	1,180	1,031	937	870	818	777	744	690	650	-	-	-	-	-	-	-	-
24.1	2200	1 763	1 222	1,031	818	715	650	603	567	539	516	479	450	-	-	-	-	-	-	-	-
	*******************	1 487	1 031 818	870	690	603 479	548 435	509	479 380	455	435	404 320	380	-	-	-	-	-	-	-	-
	5000	1,180		690 1.871	548 1,485	1,297	1,178	404 1.094	1,029	361 978	345 935	868	301 817		<u> </u>	-	-	-		-	<u> </u>
	10000	NO.	1 760	1,485	1,178	1,029	935	868	817	776	742	689	649]	_		-	_]
2-115	30000	1,760	1,221	1,029	817	714	649	602	567	538	515	478	450	_	_	_	_	_	_	-	_
	50000	1,485	1,029	868	689	602	547	508	478	454	434	403	379	-	-	-	-	-	-	-	-
L .	100000	1,178	817	689	547	478	434	403	379	360	345	320	301	-	-	-	-	-	-	-	-
	4.54	1888	1100	2,312	1,835	1,603	1,457	1,352	1,273	1,209	1,156	1,073	-	-	-	-	-	-	-	-	-
	THE STATE		2 176	1,835	1,457	1,273	1,156	1,073	1,010	959	918	852	-	-	-	-	-	-	-	-	-
347	0	2 176	1 509	1,273	1,010	882	802	744	700	665	636	591	-	-	-	-	-	-	-	-	-
	-∎±0 100000	1 835 1,457	1 273 1,010	1,073 852	852 676	744 591	676 537	628 498	591 469	561 445	537 426	498 395	-	-	-	-	-	-	-	-	-
	5000	1,457	1,010	2,795	2,219	1,938	1,761	1,635	1,538	1,461	1,398	1,298		-	<u> </u>					-	-
	10000		2 631	2,793	1,761	1,538	1,761	1,033	1,221	1,160	1,109	1,030	-	-]		[-	[
2-27	30000	2,631	1,824	1,538	1,221	1,067	969	900	847	804	769	714	-	-	-	-	-	_	-	-	-
	50000	2,219	1,538	1,298	1,030	900	817	759	714	678	649	602	-	-	-	-	-	-	-	-	-
	100000	1,761	1,221	1,030	817	714	649	602	567	538	515	478	-						-	_	

Load and Speed continued

- 1. Table 8 displays the Browning 100 setscrew locking ball bearing (VS-100) load capacities for a given L10 life, speed and shaft size. For VE-100, RUBRE-100, RUBRS-100, SLS-100, LE-100, LR-100, LRS-100 use equivalent ratings for respective 100 series bore.
- 2. Values in Table 8 represent radial loads at ideal conditions with press fit mounting to the shaft. ABMA recommends de-rating of slip fit mounted bearings. Elevated operating temperatures can reduce the load capacity of bearing steel where a material derating is also recommended.
 - a. For operating temperatures up to 200°F, divide the value in the load table by 1.3 to obtain the slip fit derated value.
 - b. For units designed for operating temperatures 200°F to 400°F, divide the value in the load table by 1.5 to obtain the slip fit/elevated temperature de-rate value.
 - c. Values in Table 8 represent equivalent radial loads only. For combined radial/thrust loads see page G-222.
- 3. The blue shaded area represents maximum recommended load for given operating speed based on load of 17% BDR. It is NOT recommended to exceed these loads in general industrial applications. See note on page G-222 for high load applications.
- 4. Areas designated by "-" exceed maximum value for standard bearings. See note on page G-223.
- 5. Consult Application Engineering for load and speed applications not covered in this table.

Table 8 - Load/Speed Chart – Browning 100 Series Ball Bearings

Series	L10							Rev	olutions/	Per Mir	ute						
Series	Hours	50	150	250	500	750	1000	1250	1500	1750	2000	2500	3000	3500	4000	4500	5000
	5000	351			351	347	315	292	275	261	250	232	218	207	198	191	184
	10000	351	351	351	315	275	250	232	218	207	198	184	173	165	157	151	146
L-10	30000	351	326	275	218	191	173	161	151	144	138	128	120	114	109	105	101
	50000	351	275	232	184	161	146	136	128	121	116	108	101	96	92	89	85
	100000	315	218	184	146	128	116	108	101	96	92	85	80	76	73	70	68
	5000	435	135	455	42F	429	390	362	341	324	310	287	270	257	246	236	228
0.040	10000	435	100	4	390	341	310	287	270	257	246	228	215	204	195	188	181
2-012	30000	435 435	404	341	270	236	215	199	188	178	170	158	149	141	135	130	126
	50000 100000	390	341 270	287 228	228 181	199 158	181 144	168 133	158 126	150 119	144 114	133 106	126 100	119 95	114 91	110 87	106 84
	5000	466	466	460	166	461	418	388	366	347	332	308	290	276	-	- 01	04
	10000	466	466	460	418	366	332	308	290	276	264	245	230	219]	-	-
2-015	30000	466	433	366	290	253	230	214	201	191	183	170	160	152			['
2-010	50000	466	366	308	245	214	194	180	170	161	154	143	135	128			
	100000	418	290	245	194	170	154	143	135	128	122	114	107	102	_	_	- '
	5000	730	730	730	730	720	654	608	572	543	519	482	454	-	_	_	-
	10000	730	730	730	654	572	519	482	454	431	412	383	360	_	_	_	- '
2-13	30000	730	678	572	454	396	360	334	315	299	286	265	250	_	_	-	- '
	50000	730	572	482	383	334	304	282	265	252	241	224	211	-	-	-	-
	100000	654	454	383	304	265	241	224	211	200	191	178	167	-	-	-	- '
	5000	963	963	963	963	951	864	802	755	717	686	636	-	-	-	-	-
	10000	963	963	963	864	755	686	636	599	569	544	505	-	-	-	-	- '
2-17	30000	963	895	755	599	523	475	441	415	394	377	350	-	-	-	-	-
	50000	963	755	636	505	441	401	372	350	333	318	295	-	-	-	-	- '
	100000	864	599	505	401	350	318	295	278	264	253	234	-	-	-	-	-
	5000	1,223	1,223	1,223	1,223	1,207	1,096	1,018	958	910	870	808	-	-	-	-	- '
	10000	1,223	1,223	1,223	1,096	958	870	808	760	722	691	641	-	-	-	-	- '
2-19	30000	1,223	1,136	958	760	664	603	560	527	501	479	445	-	-	-	-	- '
	50000	1,223	958	808	641	560	509	472	445	422	404	375	-	-	-	-	- '
	100000	1,096	760	641	509	445	404	375	353	335 979	321	298	-	-	-	-	-
	5000 10000	1,316	1,316	1,316	1,316	1,299	1,180	1,096	1,031		937	-	-	-	-	-	_ '
2-111	30000	1,316 1,316	1,316 1,222	1,316 1,031	1,180 818	1,031 715	937 650	870 603	818 567	777 539	744 516	-	-	-	-	-	_ '
2-111	50000	1,316	1,031	870	690	603	548	509	479	455	435	-	-	-	_	-	-
	100000	1,180	818	690	548	479	435	404	380	361	345		_	[l -	_	-
	5000	1,314	1,314	1,314	1 314	1,297	1,178	1,094	1,029	978	935						
	10000	1,314	1.314	1 314	1,178	1,029	935	868	817	776	742			[
2-115	30000	1,314	1,221	1,029	817	714	649	602	567	538	515	_	_	l _	_	_	- '
2 110	50000	1,314	1,029	868	689	602	547	508	478	454	434	_	_	l -	_	_	_ '
	100000	1,178	817	689	547	478	434	403	379	360	345	_	-	-	_	_	- '
	5000	1,625	1 625	1.625	1.625	1,603	1,457	1,352	1,273	1,209	-	-	-	-	-	-	-
	10000	1,625	1.625	1:825	1,457	1,273	1,156	1,073	1,010	959	-	-	-	-	-	-	- '
2-23	30000	1,625	1,509	1,273	1,010	882	802	744	700	665	-	_	-	-	-	-	- '
	50000	1,625	1,273	1,073	852	744	676	628	591	561	-	-	-	-	-	-	- '
	100000	1,457	1,010	852	676	591	537	498	469	445					_	_	'

How to Read the Table

Example A: For a 1" standard duty ball bearing operating at 1000 RPM and desired 100,000 hours L10 life, 154 Lbs is the maximum allowable radial load. Example B: If 230 lbs of radial load is applied to a 1" standard duty shaft operating at 1000 RPM, the resulting L10 life is 30,000 hours.

unted Ball Bearing Engineering see page G-220.							

Ball Bearing Maximum Speed Rating Tables

Tables 9-13 display the maximum speed rating for various ball bearing seals and locking devices. Values in the table represent speeds at ideal conditions. Other application factors may reduce the speed rating of a bearing.

Table 9 – Sealmaster Gold Standard Duty Maximum Speed Rating

									MAX SEA	L SPEED R	EVOLUTIONS	S PER MINUTE			
										Standard	Sealmaster G	iold			
Sta	ndard D	iuty and	d ER Beari	nae	Locking	Setscrew	Skwezloc Locking Collar or Double Setscrew			Setscrew, S	ikwezloc Loc	king Collar and I	Double Set	screw	
	naara b	aty an	. Liv Bouil	90	Suffix	Stand	lard, A, AS, X	С	2C	3C	F	SF	U, BF	VA, VS	н
Series	Bo Diam		Standard Duty	ER		Backe	indard Felt d off Felt (AS) omex (A)	Contact	Double Contact Seal	Triple Contact Seal	High Temp Contact Seal -	High Temp Double Contact Seal	Spring Seal	High Temp Spring Seal	High Performance
	inch	mm	Insert			Ñ	o Felt (X)		(Progard)	(Safegard)	Fiberglass (Heatgard)	- Fiberglass (Heatgard Plus)	(UltaGard)	(HeatGard Ultra)	Seal
	1/2	-	2-08	ER-8											
	9/16	-	2-09	ER-9											
2-012	5/8	-	2-010	ER-10		7300	10200	6450	1600	N/A	1600	N/A	2800	N/A	3100
	11/16	-	2-011	ER-11										IVA	
	3/4	-	2-012	ER-12											
	-	20	5204	ER-204											
	13/16	-	2-013	ER-13											
	7/8	-	2-014	ER-14											
2-015	15/16	-	2-015	ER-15		6350	9000	6350	N/A	550	1400	N/A	2500	2500	2700
	-	25	5205	ER-205											
	1	-	2-1	ER-16											
	1 1/16	-	2-11	ER-17											
	1 1/8	-	2-12	ER-18											
2-13	-	30	5206	ER-206		5450	7600	5450	N/A	500	1050	500	2200	2200	2300
	1 3/6	-	2-13	ER-19											
	1 1/4	-	1-14	ER-20R											
	1 1/4	-	2-14	ER-20											
	1 5/16	-	2-15	ER-21											
2-17	1 3/8	-	2-16	ER-22		4650	6500	4650	N/A	450	1000	450	N/A	1900	2000
	-	35	5207	ER-207											
	1 7/16	-	2-17	ER-23											
	1 1/2	-	2-18	ER-24											
2-19	1 9/16	-	2-19	ER-25		4150	5850	4150	N/A	400	925	400	N/A	1700	1750
	-	40	5208	ER-208											
	1 5/8	-	2-110	ER-26											
2-111	1 11/16	-	2-111	ER-27		3800	5300	3800	N/A	350	gen.	050	N/A	1500	1600
2-111	1 3/4	-	2-112	ER-28		3000	3300	3000	IN/A	350 850	350	IN/A	1300	1000	
	-	45	5209	ER-209											

If seal max speed in this chart exceeds bearing max speed from rating tables or speed that is deemed acceptable for the application, lowest applicable speed applies.

	MAX SEAL SPEED REVOLUTIONS PER MINUTE																										
			Cus	tom Select	Suffix																						
Setscr	ew, Skwezk and Double	oc Locking C Setscrew	Collar	Setscrew	Skwezloc Locking Collar or Double Setscrew	Skwezloc Locking Collar	All	Locking		Standard	Duty and ER	Bearings															
HT, HTA, HI	нтс	LO	XLO		схи	нѕ	DRT	Suffix			•	J															
High Tem	perature	Low Drag	o Options	A	ir Handling	High	High		Bore D	iameter	Standard Duty	ER	Series														
Optio	ons		, - ,			Speed	Contamination		inch	mm	Insert																
									1/2	-	2-08	ER-8															
									9/16	-	2-09	ER-9															
3200	800	5800	2900	7300	10200	11700	1600		5/8	-	2-010	ER-10	2-012														
3200	800	3600	2900	7300	10200	11700	1600		11/16	-	2-011	ER-11	2-012														
									3/4	-	2-012	ER-12															
									1	20	5204	ER-204															
									13/16	-	2-013	ER-13															
									7/8	-	2-014	ER-14															
2750	800	5000	2500	6350	9000	10200	550		15/16	-	2-015	ER-15	2-015														
									İ		-	25	5205	ER-205													
								1	-	2-1	ER-16																
									1 1/16	-	2-11	ER-17															
									1 1/8	-	2-12	ER-18															
2400	700	4300	2150	5450	7600	8700	500		1	30	5206	ER-206	2-13														
																							1 3/6	-	2-13	ER-19	
									1 1/4	-	1-14	ER-20R															
									1 1/4	-	2-14	ER-20															
									1 5/16	-	2-15	ER-21															
2200	600	3700	1850	4650	6500	7450	450		1 3/8	-	2-16	ER-22	2-17														
									-	35	5207	ER-207															
									1 7/16	-	2-17	ER-23															
									1 1/2	-	2-18	ER-24															
1800	500	3300	1650	4150	5850	6700	400		1 9/16	-	2-19	ER-25	2-19														
									1	40	5208	ER-208															
									1 5/8	-	2-110	ER-26															
1650	500	3000 1500 3800 5300 6050 35		20 0000	5000			2050		1 11/16	-	2-111	ER-27	2-111													
UCOU	500	3000	1500	3000	5300	6050	6050	350		1 3/4	-	2-112	ER-28	Z-111													
									-	45	5209	ER-209															

Table 9 – Sealmaster Gold Standard Duty Maximum Speed Rating continued

						MAX SEAL SPEED REVOLUTIONS PER MINUTE									
										Standard :	Sealmaster G	Gold			
					Locking	Setscrew	Skwezloc Locking Collar or			Setscrew S	ikwezloc Loc	king Collar and	Double Set	screw	
Sta	ndard Du	ıty an	d ER Beari	ngs			Double Setscrew	С		3C	F	-			н
	Bore	•	Standard		Suffix		lard, A, AS, X andard Felt	C	2C Double	Triple	High Temp	SF High Temp	U, BF	VA, VS High Temp	
Series	Diame		Duty	ER		Backe N	d off Felt (AS) omex (A)	Contact	Contact Seal	Contact Seal	Contact Seal - Fiberglass	Double Contact Seal - Fiberglass	Spring Seal (UltaGard)	Spring Seal (HeatGard	High Performance Seal
	inch	mm	Insert			N	o Felt (X)		(Progard)	(Safegard)	(Heatgard)	(Heatgard Plus)	(OrtaGara)	Ultra)	Ocai
	1 13/16	-	2-113	ER-29											
	1 7/8	-	2-114	ER-30											
2-115	1 15/16	-	2-115	ER-31		3550	5000	3550	N/A	325	775	325	1400	N/A	1500
	-	50	5210	ER-210											
	2	-	1-2	ER-32R											
	2	-	2-2	ER-32											
2-23	2 1/8	-	2-22	ER-34		3250	4500	3250	700	300	700	300	1300	N/A	1350
	-	55	5211	ER-211											
	2 3/16	-	2-23	ER-35											
	2 1/4	-	2-24	ER-36											
2-27	-	60	5212	ER-212		3000	4100	2550	650	N/A	650	250	1200	N/A	1250
	2 3/8	-	2-26	ER-38											
	2 7/16	-	2-27	ER-39											
	2 1/2	-	-	ER-40											
2-211	2 11/16	-	2-211	ER-43		2500	3600	2225	550	N/A	550	225	N/A	N/A	1050
	-	70	5214	ER-214											
	2 7/8	-	2-214	ER-46											
2-215*	2 15/16	-	2-215	ER-47		2450	3400	2100	525	N/A	525	200	N/A	N/A	2500*
	-	75	5215	ER-215											
	3	-	-	ER-48											
2-33	-	80	5216	ER-216		2250	3150	1950	500	N/A	500	N/A	N/A	N/A	N/A
	3 3/16	-	2-33	ER-51							_				
	3 1/4	-	2-34	ER-52											
2-37	3 3/8	-	2-36	ER-54		2125	3000	1850	450	N/A	450	N/A	N/A	N/A	N/A
	3 7/16	-	2-37	ER-55											
2-38	3 1/2		2-38	-		2000	2800	1725	425	N/A	425	N/A	N/A	N/A	N/A
	-	90	5218	-											
	3 15/16		-	ER-63											
2-43	-	100	-			1700	2400	1450	375	N/A	375	N/A	N/A	N/A	N/A
	4		-	ER-64											

If seal max speed in this chart exceeds bearing max speed from rating tables or speed that is deemed acceptable for the application, lowest applicable speed applies.

^{*2-215} series uses a double lip seal vs. our triple lip high performace seal (HPS).

		MAX:	SEAL SPEE	D REVOLUTI	ONS PER MINUTE]					
			Cus	tom Select S	uffix			1					
Setscr	ew, Skwezk and Double	oc Locking C Setscrew	ollar	Setscrew	Skwezloc Locking Collar or Double Setscrew	Skwezloc Locking Collar	All	Locking		Standard	Duty and EF	R Bearings	
HT, HTA, HI	HTC	LO	XLO		CXU	HS	DRT	Suffix			1		I
High Tem	perature	Low Drag	Options	Air	· Handling	High	High		Bore D	iameter	Standard Duty	ER	Series
Optio	ons	·				Speed	Contamination		inch	mm	Insert		
									1 13/16	-	2-113	ER-29	
									1 7/8	-	2-114	ER-30	
1550	400	2800	1400	3550	5000	5700	325		1 15/16	-	2-115	ER-31	2-115
									-	50	5210	ER-210	
									2	-	1-2	ER-32R	
									2	-	2-2	ER-32	
1.400		0500	4050		4500	5150	300		2 1/8	-	2-22	ER-34	
1400	350	2500	1250	3250	4500				-	55	5211	ER-211	2-23
									2 3/16	-	2-23	ER-35	
									2 1/4	-	2-24	ER-36	
					4100 4700				-	60	5212	ER-212	
1250	325	2300	1150	3000		4700	650		2 3/8	-	2-26	ER-38	2-27
									2 7/16	-	2-27	ER-39	
									2 1/2	-	-	ER-40	
1100	275	2000	1000	2500	3600	N/A	550		2 11/16	-	2-211	ER-43	2-211
									_	70	5214	ER-214	
									2 7/8	-	2-214	ER-46	
1050	250	1900	950	2450	3400	N/A	525		2 15/16	-	2-215	ER-47	2-215
									-	75	5215	ER-215	
									3	-	-	ER-48	
950	250	1750	900	2250	3150	N/A	500		_	80	5216	ER-216	2-33
									3 3/16	-	2-33	ER-51	
									3 1/4	-	2-34	ER-52	
900	225	1650	800	2125	3000	N/A	450		3 3/8	_	2-36	ER-54	2-37
									3 7/16	_	2-37	ER-55	
									3 1/2	_	2-38	-	
850	200	1550	750	2000	2800	N/A	425		-	90	5218		2-38
									3 15/16	-	-	ER-63	
700	200	1300	650	1700	2400	N/A	375		-	100	-	21,100	2-43
100	250	1,500	000	1,00	2700	100	0,0		4	-	-	ER-64	
									+	_		LIN-04	

Table 10 – Sealmaster Gold Medium Duty Maximum Speed

							MAX S	EAL SPEE	D REVOLU	ITIONS PER MIN	UTE		
								Standa	ard Sealma	ster Gold			
	Medium	Dutv		Locking	Setscrew	Skwezloc Locking Collar or Double Setscrew		Setsc	rew, Skwez	loc Locking Coll	ar and Dou	ıble Setscre	w
		,		Suffix	Stan	idard, AS, X	С	2C	3C	SF	U, BF	VA, VS	Н
Series	Bor Diame		Unit Size	Insert	Backe N	indard Felt id off Felt (AS) omex (A) lo Felt (X)	Contact	Seai	Triple Contact Seal (Safegard)	High Temp Double Contact Seal - Fiberglass (Heatgard Plus)	Spring Seal (UltaGard)	FKM Spring Seal (HeatGard Ultra)	High Performance Seal
	15/16	-	15	3-015				(* * * * * * * * * * * * * * * * * * *	(j ,	, ,			
2-13	-	25	305	5305	5450	7600	5450	N/A	500	500	2200	2200	2300
	1	1	16	3-1									
2-17	-	30	306	5306	4650	6500	4650	N/A	450	450	N/A	1900	2000
2-17	1 3/16	ı	19	3-13	4030	0300	4030	IN/A	450	450	IN/A	1900	2000
2-19	-	35	307	5307	4150	5850	4150	N/A	400	400	N/A	1700	1750
2-10	1 7/16	-	23	3-17	4130	3030	4130	IN/A	400	400	IN/A	1700	1730
2-111	1 1/2	-	24	3-18	3800	5300	3800	N/A	350	350	N/A	1500	1600
	-	40	308	5308				1071			1071	1000	1000
	1 11/16	-	27	3-111									
2-115	1 3/4	-	28	3-112	3550	5000	3550	N/A	325	325	1400	N/A	1500
	-	45	309	5309									
2-23	1 15/16	-	31	3-115	3250	4500	3250	700	300	300	1300	N/A	1350
	-	50	310	5310									
2-27	-	55	311	5311	3000	4100	2550	650	N/A	250	1200	N/A	1250
	2 3/16	-	35	3-23									
0.044	2 7/16	-	39	3-27	0500	2000	2050	550		005			4050
2-211	2 1/2	-	40	3-28	2500	3600	2250	550	N/A	225	N/A	N/A	1050
	- 2 44/46	65	313 43	5313									
2-215	2 11/16	70	314	3-211 5314	2450	3400	2100	525	N/A	200	N/A	N/A	2500*
	2 15/16	70	47	3-215									
2-33	2 13/10	- 75	315	5315	2250	3150	1950	500	N/A	N/A	N/A	N/A	N/A
2-00	3	-	48	3-3	2200	3150	1000	300	14/7	14//	17/7	17/7	13/7
	-	80	316	5316									
2-37	3 3/16	-	51	3-33	2125	3000	1850	450	N/A	N/A	N/A	N/A	N/A
2-38	3 7/16	-	55	3-37	2000	2800	1725	425	N/A	N/A	N/A	N/A	N/A
	3 15/16	-	63	3-315									
2-43	-	100	320	5320	1700	2400	1450	375	N/A	N/A	N/A	N/A	N/A
	4	-	64	3-4									
	4 7/16	-	71	3-47	40	46-5							
3-47	4 15/16	-	79	3-415	1375	1950	N/A	N/A	N/A	N/A	N/A	N/A	N/A

If seal max speed in this chart exceeds bearing max speed from rating tables or speed that is deemed acceptable for the application, lowest applicable speed applies.

		MAXS	EAL SPEED	REVOLUTION	S PER MINUTE							
			Custo	m Select Suff	ix							
Setscrew,		cking Collar a screw	nd Double	Setscrew	Skwezloc Locking Collar or Double Setscrew		All	Medium Duty		Locking		
HT, HTA, HI	нтс	LO	XLO		СХИ	HS	DRT			,	Suffix	Serie
High Tem	perature		<u> </u>			11: 1 0 1	High	Bo Dian	re neter	Unit		Sen
Optio		Low	Drag	Air	Handling	High Speed	Contamination	inch	mm	Size	Insert	
								15/16	-	15	3-015	
2400	400	4300	2150	5450	7600	8700	500	-	25	305	5305	2-1
								1	-	16	3-1	
2200	350	3700	1850	4650	6500	7450	450	-	30	306	5306	2-1
2200		0100	1000	1000		1100	100	1 3/16	-	19	3-13	
1800	350	3300	1650	4150	5850	6700	400	-	35	307	5307	2-1
								1 7/16	-	23	3-17	
1650	350	3000	1500	3800	5300	6050	350	1 1/2	-	24	3-18	2-1
								-	40	308	5308	
4550	050	2000	4.400	0550	5000	5700	005	1 11/16		27	3-111	ļ.,
1550	350	2800	1400	3550	5000	5700	325	1 3/4	- AE	28	3-112	2-1
								- 1 15/16	45 -	309	5309 3-115	
1400	350	2500	1250	3250	4500	5150	300	-	50	310	5310	2-2
								_	55	311	5311	
1250	325	2300	1150	3000	4100	4700	650	2 3/16	-	35	3-23	2-2
								2 7/16	-	39	3-27	
1100	275	2000	1000	2500	3600	N/A	550	2 1/2	-	40	3-28	2-2
								-	65	313	5313	t
4050	050	4000	050	0.450	0.400	NICA	FOF	2 11/16	-	43	3-211	0.0
1050	250	1900	950	2450	3400	N/A	525	-	70	314	5314	2-2
								2 15/16	-	47	3-215	
950	250	1750	900	2250	3150	N/A	500	-	75	315	5315	2-3
								3	-	48	3-3	
900	225	1650	800	2125	3000	N/A	450	-	80	316	5316	2-3
								3 3/16	-	51	3-33	
850	200	1550	750	2000	2800	N/A	425	3 7/16	-	55	3-37	2-3
								3 15/16		63	3-315	
700	200	1300	650	1700	2400	N/A 37	375	-	100	320	5320	2-4
								4 7/40	-	64	3-4	
600	N/A	1050	525	1375	1950	N/A	N/A	4 7/16	-	71	3-47	3-4
		1						4 15/16	-	79	3-415	

SEAL MASTER Browning Mounted Ball Bearing Engineering Section

Table 11 – Sealmaster Material Handling Bearing Maximum Speed Rating

	Bore Dia	meter	1		Insert	Max. Seal Spee
Series	ınch	mm	- Unit Size	Setscrew	Skwezloc Locking Collar	Revolutions Per Minute
3642	594		196	91100	90.0	5500
2642		1000	26	MIGNE	N1-2011	5500
2-015 =	0.1	25	205	MH-205	MH-205T	5500
2-015	1		16	MH-16	MH-16T	5500
	-:-	:%=	98	мисле	KI 480±1	
***¢	-88	12	1 11	07416	W.HTD	SOUNT
			Yan	786-24	M (cont	
2-17	1 1/4	71	20	MH-20	MH-20T	4000
2-17	1 7/16	17	23	MH-23	MH-23T	4000
2.71	802		36	201444	904-24	3500
2-111	1 11/16	14	27	MH-27	MH-27T	3000
	1.15(19)	E	13	38963	Ma-sar-	
0.89%		#	240	MH-shit	NF4 37	3300
2-23	2		32	MH-32	MH-32T	2500
2-23	2 3/16		35	MH-35	MH-35T	2000
2.27	200		93	364-30	H4:30°	2500

Table 12 – Browning 100 and 200 Maximum Speed Rating

		100 Series,	200 Series and V	ER Bearings		Max. Seal Speed Revolutions Per Minute			
Series	Bore Di	ameter	100 Series	200 Series		100 Series	200 Series	VER	
	inch	mm	Insert	Insert	- VER	Contact	Contact + Flinger	Contact + Flinger	
L-10	410		VS-108	VS-208	-	5000	7500	-	
2-012	1/2	-	-	-	VER-208	-	-	6500	
L-10	F 10		VS-110	VS-210	-	5000	7500	-	
2-012	5/8	-	-	-	VER-210	-	-	6500	
2.042	3/4	-	VS-112	VS-212	VER-212	4000	0500	CEOO	
2-012	-	20	-	VS-20 MM	-	4000	6500	6500	
	7/8	-	VS-114	VS-214	VER-214				
0.045	15/16	-	VS-115	VS-215	VER-215	0500	5500	5500	
2-015	-	25	-	VS-25 MM	-	3500	5500	5500	
	1	-	VS-116	VS-216	VER-216				
	1 1/16	-	-	-	VER-217				
	1 1/8	-	VS-118	VS-218	VER-218				
2-13	-	30	-	VS-30 MM	-	3000	4500	4500	
	1 3/6	-	VS-119	VS-219	VER-219				
	1 1/4	-	VS-120S	VS-220S	VER-220S				
	1 1/4	-	VS-120	VS-220	VER-220				
	1 3/8	-	VS-122	VS-222	VER-222	1	4000	4000	
2-17	-	35	-	VS-35 MM	-	2500			
	1 7/16	-	VS-123	VS-223	VER-223				
	1 1/2	-	VS-124	VS-224	VER-224				
2-19	1 9/16	-	-	-	VER-225	2500	3500	3500	
	-	40	-	VS-40 MM	-				
	1 5/8	-	-	VS-226	VER-226				
	1 11/16	-	VS-127	VS-227	VER-227				
2-111	1 3/4	-	VS-128	VS-228	VER-228	2000	3000	3000	
	-	45	-	VS-45 MM	-				
	1 7/8	-	-	-	VER-230				
0.44=	1 15/16	-	VS-131	VS-231	VER-231	0000		2225	
2-115	-	50	-	VS-50 MM	-	2000	3000	3000	
	2	-	VS-132S	VS-232S	VER-232S	1			
	2	-	VS-132	VS-232	VER-232				
2-23	-	55	-	VS-55 MM	-	1750	2500	2500	
	2 3/16	-	VS-135	VS-235	VER-235				
	2 1/4	-	-	VS-236	VER-236				
2-27	2 3/8	-	-	-	VER-238	-	2500	2500	
	2 7/16	_	-	VS-239	VER-239	1			

Setscrew locking 100, 200, 300 series and VER's shown.

For VE-100, RUBRE-100, RUBRS-100, SLS-100, LE-100, LR-100, LRS-100, LS-100 use equivalent limits respective 100 series bore.

For VB-200, VE-200 equivalent limites for respective 200 series bore.

Mounted Ball Bearing Engineering Section

Table 13 – Browning 300 Maximum Speed Rating

Max. Seal Speed Revolutions Per Minute		300 Series Bearing						
300 Series	300 Series	meter	Bore Dia					
Contact + Flinger	Insert	mm	ınch					
2000	26.200	THE						
4000	VS-319	30.2	1 3/16					
4000	VS-220	31.8	1 1/4					
2000	16-325	Ses	1.5(10)					
	VS-324	38.1	1 1/2					
3000	VS-327	42.9	1 11/16					
	VS-328	44.5	1 3/4					
7200	¥9-50	-02	- 4:1					
610	19.116	*50	230					

For VB-300 equivalent limits for respective 300 series bore.

Lock Types

"Slip Fit" Mounting

Mounted Ball Bearings are designed to slip fit onto the shaft. Slip fit means that the shaft is usually slightly smaller, and the inner ring bore is slightly larger than the nominal shaft sizes listed in the bearing tables. Slip fit mounting is very popular and economical as it does not require specialized equipment or tooling to mount the bearing on the shaft. Reliability of the lock is still dependent on the proper mounting techniques and proper shaft size control.

Shaft Locking System Selection

Selection of the shaft locking system may be dependent on some or all of the following application criteria:

- Lock Reliability
- Shaft Run-Out
- Vibrating Systems
- Vibration Reduction (Isolation Devices)
- Shaft Fretting
- Distress On The Shaft Surface
- · Shafting Material
- Space On The Shaft
- Shaft Orientation (Vertical, Horizontal)
- Ease Of Installation

Single Sided (Single Lock) **Setscrew Locking System**

Single sided setscrew lock has an extended inner ring on one side of the bearing. This locking system is held to the shaft by two setscrews. Single lock is the most popular bearing mounting method for Mounted

Ball Bearings. It is easy to mount because it requires tightening only two setscrews and takes up minimal space along the shaft. Sealmaster and Browning Mounted Ball Bearings have a unique package of features including: wide inner ring design, zone hardened inner rings, specially designed setscrews and 120° setscrew position. These features are unmatched in the mounted bearing industry and are designed to maximize lock reliability.

Single lock setscrew design is specified in a wide range of applications for moderate loads and speeds. This lock is sometimes specified in flange block and cartridge housings because of inacessibility of back side setscrews. Upset setscrew marks on the shaft can be minimized for removal of the bearing by removing the setscrews and using a flat punch, tapping the upset shaft material flat onto the shaft. For high speed, heavy load (radial or thrust), vibration, eccentric loading, stainless steel or hollow shafting, reduction of fretting, vibration or marking of the shafting, review alternate locks below or consult Application Engineering.

Double Sided (Double Lock) Setscrew Locking System

Double sided setscrew lock is extended on both sides of the inner ring. The inner race is locked to the

shaft by four screws. This design is the preferred lock for the heavy duty Sealmaster Gold Mounted Ball Bearings with double lock incorporate the same unique package of locking features included in the single lock design: wide inner ring design, zone hardened inner rings, specially designed setscrews, and 120° setscrew position.

The double lock design is specified for demanding applications or where shaft lock reliability is critical. This design is often specified on high load applications, high thrust load applications, vertical shafts where extra holding power is required, eccentric drive applications, high vibration applications, and high speed applications. It also helps to reduce fretting corrosion on the shaft. Upset setscrew marks on the shaft can be minimized for removal of the bearing by removing the setscrews and, using a flat punch, tapping the upset shaft material flat onto the shaft. For stainless steel shafting, or where vibration reduction is required, refer to Skwezloc® or BOA Concentric locking collar below or consult Application Engineering.

Eccentric Locking

Eccentric locking design incorporates a precision eccentric collar that mates with the inner ring extension for shaft hold. The inner ring is extended and has an eccentric profile machined on the outer diameter at the end. The inner diameter of

the collar has an eccentric profile machined that mates with the inner ring extension. The eccentric collar is placed on the inner ring extension and rotated in the direction of shaft rotation. This rotation forces the collar and inner ring eccentric profiles to lock by creating a friction grip. The collar makes contact with the shaft and a setscrew on the collar is then tightened to lock the collar in place. This design is available on Browning Mounted Ball Bearings only.

Note: The eccentric is designed for single direction of rotation and should not be used when two direction rotation is present.

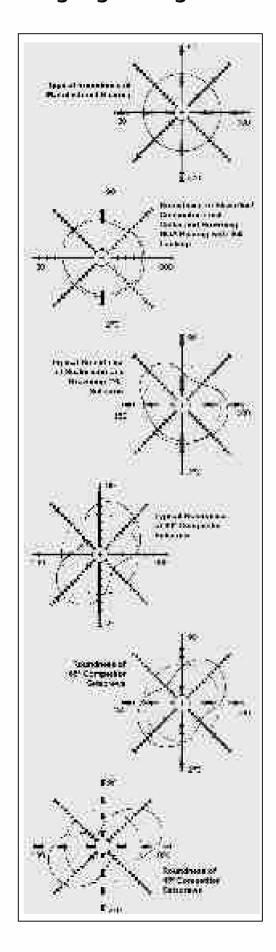
Mounted Ball Bearing Engineering Section

Lock Types continued

The Concentric Locking System

Sealmaster Skwezloc® and Browning BOA concentric locking system for ball bearings has an inner ring extension which is slit into 6 tangs. The split concentric collar is tightened over the inner ring extension, gripping the bearing to the shaft. The concentric design friction grips to the shaft with 360° of holding.

- Centers the shaft in the bore of the bearing, reducing vibration and shaft runout.
- Maintains manufactured ball path roundness reducing vibration and enhances bearing life.
- Excellent for high speed applications
- Does not mark the shaft like set screw or eccentric lock
- Is easy to install, requiring tightening only one Torx head capscrew.


Concentric is often specified in air handling, HVAC, fan and blower applications where noise and vibration reduction is essential. High speed applications such as saws and routers or high speed spindles are common applications for concentric locking. Coating roll and sanding applications are also good applications for the concentric where runout control of the rotating system is essential. Concentric is recommended for stainless steel or hardened shafting. In vertical shaft or high thrust load applications, a thrust collar or axial locating device is required to insure safety of the friction grip lock.

Stat Linck Companion:							
Entre: boxx	Sincle not	HOUSE Lock	L'ancerrie	Leaning			
High Speeds	11	111	11111	11			
Heavy Loads	11	1111	1111	1			
Radial Loads	1111	1111	27772	1111			
Thrust Loads	111	1111	//*	V.F.			
Fretting Control	11	111	10000	7.7			
Run out Control	11	11	4111	227			
Reliability of Lock	111	1111	1111	100			
Vertical Shaft	111	1111	//*	7.5			
Eccentric Loads	11	1111	111	1			
Hardened/Stainless Shafts	11	111	11111	11			

Legend: Excellent \checkmark \checkmark \checkmark , Good \checkmark \checkmark , Fair \checkmark \checkmark , Poor \checkmark

* Review use of thrust device.

Note: Premium locking systems are not intended to be a fix for worn, damaged or undersized shafting or poor mounting practices. Consult Installation Instructions for proper installation.

Sealmaster Gold Mounted Ball Bearing Housed Units Installation

NOTICE

- These bearings are designed for maximum permissible static misalignment of \pm 2 degrees. Installation, handling or operation of the bearing in excess of the maximum of \pm 2 degrees can cause reduction in bearing performance and may lead to equipment failure.
- Do not strike or hammer on any component of the bearing and/or shaft. Impact can result in damage to the bearing that may cause reduction in bearing performance and may lead to equipment failure.

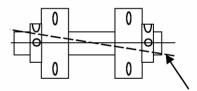
Step 1: Inspect Shaft and Bore

Shaft should be within tolerance range shown in table, clean and free of nicks and burrs. Mount bearings on unused section of shafting or repair/replace shafting as required. Inspect both the shaft and bearing bore for debris or contaminants. Wipe clean as necessary.

SM Gold Table 1

Recommended Shaft Tolerances							
Nominal Bore Diameter Tolerance (inch)							
752 - 1115-73	1100005-140500s						
2 - 3 3/16	+0.0000 / -0.0010						
2 del = 2 d@10	+0,0003-1-0-20-0						

Step 2: Check Support Surfaces


Make sure the base of the housing and the support surfaces are clean and free from burrs. If the housing elevation is adjusted with shims these must cover the entire contact area between the housing and the support surface.

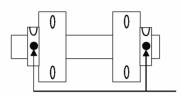
Step 3: Install Unit

To aid installation, keep weight off bearing during mounting. Slide unit onto shaft by pushing on the inner ring. If it is difficult to mount bearing on shaft, use a piece of emery cloth to reduce any high spots on the shaft.

Step 4: Fasten Unit in Place

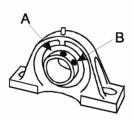
Install housing mounting bolts and check bearing alignment. Align the bearing units as closely as possible. Tighten mounting bolts to recommended fastener torques. Check the shaft for freedom of rotation by rotating shaft with hand in both directions.

Step 5: Position Insert


If expansion units are used, the insert must be located in the housing to allow for axial shaft expansion and/or contraction. Position bearing insert to obtain the required axial expansion in desired directions. It may be necessary to unload the bearing while moving the assembly.

Sealmaster Gold Mounted Ball Bearing Housed Units Installation continued

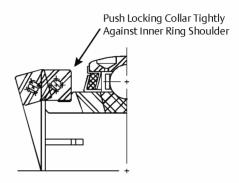
Step 6: Tighten Locking Mechanism


a. Setscrew Locking Inserts

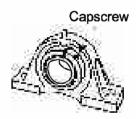
Setscrews in multiple bearing applications should be aligned as shown.

Tighten bearing units to the shaft as follows:

- i. Torque the first setscrew "A" to one half of the recomended torque in Table 2.
- ii. Torque the second setscrew "B" to the full recomended torque. Go back to the first setscrew "A" and tighten to the full recommended torque.



If the bearing unit has setscrew locking on both sides of the inner ring (Double Lock Setscrew), repeat the same procedure for the second pair of setscrews. Check shaft again for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.


SM Gold Table 2

,	Setscrew Torque		
Screw Size	Hex Size	Inch-Pounds	
0.008	165	1,996-555	
5/16-24	5/32	125 - 165	
NAME OF THE OWNER OWNER	2000	38340 7744	
7/16-20	7/32	350 - 450	
68.26	47	2011.250	
5/8-18	5/16	1100 - 1440	

- b. Skwezloc Locking Inserts
 - i. Be sure that the Skwezloc collar is fitted square and snug against the shoulder on the inner ring as shown.

ii. Torque the Skwezloc collar cap screw to the full recommended torque in Table 3.

SM Gold Table 3

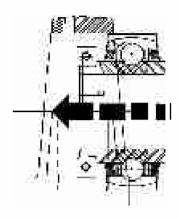
Skwezloc Concentric Locking Collar Cap Screw Torque		
Screw Size	Torx Size	Inch-Pounds
4-5-032	46	00000
# 10-24	T-27	100
0.038	35	2000
5/16-18	T-45	495

Check shaft again for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.

Mounting Sealmaster Gold Cylindrical O.D. (ER Style) Inserts and Cylindrical O.D. Housings (AR & SC Style):

NOTICE

• Do not strike or hammer on any component of the bearing and/or shaft. Impact can result in damage to the bearing that may cause reduction in bearing performance and may lead to equipment failure.

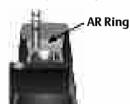


Step 1: Inspect and Prepare Housing

To achieve proper bearing fit, the housing should be machined to the correct bore size. For recommended housing bore sizes, refer to page G-259. The housing bearing seat should be wiped clean and free of debris.

Step 2: Install Unit in Housing

Press bearing into housing by applying force to the face of the housing, or the face of the outer ring for ER style bear-


Do not hammer on any component of the bearing or apply force to the inner ring.

Step 3: Refer to Steps 1 - 6 from the "Mounting Housed Bearing Units" Section Pages G-246 to G-247

Sealmaster Gold Expansion Bearings:

Expansion bearings allow for linear shaft expansion or contraction caused by temperature variations. Without this expansion capability, bearings may be subjected to excessive thrust loads and misalignment which could damage the bearing, mounting surfaces, and frameworks. Sealmaster offers two types of expansion (float) bearings:

1. In Sealmaster Gold mounted units where the bearing is installed into an AR ring then into a housing assembly as shown on page G-29. This design allows the bearing to move axially in the housing assembly. Table 4 below shows the allowable expansion by size.

SM Gold Table 4

Bore Diameter		Expansion (ınch)
Standard Duty Medium Duty		
23.11	3467	372
1 3/16 - 1 3/4	15/16 - 1 1/2	1/8
11-1-2016/08	T. Herz. 2 He (8)	5.98
3 - 3 7/16	2 15/16 - 3 3/16	1/4
14614	3 7 10 - 0	9332
5	4 7/16 - 4 15/16	7/16

2. In Sealmaster Cylindrical O.D. bearings (ER style) and some Sealmaster Gold mounted units expansion is achieved by utilizing a special half-dog & wire and keyway in the shaft by specifying a "HIY" suffix. The bearing then floats along the shaft. Table 5 shows the shaft slot dimensions required.

SM Gold Table 5

Bore Sizes	Slot Width (C)	Min. Slot Depth (B)	1/2 Dog Point Dia. (P)
ınch	ınch	ınch	ınch
36 M(1/201	984	(14526)	702
1 1/4 to 1 3/4	9/32	3/32	13/64
17.00 27:5	2.64	10	476
2 /12 to 3 7/16	21/64	1/8	19/64
F45.16 at 4	85%4	3/10	1155,360

△L is calculated below

Notes:

- Before installation, make certain proper expansion is accounted for. Expansion units should be placed in a location where relative movement between the bearing insert and the housing can be tolerated.
- When using an expansion bearing, always use a fixed bearing as the second support bearing.
- Half-dog setscrew and lock wire systems are not recommended for high speed or vibration applications. Application Engineering can be contacted for specifics. Only one half-dog setscrew should be used in this arrangement. No other setscrew should be installed. The half-dog setscrew's nub is engaged within the shaft slot, but not tightened into the shaft.

When shafting is heated, it grows longer. This growth in shaft length is particularly problematic when shafts are long and temperature differentials are large.

The difference in linear expansion between the shaft (shaft length between bearing centers) and the bearing mounting structure must be taken in consideration in high temperature applications. For example, in the case where the shaft, bearings and bearing support structure are all in a heated environment, the effect of thermal expansion on the bearings can be insignificant (assuming that all components are made of steel).

The shaft expansion concern arises when the shaft is in a heated environment but the bearings and bearing support structure are not. In this case the slot length in the shaft should be machined so as to accommodate the amount of linear shaft expansion.

Calculate the minimum slot length (\triangle L) as follows:

 $\triangle L = \alpha \cdot X \triangle TEMP_{sys}$

Where:

 $\triangle L = differential linear expansion (inches)$

 α = coefficient of thermal expansion (inch/inch/°F)

($\alpha = 7x10^{-6}$ inch/inch/°F for most carbon steel shafting)

 $(\alpha = 1x10^{-5} \text{inch/inch/}^{\circ}\text{F for most stainless steel shafting})$

X = length of shaft (inches)

 \triangle TEMP_{sys} = operating shaft temperature (°F) - installed shaft temperature (°F)

Replacing Existing Sealmaster Gold Inserts:

Note: Replacement Sealmaster bearing inserts are intended for use in Sealmaster housings only.

NOTICE

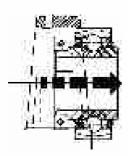
- These bearings are designed for maximum permissible static misalignment of ± 2 degrees. Installation, handling or operation of the bearing in excess of the maximum of ± 2 degrees can cause reduction in bearing performance and may lead to equipment failure.
- Do not strike or hammer on any component of the bearing and/or shaft. Impact can result in damage to the bearing that may cause reduction in bearing performance and may lead to equipment failure.

Step 1: Loosen and Remove Housing Mounting Bolts

Step 2: Remove Bearing from Shaft


Loosen the locking mechanism and slide the bearing off the shaft.

Step 3: Remove the Bearing Insert from the Housina


Secure housing in a vise. Remove lubrication fitting and lock pin from the housing. Do not discard the lubrication fitting or lock pin. Remove insert from housing in the following fashion:

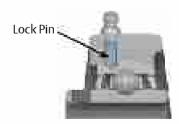
a. For Spherical OD Inserts:

Using a bar placed in the insert bore as a lever, swing the insert to line up the outer ring with the load slots and remove insert from load slots.

b. For Expansion (AR) Inserts: Slide the insert in the axial direction out of the housing.

Step 4: Inspect and Prepare Housing

Housings should be inspected for damage prior to installation. Wipe housing bore clean as necessary and check that the lubrication hole is clean and free of debris. Wetting of the housing bore with oil or grease may be done to ease installation of bearing insert.


Step 5: Load New Insert

With the bearing housing still in the vise, load the insert in the following fashion:

- a. For Spherical OD Inserts:
 - i. Place the bearing insert into the housing load slots, positioning the insert outer ring dimple and lubrication hole in line with the housing lubrication hole.
 - ii. Using a bar placed in the insert bore as a lever, swing the insert into place within the housing. Insert should have a snug fit in the housing. If insert can be made to swivel by hand in the housing bore, fit is too lose and entire unit should be replaced. If heavy force is required, fit is too tight and entire unit should be replaced.
 - iii. Ensure alignment of the outer ring dimple and lubrication hole and housing lubrication hole.
- b. For Expansion (AR) Inserts
 - i. Slide bearing insert into the housing.
 - ii. Ensure alignment of the outer ring dimple and lubrication hole, brass ring lubrication hole, and housing lubrication hole.

Step 6: Install Lock Pin and Lubrication Fitting

Place the lock pin in the housing lubrication hole, ensuring that it seats in the outer ring dimple. Tighten the lubrication fitting into the housing lubrication hole until snug, then loosen 1/4 turn.

NOTICE:

Over tightening or under tightening of the lubrication fitting may lead to reduction in bearing performance.

Step 7: Refer to Steps 1 - 6 from the "Mounting Housed Bearing Units" Section Pages G-246 to G-247

Sealmaster Material Handling Mounted Ball Bearing Housed Units

NOTICE

- These bearings are designed for maximum permissible static misalignment of \pm 1 1/2 degrees. Installation, handling or operation of the bearing in excess of the maximum of \pm 1 1/2 degrees can cause reduction in bearing performance and may lead to equipment failure.
- Do not strike or hammer on any component of the bearing and/or shaft. Impact can result in damage to the bearing that may cause reduction in bearing performance and may lead to equipment failure.

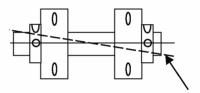
Step 1: Inspect Shaft and Bore

Shaft should be within tolerance range shown in the table, clean and free of nicks and burrs. Mount bearings on unused section of shafting or repair/replace shafting as required. Inspect both the shaft and bearing bore for debris or contaminants. Wipe clean as necessary.

SM MH Table 1

Recommended Shaft Tolerances		
Nominal Bore Diameter	Tolerance (inch)	
72+105-6	HR-06037-041000	
2 - 3 3/16	+0.0000 / -0.0010	

Step 2: Check Support Surfaces

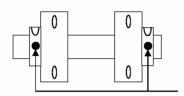

Make sure the base of the housing and the support surfaces are clean and free from burrs. If the housing elevation is adjusted with shims these must cover the entire contact area between the housing and the support surface.

Step 3: Install Unit

To aid installation, keep weight off bearing during mounting. Slide unit onto shaft by pushing on the inner ring. If it is difficult to mount bearing on shaft, use a piece of emery cloth to reduce any high spots on the shaft.

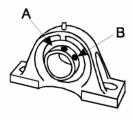
Step 4: Fasten Unit in Place

Install housing mounting bolts and check bearing alignment. Align the bearing units as closely as possible. Tighten mounting bolts to recommended fastener torques. Check the shaft for freedom of rotation by rotating shaft with hand in both directions.



Sealmaster Material Handling Mounted Ball Bearing Housed Units continued

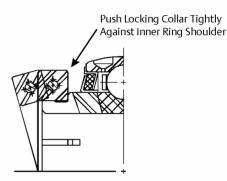
Step 6: Tighten Locking Mechanism


a. Setscrew Locking Inserts

Setscrews in multiple bearing applications should be aligned as shown.

Tighten bearing units to the shaft as follows:

- i. Torque the first setscrew "A" to one half of the recommended torque in Table 2.
- ii. Torque the second setscrew "B" to the full recommended torque. Go back to the first setscrew "A" and tighten to the full recommended torque.



If the bearing unit has setscrew locking on both sides of the inner ring (Double Lock Setscrew), repeat the same procedure for the second pair of setscrews. Check shaft again for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.

SM MH Table 2

	Setscrew Torqu	ıe
Screw Size	Hex Size	Inch-Pounds
1968	NE.	# 1 + 25
5/16-24	5/32	125 - 165
140.00	364	A. 18 1885

- b. Skwezloc Locking Inserts
- i. Be sure that the Skwezloc collar is fitted square and snug against the shoulder on the inner ring as shown.

ii. Torque the Skwezloc collar cap screw to the full recommended torque in Table 3.

SM MH Table 3

Skwezloc Concentric Locking Collar Cap Screw Torque		
Screw Size	Torx Size	Inch-Pounds
# 8-32	T-25	70
# 10-24	T-27	100
/4.2	30	240

Check shaft again for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.

Step 7: End Cover Installation

Position the cap so it is flush with the housing, and align the removal nub in the 12 o'clock position. Press evenly on end of cap by hand to install in the machined housing groove.

Replacing Existing Sealmaster Material Handling Inserts:

Note: Replacement Sealmaster bearing inserts are intended for use in Sealmaster housings only.

NOTICE

- These bearings are designed for maximum permissible static misalignment of \pm 1 1/2 degrees. Installation, handling or operation of the bearing in excess of the maximum of \pm 1 1/2 degrees can cause reduction in bearing performance and may lead to equipment failure.
- Do not strike or hammer on any component of the bearing and/or shaft. Impact can result in damage to the bearing that may cause reduction in bearing performance and may lead to equipment failure.

Step 1: Loosen and Remove Housing Mounting Bolts

Step 2: Remove Bearing from Shaft

Remove the end cover. Loosen the locking mechanism and slide the bearing off the shaft.

Step 3: Remove the Bearing Insert from the Housing

Secure housing in a vise. Using a bar placed in the insert bore as a lever, swing the insert to line up the outer ring with the load slots and remove insert from load slots.

Step 4: Inspect and Prepare Housing

Housings should be inspected for damage prior to installation. Wipe housing bore clean as necessary and check that the lubrication groove and hole are clean and free of debris. Wetting of the housing bore with oil or grease may be done to ease installation of bearing insert.

Step 5: Load New Insert

With the bearing housing still in the vise, load the insert in the following fashion:

- a. Place the bearing insert into the housing load slots, positioning the anti rotation rivet on the outer ring in the load slot as to not shear it off when the swinging insert into place. Also, position the outer ring lubrication hole so it will install in line with the housing lubrication hole.
- b. Using a bar placed in the insert bore as a lever, swing the insert into place within the housing. Insert should have a snug fit in the housing. If insert can be made to swivel by hand in the housing bore, fit is too lose and entire unit should be replaced. If heavy force is required, fit is too tight and entire unit should be replaced.
- c. Ensure alignment of the anti rotation rivet in the load slot and outer ring lubrication hole in the housing lubrication hole.

Step 6: Refer to Steps 1 - 6 from the "Mounting Housed Bearing Units" Section Pages G-251 to G-252

Sealmaster Gold and Material Handling Bearing Lubrication:

All Sealmaster Gold and Material Handling Ball Bearings are delivered with a high quality lithium complex grease with an EP additive. The bearing is ready for use with no initial lubrication required. The grease consists of a lithium complex thickener, mineral oil, and NLGI grade 2 consistency. Compatibility of grease is critical: therefore consult with Application Engineering and your grease supplier to insure greases are compatible. For best performance it is recommended to relubricate with lithium complex thickened grease with a comparable NLGI consistency and base oil properties.

Relubricatable Sealmaster bearings are supplied with grease fittings or zerks for ease of lubrication with hand or automatic grease guns. Always wipe the fitting and grease nozzle clean.

Note: Sealmaster bearings with the RM suffix are Reduced Maintenance Bearings (ex. NP-16 RM). Sealmaster Reduced Maintenance Bearings are designed to operate with the standard factory fill of grease and are designed not to be lubricated.

CAUTION: If possible, it is recommended to lubricate the bearing while rotating, until grease purge is seen from the seals. If this is not an option due to safety reasons, follow the alternate lubrication procedure below.

Re-Lubrication Procedure:

Stop rotating equipment. Add one half of the recommended amount shown in Table 1. Start the bearing and run for a few minutes. Stop the bearing and add the second half of the recommended amount. A temperature rise after lubrication, sometimes 30°F (17°C), is normal. Bearing should operate at temperatures less than 200°F (94°C) and should not exceed 250° (121°C) for intermittent operation. For lubrication guidelines, see Tables 2 and 3.

Note: Tables 2 and 3 are general recommendations. Experience and testing may be required for specific applications.

Note: Grease charges in Table 1 are based on the use of lithium complex thickened grease with a NLGI grade 2 consistency.

Note: The Maximum Operational Speeds listed in Table 2 and 3 are based on the use of a single lock setscrew insert with felt seals. For maximum operational speeds of other locking mechanisms and seals, refer to speed rating section or consult Application Engineering.

LO and XLO Relubrication Frequency

LO and XLO bearings are designed for applications which require the bearing to operate with less torque or drag than a standard bearing.

Note: Addition of lubricant to the bearing will increase bearing drag.

If relubrication is necessary:

- 1. Add a very small amount of lubricant
- 2. Check bearing rotational torque (be sure that the bearing still rotates freely enough for the application.)

Sealmaster Ball Lube Table 1 / Grease Charge for Relubrication

	Dore III	arteiner 💮	Green.	Dere Blarour	Anchra
Se lee	Gold - Per	a Turner	/ hongs	Neteria	-Chinga -China -
	Standard Gus	Mathematicle	Ounces:	Mostry Section	Dances
2-012	1/2 - 3/4		0.03	0.00	2000
2-015	13/16 1	HE 1	0.04	1	0.03
2-13	1 1/16 - 1 1/4R	15/16 - 1	0.09	1 1/16 - 1 1/4R	0.06
463	17.98.17/36	1.279	14/12	107-3 mid:	78 (0)
2-19	1 1/2 - 1 9/16	1 7/16	0.18	1 1/2 - 1 9/16	0.14
2-111	1 5/8 - 1 3/4	1 1/2	0.20	1 5/8 - 1 3/4	0.16
2-115	1 13/16 - 2R	1 11/16 - 1 3/4	0.22	1 13/16 - 2R	0.18
2-23	2 - 2 3/16	1 15/16	0.30	2 - 2 3/16	0.25
2-27	2 1/4 - 2 7/16	2 3/16	0.38		
2/21	272 5169	245-192	342		
2-215	2 13/16 - 2 15/16	2 11/16	0.62		
1 73	F# #30#2	4.09(3)	1,27		
2-37	3 1/4 - 3 7/16	3 3/16	1 11		
1 365	8.0	*730	177		
2-43	3 15/16 - 4 3/16	3 15/16 - 4	2.50		
2-47	5	4 7/16 - 4 15/16	3.91		

Sealmaster Relubrication Frequency

Sealmaster Ball Lube Table 2

Polymon	omgandon (24)	. Замеф Дж. Станор мици	Productions		
Dirty	-20 to 250	0 - 100%	Daily to 1 Week		
		0 - 25%	4 to 10 Months		
	-20 to 125	26 - 50%	1 to 4 Months		
	-20 to 125	51 - 75%	1 Week to 1 Month		
	,	76 - 100%	Daily to 1 Week		
Clean		0 - 25%	2 to 6 Weeks		
	125 to 175	26 - 50%	1 Week to 1 Month		
	125 10 175	51 - 75%			
		76 - 100%	Daily to 1 Week		
	175 to 250	0 - 100%			

Sealmaster High Temperature Suffix Modified Bearing Relubrication Frequency

Sealmaster Ball Lube Table 3

			-	
no co once	haring an	Aça el Ju 16. tumi Maj	HI SHIPS . — LA SIGNA (II)	H1 50,000 a 109
Dirty	20 to 400	0 - 100%	Daily to 1 Week	Daily to 1 Week
		0 25%	1 to 3 Months	6 to 12 Months
	000 +- 000	26 - 50%	2 to 6 Weeks	2 to 6 Months
	200 to 300	51 - 75%	Daily to 1 Week	2 Weeks to 2 Months
01		76 - 100%	Daily to 1 Week	Daily to 1 Week
Clean		0 25%	2 Weeks to 1 Month	3 to 6 Months
	200 t- 400	26 - 50%	1 to 2 Weeks	1 to 3 Months
	300 to 400	51 - 75%	Daily to 1 Week	1 Week to 1 Month
		76 - 100%	Daily to 1 Week	Daily to 1 Week

- (1) Use high quality lithium complex grease, NLGI#2 and synthetic hydrocarbon oil with ISO 220 viscosity
- (2) Use Krytox GPL-226, no substitutions

*DuPont is a registered trademark of E.I. du Pont de Nemurs and Company. This trade name trademark and/or registered trademark is property of their respective owner and is not owned or controlled by Power Transmission Solutions.

Browning Mounted Ball Bearing Housed Units

NOTICE

- These bearings are designed for maximum permissible static misalignment of \pm 1 1/2 degrees. Installation, handling or operation of the bearing in excess of the maximum of \pm 1 1/2 degrees can cause reduction in bearing performance and may lead to equipment failure.
- Do not strike or hammer on any component of the bearing and/or shaft. Impact can result in damage to the bearing that may cause reduction in bearing performance and may lead to equipment failure.

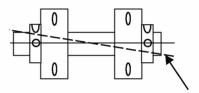
Step 1: Inspect Shaft and Bore

Shaft should be within tolerance range shown in the table, clean and free of nicks and burrs. Mount bearings on unused section of shafting or repair/replace shafting as required. Inspect both the shaft and bearing bore for debris or contaminants. Wipe clean as necessary.

SM Gold Table 1

Recommended SI	naft Tolerances
Nominal Bore Diameter	Tolerance (Inches)
7.9 - 1.15/38	HR-00007-0010001
2 - 2 7/16	+0.0000 / -0.0010

Step 2: Check Support Surfaces

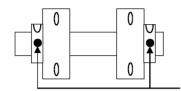

Make sure the base of the housing and the support surfaces are clean and free from burrs. If the housing elevation is adjusted with shims these must cover the entire contact area between the housing and the support surface.

Step 3: Install Unit

To aid installation, keep weight off bearing during mounting. Slide unit onto shaft by pushing on the inner ring. If it is difficult to mount bearing on shaft, use a piece of emery cloth to reduce any high spots on the shaft.

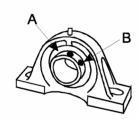
Step 4: Fasten Unit in Place

Install housing mounting bolts and check bearing alignment. Align the bearing units as closely as possible. Tighten mounting bolts to recommended fastener torques. Check the shaft for freedom of rotation by rotating shaft with hand in both directions.



Browning Mounted Ball Bearing Housed Units continued

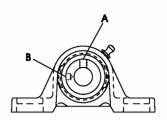
Step 5: Tighten Locking Mechanism


a. Setscrew Locking Inserts

Setscrews in multiple bearing applications should be aligned as shown.

Tighten bearing units to the shaft as follows:

- i. Torque the first setscrew "A" to one half of the recommended torque in Table 2.
- ii. Torque the second setscrew "B" to the full recommended torque. Go back to the first setscrew "A" and tighten to the full recommended torque.

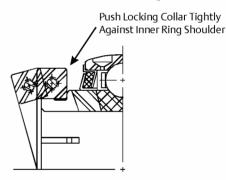


BMD Table 2

Setscrev	Setscrew Recommended Torque								
Screw Size	Hex Size	Inch-Pounds							
100.28	100	186955							
5/16-24	5/32	125 - 165							
3/8-24	3/16	230 - 300							
7/16-20	7/32	350 - 450							
68.26	08	200 (200)							
5/8-18	5/16	1100 - 1440							

b. Eccentric Locking Inserts

- i. Place collar on inner race and rotate by hand in direction of shaft rotation until eccentrics are engaged.
- ii. Insert drift pin into the hole in the collar O.D. (B) and lock in direction of shaft rotation with the aid of small hammer.
- iii. Torque single setscrew (A) to recommended torque in Table 3.



BMD Table 3

Eccentric Locking Recommended Torque								
Screw Size	Hex Size	Inch-Pounds						
14.00	7,8	±95 ± 55						
5/16-24	5/32	125 - 165						
3/5/24	(1) MAG	200 - 300						
7/16-20	7/32	350 - 450						
1/2 20	14/4	500 - 850						
5/8-18	5/16	1100 - 1440						

c. BOA Locking Inserts

i. Be sure that the BOA collar is fitted square and snug against the shoulder on the inner ring as shown.

ii. Torque the BOA collar cap screw to the full recommended torque in Table 4.

Capscrew

BMD Table 4

BOA Concentric	Locking Collar	Cap Screw Torque
Screw Size	Torx Size	Inch-Pounds
+290	575	100
# 10-24	T-27	100
04-20		365
5/16-18	T-45	495

Check shaft again for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.

Mounting Cylindrical O.D. (VER Style) Inserts:

Step 1: Inspect and Prepare Housing

To achieve proper bearing fit, the housing should be machined to the correct bore size. For recommended housing bore sizes, refer to the Browning bearing catalog or consult Application Engineering. The housing bearing seat should be wiped clean and free of debris.

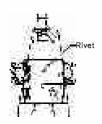
Step 2: Install Unit in Housing

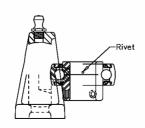
Press bearing into housing by applying force to the face of the outer ring. Do not hammer on any component of the bearing or apply force to the inner ring.

Step 3: Refer to Steps 1 - 5 from the "Mounting Housed Bearing Units" Section Pages G-255 to G-256

Replacing Existing Browning Inserts:

Note: Replacement Browning bearing inserts are intended for use in Browning housings only.

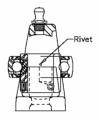

Step 1: Loosen and Remove Housing Mounting Bolts


Step 2: Remove Bearing from Shaft

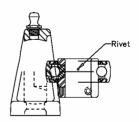
Loosen the locking mechanism and slide the bearing off the shaft.

Step 3: Remove the Bearing Insert from the Housing

Secure housing in a vise. Using a bar placed in the insert bore as a lever, swing the insert to line up the outer ring with the load slots and remove insert from load slots.


Step 4: Inspect and Prepare Housing

Housings should be inspected for damage prior to installation. Wipe housing bore clean as necessary and check that the lubrication groove and hole are clean and free of debris. Wetting of the housing bore with oil or grease may be done to ease installation of bearing insert.


Step 5: Load New Insert

With the bearing housing still in the vise, load the insert in the following fashion:

a. Place the bearing insert into the housing load slots, positioning the anti rotation rivet on the outer ring in the load slot as to not shear it off when the swinging insert into place. Also, position the outer ring lubrication hole so it will install in line with the housing lubrication hole.

b. Using a bar placed in the insert bore as a lever, swing the insert into place within the housing. Insert should have a snug fit in the housing. If insert can be made to swivel by hand in the housing bore, fit is too lose and entire unit should be replaced. If heavy force is required, fit is too tight and entire unit should be replaced.

c. Ensure alignment of the anti rotation rivet in the load slot and outer ring lubrication hole in the housing lubrication hole.

Step 6: Refer to Steps 1 - 5 from the "Mounting Housed Bearing Units" Section Pages G-255 to G-256

Browning Mounted Ball Lubrication:

All Browning Ball Bearings are delivered with a high quality lithium complex grease with an EP additive. The bearing is ready for use with no initial lubrication required. The grease consists of a lithium complex thickener, mineral oil, and NLGI grade 2 consistency.

Compatibility of grease is critical; therefore consult with Application Engineering and your grease supplier to insure greases are compatible. For best performance it is recommended to relubricate with lithium complex thickened grease with a comparable NLGI consistency and base oil properties.

Relubricatable Browning bearings are supplied with grease fittings or zerks for ease of lubrication with hand or automatic grease guns. Always wipe the fitting and grease nozzle clean.

CAUTION: If possible, it is recommended to lubricate the bearing while rotating, until grease purge is seen from the seals. If this is not an option due to safety reasons, follow the alternate lubrication procedure below.

Re-Lubrication Procedure:

Stop rotating equipment. Add one half of the recommended amount shown in Table 1. Start the bearing and run for a few minutes. Stop the bearing and add the second half of the recommended amount. A temperature rise after lubrication, sometimes 30°F (17°C), is normal. Bearing should operate at temperatures less than 200°F (94°C) and should not exceed 250° (121°C) for intermittent operation. For lubrication guidelines, see Table 2.

Note: Table 2 is general recommendations. Experience and testing may be required for specific applications.

Note: Grease charges in Table 1 are based on the use of lithium complex thickened grease with a NLGI grade 2 consistency.

Browning Lube Table 1 Grease Charge for Relubrication

	_		
	Graff	Shar	ļ.
Service	revenued as & Standard Date	SO Henry Mediana Di S	George Pleage (Marr - Duncon)
L 10	1/2 - 5/8	×	0.02
2-012	3/4	х	0.03
2-015	13/16 1	x	0.03
2 13	1 1/16 1 1/4S	15/16 1	0.06
2 17	1 1/4 - 1 7/16	1 3/16	0.09
2 19	1 1/2 - 1 9/16	1 7/16	0 14
2 111	1 5/8 - 1 3/4	1 1/2	0 16
2 115	1 13/16 - 2S	1 11/16 - 1 3/4	0.18
2-23	2 - 2 3/16	1 15/16	0.25
2-27	2 1/4 - 2 7/16	2 3/16	0.35
2 211	2 1/2 - 2 11/16	2 7/16 - 2 1/2	0.46
2-215	2 13/16 - 2 15/16	2 11/16	0.48
2-33	х	2 15/16 - 3	0.65
2-38	x	3 7/16 - 3 1/2	1 05
2-43	X	3 15/16	1_77

Browning Lube Table 2 Relubrication Recommendations

Follow soul	Tourisman (FR)	Speed (Anthores, vers)	Foot (Street)		
Dirty	20 to 250	0 - 100%	Daily to 1 Week		
		0 25%	4 to 10 Months		
	20 to 125	26 - 50%	1 to 4 Months		
	20 to 125	51 - 75%	1 Week to 1 Month		
		76 - 100%	Daily to 1 Week		
Clean		0 -25%	2 to 6 Weeks		
	125 to 175	26 - 50%	1 Week to 1 Month		
	125 to 175	51 - 75%	5		
		76 - 100%	Daily to 1 Week		
	175 to 250	0100%	Daily to 1 Week		

Cylindrical OD Housing Fit Guidelines

Tables 14-15 list fit up guidelines for light load conveyor roll application per ABMA J6 fit. Testing and experience is needed to verify if this fit is sufficient for specific operation conditions. If tighter press fit is needed, contact Application Engineering to review if the standard bearing internal clearance is sufficient or a modified clearance is needed to prevent reduction or elimination of internal clearance.

For best reliability, bearings and housings should be selectively matched to reduce variation in fit up due to manufacturing tolerances of the bearing outside diameter and housing bore. Roll pockets should be machined parallel with the axis of the shaft and both sides should be on the same centerline to minimize potential for misalignment.

Table 14 - ER, VER and Cylindrical OD Insert Bearing Housing/Roll Bore

					Dimensions inch / mm									
D D				Nominal	Out	side		Stationary	/ Housing			Revolving	Housing	
Bole D	iameter	Sealmaster ER	Browning VER	Outside Diameter	Diam	neter*	Diam	eters	Theore	tical Fit	Diam	eters	Theore	tical Fit
inch	mm			Diameter	Max	Min	Max	Min	Tight	Loose	Max	Min	Tight	Loose
1/2	1	ER-8	VER-208											
9/16	1	ER-9	i											
5/8	1	ER-10	VER-210	1.8504	1.8504	1.8499	1.8509	1.8503	.0001	.0010	1.8504	1.8498	.0006	.0005
11/16	-	ER-11	-	47	47.002	46.9875	47.0129	46.9976	.0025	.0254	47.002	46.9848	.0152	.0127
3/4	1	ER-12	VER-212											
-	20	ER-204	1											
7/8	-	ER-14	VER-214											
15/16	-	ER-15	VER-215	2.0472	2.0472	2.0466	2.0476	2.0471	.0001	.0010	2.0471	2.0466	.0006	.0005
1	-	ER-16	VER-216	52	51.9989	51.9836	52.0090	51.9963	.0025	.0254	51.9963	51.9836	.0152	.0127
-	25	ER-205	-											
1 1/16	-	ER-17	VER-217											
1 1/8	-	ER-18	VER-218]										
1 3/16	-	ER-19	VER-219	2.4409 62	2.4409 61.9989	2.4403 61.9836	2.4413 62.0090	2.4408 61.9963	.0001 .0025	.0010 .0254	2.4408 61.9963	2.4403 61.9836	.0006 .0152	.0005 .0127
1 1/4	-	ER-20R	VER-220S]	01.5505									
-	30	ER-206	-											
1 1/4	-	ER-20	VER-220											
1 5/16	-	ER-21	-]										
1 3/8	-	ER-22	VER-222	2.8364 72	2.8346 71.9988	2.8340 71.9836	2.8350 72.0090	2.8345 71.9963	.0001 .0025	.0010 .0254	2.8345 71.9963	2.8340 71.98836	.0006 .0152	.0005 .0127
1 7/16	-	ER-23	VER-223] '-										
-	35	ER-207	-]										
1 1/2	-	ER-24	VER-224											
1 9/16	-	ER-25	VER-225	3.1496 80	3.1496 79.9998	3.1490 79.9846	3.1500 80.0100	3.1495 79.9973	.0001 .0025	.0010 .0254	3.1495 79.9973	3.1490 79.9846	.0006 .0152	.0005 .0127
-	40	ER-208	-		. 0.0000	10.0070		. 0.00.0	10020	.020 /		. 0.00 .0	70.102	
1 5/8	-	ER-26	VER-226											
1 11/16	-	ER-27	VER-227	3.3465	3.3465	3.3459	3.3470	3.3464	.0001	.0013	3.3464	3.3458	.0007	.0007
1 3/4	-	ER-28	VER-228	85	85.0011	84.9808	85.0138	84.9986	.0025	.0330	84.9986	84.9833	.0178	.0178
-	45	ER-209	-	1										

This chart displays the recommended housing dimensions for Sealmaster ER and Browning VER ball bearings at the various bore diameters and nominal Outer Diameter. For Sealmaster ER with Skwezloc Concentric locking use the similar size ER with setscrew locking as shown. For other Browning Cylindrical O.D. bearings use the similar nominal dimensioned bearing.

^{*} Outside diameter may be slightly oversized due to seal press fit, dimensions listed are as measured prior to seal assembly.

Table 14 - ER, VER and Cylindrical OD Insert Bearing Housing/Roll Bore cont.

				•	Dimensions inch / mm									
				Ni1	Out	side		Stationary	/ Housing			Revolving	Housing	
Bore Di	ameter	Sealmaster ER	Browning VER	Nominal Outside	Diam	eter*	Diam	eters	Theore	tical Fit	Diam	eters	Theore	tical Fit
inch	mm			Diameter	Max	Min	Max	Min	Tight	Loose	Max	Min	Tight	Loose
1 13/16	-	ER-29	-											
1 7/8	-	ER-30	-											
1 15/16	-	ER-31	VER-231	3.5433 90	3.5433 89.998	3.5425 89.9795	3.5438 90.0125	3.5432 89.9972	.0001 .0025	.0013	3.5432 89.9973	3.5426 89.9820	.0007 .0178	.0007 .0178
2	-	ER-32R	VER-232S		00.000	00.0100	00.0120	00.0012	.0020	.0000	00.0010	00.0020	.0110	.0110
-	50	ER-210	-											
2	-	ER-32	VER-232											
2 1/8	-	ER-34	-	3.937	3.9370	3.9362	3.9375	3.9369	.0001	.0013	3.9369	3.9363	.0007	.0007
2 3/16	-	ER-35	VER-235	100	99.9998	99.9795	100.0125	99.9973	.0025	.0330	99.9973	99.9820	.0178	.0178
-	55	ER-211	-											
2 1/4	-	ER-36	VER-236											
2 3/8	-	ER-38	VER-238	4.3307	4.3307	4.3299	4.3312	4.3306	.0001	.0013	4.3306	4.3300	.0007	.0007
2 7/16	-	ER-39	VER-239	110	109.9998	109.9795	110.0125	109.9972	.0025	.0330	109.9972	109.9820	.0178	.0178
-	60	ER-212	-											
2 1/2	-	ER-40	-											
2 11/16	-	ER-43	-	4.9213 125	4.9213 125.0010	4.9203 124.9756	4.9219 125.0163	4.9211 124.9959	.0002 .0051	.0016 .0406	4.9212 124.9985	4.9204 124.9782	.0009 .0229	.0009 .0229
-	70	ER-214	-											
2 7/8	-	ER-46	-											
2 15/16	-	ER-47	-	5.1181 130	5.1181 129.9997	5.1171 129.9743	5.1187 130.0150	5.1179 129.9947	.0002 .0051	.0016 .0406	5.1180 129.9972	5.1172 129.9769	.0009 .0229	.0009 .0229
-	75	ER-215	-											
3	ı	ER-48	-											
3 3/16	-	ER-51	-	5.5118 140	5.5118 139.9997	5.5108 139.9743	5.5124 140.0150	5.5116 139.9946	.0002 .0051	.0016 .0406	5.5117 139.9972	5.5109 139.9769	.0009 .0229	.0009 .0229
-	80	ER-216	-											
3 1/4	-	ER-52	-		E 0.255	E 02.15	E 0.2.2.1	E 0.252	0677	0212	F.63-	E 02.12	0677	0.533
3 3/8	-	ER-54	-	5.9055 150	5.9055 148.9997	5.9045 149.9743	5.9061 150.0149	5.9053 149.9946	.0002 .0051	.0016 .0406	5.9054 149.9972	5.9046 149.9768	.0009 .0229	.0009 .0229
3 7/16	-	ER-55	-											
3 15/16	-	ER-63	-	7.4803	7.4803	7.4791	7.4815	7.4801	.0002	.0024	7.4805	7.4791	.0012	.0014
4	-	ER-64	-	190	189.9996	189.9691	190.0301	189.9945	.0051	.0610	190.0047	189.9691	.0305	.0356

This chart displays the recommended housing dimensions for Sealmaster ER and Browning VER ball bearings at the various bore diameters and nominal Outer Diameter. For Sealmaster ER with Skwezloc Concentric locking use the similar size ER with setscrew locking as shown. For other Browning Cylindrical O.D. bearings use the similar nominal dimensioned bearing.

^{*} Outside diameter may be slightly oversized due to seal press fit, dimensions listed are as measured prior to seal assembly.

Table 15 - Sealmaster SC and MSC Housing Bore

s	tandard Du	ty	P	/ledium Dut	ty	Nominal	H	ousing Dim	ension Red	ension Recommendations inch/mm			
	. ,			. ,		Outside Diameter	Outside	Diameter	Stationar	y Housing	Revolving	Housing	
Bore D	iameter	Part No.	Bore D	iameter	Part No.	inch	Diam	eters	Diam	eters	Diameters		
inch	mm		inch	mm		mm	Max	Min	Max	Min	Max	Min	
1/2	-	SC-8	-	-	-								
9/16	-	SC-9	-	-	-	2 11/16	2.6885	2.6865	2.6905	2.6885	2.6875	2.6855	
5/8	-	SC-10	-	-	-	68.26	68.288	68.237	68.339	68.288	68.263	68.212	
11/16	-	SC-11	-	-	-								
3/4	-	SC-12	-	-	-	2 15/16	2.9385	2.9365	2.9405	2.9385	2.9375	2.9355	
-	20	SC-204	-	-	-	74.61	74.638	74.587	74.689	74.638	74.613	74.562	
13/16	-	SC-13	-	-	-								
7/8	-	SC-14	-	-	-								
15/16	-	SC-15	-	-	-	3 1/8 79.38	3.1260 79.400	3.1240 79.350	3.1280 79.451	3.1260 79.400	3.1250 79.375	3.1230 79.324	
1	-	SC-16	-	-	-	1 70.00	10.400	70.000	70.401	79.400	19.513	18.524	
-	25	SC-205	-	-	-	1							
1 1/16	-	SC-17	-	-	-								
1 1/8	-	SC-18	15/16	-	MSC-15	1							
1 3/16	-	SC-19	1	-	MSC-16	3 1/2 88.90	3.5010 88.925	3.4990 88.875	3.5030 88.976	3.5010 88.925	3.5000 88.900	3.4980 88.849	
1 1/4	-	SC-20R	-	25	MSC-305	00.50	00.323	00.075	00.570	00.020	00.500	00.043	
-	30	SC-206	-	-	-								
1 1/4	-	SC-20	-	-	-								
1 5/16	-	SC-21	1 3/16	-	MSC-19	1							
1 3/8	-	SC-22	1 1/4	-	MSC-20	3 7/8 98.43	3.8760 98.450		3.8740 3.8780 98.400 98.501	3.8760 98.450	3.8750 98.425	3.8730 98.374	
1 7/16	-	SC-23	-	30	MSC-306	30.40	50.400	00.400			00.420	00.014	
-	35	SC-207	-	-	-	1							
1 1/2	-	SC-24	1 3/8	-	MSC-22								
1 9/16	-	SC-25	1 7/16	-	MSC-23	4 3/16 106.36	4.1885 106.388	4.1865 106.337	4.1905 106.439	4.1885 106.388	4.1875 106.363	4.1855 106.312	
-	40	SC-208	-	35	MSC-307	100.50	100.300	100.557	100.400	100.500	100.303	100.512	
1 5/8	-	SC-26	-	-	-								
1 11/16	-	SC-27	1 1/2		MSC-24	4 3/8	4.3760	4.3740	4.3780	4.3760	4.3750	4.3730	
1 3/4	-	SC-28	-	40	MSC-308	111.13	111.150	111.100	111.201	111.150	111.125	111.074	
-	45	SC-209	-	-	-								
1 13/16	-	SC-29	-	-	-								
1 7/8	-	SC-30	1 11/16	-	MSC-27	1							
1 15/16	-	SC-31	1 3/4	-	MSC-28	4 9/16 115.89	4.5635 115.913	4.5615 115.862	4.5655 115.964	4.5635 115.913	4.5625 115.888	4.5605 115.837	
2	-	SC-32R	-	45	MSC-309	1 113.03	110.913	110.002	110.304	110.913	110.000	110.007	
-	50	SC-210	-	-	-	1							

This chart displays the recommended housing dimensions for Sealmaster SC and MSC ball bearings at the various bore diameters and nominal Outer Diameter. For Sealmaster SC and MSC with Skwezloc Concentric locking use the similar size SC or MSC with setscrew locking as shown.

For additional assistance contact Application Engineering at (800) 626-2093.

Table 15 - Sealmaster SC and MSC Housing Bore cont.

s	tandard Du	ty	N	Medium Du	ty	Nominal	Н	ousing Dim	ension Red	commendat	ions inch/n	ım
Bore Di			Bara Di	iameter		Outside Diameter	Outside	Diameter	Stationar	y Housing	Revolving	Housing
Bore Di	ameter	Part No.	Bore Di	iameter	Part No.	inch	Diam	eters	Diam	eters	Diam	eters
inch	mm		inch	mm		mm	Max	Min	Max	Min	Max	Min
2	-	SC-32	1 15/16	-	MSC-31							
2 1/8	-	SC-34	2	-	MSC-32							
2 3/16	-	SC-35	-	50	MSC-310	4 15/16 125.41	4.9385 125.438	4.9365 125.387	4.9405 125.489	4.9385 125.438	4.9375 125.413	4.9355 125.362
-	55	SC-211	-	-	-	120	1201100	120,001	1201100	1201100	1201110	1201002
-	-	-	-	-	-							
2 1/4	-	SC-36	2 3/16	-	MSC-35							
2 3/8	-	SC-38	2 1/4	-	MSC-36	5 7/8	5.8760	5.8740	5.8780	5.8760	5.8750	5.8730
2 7/16	-	SC-39	-	55	MSC-311	149.23	149.250	149.200	149.301	149.250	149.225	149.174
-	60	SC-212	-	-	-							
2 1/2	-	SC-40	2 7/16	-	MSC-39							
2 11/16	-	SC-43	2 1/2	-	MSC-40	6 1/4	6.2510 158.775	6.2490 158.725	6.2530 158.826	6.2510 158.775	6.2500 158.750	6.2480 158.699
-	70	SC-214	-	65	MSC-313				100.020			
2 7/8	-	SC-46	2 11/16	-	MSC-43							
2 15/16	-	SC-47	2 3/4	-	MSC-44	6 5/8 168.28	6.6260 168.300	6.6240 168.250	6.6280 168.351	6.6260 168.300	6.6250 168.275	6.6230 168.224
-	75	SC-215	-	70	MSC-314	100.20	100.000	100.200	100.001	100.000	100.2.0	
-	-	-	2 15/16	-	MSC-47	_						
-	-	-	3	-	MSC-48	7 158.75	7.0010 177.825	6.9990 177.775	7.0030 177.876	7.0010 177.825	7.0000 177.800	6.9980 177.749
-	-	-	-	75	MSC-315							
-	-	-	3 3/16	-	MSC-51							
-	-	-	3 1/4	-	MSC-52	7 7/16	7.4385	7.4365	7.4405	7.4385	7.4375	7.4355
-	-	-	3 3/8	-	MSC-54	168.28	188.938	188.887	188.989	188.938	188.913	188.862
-	-	-	_	80	MSC-316							
-	-	-	3 7/16	-	MSC-55	8 3/16	8.1885	8.1865	8.1905	8.1885	8.1875	8.1855
-	-	-	3 1/2	-	MSC-56	177.80	207.988	207.937	208.039	207.988	207.963	207.912
-	-	-	3 15/16	-	MSC-63		. =			. =		
-	-	-	4	-	MSC-64	9 1/2 188.91	9.5010 241.325	9.4990 241.275	9.5030 241.376	9.5010 241.325	9.5000 241.300	9.4980 241.249
-	-	-	-	100	MSC-320							

This chart displays the recommended housing dimensions for Sealmaster SC and MSC ball bearings at the various bore diameters and nominal Outer Diameter. For Sealmaster SC and MSC with Skwezloc Concentric locking use the similar size SC or MSC with setscrew locking as shown.

For additional assistance contact Application Engineering at (800) 626-2093.

Vibration Analysis

BALL BEARINGS VIBRATION ANALYSIS

The following equations are used to calculate the fundamental frequencies for Sealmaster and Browning Ball Bearings.

- 1. If the insert number is known, proceed to step 2. For housed units, identify the bearing insert number by looking up the unit in the dimension tables, then proceed to step 2.
- 2. Find the Sealmaster or Browning insert number in Table 16 below and identify the series.
- 3. Select the vibration geometry information (O, I, B, F) from Table 16.
- 4. Use this information to calculate the fundamental bearing frequencies:
 - Outer Ball Pass Frequency (Hz) = O x RPM
 - Inner Ball Pass Frequency (Hz) = I x RPM
 - Ball Spin Frequency (Hz) = B x RPM
 - Fundamental Train Frequency (Hz) = F x RPM

Symbol Description Units

RPM = Revolutions per Minute RPM

O = Outer Race Frequency Factor

I = Inner Race Frequency Factor

B = Ball Spin Frequency Factor

F = Fundamental Train Frequency Factor

Table 16 - Vibration Geometry Information

Series	Standard Duty Bor	e Diameter	Medium Duty Bo	re Diameter	Pitch Diameter (inch)	Number Of Balls	Size of Balls (inch)	Factor For Outer Race	Factor For Inner Race	Factor For Ball Spin	Factor for F.T.F.
	inch	mm	inch	mm	dM	N	D	0	I	В	F
15(15)	11.2.556	Bab.		23	E-26	((0))	98	110,0680	0.3512	0,056	0,9095
2-012	1/2 to 3/4	20mm	- 1	11	1.345	9	9/32	0.0593	0.0907	0.0381	0.0066
1,210	(E08)8.7.1	2000			DIME	53	4929	0.0037	49.79 000	connect.	3639230
2-13	1 1/16 to 1 1/4R or S	30mm	15/16 to 1	25mm	1.812	9	3/8	0.0595	0.0905	0.0385	0.0066
200	1100 01208	75007	275	Hoom	STA	i ku	100	r Whyr	0.340	12 COM	(110,28)
2-19	1 1/2 to 1 9/16	40mm	1 7/16	35mm	2.362	9	1/2	0.0591	0.0909	0.0376	0.0066
2-111	1981, 1994	-4200	10.62	Alteria	22115	4.0	1.2	0.0874	0.0004	2,2317	N.OCEP
2-115	1 13/16 to 2R	50mm	1 11/16 to 1 3/4	45mm	2.763	10	1/2	0.0683	0.0984	0.0445	0.0068
12	I to 0.3-16	550°F	1 1536	05211	3,671	63	51.7	0.000	1607	5,0407	0.0556
2-27	2 1/4 to 2 7/16	60mm	2 3/16	55mm	3.356	10	5/8	0.0678	0.0989	0.0432	0.0068
22%	1/295 11/38	diction	3/3/16 th 19 1636	(Barrer)	Spirit	1000	16-16	1106611	305944 5	o artest	101024
2-215	2 7/8 to 2 15/16	75mm	2 11/16	70mm	4.045	11	11/16	0.0761	0.1072	0.0476	0.0069
26.00	= 4.7 ≥ 18	-daire i	2:hc18 < 1	HERE	4.05	1200	X2.	1/1/rin	3400	1/20170	пижер".
2-37	3 1/4 to 3 7/16		3 3/16	80mm	4.627	11	25/32	0.0762	0.1071	0.0479	0.0069
2-35	2.942	926 0	58729	-	4.022	100	5/8	0.0092	130,00	000454	0.0050
2-43	3 15/16 to 4	-	3 15/16 to 4	100mm	5.808	10	1 1/16	0.0681	0.0986	0.0440	0.0068
5.47	35		4.570 2641536		1.037	10	CONTR	0.0005	2000	0.000	doorn

For specific bearing insert, refer to load rating page G-227 to G-229 to determine series

^{*}L-10 series only applies to Browning units for the Bore Diameters shown. For VER-208 and 210 units use the 2-012 series values

unted Ba	ll Bearing E	ingineerii 	ng see pag	je G-220.	

Mounted Spherical Roller Bearings

Modular bearing assembly consisting of sealed and lubricated inch spherical bearing with collar (setscrew) or concentric (adapter mount) locking system contained within a variety of housings types, mounting styles, and housing materials. Mounted spherical roller bearings provide an antifriction solution when supporting rotating shafts with combination radial and thrust loads.

Housing Styles

Pillow Block, Flanges, Take Up Assemblies

Locking Styles

Collar (Setscrew) Or Concentric (Adapter Mount)

Bore Size Range

1 1/8" To 8"

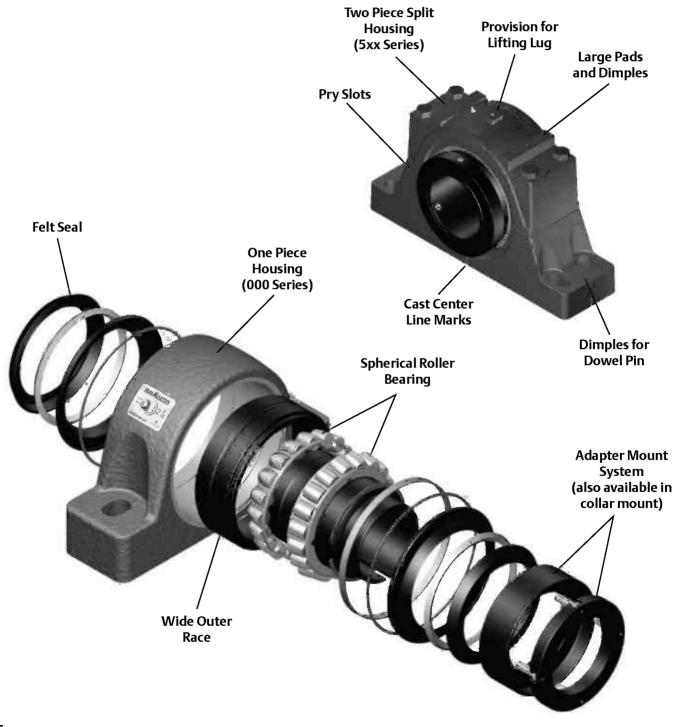
Housing Materials

Cast & Ductile Iron

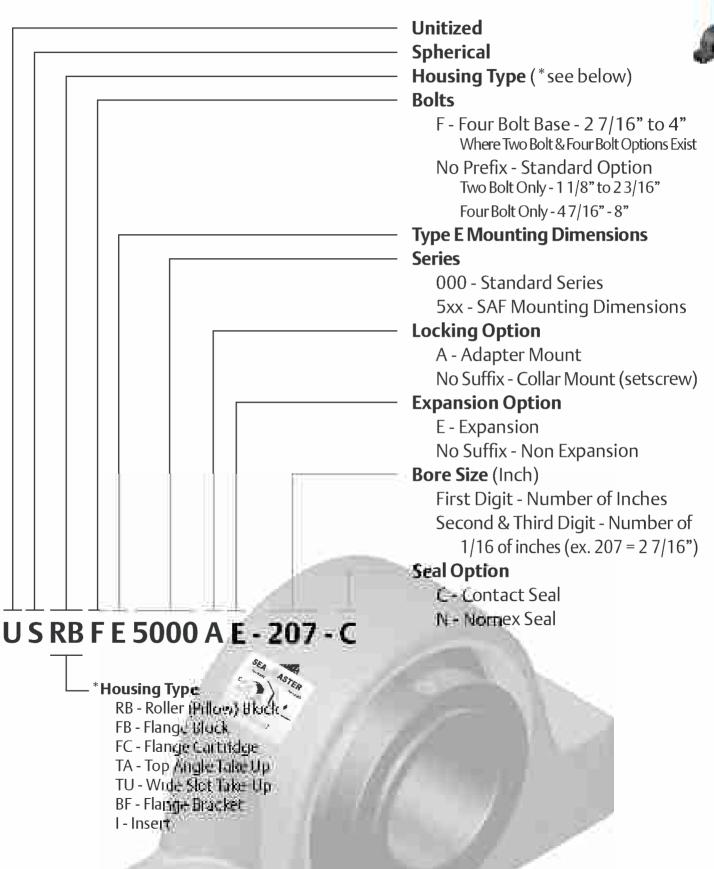
Mtd. Spherical Bearings

Mounted Roller Bearing Selection Guide

	3	Series	Housing style
		USRB5000	Two Bolt Pillow Block
		USRBF5000	Four Bolt Pillow Block
		USRB5000	Four Bolt Pillow Block (No F prefix for 4 7/16" - 4 15/16")
		USRB5500	Two Bolt Pillow Block (SAF mounting dimensions)
		USRBF5500	Four Bolt Pillow Block (SAF mounting dimensions) (F prefix for 2 7/16" - 3 7/16")
	0	USRB5500	Four Bolt Pillow Block (SAF mounting dimensions) (F prefix for 3 15/16" - 8")
		USFB5000	Four Bolt Flange
Sealmaster USRB		USFC5000	Piloted Flange Cartridge
Gealinasier GOND	6	USBF5000	Flange Bracket
		USRBE5000	Two Bolt Pillow Block (Type E mounting dimensions)
		USFBE5000	Flange Block (Type E mounting dimensions)
		USFCE5000	Piloted Flange Cartridge (Type E mounting dimensions)
		USTU5000	Wide Slot Take Up
	10	USTA5000	Top Angle Take Up
		USF3B5000	Three Bolt Flange
		USI5000	Insert



Lock	Туре			1	Size Range	
Collar Mount	Adapter Mount	Housing Material	Seal	Standard Seal Options	Inch	Page
USRB5000	USRB5000A	Cast Iron			1 1/8"-4"	H-9 to H-10
USRBF5000	USRBF5000A	Cast Iron			2 7/16" - 4"	H-11 to H-12
USRB5000	USRB5000A	Cast Iron			4 7/16" - 4 15/16"	H-11 to H-12
USRB5500	USRB5500A	Cast Iron			1 7/16" - 3 7/16	H-13 to H-14
USRBF5500		Cast Iron			2 7/16" - 3 7/16"	H-13 to H-14
USRB5500		Cast Iron			3 15/16" - 8"	H-13 to H-14
USFB5000	USFB5000A	Cast Iron			1 3/8" - 4"	H-15 to H-16
USFC5000	USFC5000A	Cast Iron	Felt	Contact	1 3/8" - 4"	H-17 to H-18
USBF5000	USBF5000A	Ductile Iron	reit	Contact	1 7/16" - 2 7/16"	H-19 to H-20
USRBE5000	USRBE5000A	Ductile Iron			1 15/16" - 4"	H-21 to H-22
USFBE5000	USFBE5000A	Ductile Iron			1 15/16" - 4"	H-23 to H-24
USFCE5000	USFCE5000A	Ductile Iron			1 15/16" - 4"	H-25 to H-26
USTU5000	USTU5000A	Cast Iron			1 15/16" - 4"	H-27 to H-28
USTA5000	STA5000 USTA5000A	Cast Iron			1 15/16" - 3 15/16"	H-29
USF3B5000	-	Cast Iron			1 1/8" - 1 1/2"	H-30
USI5000	USI5000A	N/A			1 1/8" - 8"	H-31 to H-32


Sealmaster USRB Performance Mounted Spherical Roller Bearing

Sealmaster USRB performance mounted spherical roller bearings feature black oxide treated bearing steel races with optimized bearing geometry for load capacity, misalignment and speed capabilities. The USRB is available in both setscrew locking and adapter mounting system. The felt seal with flinger provides a good balance between contaminant entry, grease retention and friction. Depending on application requirements, these bearings are available in a wide variety of bore sizes, housing styles, and sealing options as illustrated on the pages to follow.

Spherical Roller Bearing Nomenclature

SEALMASTER_® Unitized Spherical Roller Bearings (USRB)

Features and Benefits

Double Row Spherical Roller Bearing

New geometries developed and manufactured by Sealmaster result in an innovative double-row spherical roller bearing with optimal load capacity, misalignment and speed capability.

Multiple Housing Configurations

One Piece Cast Iron and Ductile Iron Housings

Durable one piece cast iron (USRB5000 series) and ductile iron (USRBE5000 series) housings provide load support. Two and four bolt pillow block housings have elongated bolt holes for interchangeability with competitive units.

Split Housings

Durable split housings (USRB5500 series) designed to the industry standard SAF footprint and replaceable cartridge inserts from $1\ 3/8$ " - 8" are shaft ready for easy installation.

Multiple Sealing Options

Felt Seal

The Sealmaster felt seal with flinger, mounted between races, can accommodate $+/-2^{\circ}$ of misalignment. The outer member rotates with the inner race to help direct contamination away from the seal. Due to the unique spherical geometric design of the seal contact areas, sealing effectiveness is maintained throughout the entire specified range of misalignment. This design provides a tight labyrinth seal, which acts as a filter to help exclude foreign material and has low friction.

Contact Seal

The Sealmaster double-lip contact seal, mounted between races, also can accommodate +/-2° of misalignment. The outer member rotates with the inner race, to help direct contamination away from the seal. Due to the unique spherical geometric design of the seal contact areas, sealing effectiveness is maintained throughout the entire specified range of misalignment. The rotating double-lip seal design allows for exceptional limiting speed.

Features and Benefits

Multiple Locking Methods

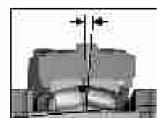
Collar Mount System

Sealmaster performance mounted roller bearings feature locking collars and setscrews at 120°, providing a balanced three-point contact.

Adapter Mount System

The Sealmaster performance mounted roller bearings grip the shaft with an advanced adapter mount system, for fast installation and removal. The advanced integral locking system incorporates axial cap screws that allow mount and dismount of the bearing from one side. The result: this highly engineered locking system requires less installation torque. Sealmaster adapter mount spherical roller bearings are also shaft ready and require only a hex key and torque wrench to install; no special tools or feeler gauges are required.

Learn more with your phone...Snap the QR code with your mobile phone, and watch a video demonstrating the ease of installation and removal of the Sealmaster Unitized Spherical Bearing. New-model phones come with QR readers. If yours doesn't, go to the app store and search QR Reader.


Replaceable Cartridge Insert

The Sealmaster performance mounted roller bearings have a replaceable cartridge insert that consists of a double-row spherical roller bearing with race-mounted seals. These integrally sealed, one-piece cartridge inserts can also be used for mounting in cylindrical-bore housings for an even wider range of applications.

Wide Outer Race

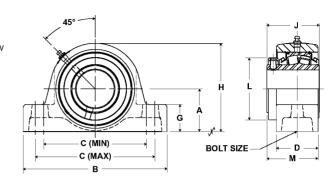
The wide outer race, coupled with innovative rolling-element geometries, provides increased load capacity. The wide outer race also allows for race mounted seals and creates a large internal grease chamber, for more grease capacity.

Misalignment

The arrangement of rolling elements and races in Sealmaster Mounted Spherical Roller Bearings can accommodate +/-2 degrees of misalignment – up to twice an SAF – while maintaining catalog load ratings and sealing effectiveness. The spherical bearing design can accommodate both static and dynamic misalignment which may exist due to structure mounting irregularities, shaft deflection, or other application conditions.

Rolling Elements: Spherical Roller

> Housing: Cast Iron Two Bolt Pillow


Self Alignment: +/- 2 Degrees

> Lock: Setscrew

Seal:

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USRB5000 Series Two-Bolt Base Pillow Blocks - Collar Mount

Bore		in the second					Dimen	sions inc	h/mm					- 1
inch	Part No.	į,	*		Min_	Max.	D	G	H	7	₩.	M	Bolt Size	
1 1/8 1 3/16 1 1/4	USRB5000-102 USRB5000-103 USRB5000-104	20368 90597	1 3/4 44.5	6 5/16 160.3	4 1/2 114.3	5 127.0	2 3/16 55.6	1 1/16 27.0	3 3/4 95.3	2 3/4 69.9	2 49/64 70.2	2 3/4 69.9	3/8	6.9 3.14
1 7/16 1 1/2	USRB5000-107 USRB5000-108	20368 90597	1 7/8 47.6	6 7/8 174.6	4 11/16 119.1	5 5/16 134.9	2 3/16 55.6	1 3/16 30.2	3 7/8 98.4	2 3/4 69.9	2 49/64 70.2	2 3/4 69.9	1/2	6.6 3.00
1 11/16 1 3/4	USRB5000-111 USRB5000-112	22689 100921	2 1/8 54.0	7 3/8 187.3	5 3/16 131.8	5 13/16 147.6	2 3/16 55.6	1 5/16 33.3	4 1/4 108.0	2 7/8 73.0	2 3/4 69.9	2 13/16 71.4	1/2	7.8 3.55
1 15/16 2	USRB5000-115 USRB5000-200	23520 104617	2 1/4 57.2	8 3/8 212.7	5 15/16 150.8	6 9/16 166.7	2 3/16 55.6	1 3/8 34.9	4 9/16 115.9	2 7/8 73.0	3 76.2	2 25/32 70.6	5/8	7.7 5.23
2 3/16	USRB5000-203	28087 124931	2 1/2 63.5	8 7/8 225.4	6 9/16 166.7	7 1/16 179.4	2 7/16 61.9	1 5/8 41.3	5 127.0	3 1/8 79.4	3 1/4 82.6	3 1/8 79.4	5/8	11.5 5.23
2 7/16 2 1/2	USRB5000-207 USRB5000-208	44691 198786	2 3/4 69.9	9 1/4 235.0	6 13/16 173.0	7 7/16 188.9	2 11/16 68.3	1 3/4 44.5	5 11/16 144.5	3 3/8 85.7	4 101.6	3 9/32 83.3	5/8	16.0 7.27
2 11/16 2 3/4 2 15/16 3	USRB5000-211 USRB5000-212 USRB5000-215 USRB5000-300	47447 211044	3 1/4 82.6	10 7/16 265.1	7 13/16 198.4	8 7/16 214.3	2 13/16 71.4	2 1/4 57.2	6 7/16 163.5	3 7/8 98.4	4 17/32 115.1	3 3/4 95.3	3/4	23.7 10.77
3 3/16 3 7/16 3 1/2	USRB5000-303 USRB5000-307 USRB5000-308	72640 323103	3 3/4 95.3	13 330.2	9 1/4 235.0	10 3/4 273.1	3 3/16 81.0	2 1/4 57.2	7 1/2 190.5	4 15/32 113.5	5 5/16 134.9	4 1/4 108.0	7/8	37.1 81.62
3 11/16 3 15/16 4	USRB5000-311 USRB5000-315 USRB5000-400	96050 427230	4 1/8 104.8	14 1/4 362.0	10 254.0	11 3/4 298.5	3 9/16 90.5	2 1/2 63.5	8 7/16 214.3	4 15/16 125.4	6 152.4	4 23/32 119.9	1	49.9 22.68

^{*}For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

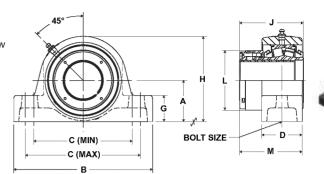
 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Performance Mounted Spherical Roller Bearings **SEAL**

Rolling Elements: Spherical Roller

Housing: Cast Iron Two Bolt Pillow

Block


Self Alignment: +/- 2 Degrees

Lock: Adapter

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

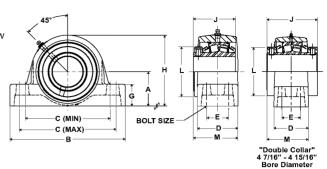
USRB5000A Series Two-Bolt Base Pillow Blocks - Adapter Mount

Bore Diameter		, many					Dimen	sions inc	h / mm					
inchi	Part No.	ij.	A	8	Min.	Max.	D	6	H	1	Ţ	M *	Bolt Size	-235
1 1/8 1 3/16 1 1/4	USRB5000A-102 USRB5000A-103 USRB5000A-104	20368 90597	1 3/4 44.5	6 5/16 160.3	4 1/2 114.3	5 127.0	2 3/16 55.6	1 1/16 27.0	3 3/4 95.3	3 11/32 84.9	2 47/64 69.5	3 11/32 84.9	3/8	6.9 3.12
1 7/16 1 1/2	USRB5000A-107 USRB5000A-108	20368 90597	1 7/8 47.6	6 7/8 174.6	4 11/16 119.1	5 5/16 134.9	2 3/16 55.6	1 3/16 30.2	3 7/8 98.4	3 11/32 84.9	2 47/64 69.5	3 11/32 84.9	1/2	6.9 3.12
1 11/16 1 3/4	USRB5000A-111 USRB5000A-112	22689 100921	2 1/8 54.0	7 3/8 187.3	5 3/16 131.8	5 13/16 147.6	2 3/16 55.6	1 5/16 33.3	4 1/4 108.0	3 29/64 87.7	2 31/32 75.4	3 3/8 85.7	1/2	8.3 3.77
1 15/16 2	USRB5000A-115 USRB5000A-200	23520 104617	2 1/4 57.2	8 3/8 212.7	5 15/16 150.8	6 9/16 166.7	2 3/16 55.6	1 3/8 34.9	4 9/16 115.9	3 1/2 88.9	3 11/64 80.6	3 13/32 86.5	5/8	10.1 4.58
2 3/16	USRB5000A-203	28087 124931	2 1/2 63.5	8 7/8 225.4	6 9/16 166.7	7 1/16 179.4	2 7/16 61.9	1 5/8 41.3	5 127.0	3 7/8 98.4	3 7/16 87.3	3 27/32 97.6	5/8	12.2 5.53
2 7/16 2 1/2	USRB5000A-207 USRB5000A-208	44691 198786	2 3/4 69.9	9 1/4 235.0	6 13/16 173.0	7 7/16 188.9	2 11/16 68.3	1 3/4 44.5	5 11/16 144.5	4 5/16 109.5	3 63/64 101.2	4 7/32 107.2	5/8	17.3 7.86
2 11/16 2 3/4 2 15/16 3	USRB5000A-211 USRB5000A-212 USRB5000A-215 USRB5000A-300	47447 211044	3 1/4 82.6	10 7/16 265.1	7 13/16 198.4	8 7/16 214.3	2 13/16 71.4	2 1/4 57.2	6 7/16 163.5	4 31/64 113.9	4 25/64 111.5	4 3/8 111.1	3/4	23.8 10.82
3 3/16 3 7/16 3 1/2	USRB5000A-303 USRB5000A-307 USRB5000A-308	72640 323103	3 3/4 95.3	13 330.2	9 1/4 235.0	10 3/4 273.1	3 3/16 81.0	2 1/4 57.2	7 1/2 190.5	5 35/64 140.9	5 15/32 138.9	5 21/64 135.3	7/8	39.1 17.76
3 11/16 3 15/16 4	USRB5000A-311 USRB5000A-315 USRB5000A-400	96050 427230	4 1/8 104.8	14 1/4 362.0	10 254.0	11 3/4 298.5	3 9/16 90.5	2 1/2 63.5	8 7/16 214.3	5 15/16 150.8	5 13/16 147.6	5 23/32 145.3	1	50.6 23.01

*For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69. One expansion unit is to be used in conjunction with one non-expansion unit for applications using an adapter lock unit Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

Rolling Elements: Spherical Roller

> Housing: Cast Iron Four Bolt Pillow


Self Alignment: +/- 2 Degrees

> Lock: Setscrew

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USRBF5000 Series Four-Bolt Base Pillow Blocks - Collar Mount

Bore		Basic					Di	mension	s inch / n	nm					
Diameter	Part No.	Dynamic Rating	1A	1967	Ĭ		1965	IE.	1000	DIVIN		100	M+	Bolt	E 411
inch		lb/N		В	Min.	Max.			G	H		10.0	ME	Size	1.4
2 7/16	USRBF5000-207	44691	2 3/4	9 1/4	6 7/8	7 5/8	3 1/4	1 3/4	1 3/4	5 11/16	3 3/8	4	3 11/16	1/0	17.6
2 1/2	USRBF5000-208	198786	69.9	235.0	174.6	193.7	82.6	44.5	44.5	144.5	85.7	101.6	93.7	1/2	8.00
2 11/16	USRBF5000-211														
2 3/4	USRBF5000-212	47447	3 1/4	10 7/16	7 7/8	8 3/8	3 3/4	1 7/8	2 1/4	6 7/16	3 7/8	4 17/32	4 19/64	5.0	26.4
2 15/16	USRBF5000-215	211044	82.6	265.1	200.0	212.7	95.3	47.6	57.2	163.5	98.4	115.1	109.1	5/8	11.98
3	USRBF5000-300														
3 3/16	USRBF5000-303	72640 323103													
3 7/16	USRBF5000-307		3 3/4 95.3	13 330.2	9 1/4 235.0	10 3/4 273.1	3 7/8 98.4	2 50.8	2 1/4 57.2	7 1/2 190.5	4 15/32	5 5/16	4 19/32 116.7	3/4	39.0
3 1/2	USRBF5000-308	323103	95.3	330.2	235.0	2/3.1	98.4	50.8	57.2	190.5	113.5	134.9	116.7		17.73
3 11/16	USRBF5000-311														
3 15/16	USRBF5000-315	96050	4 1/4	15 1/4	11	13	4 1/2	2 1/4	2 5/8	8 9/16	4 15/16	6	5 7/32	3/4	57.5
4	USRBF5000-400	427230	108.0	387.4	279.4	330.2	114.3	57.2	66.7	217.5	125.4	152.4	132.6		26.14
4 7/16	USRB5000-407	111537	4 3/4	16 1/16	13	14	4 5/8	2 1/2	2 3/4	9 3/8	6 3/4	6 1/2	5 1/2	0/4	74.1
4 1/2	USRB5000-408	496117	120.7	408.0	330.2	355.6	117.5	63.5	69.9	238.1	171.5	165.1	139.7	3/4	33.68
1.45/40	1100005000 445	158816	5 1/2	18 1/2	15	16	5 1/8	2 3/4	3	10 7/8	7 27/64	7 1/2	6 3/32	2/4	112.6
4 15/16	USRB5000-415	706414	139.7	469.9	381.0	406.4	130.2	69.9	76.2	276.2	188.5	190.5	154.8	3/4	51.18

^{*}For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69.

Note: Bore diameters up to 4" available in single lock collar. Bore diameters 4 7/16" and up available in double lock collar.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

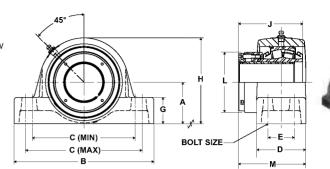
 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Performance Mounted Spherical Roller Bearings **SEAL**

Rolling Elements: Spherical Roller

Housing: Cast Iron Four Bolt Pillow

Block


Self Alignment: +/- 2 Degrees

Lock: Adapter

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USRBF5000A Series Four-Bolt Base Pillow Blocks - Adapter Mount

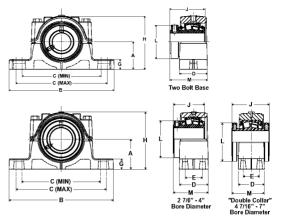
Bore		Basic					Di	mension	s înch / m	ım					
Diameter	Part No.	Dynamic Rating Ib/N	A)	В	Min	Max.	D	*	G	H	20	L	M	Bolt Size	mrke
2 7/16	USRBF5000A-207	44691	2 3/4	9 1/4	6 7/8	7 5/8	3 1/4	1 3/4	1 3/4	5 11/16	4 5/16	3 63/64	4 39/64	4/0	18.5
2 1/2	USRBF5000A-208	198786	69.9	235.0	174.6	193.7	82.6	44.5	44.5	144.5	109.5	101.2	117.1	1/2	8.42
2 11/16	USRBF5000A-211														
2 3/4	USRBF5000A-212	47447	3 1/4	10 7/16	7 7/8	8 3/8	3 3/4	1 7/8	2 1/4	6 7/16	4 31/64	4 25/64	4 29/32	F 10	26.4
2 15/16	USRBF5000A-215	211044	82.6	265.1	200.0	212.7	95.3	47.6	57.2	163.5	113.9	111.5	124.6	5/8	12.02
3	USRBF5000A-300														
3 3/16	USRBF5000A-303														
3 7/16	USRBF5000A-307	72640	3 3/4	13	9 1/4	10 3/4	3 7/8	2	2 1/4	7 1/2	5 35/64	5 15/32	5 11/16	3/4	41.0
3 1/2	USRBF5000A-308	323103	95.3	330.2	235.0	273.1	98.4	50.8	57.2	190.5	140.9	138.9	144.5		18.63
3 11/16	USRBF5000A-311														
3 15/16	USRBF5000A-315	96050	4 1/4	15 1/4	11	13	4 1/2	2 1/4	2 5/8	8 9/16	5 15/16	5 13/16	6 13/64	3/4	58.2
4	USRBF5000A-400	427230	108.0	387.4	279.4	330.2	114.3	57.2	66.7	217.5	150.8	147.6	157.6		26.47
4 7/16	USRB5000A-407	111537	4 3/4	16 1/16	13	14	4 5/8	2 1/2	2 3/4	9 3/8	6 27/64	6 11/32	6 31/64	0/4	68.2
4 1/2	USRB5000A-408	496117	120.7	408.0	330.2	355.6	117.5	63.5	69.9	238.1	163.1	161.1	164.7	3/4	31.01
4 15/16	USRB5000A-415	158816	5 1/2	18 1/2	15	16	5 1/8	2 3/4	3	10 7/8	7 1/8	7 13/64	7 3/32	7/8	107.8
5	USRB5000A-500	706414	139.7	469.9	381.0	406.4	130.2	69.9	76.2	276.2	181.0	183.0	180.2	110	48.99

*For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69. One expansion unit is to be used in conjunction with one non-expansion unit for applications using an adapter lock unit Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

Rolling Elements: Spherical Roller

> Housing: Cast Iron Two and Four Bolt

> > Pillow Block


Self Alignment: +/- 2 Degrees

> Lock: Setscrew

Seal:

Optional Seal: Double Lip Contact

-20° to 220° F Temperature:

USRB5500 Series Two and Four-Bolt Base Pillow Blocks - Collar Mount, SAF Mounting Dimensions

Bore	Par	t No.						Dir	nensio	ons in	ch / mm							
Diameter				(4)	8	C	i i	1(6)	-	6	H	3		M *				
linch	2 Bolt	4 Bolt	Bades.	(55)		Min.	Max	Ŋ	820	,	100	10	0.00	SW.	2 Bolt	4 Bolt	2 Bolt	Bolt .
1 7/16	USRB5509-107		20368	2 1/4	8 1/4	6 1/4	7	2 3/16		13/16	4 3/8	2 3/4	2 49/64	2 61/6/			10.2	
1 1/2	USRB5509-108	-	90597	57.2	209.6	158.8	177.8	55.6	-	20.6	111.1	69.9	70.2	75.0	1/2	-	4.64	-
1 1/2	03KB3309-100		90391	31.2	209.0	150.0	177.0	33.0		20.0	111.1	09.9	10.2	73.0			4.04	
1 15/16	USRB5511-115		23520	2 3/4	9 5/8	7 3/8	8 1/4	2 3/4		15/16	5 1/32	2 7/8	3	3 19/64	5/8		13.8	
2	USRB5511-200	-	104617	69.9	244.5	187.3	209.6	69.9	-	23.8	127.8	73.0	76.2	83.7	0/8	-	6.27	-
2 7/16	USRB5515-207	USRBF5515-207	44691	3 1/4	11 1/4	8 5/8	9 5/8	3 1/8	1 7/8	1 1/8	6 1/8	3 3/8	4	3 25/32	F (0	4/0	25.2	25.0
2 1/2	USRB5515-208	USRBF5515-208	198786	82.6	285.8	219.1	244.5	79.4	47.6	28.6	155.6	85.7	101.6	96.0	5/8	1/2	11.46	11.34
2 15/16	USRB5517-215	USRBF5517-215	47447	3 3/4	13	9 7/8	11	3 1/2	2 1/8	1 1/4	7 1/8	3 7/8	4 17/32	4 13/32	0/4	F (0	38.2	37.8
3	USRB5517-300	USRBF5517-300	211044	95.3	330.2	250.8	279.4	88.9	54.0	31.8	181.0	98.4	115.1	111.9	3/4	5/8	17.38	17.20
3 7/16	USRB5520-307	USRBF5520-307	72640	4 1/2	15 1/4	11 5/8	13 1/8	4 3/8	2 3/8	1 3/4	9	4 15/32	5 5/16	5 9/64	7.0	0/4	71.4	70.5
3 1/2	USRB5520-308	USRBF5520-308	323103	114.3	387.4	295.3	333.4	111.1	60.3	44.5	228.6	113.5	134.9	130.6	7/8	3/4	32.47	32.02
3 15/16		USRB5522-315	96050	4 15/16	16 1/2	12 19/32	14 1/2	4 3/4	2 3/4	2	9 7/8	4 15/16	6	5 41/64				87.7
4	-	USRB5522-400	427230	125.4	419.1	319.9	368.3	120.7	69.9	50.8	250.8	125.4	152.4	143.3	-	3/4	-	39.86
4 7/16		USRB5526-407	111537	6	18 3/8	14 1/2	16	5 1/8	3 1/4	2 3/8	11 9/16	6 3/4	6 1/2	6 1/8				133.2
4 1/2	-	USRB5526-408	496117	152.4	466.7	368.3	406.4	130.2	82.6	60.3	293.7	171.5	165.1	155.6	-	7/8	-	60.57
			158816	6	19 11/16	15 5/8	17 3/8	5 7/8	3 3/8	2 3/8	12	7 27/64	7 1/2	6 27/32				164.1
4 15/16	-	USRB5528-415	706414	152.4	500.1	396.9	441.3	149.2	85.7	60.3	304.8	188.5	190.5	173.8	-	1	-	74.61
			196682	6 11/16	22	17 3/8	19 1/4	6 1/4	3 3/4	2 5/8	13 1/2	9 1/32	8 1/2	7 27/32				229.0
5 7/16	-	USRB5532-507	874842	169.9	558.8	441.3	489.0	158.8	95.3	66.7	342.9	229.4	215.9	199.2	-	1	-	104.09
			261346	7 1/16	24 3/4	19 3/8	21 5/8	6 3/4	4 1/4	2 3/4	14 15/16	9 25/32	10	8 15/32				313.0
5 15/16	-	USRB5534-515	1162467	179.4	628.7	492.1	549.3	171.5	108.0	69.9	379.4	248.4	254.0	215.1	-	1	-	142.27
6 7/16		USRB5536-607	334229	7 1/2	26 3/4	20 7/8	23 5/8	7 1/8	4 5/8	3	15 15/16	10 1/2	11	9 1/64				391.0
6 1/2	-	USRB5536-608	1486651	190.5	679.5	530.2	600.1	181.0	117.5	76.2	404.8	266.7	279.4	229.0	-	1	-	177.73
6 15/16		USRB5538-615	363818	7 7/8	28	21 5/8	24 3/8	7 1/2	4 1/2	3 1/8	16 9/16	10 1/2	11	9 13/64				435.0
7	-	USRB5538-700	1618262	200.0	711.2	549.3	619.1	190.5	114.3	79.4	420.7	266.7	279.4	233.8	-	1 1/4	-	197.71

*For expansion bearings, this dimension can decrease by the corresponding value in table VIII on page I-69.

Note: Bore diameters up to 4" available in single lock collar. Bore diameters 4 7/16" and up available in double lock collar Bore diameters up to 3" - grease fitting location at 12:00.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

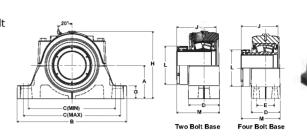
 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Performance Mounted Spherical Roller Bearings

Rolling Elements: Spherical Roller

Housing: Cast Iron Two and Four Bolt

Pillow Block


Self Alignment: +/- 2 Degrees

Lock: Adapter

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USRB5500A Series Two and Four-Bolt Base Pillow Blocks - Adapter Mount, SAF Mounting Dimensions

Bore	Par	t No.	Basic					Di	mensi	ons in	ch / mm							
Diame er			Dynamic Rating	A	-	C		20	*	G	2	31	0000	M+	-	Size		٠. ا
inch	2 Bolt	4 Bolt	Ib/N			Min.	Max	ď.	N.	ij,	8	22	Ų,		2 Bolt	4 Bolt	2 Bolt	4 Bolt
1 7/16	USRB5509A-107		20368	2 1/4	8 1/4	6 1/4	7	2 3/16		13/16	4 3/8	3 11/32	2 47/64	3 35/64			10.5	
1 1/2	USRB5509A-108	-	90597	57.2	209.6	158.8	177.8	55.6	-	20.6	111.1	84.9	69.5	90.1	1/2	-	4.77	-
- 102	OCKBOOOK 100		00001	07.2	200.0	100.0	177.0	00.0		20.0		04.0	00.0	00.1			7.77	
1 15/16	USRB5511A-115		23520	2 3/4	9 5/8	7 3/8	8 1/4	2 3/4	-	15/16	5 1/32	3 1/2	3 11/64	3 29/32	5/8		16.2	
2	USRB5511A-200	-	104617	69.9	244.6	187.3	209.6	69.9		23.8	127.8	88.9	80.6	99.2	3/0		7.36	
2 7/16	USRB5515A-207	USRBF5515A-207	44691	3 1/4	11 1/4	8 5/8	9 5/8	3 1/8	1 7/8	1 1/8	6 1/8	4 5/16	3 7/16	4 23/32	5/8	1/2	26.5	26.2
2 1/2	USRB5515A-208	USRBF5515A-208	198786	82.6	285.8	219.1	244.5	79.4	47.6	28.6	155.6	109.5	87.3	119.9	3/0	1/2	12.04	11.92
2 15/16	USRB5517A-215	USRBF5517A-215	47447	3 3/4	13	9 7/8	11	3 1/2	2 1/8	1 1/4	7 1/8	4 31/64	4 25/64	5 1/32	3/4	5/8	38.4	38.0
3	USRB5517A-300	USRBF5517A-300	211044	95.3	330.2	250.8	279.4	88.9	54.0	31.8	181.0	113.9	111.5	127.8	3/4	3/6	17.44	17.26
3 7/16	USRB5520A-307	USRBF5520A-307	72640	4 1/2	15 1/4	11 5/8	13 1/8	4 3/8	2 3/8	1 3/4	9	5 35/64	5 15/32	6 15/64	7/8	3/4	73.4	72.4
3 1/2	USRB5520A-308	USRBF5520A-308	323103	114.3	387.4	295.3	333.4	111.1	60.3	44.5	228.6	140.9	138.9	158.4	110	3/4	33.37	32.92
3 15/16		USRB5522A-315	96050	4 15/16	16 1/2	12 19/32	14 1/2	4 3/4	2 3/4	2	9 7/8	5 15/16	5 13/16	6 41/64		3/4		88.5
4	-	USRB5522A-400	427230	125.4	419.1	319.9	368.3	120.7	69.9	50.8	250.8	150.8	147.64	168.7	-	3/4	-	40.23
4 7/16		USRB5526A-407	111537	6	18 3/8	14 1/2	16	5 1/8	3 1/4	2 3/8	11 9/16	6 27/64	6 11/32	7 3/32		7/8		127.4
4 1/2	-	USRB5526A-408	496117	152.4	466.7	368.3	406.4	130.2	82.6	60.3	293.7	163.1	161.1	180.2	-	110	-	57.89
4 15/16		USRB5528A-415	158816	6	19 11/16	15 5/8	17 3/8	5 7/8	3 3/8	2 3/8	12	7 1/8	7 13/64	7 53/64		1		159.3
5	-	USRB5528A-500	706414	152.4	500.1	396.9	441.3	149.2	85.7	60.3	304.8	181.0	183.0	198.8	-	ı	-	72.41
F 7/40		LIODDEFOOA FOZ	196682	6 11/16	22	17 3/8	19 1/4	6 1/4	3 3/4	2 5/8	13 1/2	7 7/8	7 47/64	8 19/32		,		214.0
5 7/16	-	USRB5532A-507	874842	169.9	558.8	441.3	489.0	158.8	95.3	66.7	342.9	200.0	196.5	218.3	-	1	-	97.27
E 45/40		LICEDESCAA SAS	261346	7 1/16	24 3/4	19 3/8	21 5/8	6 3/4	4 1/4	2 3/4	14 15/16	8 11/16	8 1/2	9 1/4		_		287.0
5 15/16	-	USRB5534A-515	1162467	179.4	628.7	492.1	549.3	171.5	108.0	69.9	379.4	220.7	215.9	235.0	-	1	-	130.45
6 7/16		USRB5536A-607	334229	7 1/2	26 3/4	20 7/8	23 5/8	7 1/8	4 5/8	3	15 15/16	9 45/64	9 11/16	10 5/32		4		357.0
6 1/2	-	USRB5536A-608	1486651	190.5	679.5	530.2	600.1	181.0	117.5	76.2	404.8	246.5	246.1	258.0	-	1	-	162.27
6 15/16		USRB5538A-615	334229	7 7/8	28	21 5/8	24 3/8	7 1/2	4 1/2	3 1/8	16 9/16	9 23/32	9 11/16	10 11/32				405.0
7	-	USRB5538A-700	1486651	200.0	711.2	549.3	619.1	190.5	114.3	79.4	420.7	246.9	246.1	262.7	-	1 1/4	-	184.09
7 1/2		USRB5544A-708	000010	0.472	00.077	04.57	07.7	0.674	F / / :	0.011	10 = 12	10.000	44.70	44.47.0-				050.0
7 15/16	-	USRB5544A-715	363818	9 1/2	32 3/4	24 3/4	27 7/8		5 1/4		19 5/8	10 9/16	11 7/64	11 17/32	-	1 1/2	-	656.0
8		USRB5544A-800	1618262	241.3	831.9	628.7	708.0	222.3	133.4	95.3	498.5	268.3	282.2	292.9				298.18

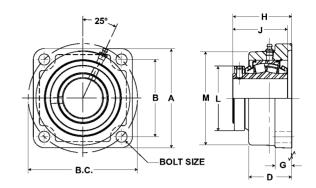
*For expansion bearings, this dimension can decrease by the corresponding value in table VIII on page I-69. Bore diameters up to 3" - grease fitting location at 12:00.

One expansion unit is to be used in conjunction with one non-expansion unit for applications using an adapter lock unit Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

Bearing Selection Page H-3 Nomenclature Aid Page H-6 Features & Benefits Page H-7 Technical Engineering Page I-47

Rolling Elements: Spherical Roller

> Housing: Cast Iron Four Bolt Flange


Self Alignment: +/- 2 Degrees

> Lock: Setscrew

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USFB5000 Series Four-Bolt Flange Units - Collar Mount

Bore		The state of					imension	s inch / mr	n				[*]
Diameter	Part No.		A.	8	8.C.	D	G	307	(3	L	M	Bolt Size	100
1 7/16 1 1/2	USFB5000-107 USFB5000-108	20368 90597	4 5/8 117.5	3 17/32 89.7	5 127.0	2 1/16 52.4	3/4 19.1	2 53/64 71.8	2 3/4 69.9	2 49/64 70.2	3 7/8 98.4	1/2	6.4 2.93
1 11/16 1 3/4	USFB5000-111 USFB5000-112	22689 100921	5 127.0	3 57/64 98.8	5 1/2 139.7	2 1/4 57.2	3/4 19.1	2 61/64 75.0	2 7/8 73.0	2 3/4 69.9	4 1/2 114.3	1/2	8.4 3.82
1 15/16 2	USFB5000-115 USFB5000-200	23520 104617	5 3/16 131.8	4 1/16 103.2	5 3/4 146.1	2 1/4 57.2	3/4 19.1	2 61/64 75.0	2 7/8 73.0	3 76.2	4 3/4 120.7	1/2	8.9 4.04
2 3/16	USFB5000-203	28087 124931	5 7/8 149.2	4 1/2 114.3	6 3/8 161.9	2 7/16 61.9	13/16 20.6	3 7/32 81.8	3 1/8 79.4	3 1/4 82.6	5 1/8 130.2	5/8	11.3 5.13
2 7/16 2 1/2	USFB5000-207 USFB5000-208	44691 198786	6 1/8 155.6	4 49/64 121.0	6 3/4 171.5	2 21/32 67.5	1 1/32 26.2	3 31/64 88.5	3 3/8 85.7	4 101.6	5 3/4 146.1	5/8	15.3 6.95
2 11/16 2 3/4 2 15/16 3	USFB5000-211 USFB5000-212 USFB5000-215 USFB5000-300	47447 211044	7 3/16 182.6	5 9/16 141.3	7 7/8 200.0	2 7/8 73.0	15/16 23.8	3 63/64 101.2	3 7/8 98.4	4 17/32 115.1	6 5/8 168.3	3/4	23.1 10.50
3 3/16 3 7/16 3 1/2	USFB5000-303 USFB5000-307 USFB5000-308	72640 323103	8 3/8 212.7	6 23/32 170.7	9 1/2 241.3	3 9/32 83.3	1 1/8 28.6	4 19/32 116.7	4 15/32 113.5	5 5/16 134.9	7 5/8 193.7	3/4	36.0 16.38
3 11/16 3 15/16 4	USFB5000-311 USFB5000-315 USFB5000-400	96050 427230	9 1/2 241.3	7 19/32 192.9	10 3/4 273.1	3 11/16 93.7	1 1/4 31.8	5 5/64 129.0	4 15/16 125.4	6 152.4	8 7/8 225.4	7/8	46.1 20.98

^{*}For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69.

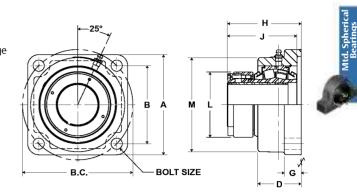
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Performance Mounted Spherical Roller Bearings **SEAL**

Rolling Elements: Spherical Roller

Housing: Cast Iron Four Bolt Flange


Self Alignment: +/- 2 Degrees

Lock: Adapter

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USFB5000A Series Four-Bolt Flange Units - Adapter Mount

Bore		Basic)imension:	s inch / mr	n				
Diameter	Part No.	Dynamic Rating Ib/N	A	18	B.C.	D	6	H.	707	1	(4)	Bolt Size	1933
1 7/16	USFB5000A-107	20368	4 5/8	3 17/32	5	2 1/16	3/4	3 7/16	3 11/32	2 47/64	3 7/8	4/0	6.7
1 1/2	USFB5000A-108	90597	117.5	89.7	127.0	52.4	19.1	87.3	84.9	69.5	98.4	1/2	3.06
1 11/16	USFB5000A-111	22689	5	3 57/64	5 1/2	2 1/4	3/4	3 35/64	3 29/64	2 31/32	4 1/2	4.0	8.9
1 3/4	USFB5000A-112	100921	127.0	98.8	139.7	57.2	19.1	90.1	87.7	75.4	114.3	1/2	4.04
1 15/16	USFB5000A-115	23520	5 3/16	4 1/16	5 3/4	2 1/4	3/4	3 37/64	3 1/2	3 11/64	4 3/4	4.0	9.5
2	USFB5000A-200	104617	131.8	103.2	146.1	57.2	19.1	90.9	88.9	80.6	120.7	1/2	4.33
0.046	HOEDEOOOA OOO	28087	5 7/8	4 1/2	6 3/8	2 7/16	13/16	3 31/32	3 7/8	3 7/16	5 1/8	F.10	11.9
2 3/16	USFB5000A-203	124931	149.2	114.3	161.9	61.9	20.6	100.8	98.4	87.3	130.2	5/8	5.42
2 7/16	USFB5000A-207	44691	6 1/8	4 49/64	6 3/4	2 21/32	1 1/32	4 13/32	4 5/16	3 63/64	5 3/4	5/8	16.2
2 1/2	USFB5000A-208	198786	155.6	121.0	171.5	67.5	26.2	111.9	109.5	101.2	146.1	5/8	7.37
2 11/16	USFB5000A-211												
2 3/4	USFB5000A-212	47447	7 3/16	5 9/16	7 7/8	2 7/8	15/16	4 19/32	4 31/64	4 25/64	6 5/8	3/4	23.2
2 15/16	USFB5000A-215	211044	182.6	141.3	200.0	73.0	23.8	116.7	113.9	111.5	168.3	3/4	10.54
3	USFB5000A-300												
3 3/16	USFB5000A-303												
3 7/16	USFB5000A-307	72640 323103	8 3/8 212.7	6 23/32 170.7	9 1/2 241.3	3 9/32 83.3	1 1/8 28.6	5 43/64 144.1	5 35/64 140.9	5 15/32 138.9	7 5/8 193.7	3/4	38.0 17.28
3 1/2	USFB5000A-308	323103	212.1	170.7	241.3	00.0	20.0	144.1	140.3	150.5	155.1		17.20
3 11/16	USFB5000A-311												
3 15/16	USFB5000A-315	96050 427230	9 1/2 241.3	7 19/32 192.9	10 3/4 273.1	3 11/16 93.7	1 1/4 31.8	6 5/64 154.4	5 15/16 150.8	5 13/16 147.6	8 7/8 225.4	7/8	46.9 21.32
4	USFB5000A-400	421230	241.3	132.3	213.1	33.1	31.0	154.4	130.0	147.0	223.4		21.32

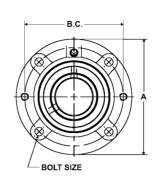
*For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69. One expansion unit is to be used in conjunction with one non-expansion unit for applications using an adapter lock unit Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

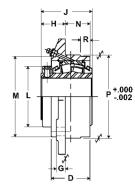
Bearing Selection Page H-3 Nomenclature Aid Page H-6 Features & Benefits Page H-7 Technical Engineering Page I-47

Rolling Elements: Spherical Roller

> Housing: Cast Iron Piloted Flange

> > Cartridge


Self Alignment: +/- 2 Degrees


> Lock: Setscrew

Seal:

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USFC5000 Series Piloted Flange Cartridge Units - Collar Mount

Bare		Basic					D	imension	s inch / m	m					
Discouler	Part No.	Dynamic Rating Ib/N	A	B.C.	۵	G	***	3	165	9 M	*	Þ	R	Bolt Size	David MC
1 7/16 1 1/2	USFC5000-107 USFC5000-108	20368 91249	5 1/4 133.4	4 3/8 111.1	2 1/16 52.4	15/32 11.9	1 7/16 36.5	2 3/4 69.9	2 49/64 70.2	3 1/2 88.9	1 9/32 32.5	3 5/8 92.1	-	3/8	6.4 2.93
1 11/16 1 3/4	USFC5000-111 USFC5000-112	22689 101647	6 1/8 155.6	5 1/8 130.2	2 1/4 57.2	15/32 11.9	1 27/64 36.1	2 7/8 73.0	2 3/4 69.9	4 101.6	1 7/16 36.5	4 1/4 108.0	9/16 14.3	7/16	7.4 3.37
1 15/16 2	USFC5000-115 USFC5000-200	23520 105370	6 3/8 161.9	5 3/8 136.5	2 1/4 57.2	17/32 13.5	1 25/64 35.3	2 7/8 73.0	3 76.2	4 3/8 111.1	1 15/32 37.3	4 1/2 114.3	5/8 15.9	7/16	8.1 3.70
2 3/16	USFC5000-203	28087 125830	7 1/8 181.0	6 152.4	2 3/8 60.3	17/32 13.5	1 19/32 40.5	3 1/8 79.4	3 1/4 82.6	4 3/4 120.7	1 15/32 37.3	5 127.0	15/32 11.9	1/2	10.2 4.66
2 7/16 2 1/2	USFC5000-207 USFC5000-208	44691 200216	7 5/8 193.7	6 1/2 165.1	2 9/16 65.1	19/32 15.1	1 19/32 40.5	3 3/8 85.7	4 101.6	5 5/16 134.9	1 5/8 41.3	5 1/2 139.7	5/8 15.9	1/2	14.4 6.53
2 11/16 2 3/4 2 15/16 3	USFC5000-211 USFC5000-212 USFC5000-215 USFC5000-300	47447 212563	8 3/4 222.3	7 1/2 190.5	2 7/8 73.0	23/32 18.3	2 50.8	3 7/8 98.4	4 17/32 115.1	6 152.4	1 27/32 46.8	6 3/8 161.9	19/32 15.1	5/8	21.8 9.92
3 3/16 3 7/16 3 1/2	USFC5000-303 USFC5000-307 USFC5000-308	72640 325427	10 1/4 260.4	8 5/8 219.1	3 1/8 79.4	53/64 21.0	2 13/32 61.1	4 15/32 113.5	5 5/16 134.9	7 3/16 182.6	1 27/32 46.8	7 3/8 187.3	5/8 15.9	3/4	33.6 15.25
3 11/16 3 15/16 4	USFC5000-311 USFC5000-315 USFC5000-400	96050 430304	10 7/8 276.2	9 3/8 238.1	3 1/2 88.9	31/32 24.6	2 21/32 67.5	4 15/16 125.4	6 152.4	7 3/4 196.9	2 1/16 52.4	8 1/8 206.4	9/16 14.3	3/4	42.3 19.25

^{*}For expansion bearings, the sum of dimension "H" and "N" can increase by the corresponding value in table VIII on page I-69.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

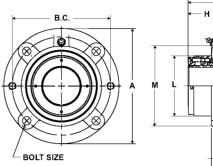
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

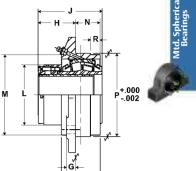
Performance Mounted Spherical Roller Bearings **SEAL**

Rolling Elements: Spherical Roller

Housing: Cast Iron Piloted Flange

Cartridge


Self Alignment: +/- 2 Degrees


Lock: Adapter

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USFC5000A Series Piloted Flange Cartridge Units - Adapter Mount

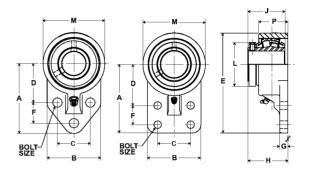
-		Barrio I					_n_	imension	s inch / m	m					
nch	Part No.	\$ £ 1	A	вс	o	G	н.	1	<u>L</u>	##	N*	P ¹	R	Bolt Size	100
1 7/16 1 1/2	USFC5000A-107 USFC5000A-108	20368 90597	5 1/4 133.4	4 3/8 111.1	2 1/16 52.4	15/32 11.9	2 3/64 52.0	3 11/32 84.9	2 47/64 69.5	3 1/2 88.9	1 9/32 32.5	3 5/8 92.1	-	3/8	5.6 2.56
1 11/16 1 3/4	USFC5000A-111 USFC5000A-112	22689 100921	6 1/8 155.6	5 1/8 130.2	2 1/4 57.2	15/32 11.9	2 50.8	3 29/64 87.7	2 31/32 75.4	4 101.6	1 7/16 36.5	4 1/4 108.0	9/16 14.3	7/16	7.9 3.60
1 15/16 2	USFC5000A-115 USFC5000A-200	23520 104617	6 3/8 161.9	5 3/8 136.5	2 1/4 57.2	17/32 13.5	2 1/64 51.2	3 1/2 88.9	3 11/64 80.6	4 3/8 111.1	1 15/32 37.3	4 1/2 114.3	5/8 15.9	7/16	8.6 3.92
2 3/16	USFC5000A-203	28087 124931	7 1/8 181.0	6 152.4	2 3/8 60.3	17/32 13.5	2 11/32 59.5	3 7/8 98.4	3 7/16 87.3	4 3/4 120.7	1 15/32 37.3	5 127.0	15/32 11.9	1/2	10.9 4.95
2 7/16 2 1/2	USFC5000A-207 USFC5000A-208	44691 198786	7 5/8 193.7	6 1/2 165.1	2 9/16 65.1	19/32 15.1	2 17/32 64.3	4 5/16 109.5	3 63/64 101.2	5 5/16 134.9	1 5/8 41.3	5 1/2 139.7	5/8 15.9	1/2	15.3 6.95
2 11/16 2 3/4 2 15/16 3	USFC5000A-211 USFC5000A-212 USFC5000A-215 USFC5000A-300	47447 211044	8 3/4 222.3	7 1/2 190.5	2 7/8 73.0	23/32 18.3	2 19/32 65.9	4 31/64 113.9	4 25/64 111.5	6 152.4	1 27/32 46.8	6 3/8 161.9	19/32 15.1	5/8	21.9 9.97
3 3/16 3 7/16 3 1/2	USFC5000A-303 USFC5000A-307 USFC5000A-308	72640 323103	10 1/4 260.4	8 5/8 219.1	3 1/8 79.4	53/64 21.0	3 1/2 88.9	5 35/64 140.9	5 15/32 138.9	7 3/16 182.6	1 27/32 46.8	7 3/8 187.3	5/8 15.9	3/4	35.5 16.15
3 11/16 3 15/16 4	USFC5000A-311 USFC5000A-315 USFC5000A-400	96050 427230	10 7/8 276.2	9 3/8 238.1	3 1/2 88.9	31/32 24.6	3 21/32 92.9	5 15/16 150.8	5 13/16 147.6	7 3/4 196.9	2 1/16 52.4	8 1/8 206.4	9/16 14.3	3/4	43.1 19.59

*For expansion bearings, the sum of dimension "H" and "N" can increase by the corresponding value in table VIII on page I-69. One expansion unit is to be used in conjunction with one non-expansion unit for applications using an adapter lock unit Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

Bearing Selection Page H-3 Nomenclature Aid Page H-6 Features & Benefits Page H-7 Technical Engineering Page I-47

Rolling Elements: Spherical Roller

Housing: Ductile Iron Flange Bracket


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USBF5000 Series Three-Bolt Flange Brackets - Collar Mount

A CONTRACTOR	2000011 2	12.4			<u> </u>			Dime	10-111	-2000						en acceptor
Hormania	Ball	Haury (late	i.	Б	100	6	進	=	16	((3)	ĮŲ.		E.	W.		Life
T.M.D.	TOTAL CORE -	2,2508	4 444	2.14		2302	£ 19:	114	\$35	25.64	224	24564	134	114	4.5	9,4
SESTER	UNIVERSE STATE	10.997	1000	4.	8.1	67.1	155.6	31.7	7	79.1	55.7	176	相手	42.5	#5	331
1 15/16	USBF5000-115	23520	5 3/16	4	2 3/4	2 15/16	7 5/16	1 5/8	11/16	2 31/32	2 7/8	3	4 1/4	2 3/8	1/2	7 5
1 13/10	0301 3000-113	104617	131.8	101.6	69.9	74.6	185.7	41.3	17.5	75.4	73.0	76.2	108.0	60.3	1/2	3.41

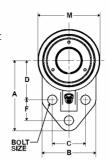
USBF5000 Series Four-Bolt Flange Brackets - Collar Mount

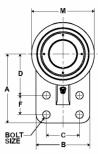
^{*}For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69.

Performance Mounted Spherical Roller Bearings

Rolling Elements: Spherical Roller

Housing: Ductile Iron Flange Bracket


Self Alignment: +/- 2 Degrees


Lock: Adapter


Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USBF5000A Series Three-Bolt Flange Brackets - Adapter Mount

		2.00						1 de la constante	i veni ire	2000						Market No.
Haram-	Bartha	Hatting Hatting HATTI	1	<u>(i</u>	i i	<u> </u>	慧	Ħ	N.	Hari	# N	<u>ji</u>	<u>//</u>	8	240	Dent Wit Halley
7,708	03943146475	1280E	Dal 100 in	24q		230	6-19 1556	114 212	75 75	# 7/#0 # # #	A CONTRACTOR	74704 (2.1	3 344	2.54	9-	81 277
		23520	5 3/16	4	2 3/4	2 15/16	7 5/16	1 5/8	11/16	3 37/64	3 1/2	3 11/64	4 1/4	2 3/8		80
1 15/16	USBF5000A-115	105370	131.8	101.6	69.9	74.6	185.7	41.3	17.5	90.9	88.9	80.6	108.0	60.3	1/2	3.63

USBF5000A Series Four-Bolt Flange Brackets - Adapter Mount

	Euri	10					Dinner	e u mui ife	et/miii						artinento.
Harriste Feel Ma Journ	Hatting Hatting	1	i i	100	10	ij.	Ħ	i i	H _K C		ij.	#	P.	Ting Park	Like
2206 366 F. 100M-2.2	44001	5-94	4790	#	224	0,9632	EN	80	14:192	#\$ATV	+#170	ET 09	# TV92	Act -	17#
COURT STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET,	107716	152.0	132.0	77.5	75.1	23 0	442	元十	11.2	100.5	10/1	144.5	St.A.	3275	736

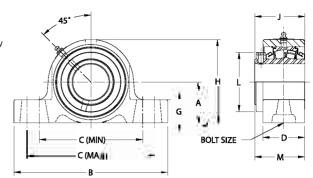
*For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69.

One expansion unit is to be used in conjunction with one non-expansion unit for applications using an adapter lock unit Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

Rolling Elements: Spherical Roller

Housing: Ductile Iron Two Bolt Pillow

Block


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USRBE5000 Series Two-Bolt Base Pillow Blocks - Collar Mount, Type E Mounting Dimensions

Hear Contracts	200	an dist				-	Dimini	recent ilu	n Politic	-			111	weenste.
Districts (1987)	24+40	Ujrama (ali-pi lasti	(5)		H/O	No.	Ď,	16)	111	Ü		37. 110	Ball Bu-	Logisti Balog
THE THE	10.11 (500	25600		THE P.	16	中的	(2000)	100000	4466c	1000	77.	12 20154 12 20154	0.30	nite)
E	USR929000400	134617	37.2	227.4	22.	18 0	žt.	33.3	110.1	73.0	26.5	754	3.5	€.e
0.0440	HODDELOOD OO	28087	2 1/2	9 5/8	6 1/2	7 7/8	2 1/2	1 7/16	4 31/32	3 1/8	3 1/4	3 1/8	F 10	13.7
2 3/16	USRBE5000-203	124931	63.5	244.5	165.1	200.0	63.5	36.5	126.2	79.4	82.6	79.4	5/8	6.21
0.28	AUGUS NEDU NIZ	41141	F.M	18(.19)	$(G(x))^{\perp}$	34,530	: 4	NT4	0.530	110	17.7	31.4.79	0239	123
20	Owk i musicke	1,8710	600	Sen.i	11/25	155.1	113	20	1020	45.7	Octub	Ketai	100	10.50
2 11/16	USRBE5000-211													
2 3/4	USRBE5000-212	47447	3 1/8	11 5/8	7 7/8	9 5/8	2 5/8	1 5/8	6 1/16	3 7/8	4 17/32	3 11/16		22.3
2 15/16	USRBE5000-215	211044	79.4	295.3	200.0	244.5	66.7	41.3	154.0	98.4	115.1	93.7	3/4	10.14
3	USRBE5000-300													
30438	0907.83036													
3.48	Q500 6 m.Q04007	77740 900 D	533 55±	3.45	0.300	11.14 48.5	51ti	2 × 6	7 0.0	4 102	3.539 5344	4.2/22	i in	38.2 1839
202	USPSEST TO DOE	[80] [82]	Acceptor	1910,554.5	-240,000			200 100	THE CALL	F-44-115				THE CHARGE
3 11/16	USRBE5000-311												-	
3 15/16	USRBE5000-315	96050 427230	4 1/8 104.8	14 1/4 362.0	10 254.0	11 3/4 298.5	3 9/16 90.5	2 1/4 57.2	8 1/2 215.9	4 15/16 125.4	6 152.4	4 23/32 119.9	1	55.4 25.19
4	USRBE5000-400	12.200	101.0	002.0	201.0	200.0	00.0	01.2	210.0	120.4	102.4	110.0		20.10

^{*}For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

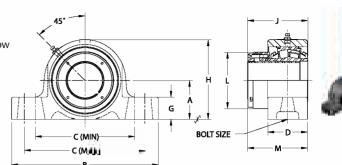
 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Performance Mounted Spherical Roller Bearings **SEAL**

Rolling Elements: Spherical Roller

Housing: Ductile Iron Two Bolt Pillow

Block


Self Alignment: +/- 2 Degrees

Lock: Adapter

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USRBE5000A Series Two-Bolt Base Pillow Blocks - Adapter Mount, Type E Mounting Dimensions

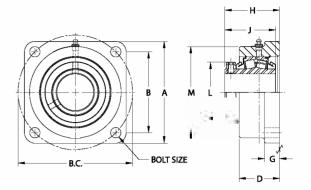
line.	1 530- I	Heat L) Dietil	NAME OF THE OWNER, OF THE OWNER, OF THE OWNER, OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER,	n in in					Ling VIII.
Connertal () Neft	701 P	Calculation of the Calculation o	30	Į.	ne)	and the same	B	•	<u>iii</u>	# <u>1</u>		W		ILAN,
1175478	UBREESSONALU	10401=	+ 1/4 水本	### 2254	16 22-	18 0	eri.	333	1151	7,777 85%	206	913	, ese	116
2 3/16	USRBE5000A-203	28087 124931	2 1/2 63.5	9 5/8 244.5	6 1/2 165.1	7 7/8 200.0	2 1/2 63.5	1 7/16 36.5	4 31/32 126.2	3 7/8 98.4	3 7/16 87.3	3 7/8 98.4	5/8	14.3 6.50
7 (216) 2 (1)	POTENTIATION AS USER LEMINARA	1114 8865#	274 274	ngga Seza	6.40 -77.5	700 t	713	19,411 3017	n.53) 3420	4800 Omii	501.	# (M.) # 120.1	(ت	110x
2 11/16 2 3/4 2 15/16 3	USRBE5000A-211 USRBE5000A-212 USRBE5000A-215 USRBE5000A-300	47447 211044	3 1/8 79.4	11 5/8 295.3	7 7/8 200.0	9 5/8 244.5	2 5/8 66.7	1 5/8 41.3	6 1/16 154.0	4 31/64 113.9	4 25/64 111.5	4 9/32 108.7	3/4	22.4 10.18
37.00K 37.00M 3.00E	15.11 1046.00 (5.11 1046.00 (5.11 1046.00 (5.11 1046.00 (5.11 1046.00	72544 980158a	29M	72.12 3H- V	938 HG (370 388	3 14 0/1	2:36 W	7.839 1973	23204 1408	2 1532 LH 5	510\H 1915	70:	447 1810
3 11/16 3 15/16 4	USRBE5000A-311 USRBE5000A-315 USRBE5000A-400	96050 427230	4 1/8 104.8	14 1/4 362.0	10 254.0	11 3/4 298.5	3 9/16 90.5	2 1/4 57.2	8 1/2 215.9	5 15/16 150.8	5 13/16 147.6	5 23/32 145.3	1	56.2 25.55

*For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69.

One expansion unit is to be used in conjunction with one non-expansion unit for applications using an adapter lock unit Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

Rolling Elements: Spherical Roller

Housing: Ductile Iron Four Bolt Flange


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USFBE5000 Series Four-Bolt Flange Units - Collar Mount, Type E Mounting Dimensions

Elm's		// Trac					Jenesame	u ilish tun			111 8		d/ayyses
Hob	39.596	California California California	30.2	8	(%)	20	9ali	1	æ	Ų.	1	Sallsin	in the
Long	TOTAL A WOOD ON	225554	NAME:	6763	5.230	2500	(3)	2000	3.92	30	1,1177	1990	0.660
	JOSEPH PRESAME	104 (61.7	552.2	#500	12597	S#61	227	89.5	783	3000	7250	0.000.0	(((25)))
2 3/16	USFBE5000-203	28087	6 3/16	4 7/8	6 57/64	2 5/8	1	3 5/16	3 1/8	3 1/4	5 15/32	5/8	14.8
2 3/16	USFBE5000-203	124931	157.2	123.8	175.0	66.7	25.4	84.1	79.4	82.6	138.9	5/6	6.75
3776	PERBECOCO 2011	4470	654	5/38	1.15-20	2002	130	33104	358	43	53/22		30
9.25	-10 FEMICESHE	060749	305	2013	1395	2862	25	200	1007	39995	533.5	991	11060
2 11/16	USFBE5000-211												
2 3/4	USFBE5000-212	47447	7 5/8	6	8 31/64	2 3/4	1 1/16	3 63/64	3 7/8	4 17/32	6 53/64	3/4	26.4
2 15/16	USFBE5000-215	211044	193.7	152.4	215.5	69.9	27.0	101.2	98.4	115.1	173.4	3/4	12.00
3	USFBE5000-300												
31.4mi	19-19-16F-74F	V326	26884	14	59968	288396	tivi	07.83456	21,757(200)	2010353	50000	7	1000000
8.5(19)	January Committee	1919	25-5	100	. 029	3 14	1000	11,022	1.15-29	77.07M	(±160)	589	4031
3.112	J29EE9002408	901.5	30.7%	288	19918	5188	23.8	38.0	100	55	231,5		WHEE!
3 11/16	USFBE5000-311	00050	0.4/0	7 40/00	40.0/4	0.44/40		F 5:04	1.45/10		0.7/0		50.0
3 15/16	USFBE5000-315	96050 427230	9 1/2 241.3	7 19/32 192.9	10 3/4 273.1	3 11/16 93.7	1 1/4 31.8	5 5/64 129.0	4 15/16 125.4	6 152.4	8 7/8 225.4	7/8	52.3 23.76
4	USFBE5000-400	421230	241.3	182.8	213.1	go.1	31.0	128.0	120.4	102.4	225.4		23.10

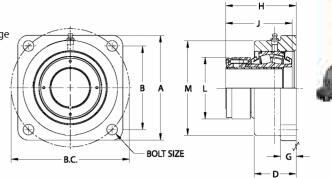
^{*}For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Performance Mounted Spherical Roller Bearings **SEAL**

Rolling Elements: Spherical Roller

Housing: Ductile Iron Four Bolt Flange


Self Alignment: +/- 2 Degrees

Lock: Adapter

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USFBE5000A Series Four-Bolt Flange Units - Adapter Mount, Type E Mounting Dimensions

Box Etmost I	V 1	Dan H					limina un	a linder (inte					Market
1111111	350.46	130 CF	1	Ē.	(442	2		H ₂		1	12	Sull'En.	
DSB.	AREA STOCK THE AREA CONSIDER	2985; 081572	96166 08647	3500 1000	Suns.	:≥95ti :2961	30°	etalet Skel	302	531861 - 3031	CHECK (MEX)	100	174
2 3/16	USFBE5000A-203	28087 124931	6 3/16 157.2	4 7/8 123.8	6 57/64 175.0	2 5/8 66.7	1 25.4	4 1/16 103.2	3 7/8 98.4	3 7/16 87.3	5 15/32 138.9	5/8	15.5 7.04
2706 200	USESBOCTA DOS JULIO IL NO JORDANIA	4450 060258	632 771+	23.T	2 1973	2:10:15 :20:2	3 1	# 55/32 17/16	45/10 100-±	58954 100 7	6000 4944	381	250 9 16
2 11/16 2 3/4 2 15/16 3	USFBE5000A-211 USFBE5000A-212 USFBE5000A-215 USFBE5000A-300	47447 211044	7 5/8 193.7	6 152.4	8 31/64 215.5	2 3/4 69.9	1 1/16 27.0	4 19/32 116.7	4 31/64 113.9	4 25/64 111.5	6 53/64 173.4	3/4	26.5 12.04
7 (cm) 5 - /19 8 1-2	100 4 5/05/54/2 189 6 56/5/4/97 18F88/6/3/4/998	7 (9K 520(6)	2045 2060	34.5 34.5	2-1-	3-64 -92.8	i pe rin	5 005 ² 111.1	3 MH2 1403	‡ 1650 1 % S	(aka/ 25) 1	SSM	4-31 19-33
3 11/16 3 15/16 4	USFBE5000A-311 USFBE5000A-315 USFBE5000A-400	96050 427230	9 1/2 241.3	7 19/32 192.9	10 3/4 273.1	3 11/16 93.7	1 1/4 31.8	6 5/64 154.4	5 15/16 150.8	5 13/16 147.6	8 7/8 225.4	7/8	53.0 24.10

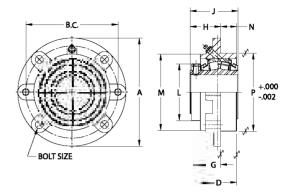
^{*}For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69.

One expansion unit is to be used in conjunction with one non-expansion unit for applications using an adapter lock unit Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

Rolling Elements: Spherical Roller

Housing: Ductile Iron Piloted Flange

Cartridge


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: Fel

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USFCE5000 Series Flange Cartridge Units - Collar Mount, Type E Mounting Dimensions

Elm/co	200-	nich d			2.4		D line	ter from 1872	Million .					in i en
Judi	244.80	Algebrasia Cultural Intel	377/	E.O.	jb.	0)	0.53	1	Ĺ	31910	ŇÍ	MDV	Col Cin	
Marten.	JB OF TARREST	25601	101.0	1.376 36.5	21016 24.5	284	12:169 50:0	1 (v) 13.5	70.2	143	0 to 100 27.0	#163	84	46
2 3/16	USFCE5000-203	28087 124931	7 1/8 181.0	6 152.4	2 1/2	1 25.4	2 1/16	3 1/8 79.4	3 1/4 82.6	4 7/8 123.8	1 1/8 28.6	5 127.0	1/2	11.8 5.35
eralle 2000	NY DISTRIKE Ny DIAMPENANA	440 M	1064	6137 1861	1990) 3841) i.e. 97%	141)) 548	**************************************	-112	ineli Meli	n) Via	AAD Con	10	15 ft 5 50
2 11/16 2 3/4 2 15/16 3	USFCE5000-211 USFCE5000-212 USFCE5000-215 USFCE5000-300	47447 211044	8 3/4 222.3	7 1/2 190.5	2 9/16 65.1	15/16 23.8	2 7/16 61.9	3 7/8 98.4	4 17/32 115.1	6 1/4 158.8	1 1/4 31.8	6 3/8 161.9	5/8	22.0 10.02
3 (4)K 3, 4)K 3.15	407 (1.500,0.30) (05 1.0.542569) (35 (08507) 569	72549 1937-3-	-10 -3= 585 d	3.59 3.59	346 79	17:19 Una	24540 348	4 292 4 293	79:5 -03	7 dei 1004	1546	735 757 -	VIII 3 55	30-5 16-5
3 11/16 3 15/16 4	USFCE5000-311 USFCE5000-315 USFCE5000-400	96050 427230	10 7/8 276.2	9 3/8 238.1	3 1/2 88.9	1 1/16 27.0	2 21/32 67.5	4 15/16 125.4	6 152.4	7 3/4 196.9	2 1/16 52.4	8 1/8 206.4	3/4	42.7 19.40

^{*}For expansion bearings, the sum of dimension "H" and "N" can increase by the corresponding value in table VIII on page I-69.

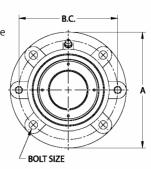
 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

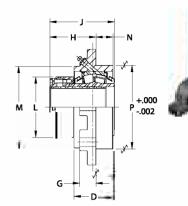
Performance Mounted Spherical Roller Bearings **SEAL**

Rolling Elements: Spherical Roller

Housing: Ductile Iron Piloted Flange

Cartridge


Self Alignment: +/- 2 Degrees


Lock: Adapter

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USFCE5000A Series Flange Cartridge Units - Adapter Mount, Type E Mounting Dimensions

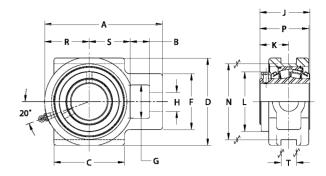
Box Firms 11	200-	district.	Dinastrina incert/min										nine see	
)(ch	70 Per	Calculation Calculation	9377/	≅.0.	ķ	0)	₩.	ii	<u>ji</u>	UMU.	<u> </u>	(info	Syntole:	Венц
105400 2	JEPOSKOWACIA Jeposkowacia	1,466 104617	10:4	1351 Lie 5	da 9	123	2 1450 653	7 (m) 86.5	01 11 000 60:0	142	1 P.W. 27%	#12 +4.1	SP	201
2 3/16	USFCE5000A-203	28087 124931	7 1/8 181.0	6 152.4	2 1/2 63.5	1 25.4	2 7/8 73.0	3 7/8 98.4	3 7/16 87.3	4 7/8 123.8	1 1/8 28.6	5 127.0	1/2	12.4 5.65
256 256	ен претеда из предажен	11141 118725	10.04 5.41	18-1	65090) 667 (1 6 0 -1/c	14AA 1837	ersille Herio	1.628.4 11.1.	n na Mezi	1.10 1838	A Series	id	15 B
2 11/16 2 3/4 2 15/16 3	USFCE5000A-211 USFCE5000A-212 USFCE5000A-215 USFCE5000A-300	47447 211044	8 3/4 222.3	7 1/2 190.5	2 9/16 65.1	15/16 23.8	3 3/64 77.4	4 31/64 113.9	4 25/64 111.5	6 1/4 158.8	1 1/4 31.8	6 3/8 161.9	5/8	22.1 10.06
30-98 399 5.02	16:31:50:300:301 36:33:00:03498 35:00:00:05	726±0 1311-3-	16.35 5864	.859 -191	3 0 6 70	1746	4.32	9:30:04 348.9	\$1532 -3:+	7 54 (0) ji	195	100 P	380	38.5 17.44
3 11/16 3 15/16 4	USFCE5000A-311 USFCE5000A-315 USFCE5000A-400	96050 427230	10 7/8 276.2	9 3/8 238.1	3 1/2 88.9	1 1/16 27.0	3 21/32 92.9	5 15/16 150.8	5 13/16 147.6	7 3/4 196.9	2 1/16 52.4	8 1/8 206.4	3/4	43.4 19.75

*For expansion bearings, the sum of dimension "H" and "N" can increase by the corresponding value in table VIII on page I-69. One expansion unit is to be used in conjunction with one non-expansion unit for applications using an adapter lock unit Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

SEAL MASTER® Performance Mounted Spherical Roller Bearings

Rolling Elements: Spherical Roller

Housing: Cast Iron Take-Up


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USTU5000 Series Take-Up Units - Collar Mount

100 0	2000	and the same						- 1	Unitaria	tion or	n i žini.							Un p Wa
Districted ::	off or the	Parent. Parent inte	W		#	ij.	#	Ü	(10)	W.	10	ji,	100	28	<u>iii</u>		1	il-su
100	75 About 16	27/200	W.	- 40	7(0)	10xt	¥.676	76	90)	2.60	28.5	400		and the	1117	100	100	2.40
72	J8731130-000	10-6-7	67.2	27.	88 C	120,7	73.	43.7	Ø.	750	445	78.4	101.2	771	072	64.1	-77	870
0.0/40	USTU5000-203	28087	6 13/16	1 3/16	3 3/4	5 1/4	3 1/2	2 1/4	1 3/16	3 1/8	1 15/16	3 1/4	4 1/2	3 15/64	2 1/2	2 3/8	13/16	10.7
2 3/16	05105000-203	124931	173.0	30.2	95.3	133.4	88.9	57.2	30.2	79.4	49.2	82.6	114.3	82.2	63.5	60.3	20.6	4.86
7,000	To the printer	11721	- 321	1111	234	107	754	374	75	*14*	11/41	-	47,4	4.7	12	724	(F. 36)	2017
200	John Inchester	1567-05	Wr. =	100 m	DEC	1/2/2	O're	35	19.5	de.	ei.	100%	INSA	et.	ie.	101	102	Files
2 11/16	USTU5000-211																	
2 3/4	USTU5000-212	47447	8 3/4	1 9/16	4 3/4	6 3/4	4 1/4	2 3/4	1 9/16	3 7/8	2 3/8	4 17/32	5 15/16	3 55/64	3 3/16	3	1 13/16	24.6
2 15/16	USTU5000-215	211044	222.3	39.7	120.7	171.5	108.0	69.9	39.7	98.4	60.3	115.1	150.8	98.0	81.0	76.2	46.0	11.16
3	USTU5000-300																	
550.06	waspine.																	
4.1709	(to -15-,1650)	Teca0	348.35	1 172	in the	75	A 7/2	473	1 973	* 9723	100.15	152 W	1 80 E	20 m		293	1 93	40.0
31-2	JST #7750 500	587041	772	100	that	105-7	137-4	411	532	117.0	4675	1000	220	100	99,0	-423	672	241
3 11/16	USTU5000-311	00050		0.4/0	_	0.7440	5.540	0.040	2242	1.15(10)	0.45440		0.5/0	5040	4.7/40	4.4.0	0.4440	22.2
3 15/16	USTU5000-315	96050	11 13/16	2 1/8	7	9 7/16	5 5/8	3 3/8	2 3/16	4 15/16		6	8 5/8	5 3/16	4 7/16	4 1/8	2 1/16	66.6
4	USTU5000-400	427230	300.0	54.0	177.8	239.7	142.9	85.7	55.6	125.4	74.6	152.4	219.1	131.8	112.7	104.8	52.4	30.26

Note: These take-up units can be used with T-1000 take-up frames shown on pages I-45 and I-46.

Metric dimensions for reference only

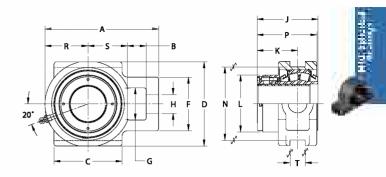
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Performance Mounted Spherical Roller Bearings **SEAL**

Rolling Elements: Spherical Roller

Housing: Cast Iron Take-Up


Self Alignment: +/- 2 Degrees

Lock: Adapter

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USTU5000A Series Take-Up Units - Adapter Mount

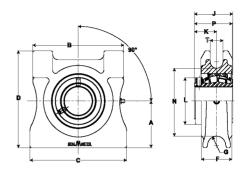
	1 23 -	adies.								,	nal san							
Debinatel (meth)	- oftente	Ugraine talong mil	3		#	W.	#	ä	1	3	*	88	70)			٥	(T)	loo _u
1.05-06	17 14991 - T.	ZISAL	70714	1178	316	(Mile)	Port.	T-0×16	1-0-18	THE STATE		(POPUED)	eneto.	treate.	11.00 M	His	s 11/18	60
3	(67000002420)	13-612	157.2	27.0	82.0	30.7	72.0	4.2	27,2	Æ	献之	41.7	10.0	\$5.5	122	543	17.5	33.0
2 3/16	USTU5000A-203	28087	6 13/16	1 3/16	3 3/4	5 1/4	3 1/2	2 1/4	1 3/16	3 7/8	2 45/64	3 7/16	4 1/2	3 63/64	2 1/2	2 3/8	13/16	11.3
2 3/10	03103000A-203	124931	173.0	30.2	95.3	133.4	88.9	57.2	30.2	98.4	68.7	87.3	114.3	101.2	63.5	60.3	20.6	5.14
1,798	BH 1-2006 17:	41"4"	, inc	1/9 -	418	n vila	DIE-	114	424	· *46	3 794	10.00	- 50	11491	3	P (4)	26	11-
y-14	an incorporate	1.89 :5	are n	353	-007	107	11121	in.	22.5	una	14.2	100.00	139139	ися	341	kills.	20	830
2 11/16	USTU5000A-211																	
2 3/4	USTU5000A-212	47447	8 3/4	1 9/16	4 3/4	6 3/4	4 1/4	2 3/4	1 9/16	4 31/64	2 31/32	4 25/64	5 15/16	4 15/32	3 3/16	3	1 13/16	24.6
2 15/16	USTU5000A-215	211044	222.3	39.7	120.7	171.5	108.0	69.9	39.7	113.9	75.4	111.5	150.8	113.5	81.0	76.2	46.0	11.20
3	USTU5000A-300																	
13090	JIGT FEMORE (A)																	
SIZIN	38.10534F4-9.3	72840	100 miles	1.13.10	2000	7.5%	4.7%	253	478 100	ivii 9	HETTER	1232 1219	CONTRACTOR OF THE PARTY OF THE	2000d	10 18	50.00	1 15/16	200
3 6-2	J5T JC3002-375	***	54% T	ee u.	41120	4345	447	70	365	557	61.0	Acad 94	12340	100		3.3	050	1000
3 11/16	USTU5000A-311																	
3 15/16	USTU5000A-315	96050 427230	11 13/16 300.0		7	9 7/16	5 5/8 142.9	3 3/8 85.7	2 3/16 55.6	5 15/16 150.8	3 15/16 100.0	5 13/16	8 5/8 219.1	6 3/16				67.3
4	USTU5000A-400	427230	300.0	54.0	177.8	239.7	142.9	65.7	JJ.6	150.8	100.0	147.6	219.1	157.2	112.7	104.8	52.4	30.61

Note: These take-up units can be used with T-1000 take-up frames shown on pages I-45 and I-46.

One expansion unit is to be used in conjunction with one non-expansion unit for applications using an adapter lock unit Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

SEALMASTER® Performance Mounted Spherical Roller Bearings

Rolling Elements: Spherical Roller


> Cast Iron Top Angle Take-Up Housing:

Self Alignment: +/- 2 Degrees

> Lock: Setscrew Seal: Felt

Optional Seal: Double Lip Contact

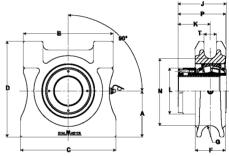
Temperature: -20° to 220° F

USTA5000 Series Top Angle Take-Up Units - Collar Mount

Bore Diameter	Part No.	Basic Dynamic											Unit Wt.		
inch	Fait No.	Řatino I≞/N	A	В	G	D.	E	G	J.	Ж.	E	N	P.	1.	lb/kg
1 15/16	USTA5000-115	23520 104617	3 1/4 82.6	6 152.4	6 1/2 165.1	6 3/8 162.1	2 7/16 62.0	51/64 20.3	2 7/8 73.0	1 11/16 42.9	3 76.2	3 33/64 89.3	2 7/8 73.2	7/8 22.4	12.1 5.49
2 3/16	USTA5000-203	28087 124931	3 1/2 88.9	7 177.8	7 1/2 190.5	7 7/16 189.0	2 7/16 62.0	51/64 20.3	3 1/8 79.7	1 7/8 47.5	3 1/4 82.6	4 57/64 124.2	3 1/4 82.3	1 1/8 28.4	18.0 8.16
2 7/16	USTA5000-207	44691 198786	4 101.6	8 203.2	8 1/2 215.9	8 5/16 211.1	2 11/16 68.3	51/64 20.3	3 3/8 85.7	1 61/64 49.6	4 101.6	5 53/64 148.0	3 21/64 84.5	1 1/8 28.4	27.9 12.66
2 15/16	USTA5000-215	47447 211044	4 101.6	8 203.2	8 1/2 215.9	8 5/16 211.1	2 13/16 71.4	51/64 20.3	3 7/8 98.3	2 11/32 59.5	4 17/32 115.1	5 53/64 148.0	3 47/64 94.9	1 1/8 28.4	27.4 12.43
3 7/16	USTA5000-307	72640 323103	4 1/2 11 4.3	9 228.6	9 1/2 241.3	9 5/8 244.6	3 3/16 81.0	51/64 20.3	4 15/32 113.5	2 21/32 67.5	5 5/16 134.5	6 53/64 173.4	4 1/4 108.0	1 3/8 35.1	39.3 17.83
3 15/16	USTA5000-315	96050 427230	5 1/2 139.7	10 1/2 266.7	11 279.4	11 279.4	3 9/16 90.4	51/64 20.3	4 15/16 125.4	2 15/16 74.4	6 152.4	7 19/32 192.9	4 1/2 114.0	1 23/64 34.5	54.5 24.72
					1	ype E Mo	unting Di	mensions							
2 3/16	USTAE5000-203	28087 124931	3 1/16 77.7	6 3/4 171.5	7 177.8	6 7/8 174.8	2 1/2 63.5	51/64 20.3	3 1/8 79.7	1 55/64 47.2	3 1/4 82.6	4 37/64 116.3	3 3/64 77.4	7/8 22.4	11.3 5.13
2 7/16	USTAE5000-207	44691 198786	3 1/2 88.9	7 177.8	7 1/2 190.5	7 7/16 189.0	2 3/4 69.9	49/64 19.3	3 3/8 85.7	1 61/64 49.6	4 101.6	4 15/16 125.2	3 21/64 84.5	1 1/8 28.4	19.6 8.89

Rolling Elements: Spherical Roller

> Housing: Cast Iron Top Angle Take-Up


Self Alignment: +/- 2 Degrees

> Lock: Adapter

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USTA5000A Series Top Angle Take-Up Units - Adapter Mount

Bore Diameter	Part No.	Basic Dynamic					Di	mension	s inch / m	m					Unit Wt
inch	Part No.	Řating lb/N	A:	В	C	D	10	G	4	К	1	N	P	T	lb/kg
1 15/16	USTA5000A-115	23520	3 1/4	6	6 1/2	6 3/8	2 7/16	51/64	3 1/2	2 5/16	3 3/16	3 33/64	3 1/2	7/8	12.6
1 15/16	US 1A3000A-113	104617	82.6	152.4	165.1	162.1	62.0	20.3	88.9	58.7	80.6	89.3	88.9	22.4	5.72
2 3/16	USTA5000A-203	28087	3 1/2	7	7 1/2	7 7/16	2 7/16	51/64	3 7/8	2 5/8	3 7/16	4 57/64	4	1 1/8	18.7
2 3/10	US IA3000A-203	124931	88.9	177.8	190.5	189.0	62.0	20.3	98.4	66.5	87.4	124.2	101.6	28.4	8.48
2 7/16	USTA5000A-207	44691	4	8	8 1/2	8 5/16	2 11/16	51/64	4 5/16	2 7/8	3 63/64	5 53/64	4 17/64	1 1/8	28.9
2 1/10	US IA3000A-207	198786	101.6	203.2	215.9	211.1	68.3	20.3	109.5	73.2	101.2	148.0	108.3	28.4	13.11
2 15/16	USTA5000A-215	47447	4	8	8 1/2	8 5/16	2 13/16	51/64	4 31/64	2 31/32	4 25/64	5 53/64	4 11/32	1 1/8	27.6
2 15/16	US IA3000A-213	211044	101.6	203.2	215.9	211.1	71.4	20.3	113.9	75.4	111.5	148.0	110.3	28.4	12.52
3 7/16	USTA5000A-307	72640	4 1/2	9	9 1/2	9 5/8	3 3/16	51/64	5 35/64	3 47/64	5 15/32	6 53/64	5 21/64	1 3/8	41.3
3 7/10	03 IA3000A-307	323103	114.3	228.6	241.3	244.6	81.0	20.3	140.9	94.9	138.9	173.4	135.3	35.1	18.73
3 15/16	USTA5000A-315	96050	5 1/2	10 1/2	11	11	3 9/16	51/64	5 15/16	3 15/16	5 37/64	7 19/32	5 1/2	1 23/64	55.4
3 15/10	03 IA3000A-313	427230	139.7	266.7	279.4	279.4	90.4	20.3	150.8	99.8	141.7	192.9	139.7	34.5	25.13
					Ту	pe E Mou	nting Dim	ensions							
2 3/16	USTAE5000A-203	28087	3 3/8	6 3/4	7	6 7/8	2 1/2	51/64	3 7/8	2 5/8	3 7/16	4 37/64	3 13/16	7/8	15.7
2 3/10	US IAESUUUA-203	124931	85.7	171.5	177.8	174.8	63.5	20.3	98.4	66.5	87.4	116.3	96.8	22.4	7.12
2 7/16	USTAE5000A-207	44691	3 1/2	7	7 1/2	7 7/16	2 3/4	49/64	4 5/16	2 7/8	3 63/64	4 15/16	4 17/64	1 1/8	20.6
2 //10	03 IAE0000A-207	198786	88.9	177.8	190.5	189.0	69.9	19.3	109.5	73.2	101.2	125.2	108.3	28.4	9.34

Note: One expansion unit is to be used in conjunction with one non-expansion unit for applications using an adapter lock unit. Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance. Metric dimensions for reference only.

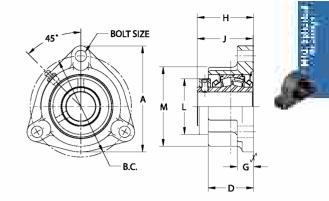
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Performance Mounted Spherical Roller Bearings **SEAL**

Rolling Elements: Spherical Roller

Housing: Cast Iron Three Bolt Flange


Self Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: Fel

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USF3B5000 Series Three-Bolt Flange Units - Collar Mount

Box Expector		104.2										(Carriero
(00)	7/1/20	Majorita Majori Majorita	<u> </u>	0.0	D		16	Į.	L	7.6	Bull Hau	llava
The High	CSF-MEDIC TEST CSF-MEDIC CSF CSF-RESCOCKER	25507 25507	124	62	> 14 22.2	1930	2750 275	3 74 40,5	11 88314 75:2	70.7	Sión .	112 333
1 7/16 1 1/2	USF3B5000-107 USF3B5000-108	20368 90597	5 1/4 133.4	5 127.0	2 1/4 57.2	13/16 20.6	2 53/64 71.8	2 3/4 69.9	2 49/64 70.2	3 15/16 100.0	1/2	6 4 2.91

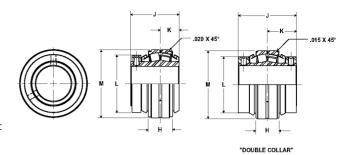
^{*}For expansion bearings, this dimension can increase by the corresponding value in table VIII on page I-69.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

ASTER® Performance Mounted Spherical Roller Bearings

Rolling Elements: Spherical Roller

> Housing: Insert Bearing


Self Alignment: +/- 2 Degrees

> Lock: Setscrew

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F

USI5000 Unitized Spherical Roller Bearing Inserts - Collar Mount

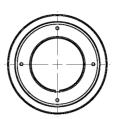
Bore		Basic		Di	mensions inch / n	nm		11:4 38/4
Diameter inch	Part No.	Dynamic Rating lb/N	н	J	К	L	M (Nominal)	Unit Wt. Ib/kg
1 1/8	USI5000-102							
1 3/16	USI5000-103							
1 1/4	USI5000-104	20368	1 15/64	2 3/4	1	2 49/64	3.1493	3.3
1 7/16	USI5000-107	90597	31.4	69.9	25.4	70.2	80.0	1.50
1 1/2	USI5000-108							
1 11/16	USI5000-111	22689	1 7/32	2 7/8	1 3/64	2 3/4	3.3462	3.0
1 3/4	USI5000-112	100921	31.0	73.0	26.6	69.9	85.0	1.36
1 15/16	USI5000-115	23520	1 17/64	2 7/8	1 1/16	3	3.5430	3.2
2	USI5000-200	104617	32.1	73.0	27.0	76.2	90.0	1.45
0.040	11015000 000	28087	1 23/64	3 1/8	1 9/64	3 1/4	3.9367	3.9
2 3/16	USI5000-203	124931	34.5	79.4	29.0	82.6	100.0	1.77
2 7/16	USI5000-207	44691	1 11/16	3 3/8	1 5/16	4	4.7241	7.3
2 1/2	USI5000-208	198786	42.9	85.7	33.3	101.6	120.0	3.32
2 11/16	USI5000-211							
2 3/4	USI5000-212	47447	1 23/32	3 7/8	1 25/64	4 17/32	5.1178	9.9
2 15/16	USI5000-215	211044	43.7	98.4	35.3	115.1	130.0	4.50
3	USI5000-300							
3 3/16	USI5000-303							
3 7/16	USI5000-307	72640	2 1/8	4 15/32	1 45/64	5 5/16	6.2987	17.8
3 1/2	USI5000-308	323103	54.0	113.5	43.3	134.9	160.0	8.09
3 11/16	USI5000-311							
3 15/16	USI5000-315	96050	2 13/32	4 15/16	1 55/64	6	7.0861	15.8
4	USI5000-400	427230	61.1	125.4	47.2	152.4	180.0	7.18
4 7/16	USI5000-407	111537	2 11/16	6 3/4	3 3/8	6 1/2	7.8734	35.2
4 1/2	USI5000-408	496117	68.3	171.5	85.7	165.1	200.0	16.00
4.45/40	11015000 445	158816	3 21/64	7 27/64	3 23/32	7 1/2	9.0545	55.4
4 15/16	USI5000-415	706414	84.5	188.5	94.5	190.5	230.0	25.18
E 7/40	LIGIEGGO FOZ	196682	3 21/32	9 1/32	4 33/64	8 1/2	9.8419	72.7
5 7/16	USI5000-507	874842	92.9	229.4	114.7	215.9	250.0	33.05
E 15/10	LICIE000 E45	196682	4 25/64	9 25/32	4 57/64	10	11.4166	117.2
5 15/16	USI5000-515	874842	111.5	248.4	124.2	254.0	290.0	53.27
6 7/16								
6 1/2	USI5000-608	334229	4 55/64	10 1/2	5 1/4	11	12.5976	162.5
6 15/16	USI5000-700	1486651	123.4	266.7	133.4	279.4	320.0	73.87
7								

Note: 1 1/8" - 4" bore sizes have a single lock collar. 4 7/16" - 7" bore sizes have a double lock collar.

Performance Mounted Spherical Roller Bearings SEAL

Rolling Elements: Spherical Roller

Housing: Insert Bearing

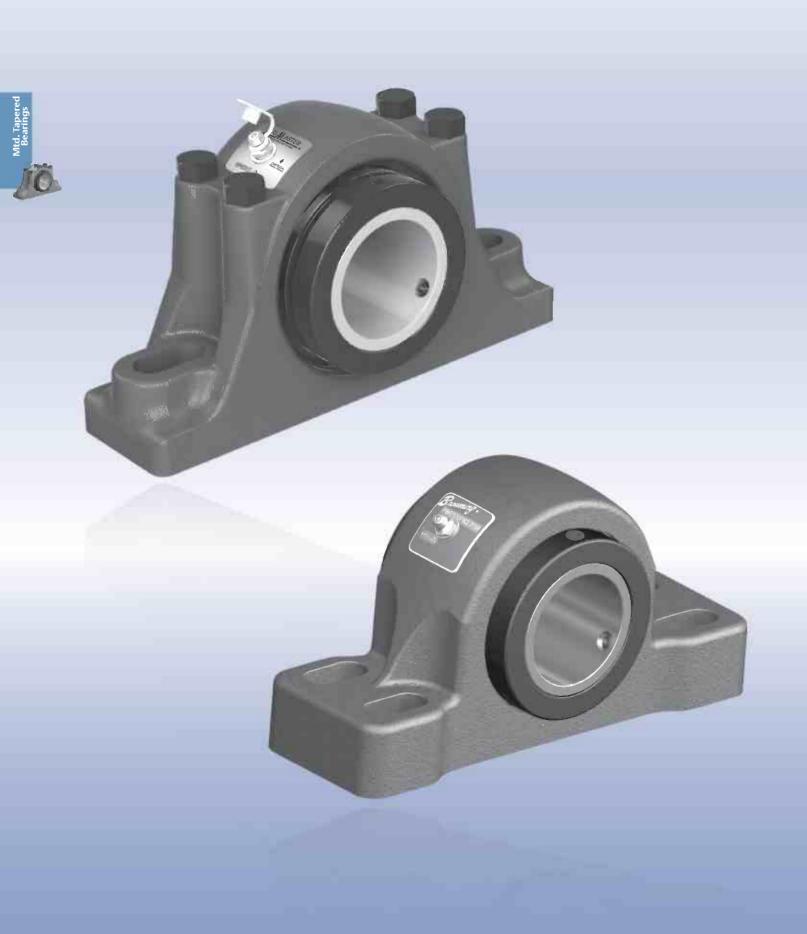

Self Alignment: +/- 2 Degrees


Lock: Adapter

Seal: Felt

Optional Seal: Double Lip Contact

Temperature: -20° to 220° F


USI5000A Unitized Spherical Roller Bearing Inserts - Adapter Mount

-								
Diameter		Basic Dynamic		D	imensions inch / m	ım		Unit Wt.
nch	Part No.	Ratīng Ib/N	B	ij	K	L	M (Nominal)	lb/kg
1 1/8 1 3/16 1 1/4 1 7/16 1 1/2	USI5000A-102 USI5000A-103 USI5000A-104 USI5000A-107 USI5000A-108	20368 90597	1 15/64 31.4	3 11/32 84.9	1 25.4	2 31/32 75.4	3.1493 80.0	3.3 1.50
1 11/16 1 3/4 1 15/16	USI5000A-111 USI5000A-112 USI5000A-115	22689 100921 23520	1 7/32 29.9 1 17/64	3 29/64 84.6 3 1/2	1 3/64 25.6 1 1/16	2 63/64 73.1 3 11/64	3.3462 82.0 3.5430	3.5 1.59 3.7
2 3/16	USI5000A-200 USI5000A-203	104617 28087 124931	32.1 1 23/64 33.3	88.9 3 7/8 94.9	27.0 1 9/64 27.9	80.6 3 7/16 84.2	90.0 3.9367 96.4	1.68 4.6 2.09
2 7/16 2 1/2	USI5000A-207 USI5000A-208	44691 198786	1 11/16 42.9	4 5/16 109.5	1 5/16 33.3	3 63/64 101.2	4.7281 120.0	8.3 3.77
2 11/16 2 3/4 2 15/16 3	USI5000A-211 USI5000A-212 USI5000A-215 USI5000A-300	47447 211044	1 23/32 42.1	4 31/64 109.9	1 25/64 34.1	4 25/64 107.6	5.1178 125.4	10.0 4.55
3 3/16 3 7/16 3 1/2	USI5000A-303 USI5000A-307 USI5000A-308	72640 323103	2 1/8 54.0	5 35/64 140.9	1 45/64 43.3	5 15/32 138.9	6.2987 160.0	19.8 9.00
3 11/16 3 15/16 4	USI5000A-311 USI5000A-315 USI5000A-400	96050 427230	2 13/32 59.0	5 15/16 150.8	1 55/64 45.6	5 13/16 142.4	7.0861 173.6	24.4 11.09
4 7/16 4 1/2 4 15/16	USI5000A-407 USI5000A-408	111537 496117	2 11/16 68.3 3 21/64	6 27/64 163.1 7 1/8	2 5/64 52.8 2 27/64	6 11/32 161.1	7.8734 200.0 9.0545	28.7 13.05 46.7
5	USI5000A-415 USI5000A-500	158816 706414 196682	81.5 3 21/32	7 1/6 174.6 7 7/8	59.3 2 39/64	7 13/64 176.5 7 47/64	9.0545 221.8 9.8419	21.23 57.7
5 7/16 5 15/16	USI5000A-507 USI5000A-515	874842 261346	92.9 4 25/64	200.0 8 11/16	66.3 3 1/64	196.5 8 1/2	250.0 11.1724	26.23 91.3
6 7/16	USI5000A-607	1162467	111.5	220.7	76.6	215.9	290.0	41.50
6 1/2 6 15/16 7	USI5000A-608 USI5000A-615 USI5000A-700	334229 1486651	4 55/64 119.1	9 45/64 237.7	3 5/16 81.2	9 11/16 237.3	12.5976 308.6	118.7 53.95
7 1/2 7 15/16 8	USI5000A-708 USI5000A-715 USI5000A-800	363818 1618262	5 15/64 133.0	10 9/16 268.3	3 19/32 91.3	11 7/64 282.2	14.1732 360.0	178.9 81.32

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard of fering, please contact Application Engineering (800) 626-2093.

Mounted Tapered Roller

Modular bearing assembly consisting of sealed and lubricated inch or metric tapered bearing with setscrew locking collars contained within a variety of housings types, mounting styles, and housing materials. Mounted tapered roller bearings provide an antifriction solution when supporting rotating shafts with combination radial and thrust loads.

Housing Styles

Pillow Block, Flanges, Take Up Assemblies

Locking Styles

Setscrew

Bore Size Range

13/16" to 5" and 35mm to 125mm

Housing Materials

Cast Iron, and Cast Steel

Mounted Tapered Roller Selection Guide

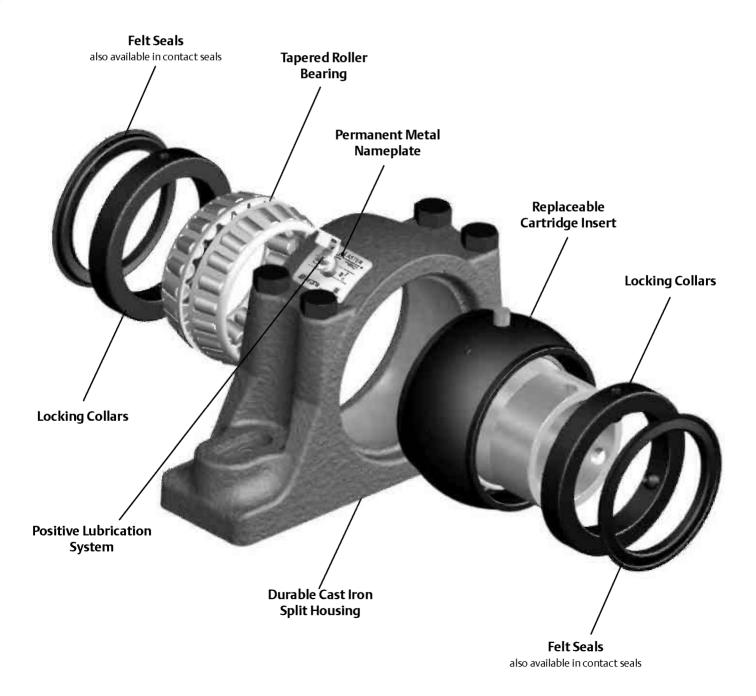
Brand	lmage	Series	Housing Style
	JÖ.	RPB	Two Bolt Pillow Block
	56	RPB	Four Bolt Pillow Block
	10	ERPB	Expansion Two Bolt Pillow Block
		ERPB	Expansion Four Bolt Pillow Block
	10	DRPB	Two Bolt Pillow Block
Sealmaster	50	DRPB	Four Bolt Pillow Block
Sealifiastel	10	EDPB	Expansion Two Bolt Pillow Block
	10	EDPB	Expansion Four Bolt Pillow Block
	50	RPBXT	Four Bolt Pillow Block (SAF mounting dimensions)
	16	ERPBXT	Expansion Four Bolt Pillow Block (SAF mounting dimensions)
	10	SPB	Two Bolt Pillow Block
	10	SPB	Four Bolt Pillow Block

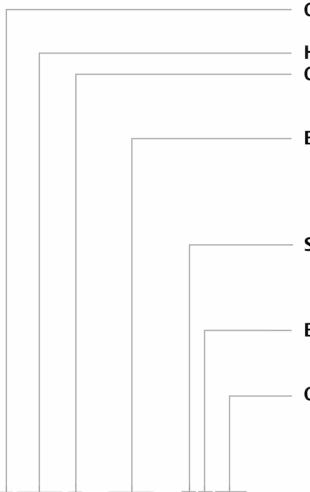
Locк	Түре				Size I	RANGE	
Double Lock Collar	Single Lock Collar	Housing Material	Standard Seal	Seal Options	Inch	Metric	Page
RPB-2	RPBA-2	Cast Iron	Felt	Contact, Nomex	1 3/16" - 3 1/2"	35 mm - 95 mm	I-13, I-15
RPB-4	RPBA-4	Cast Iron	Felt	Contact, Nomex	2 1/4" - 5"	60 mm - 125 mm	I-14, I-16
ERPB-2	ERPBA-2	Cast Iron	Felt	Contact, Nomex	1 3/4" - 3 1/2"	45 mm - 95 mm	I-17, I-19
ERPB-4	ERPBA-4	Cast Iron	Felt	Contact, Nomex	3 15/16" - 5"	100 mm - 125 mm	I-18, I-20
DRPB-2	DRPBA-2	Cast Iron	Felt	Contact, Nomex	1 3/4" - 3 1/2"	45 mm - 95 mm	I-21, I-23
DRPB-4	DRPBA-4	Cast Iron	Felt	Contact, Nomex	3 15/16" - 4"	100 mm - 105 mm	I-22, I-24
N/A	EDPBA-2	Cast Iron	Felt	Contact, Nomex	1 3/4" - 3 1/2"	100 mm - 105 mm	I-25
N/A	EDPBA-4	Cast Iron	Felt	Contact, Nomex	3 15/16" - 4"	100 mm - 105 mm	I-26
RPBXT-4	N/A	Cast Iron	Felt	Contact, Nomex	2 1/4" - 5"	60 mm - 125 mm	I-27
ERPBXT-4	N/A	Cast Iron	Felt	Contact, Nomex	2 1/4" - 5"	60 mm - 125 mm	I-28
SPB-2	N/A	Cast Steel	Felt	Contact, Nomex	1 1/2" - 3 1/2"	40 mm - 95 mm	I-29
SPB-4	N/A	Cast Steel	Felt	Contact, Nomex	3 15/16" - 5"	100 mm - 125 mm	I-30

Mounted Tapered Roller Selection Guide

Brand	Image	Series	Housing Style
		RFB	Four Bolt Flange
Sealmaster		RFP	Piloted Flange Cartridge
Seaimaster		ERCI	Expansion Cartridge Insert
	S	RCI	Roller Cartridge Insert
	10	PBE920	Two Bolt Pillow Block
	50	PBE920F	Four Bolt Pillow Block
Browning		FBE920	Flange Block
	(6)	TUE920	Take Up
		T1000	Take Up Frame

Locк	Түре				Size F	RANGE	
Double Lock Collar	Single Lock Collar	Housing Material	Standard Seal	Seal Options	Inch	Metric	Page
RFB	RFBA	Cast Iron	Felt	Contact, Nomex	1 3/16" - 4"	35 mm - 105 mm	I-31 to I-32
RFP	RFPA	Cast Iron	Felt	Contact, Nomex	1 3/16" - 5"	35 mm - 125 mm	I-33 to I-34
ERCI	ERCIA	N/A	Felt	Contact, Nomex	1 3/4" - 5"	45 mm - 125 mm	I-35
RCI	RCIA	N/A	Felt	Contact, Nomex	1 3/16" - 5"	35 mm - 125 mm	I-37
PBE920	N/A	Cast Iron	Contact	N/A	1 3/16" - 3 1/2"	N/A	I-42
PBE920F	N/A	Cast Iron	Contact	N/A	2 1/4" - 5"	N/A	I-42
FBE920	N/A	Cast Iron	Contact	N/A	1 3/16" - 4"	N/A	I-43
TUE920	N/A	Cast Iron	Contact	N/A	1 3/8" - 4 7/16"	N/A	1-44
N/A	N/A	N/A	N/A	N/A	1 1/2" - 4 1/2"	N/A	I-45 to I-46





Sealmaster Tapered Roller Bearings

Sealmaster® RPB mounted tapered roller bearings are a dimensionally interchangeable upgrade from competitive Type E bearings. The exclusive features include unitized replaceable inserts, self aligning capability, split housing and the Sealmaster alignment pin which provides for a direct path for lubrication into the bearing and helps prevent outer ring rotation. The Sealmaster RPB is available with two traditional setscrew locking collars for easy installation. The felt seal with flinger provides a good balance between contaminant entry, grease retention and friction. Depending on application requirements, these bearings are available in both inch and metric with a wide variety of housing, sealing, and lubrication options as illustrated on the pages to follow.

Tapered Roller Bearing Nomenclature

Optional Prefix

E - Expansion

Housing Type (*see below)

Optional Suffix

A - Single Lock Collar No Suffix - Two Lock Collars

Bore Size

Inch - First Digit - Number of Inches Second & Third Digit - Number of 1/16" of Inches (ex. 107 = 17/16")

Metric - 65 mm = 65 mm

Seal Option

C - Contact Seal

N - Nomex Seal

No Suffix - Felt Seal

Bolts

2 - Two Bolt Base

4 - Four Bolt Base

Options

CR - Corrosion Resistant (see page K-19)

AH - Air Handling

TF - Tight Fit

RC - Reduced Internal Clearance

*Housing Type

RPB - Roller Pillow Block

DRPB - Roller Pillow Block (DI)

RPBXT - Roller Pillow Block (SAF Mounting Dim.)

SPB - Steel Pillum Block

RFD Roller Flange Block RFP - Roller Flange Fred

Optional Prefix

F - Ехрымукий

Housing Type

RCI - Replaceable Cartridge Insert

Optional Suffix

A - Single Lock Collar

No Suffix - Two Lock Collars

Bare Size

Inch - First Digit - Number of Inches Second & Third Digit Number of 1/16" of Inches (ex. 215 - 215/16*)

ERPBA - 107 - C2CR

Features and Benefits

Tapered Roller Bearings

Sealmaster RPB series contains heavy duty tapered roller bearings for radial, thrust and combination loading.

Durable Cast Iron Split Housing

Durable cast iron split housings allow for quick insert replacement when change-out is required. Once installed, the base remains fixed and aligned with the shaft, reducing downtime and maintenance costs. Guide pin in the housing base orientates the proper assembly of the cap during replacement. Pillow block housings have elongated bolt holes for interchangeability with other competitive units. Permanent metal nameplate allows for easy identification after years of operation. Multiple housing styles include 2 and 4 bolt pillow block (RPB), 4 bolt flange (RFB), Piloted flange (RFP). Inch and metric bore size from 1 3/16" – 5" bore and 35 to 125 mm.

Replaceable Cartridge Insert (RCI)

The heart of the RPB is the unitized, self-aligning cartridge insert with integral seals and double locking collars. The replaceable cartridge insert can accommodate +/- 3° static misalignment and is factory sealed and lubricated. The cartridges fit all housing styles and are field replaceable for quick change out. RCI outer races are black oxide treated.

Felt Seals

Patented race mounted felt lined flinger seals help filter out contaminants and are not subject to misalignment distortion. The felt acts as a filter to help exclude contaminants. The rotating flinger helps repel contaminant build-up on the seal surfaces. Felt seal stampings are black oxided.

Features and Benefits continued

Single Lip Contact Seal

Single lip race mounted contact seals for dry, dirty and wet conditions. It's composed of a steel inner seal with a bonded elastomeric sealing member. The steel inner seal is press fit into the inside diameter of the outer race, while the bonded elastomeric sealing member is held in the proper rubbing contact position on the outer diameter of the inner race. Contact seal stampings are black oxided.

Positive Lubrication System

Positive lubrication system provides direct grease path to the bearing. The unit is designed with two lubrication ports in the cartridge OD so that one of lube holes in cartridge lines up with grease fitting regardless of insert orientation in the housing. A rubber grommet in housing top recess directs lubricant into bearing cavity. Extra lubrication ports help prevent seal damage by venting excess pressure from over greasing. Sealmaster alignment pin helps prevent outer race rotation.

Collar Mount System

Two locking collars are standard on all units with two setscrews at 120° for balanced three point contact. Precision manufactured diamond faceted point setscrew design contributes to improved clamping and resistance to back out. Single locking collars are available where space limitations are present. Locking collars are black oxided treated.

Additional Configurations

Expansion Roller Bearing Pillow Blocks

Axial shaft expansion is compensated by a non-expansion (fixed) and expansion (float) arrangement. It is recommended to use both units on one shaft in high temperature applications to help account for linear shaft expansion.

ERCI Cylindrical Cartridge Inserts

Cylindrical cartridge insets (ERCI) are used in standard expansion ERPB housings or can be mounted into customer designed housings.

Additional Configurations continued

DRPB Series

Interchangeable with most type DI mounting dimensions

DRPBA Series

Interchangeable with most Type K mounting dimensions

RPBXT Series

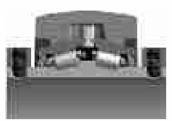
Interchangeable with four bolt SAF mounting dimensions in shaft sizes from 2 1/4" - 5" (60mm - 125mm).

SPB Series

This series incorporates all features of the standard RPB with cast steel housings in two and four bolt pillow blocks in shaft sizes from 1 1/2" - 5" (40mm - 125mm).

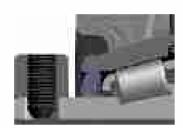
Air Handling

RPB-AH Series designed for HVAC applications. It incorporates all features of the standard RPB with a custom AH fit between the bearing cartridge OD and the bearing housing, which provides lower misalignment torque.


Available in the RPB. RFB & RFP and DRPB Series

RPB-MM Series

Incorporates all the features of the standard RPB but with metric bore sizes from 35-125mm and metric setscrews


Options

- Custom housing configurations
- Custom lubricants, including synthetic and food grade greases and oil saturated polymers

Tight Housing Fit "TF" (TF suffix) for applications with vibration and rotating loads

High Temperature "N"

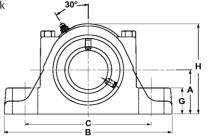
High temperature bearing with Nomex* seal and high temperature synthetic grease.

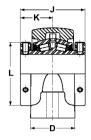
Reduced Bearing Internal Clearance "RC"

(RC suffix) for specific application requirements

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Nomex; E.J. du Pont de Nemuns and company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

> Housing: Cast Iron Two Bolt Pillow Block


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Double Collar

Seal:

Optional Seal: Single Lip Contact

-20°F to 220°F Temperature:

RPB Series Two-Bolt Base Pillow Blocks

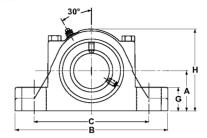
Bore Di	iameter		District	Basic					Dimen	sions inc	h / mm					Unit Wt.
inch	mm	Part No.	Bearing	Dynamic Rating Ib/N	A.	8	Min.	Max.	D	G	н		K	L	Bolt Size	lb/kg
1 3/16		RPB-103-2	RCI-103	2975	1 1/2	6 1/4	4 9/16	4 15/16	1 7/8	7/8	3 1/8	2 3/4	1 3/8	2 1/4	1/2	4.8
1 1/4		RPB-104-2	RCI-104	13233	38.1	158.8	115.9	125.4	47.6	22.2	79.4	69.9	34.9	57.2	1/2	2.18
1 3/8		RPB-106-2	RCI-106	4760	4.7/0	7 4/4	5 5/16	E 45/40	0.4/40	4.4/0	2.42/40	3	4.4/0	2.5/0		7.7
	35	RPB-35MM-2	RCI-35MM	21174	1 7/8 47.6	7 1/4 184.2	134.9	5 15/16 150.8	2 1/16 52.4	1 1/8 28.6	3 13/16 96.8	3 76.2	1 1/2 76.2	2 5/8 66.7	1/2	7.7 3.5
1 7/16		RPB-107-2	RCI-107	21117	41.0	104.2	104.0	100.0	02.4	20.0	00.0	10.2	10.2	00.1		0.0
1 1/2		RPB-108-2	RCI-108													
	40	RPB-40MM-2	RCI-40MM	6140	2 1/8	7 3/4	5 9/16	6 7/16	2 5/16	1 1/4	4 3/8	3 3/8	1 11/16	2 7/8	1/2	10.9
1 5/8		RPB-110-2	RCI-110	27312	54.0	196.9	141.3	163.5	58.7	31.8	111.1	85.7	42.9	73.0	1/2	4.94
1 11/16		RPB-111-2	RCI-111													
1 3/4		RPB-112-2	RCI-112													
	45	RPB-45MM-2	RCI-45MM	8070	2 1/4	8 7/8	6 5/16	7 3/16	2 7/16	1 1/4	4 5/8	3 1/2	1 3/4	3 1/4		13.2
1 15/16		RPB-115-2	RCI-115	35897	57.2	225.4	160.3	182.6	61.9	31.8	117.5	88.9	44.5	82.6	5/8	5.99
	50	RPB-50MM-2	RCI-50MM	""	0				0.1.0			00.0		02.0		0.00
_ 2		RPB-200-2	RCI-200													
	55	RPB-55MM-2	RCI-55MM	8570	2 1/2	9 5/8	6 11/16	7 15/16	2 9/16	1 7/16	5 1/8	3 3/4	1 7/8	3 5/8	5/8	15.7
2 3/16		RPB-203-2	RCI-203	38121	63.5	244.5	169.9	201.6	65.1	36.5	130.2	95.3	47.6	92.1	0,0	7.12
2 1/4		RPB-204-2	RCI-204													
	60	RPB-60MM-2	RCI-60MM	9030	2 3/4	10 3/8	6 15/16	8 11/16	2 3/4	1 5/8	5 5/8	4	2	3 15/16		20.7
2 7/16		RPB-207-2	RCI-207	40167	69.9	263.5	176.2	220.7	69.9	41.3	142.9	101.6	50.8	100.0	5/8	9.39
2 1/2		RPB208-2	RCI-208													
_	65	RPB-65MM-2	RCI-65MM													
2 11/16		RPB-211-2	RCI-211													
2 3/4		RPB-212-2	RCI-212													
	70	RPB-70MM-2	RCI-70MM	9630	3 1/8	11 3/4	8 1/16	9 11/16	3	1 3/4	6 3/8	4 1/2	2 1/4	4 23/32	3/4	29.3
2 15/16		RPB-215-2	RCI-215	42836	79.4	298.5	204.8	246.1	76.2	44.5	161.9	114.3	57.2	119.9	0, .	13.29
	75	RPB-75MM-2	RCI-75MM													
3		RPB-300-2	RCI-300													
	80	RPB-80MM-2	RCI-80MM													
3 3/16		RPB-303-2	RCI-303													
3 1/4		RPB-304-2	RCI-304													
	85	RPB-85MM-2	RCI-85MM	15320	3 3/4	13 3/4	10 1/8	11 1/4	4 1/8	2	7 3/4	5	2 1/2	5 7/16	7/8	56.0
3 7/16		RPB-307-2	RCI-307	65147	95.3	349.3	257.2	285.8	104.8	52.4	196.9	127.0	63.5	138.1		25.40
3 1/2		RPB-308-2	RCI-308													
	90	RPB-90MM-2	RCI-90MM													
	95	RPB-95MM-2	RCI-95MM													

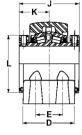
Metric dimensions for reference only.

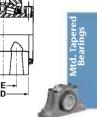
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

> Housing: Cast Iron Four Bolt Pillow Block


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Double Collar


Seal:

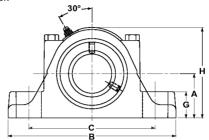
Single Lip Contact **Optional Seal:**

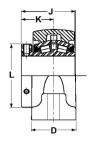
-20°F to 220°F Temperature:

RPB Series Four-Bolt Base Pillow Blocks

Bore Di	iameter		- Constant	Basic						ensions	inch / m	m					Unit
inch	mm	Part No.	Interdition	Dynamic Rating	A	B			D	E	6	H	3	K	L	Boit Size	Wt.
2 1/4		RPB-204-4	RCI-204	lb/N			PLANE.	200.0								OI2C	- Janes
2 174	60	RPB-60MM-4	RCI-60MM														
2 7/16		RPB-207-4	RCI-207	9030	2 3/4	10 3/8	7 3/4	8 3/4	3 1/2	1 7/8	1 5/8	5 5/8	4	2	3 15/16	5/8	22.4
2 1/2		RPB-208-4	RCI-208	40167	69.9	263.5	196.9	222.3	88.9	47.6	41.3	142.9	101.6	50.8	100.0		10.16
	65	RPB-65MM-4	RCI-65MM														
2 11/16		RPB-211-4	RCI-211														
2 3/4		RPB-212-4	RCI-212														
	70	RPB-70MM-4	RCI-70MM	9630	3 1/8	11 3/4	8 3/4	10	3 3/4	2 1/8	1 3/4	6 3/8	4 1/2	2 1/4	4 23/32		31.5
2 15/16		RPB-215-4	RCI-215	42836	79.4	298.5	222.3	254.0	95.3	54.0	44.5	161.9	114.3	57.2	119.9	5/8	14.29
	75	RPB-75MM-4	RCI-75MM														
3		RPB-300-4	RCI-300														
	80	RPB-80MM-4	RCI-80MM														
3 3/16		RPB-303-4	RCI-303														
3 1/4		RPB-304-4	RPB-304														
	85	RPB-85MM-4	RCI-85MM	15320	3 3/4	13 3/4	10 9/16	11 1/2	4 1/2	2 3/8	2 1/16	7 3/4	5	2 1/2	5 7/16	2/4	59.6
3 7/16		RPB-307-4	RCI-307	68147	95.3	349.3	268.3	292.1	114.3	60.3	52.4	196.9	127.0	63.5	138.1	3/4	27.03
3 1/2		RPB-308-4	RCI-308														
	90	RPB-90MM-4	RCI-90MM														
	95	RPB-95MM-4	RCI-95MM														
3 15/16		RPB-315-4	RCI-315														
	100	RPB-100MM-4	RCI-100MM	20980	4 1/4	15 1/4	11	13	4 1/2	2 1/4	2 7/16	8 5/8	6 1/4	3 1/8	5 15/16	3/4	76.9
4		RPB-400-4	RCI-400	93324	108.0	387.4	279.4	330.2	114.3	57.2	61.9	219.1	158.8	79.4	150.8	0/4	34.88
	105	RPB-105MM-4	RCI-105MM														
	110	RPB-110MM-4	RCI-110MM														
4 7/16		RPB-407-4	RCI-407	25750	4 3/4	16 1/2	11 3/4	13 7/8	4 5/8	2 1/2	2 3/4	9 5/8	6 3/4	3 3/8	6 13/32	3/4	95.6
4 1/2		RPB-408-4	RCI-408	114542	120.7	419.1	298.5	352.4	117.5	63.5	69.9	244.5	171.5	85.7	162.7	0,4	43.36
	115	RPB-115MM-4	RCI-115MM														
	120	RPB-120MM-4	RCI-120MM														
	125	RPB-125MM-4	RCI-125MM	35520	5 1/2	18 1/2	13 1/2	15 7/8	5 1/8	2 3/4	3 1/8	11	7 1/4	3 5/8	7 13/32	7/8	143.6
4 15/16		RPB-415-4	RCI-415	158001	139.7	469.9	342.9	403.2	130.2	69.9	79.4	279.4	184.2	92.1	188.1	.,,	65.14
5		RPB-500-4	RCI-500														

Housing: Cast Iron Two Bolt Pillow Block


Self Alignment: +/- 3 Degrees


Lock: Setscrew, Single Collar

Seal: Fel

Optional Seal: Single Lip Contact

Temperature: -20°F to 220°F

RPBA Series Two-Bolt Base Pillow Blocks - Single Lock Collar

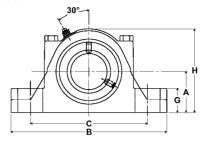
Bore Dia	meter								Dimen	sions inc	h / mm					Unit Wt.
inch	mm	Part No.	and the		A	8	Min.	Max	D	6	H	j.	к	U	Bolt Size	lb/kg
1 3/16	-	RPBA-103-2	RCIA-103	2975	1 1/2	6 1/4	4 9/16	4 15/16	1 7/8	7/8	3 1/8	2 3/8	1 3/8	2 1/4	Aller St.	4.8
1 1/4		RPBA-104-2	RCIA-104	13233	38.1	158.8	115.9	125.4	47.6	22.2	79.4	60.3	34.9	57.2	1/2	2.18
1 3/8		RPBA-106-2	RCIA-106													
	35	RPBA-35MM-2	RCI-35MM	4760	1 7/8 47.6	7 1/4 184.2	5 5/16 134.9	5 15/16 150.8	2 1/16 52.4	1 1/8 28.6	3 13/16 96.8	2 17/32 64.3	1 1/2 38.1	2 5/8 66.7	1/2	7.7 3.49
1 7/16		RPBA-107-2	RCIA-107	21174	47.0	104.2	134.9	150.6	32.4	20.0	90.0	64.3	30.1	00.7		3.49
1 1/2		RPBA-108-2	RCIA-108													
	40	RPBA-40MM-2	RCI-40MM	6140	2 1/8	7 3/4	5 9/16	6 7/16	2 5/16	1 1/4	4 3/8	2 27/32	1 11/16	2 7/8	1/2	10.9
1 5/8		RPBA-110-2	RCIA-110	27312	54.0	196.9	141.3	163.5	58.7	31.8	111.1	72.2	42.9	73.0	1/2	4.94
1 11/16		RPBA-111-2	RCIA-111													
1 3/4		RPBA-112-2	RCIA-112													
	45	RPBA-45MM-2	RCI-45MM	0070	0.474	0.7/0	0.5/40	7 2/40	0.7/40	4 4/4	4.5/0	0.04/04	4 2/4	2.4/4		42.0
1 15/16		RPBA-115-2	RCIA-115	8070 35897	2 1/4 57.2	8 7/8 225.4	6 5/16 160.3	7 3/16 182.6	2 7/16 61.9	1 1/4 31.8	4 5/8 117.5	2 61/64 75.0	1 3/4 44.5	3 1/4 82.6	5/8	13.2 5.99
	50	RPBA-50MM-2	RCI-50MM	55051	01.2	220.4	100.5	102.0	01.5	01.0	117.5	7 5.0	14.5	02.0		0.55
_ 2		RPBA-200-2	RCIA-200													
	55	RPBA-55MM-2	RCI-55MM	8570	2 1/2	9 5/8	6 11/16	7 15/16	2 9/16	1 7/16	5 1/8	3 1/8	1 7/8	3 5/8	5/8	15.7
2 3/16		RPBA-203-2	RCIA-203	38121	63.5	244.5	169.9	201.6	65.1	36.5	130.2	79.4	47.6	92.1	370	7.12
2 1/4		RPBA-204-2	RCIA-204													
	60	RPBA-60MM-2	RCI-60MM	9030	2 3/4	10 3/8	6 15/16	8 11/16	2 3/4	1 5/8	5 5/8	3 5/16	2	3 15/16		20.7
2 7/16		RPBA-207-2	RCIA-207	40167	69.9	263.5	176.2	220.7	69.9	41.3	142.9	84.1	50.8	100.0	5/8	9.39
2 1/2		RPBA-208-2	RCIA-208	10.101	00.0				00.0		2.0	"	00.0	100.0		0.00
	65	RPBA-65MM-2	RCI-65MM													
2 11/16		RPBA-211-2	RCIA-211													
2 3/4		RPBA-212-2	RCIA-212													
	70	RPBA-70MM-2	RCI-70MM	9630	3 1/8	11 3/4	8 1/16	9 11/16	3	1 3/4	6 3/8	3 11/16	2 1/4	4 23/32	3/4	29.3
2 15/16		RPBA-215-2	RCIA-215	42836	79.4	298.5	204.8	246.1	76.2	44.5	161.9	93.7	57.2	119.9	0, 1	13.29
	75	RPBA-75MM-2	RCI-75MM													
3		RPBA-300-2	RCIA-300													
	80	RPBA-80MM-2	RCI-80MM													
3 3/16		RPBA-303-2	RCIA-303													
3 1/4		RPBA-304-2	RCIA-304													
	85	RPBA-85MM-2	RCI-85MM	15320	3 3/4	13 3/4	10 1/8	11 1/4	4 1/8	2	7 3/4	4 3/16	2 1/2	5 7/16	7/8	56
3 7/16		RPBA-307-2	RCIA-307	68147	95.3	349.3	257.2	285.8	104.8	50.8	196.9	106.4	63.5	138.1	.,0	25.40
3 1/2		RPBA-308-2	RCIA-308													
	90	RPBA-90MM-2	RCI-90MM													
	95	RPBA-95MM-2	RCI-95MM													

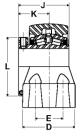
Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

> Housing: Cast Iron Four Bolt Pillow Block


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Single Collar

Seal:

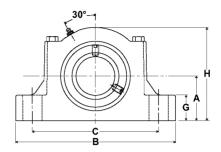
Single Lip Contact **Optional Seal:**

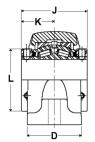
Temperature: -20°F to 220°F

RPBA Series Four-Bolt Base Pillow Blocks

Bore Di	ameter		Destina	Basic	g A B C D E G H J K Bolt V											Unit	
		Part No.	Bearing	Dynamic Rating	A	8	Min	Max	D	TIO	6	н		ĸ	100	Bolt Size	Wt. lb/kg
2 1/4	mm	RPBA-204-4	RCIA-204	lb/N			MIIII	IVIAX	- 111							OIZE.	TO TO
2 174	60	RPBA-60MM-4	RCI-60MM														
2 7/16		RPBA-207-4	RCIA-207	9030	2 3/4	10 3/8	7 3/4	8 3/4	3 1/2	1 7/8	1 5/8	5 5/8	3 5/16	2	3 15/16	5/8	22.4
2 1/2		RPBA-208-4	RCIA-208	40167	69.9	263.5	196.9	222.3	88.9	47.6	41.3	142.9	84.1	50.8	100.0	0,0	10.16
	65	RPBA-65MM-4	RCI-65MM														
2 11/16		RPBA-211-4	RCIA-211														
2 3/4		RPBA-212-4	RCIA-212														
	70	RPBA-70MM-4	RCI-70MM	9630	3 1/8	11 3/4	8 3/4	10	3 3/4	2 1/8	1 3/4	6 3/8	3 11/16	2 1/2	4 23/32		31.5
2 15/16		RPBA-215-4	RCIA-215	42836	79.4	298.5	222.3	254.0	95.3	54.0	44.5	161.9	93.7	63.5	119.9	5/8	14.29
	75	RPBA-75MM-4	RCI-75MM														
3		RPBA-300-4	RCIA-300														
	80	RPBA-80MM-4	RCI-80MM														
3 3/16		RPBA-303-4	RCIA-303														
3 1/4		RPBA-304-4	RCIA-304														
	85	RPBA-85MM-4	RCI-85MM	15320	3 3/4	13 3/4	10 9/16	11 1/2	4 1/2	2 3/8	2 1/16	7 3/4	4 3/16	2 1/2	5 7/16	0/4	59.8
3 7/16		RPBA-307-4	RCIA-307	68147	95.3	349.3	268.3	292.1	114.3	60.3	52.4	196.9	106.4	63.5	138.1	3/4	27.12
3 1/2		RPBA-308-4	RCIA-308														
	90	RPBA-90MM-4	RCI-90MM														
	95	RPBA-95MM-4	RCI-95MM														
3 15/16		RPBA-315-4	RCIA-315														
	100	RPBA-100MM-4	RCI-100MM	20980	4 1/4	15 1/4	11	13	4 1/2	2 1/4	2 7/16	8 5/8	5 1/4	3 1/8	5 15/16	3/4	76.9
4		RPBA-400-4	RCIA-400	93324	108.0	387.4	279.4	330.2	114.3	57.2	61.9	219.1	133.4	79.4	150.8	3/4	34.88
	105	RPBA-105MM-4	RCI-105MM														
	110	RPBA-110MM-4	RCI-110MM														
4 7/16		RPBA-407-4	RCIA-407	25750	4 3/4	16 1/2	11 3/4	13 7/8	4 5/8	2 1/2	2 7/8	9 5/8	5 1/2	3 3/8	6 13/32	3/4	95.6
4 1/2		RPBA-408-4	RCIA-408	114542	120.7	419.1	298.5	352.4	117.5	63.5	73.0	244.5	139.7	85.7	162.7	5/4	43.36
	115	RPBA-115MM-4	RCI-115MM														
	120	RPBA-120MM-4	RCI-120MM														
	125	RPBA-125MM-4	RCI-125MM	35520	5 1/2	18 1/2	13 1/2	15 7/8	5 1/8	2 3/4	3 1/8	11	6 13/64	3 5/8	7 13/32	7/8	143.6
4 15/16		RPBA-415-4	RCIA-415	158001	139.7	469.9	342.9	403.2	130.2	69.9	79.4	279.4	157.6	92.1	188.1	1,0	65.14
5		RPBA-500-4	RCIA-500														

Housing: Cast Iron Two Bolt Pillow Block


Self Alignment: +/- 3 Degrees


Lock: Setscrew, Double Collar

Seal: Felt

Optional Seal: Single Lip Contact

Temperature: -20°F to 220°F

ERPB Expansion Series Two-Bolt Base Pillow Blocks

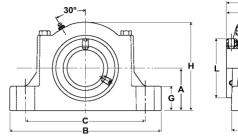
fier	7		1	Basic					D	mensio	ns inch /	mm					Unit
inch	mm	Part No.	Bearing	Dynamic Rating	A	В	Min.	Max.	D	G	н	j.	K	1	Bolt Size		Wt.
1 3/4		ERPB-112-2	ERCI-112	TO/N				IFICIA.									
,	45	ERPB-45MM-2	ERCI-45MM														
1 15/16	"	ERPB-115-2	ERCI-115	8070	2 1/4	87/8	6 5/16	7 3/16	2 57/64	1 1/4	4 7/8	3 1/2	1 3/4	3 1/4	5/8	3/16	14.9
1 10,10	50	ERPB-50MM-2	ERCI-50MM	35897	57.2	225.4	160.3	182.6	73.4	31.8	123.8	88.9	44.5	82.6	0,0	4.8	6.76
2		ERPB-200-2	ERCI-200														
	55	ERPB-55MM-2	ERCI-55MM	8570	2 1/2	9 5/8	6 11/16	7 15/16	3 1/32	1 7/16	5 5/16	3 3/4	1 7/8	3 5/8		3/16	17.8
2 3/16	33	ERPB-203-2	ERCI-203	38121	63.5	244.5	169.9	201.6	77.0	36.5	134.9	95.3	47.6	92.1	5/8	4.8	8.07
2 1/4		ERPB-204-2	ERCI-204	30121	00.0	244.5	103.3	201.0	11.0	30.5	134.5	90.0	47.0	32.1		4.0	0.01
2 1/4																	
27/10	60	ERPB-60MM-2	ERCI-60MM	9030	2 3/4	10 3/8	6 15/16	8 11/16	3 13/32	1 5/8	5 3/4	4	2	3 15/16		1/4	23.0
2 7/16		ERPB-207-2	ERCI-207	40167	69.9	263.5	176.2	220.7	86.5	41.3	146.1	101.6	50.8	100.0	5/8	6.4	10.43
2 1/2		ERPB-208-2	ERCI-208														
_	65	ERPB-65MM-2	ERCI-65MM														
2 11/16		ERPB-211-2	ERCI-211														
2 3/4		ERPB-212-2	ERCI-212														
	70	ERPB-70MM-2	ERCI-70MM	9630	3 1/8	11 3/4	8 1/16	9 11/16	3 31/64	1 3/4	6 9/16	4 33/64	2 1/4	4 23/32	3/4	5/16	32.0
2 15/16		ERPB-215-2	ERCI-215	42836	79.4	298.5	204.8	246.1	88.5	44.5	166.7	114.7	57.3	119.9	3/4	7.9	14.51
	75	ERPB-75MM-2	ERCI-75MM														
3		ERPB-300-2	ERCI-300														
	80	ERPB-80MM-2	ERCI-80MM														
3 3/16		ERPB-303-2	ERCI-303														
3 1/4		ERPB-304-2	ERCI-304														
	85	ERPB-85MM-2	ERCI-85MM	15320	3 3/4	13 3/4	10 1/8	11 1/4	4 33/64	2 1/16	7 15/16	5	2 1/2	5 7/16		5/16	64.0
3 7/16		ERPB-307-2	ERCI-307	68147	95.3	349.3	257.2	285.8	114.7	52.4	201.6	127.0	63.5	138.1	7/8	7.9	29.03
3 1/2		ERPB-308-2	ERCI-308														
	90	ERPB-90MM-2	ERCI-90MM														
	95	ERPB-95MM-2	ERCI-95MM														

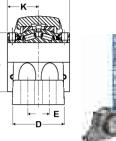
Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

> Housing: Cast Iron Four Bolt Pillow Block


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Double Collar

Seal:

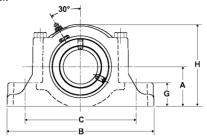
Single Lip Contact **Optional Seal:**

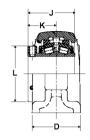
Temperature: -20°F to 220°F

ERPB Expansion Series Four-Bolt Base Pillow Blocks

304	7			12.0						D.	alient, te	1/1 - TH						Unce
morri.		Alm n	ANITED HOUSE		-	ш	and the	ш	-11	13.0	=	10.0	22			evii Vide i	75/11 100/11	
SETELLE A	70	ERPERIOCALA ERPERIOCALA ERPERIOCA ELITTRE PROGRAM	FROM THE BROWN BROWN AND THE B	11,804 53,524	# 47 1680	=1Y 387.4	1 275 4	11 3302	552) -1513	9 (tt. : 172	1970W 518	101 2014	817 903	2.14t 704	ance 3005	14	CINI:	a) 60 (0) 5
4 7/16 4 1/2	110 115	ERPB-110MM-4 ERPB-407-4 ERPB-408-4 ERPB-115MM-4	ERCI-407 ERCI-408 ERCI-115MM	25750 114542	4 3/4 120.7	16 1/2 419.1	11 3/4 298.5	13 7/8 352.4	5 3/8 136.5	2 1/2 63.5	2 3/4 69.9	9 7/8 250.8	6 3/4 171.5	3 3/8 85.7	6 13/32 162.7	3/4	3/8 9.5	110.6 50.2
10 m c	70 125	11015-02/03-0 ERPE-122/03-4 ERPE 7-0-1 110116-06-4	TIOU LOCKER BRO JIESHM BPC + 4 LTOU GUE	1000 1500 71	n G 23.	3 (9 460)	6779 1423	01/10 4002	6 x 6 f 1544	1,97 400	1,547 27.4	1 - OF 2073	1 042	2 tel 02 t	/ Fittor (SB) 1	748	*	1674 74-09

Housing: Cast Iron Two Bolt Pillow Block


Self Alignment: +/- 3 Degrees


Lock: Setscrew, Single Collar

Seal: Fel

Optional Seal: Single Lip Contact

Temperature: -20°F to 220°F

ERPBA Expansion Series Two-Bolt Base Pillow Blocks

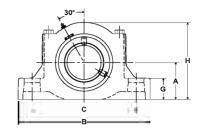
Bore Dia	ameter		Hearing	Basic Dynamic					Dii	mensior	s inch /	mm					Unit
inch	mm	Part No	Innert Mil.	Rating Ib/N	A	В	Min.	Max.	D	G	н		R.	L	Bolt Size	Tirlal Exponence	Wt. Ib/kg
1 3/4		ERPBA-112-2	ERCIA-112	1.571													
	45	ERPBA-45MM-2	ERCI-45MM														
1 15/16		ERPBA-115-2	ERCIA-115	8070 35897	2 1/4 57.2	8 7/8 225.4	6 5/16 160.3	7 3/16 182.6	2 57/64 73.4	1 1/4 31.8	4 7/8 123.8	2 61/64 75.0	1 13/64 30.6	3 1/4 82.6	5/8	3/16 4.8	14.9 6.76
	50	ERPBA-50MM-2	ERCI-50MM	33091	51.2	223.4	100.5	102.0	75.4	31.0	123.0	75.0	30.0	02.0		4.0	0.70
2		ERPBA-200-2	ERCIA-200														
	55	ERPBA-55MM-2	ERCI-55MM	8570	2 1/2	9 5/8	6 11/16	7 15/16	3 1/32	1 7/16	5 5/16	3 1/8	1 1/4	3 5/8		3/16	17.8
2 3/16		ERPBA-203-2	ERCIA-203	38121	63.5	244.5	169.9	201.6	77.0	36.5	134.9	79.4	31.8	92.1	5/8	4.8	8.07
2 1/4		ERPBA-204-2	ERCIA-204														
	60	ERPBA-60MM-2	ERCI-60MM														
2 7/16		ERPBA-207-2	ERCIA-207	9030 40167	2 3/4 69.9	10 3/8 263.5	6 15/16 176.2	8 11/16 220.7	3 13/32 86.5	1 5/8 41.3	5 3/4 146.1	3 5/16 84.1	1 5/16 33.3	3 15/16 100.0	5/8	1/4 6.4	23.0 10.43
2 1/2		ERPBA-208-2	ERCIA-208	10 101	00.0	200.0	11 0.2		00.0	11.0	1 10.1	0	00.0	100.0		0.1	10.10
	65	ERPBA-65MM-2	ERCI-65MM														
2 11/16		ERPBA-211-2	ERCIA-211														
2 3/4		ERPBA-212-2	ERCIA-212														
	70	ERPBA-70MM-2	ERCI-70MM	9630	3 1/8	11 3/4	8 1/16	9 11/16	3 31/64	1 3/4	6 9/16	3 11/16	1 7/16	4 23/32	3/4	5/16	32.0
2 15/16		ERPBA-215-2	ERCIA-215	42836	79.4	298.5	204.8	246.1	88.5	44.5	166.7	93.7	36.5	119.9	3/4	7.9	14.51
	75	ERPBA-75MM-2	ERCI-75MM														
3		ERPBA-300-2	ERCIA-300														
	80	ERPBA-80MM-2	ERCI-80MM														
3 3/16		ERPBA-303-2	ERCIA-303														
3 1/4		ERPBA-304-2	ERCIA-304														
	85	ERPBA-85MM-2	ERCI-85MM	15320	3 3/4	13 3/4	10 1/8	11 1/4	4 33/64	2 1/16	7 15/16	4 3/16	1 57/64	5 7/16	7/8	5/16	64.0
3 7/16		ERPBA-307-2	ERCIA-307	68147	95.3	349.3	257.2	285.8	114.7	52.4	201.6	106.4	48.0	138.1	110	7.9	29.03
3 1/2		ERPBA-308-2	ERCIA-308														
	90	ERPBA-90MM-2	ERCI-90MM														
	95	ERPBA-95MM-2	ERCI-95MM														

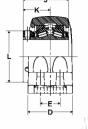
Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

> Housing: Cast Iron Four Bolt Pillow Block


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Single Collar

Seal:

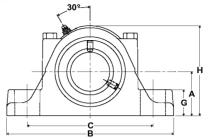
Single Lip Contact **Optional Seal:**

Temperature: -20°F to 220°F

ERPBA Expansion Series Four-Bolt Base Pillow Blocks

00 - 20 E			DECOME DESCRIPTION	5.400					2111	1		17.			- 77		Uput
		Helding	110 113 113	170.0		(RA)				٠.	338	32	10:1	IU.	en II San	Treat La partido	ANT.
3757 .ii	100 100	110.4-2-20-4 ERPEA,100/24-4 ERPEA,001.1 THE ASSUMPLEA	1004-816 ERCH 1006-01 ERCH 200 CO-CSWW	###K 55824	105.0	75 (2) 382≠	† 0 279∓ 300	Company of the Compan	31M (\$72	2 C st 50.0	1664 - 1364	854 834	24M 340	- 1946 1528		34. 04.	MTM) 46.52
4 7/16 4 1/2	110 115	ERPBA-110MM-4 ERPBA-407-4 ERPBA-408-4 ERPBA-115MM-4	ERCI-110MM ERCIA-407 ERCIA-408 ERCI-115MM	25750 114542	4 3/4 120.7	16 1/2 419.1	11 3/4 13 7 298.5 352		2 1/2 63.5	2 3/4 69.9	97/8 250.8	5 1/2 139.7	3 3/8 85.7	6 13/32 162.7	3/4	3/8 9.5	110.6 50.2
0.50	134 124	THE SALESHOOT ERPECT OF THE SALESHOOT	TERTANN STERMEN STERMEN STERMEN	984.6; 4502.2a	8.1.1 1007	10 .2 -25.0	402'0' 18- 348'3 400	11 C.244 2 104.3	204 60-1	7 (1) 70.4	1041 2273	1- A*1 F#	6000000000	155.H	10	7-7 05	04 h 7929

Housing: Cast Iron Two Bolt Pillow Block


Self Alignment: +/- 3 Degrees

Lock: Setscrew, Double Collar

Seal: Fel:

Optional Seal: Single Lip Contact

Temperature: -20°F to 220°F

DRPB Series Two-Bolt Base Pillow Blocks

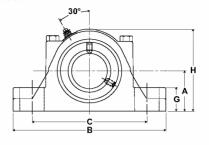
Bor	_		Bearing						Dimen	sions inc	h / mm					Unit Wt.
Diame inch	eter mm	Part No.	Insert No.	1	٨	В	Min	Mex	D	6	н	3	К	L	Bolt Size	lb/kg
1 3/4		DRPB-112-2	RCI-112				- MANAGE	THE PERSON								
	45	DRPB-45MM-2	RCI-45MM													
1 15/16		DRPB-115-2	RCI-115	8070	27/8	10	6 3/4	8 1/2	2 9/16	1 1/2	5 1/4	3 1/2	1 3/4	3 1/4	5/8	17.5
	50	DRPB-50MM-2	RCI-50MM	35897	73.0	254.0	171.5	215.9	65.1	38.1	133.4	88.9	44.5	82.6		7.94
2		DRPB-200-2	RCI-200													
	55	DRPB-55MM-2	RCI-55MM	8570	3	11	7 3/4	9 1/4	2 9/16	1 9/16	5 5/8	3 3/4	1 7/8	3 5/8		19.7
2 3/16		DRPB-203-2	RCI-203	38121	76.2	279.4	196.9	235.0	65.1	39.7	142.9	95.3	47.6	92.1	5/8	8.94
2 1/4		DRPB-204-2	RCI-204													
	60	DRPB-60MM-2	RCI-60MM													
2 7/16		DRPB-207-2	RCI-207	9030 40167	3 1/4 82.6	12 304.8	8 1/2 215.9	10 3/8 263.5	2 7/8 73.0	1 3/4 44.5	6 1/8 155.6	4 101.6	2 50.8	3 15/16 100.0	5/8	25.5 11.57
2 1/2		DRPB-208-2	RCI-208	40107	02.0	304.6	213.9	203.3	73.0	44.5	155.6	101.0	30.6	100.0		11.57
	65	DRPB-65MM-2	RCI-65MM													
2 11/16		DRPB-211-2	RCI-211													
2 3/4		DRPB-212-2	RCI-212													
	70	DRPB-70MM-2	RCI-70MM	9630	3 3/4	13 1/2	9 5/16	11 9/16	3 1/8	2	7	4 1/2	2 1/4	4 23/32	0.4	35.2
2 15/16		DRPB-215-2	RCI-215	42836	95.3	342.9	236.5	293.7	79.4	50.8	177.8	114.3	57.2	119.9	3/4	15.97
	75	DRPB-75MM-2	RCI-75MM													
3		DRPB-300-2	RCI-300													
	80	DRPB-80MM-2	RCI-80MM													
3 3/16		DRPB-303-2	RCI-303													
3 1/4		DRPB-304-2	RCI-304													
	85	DRPB-85MM-2	RCI-85MM	15320	4 1/2	16	10 7/8	13 7/8	4 3/8	2 1/4	8 1/2	5	2 1/2	5 7/16	7/0	67.8
3 7/16		DRPB-307-2	RCI-307	68147	114.3	406.4	276.2	352.4	111.1	57.2	215.9	127.0	63.5	138.1	7/8	30.75
3 1/2		DRPB-308-2	RCI-308													
	90	DRPB-90MM-2	RCI-90MM													
	95	DRPB-95MM-2	RCI-95MM													

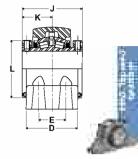
Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

> Housing: Cast Iron Four Bolt Pillow Block


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Double Collar

Seal:

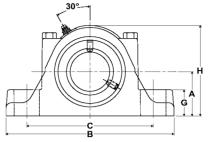
Optional Seal: Single Lip Contact

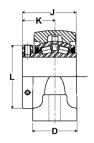
Temperature: -20°F to 220°F

DRPB Series Four-Bolt Base Pillow Blocks

Stern Hamildon Harl VIII Hamildon	Enem-ji Oynemii lioni kui Rojeg Roje	28	1111	6		ing the late	, E		34.		HIL)	. E.,	W. Will
# 000 0843 004 # 0005-1040 # 0005-1040	STANDARD AND A	16. 25.0	(+)145 464/5		n 10484 1.0 116.7	ec.e) 201 201	31 Self. 1225.4	K * M -100 B	: iie 764	* 15-16 *224	1/4	95°41 42°18

Housing: Cast Iron Two Bolt Pillow Block


Self Alignment: +/- 3 Degrees


Lock: Setscrew, Single Collar

Seal: Fel

Optional Seal: Single Lip Contact

Temperature: -20°F to 220°F

DRPBA Series Two-Bolt Base Pillow Blocks - Single Lock Collar

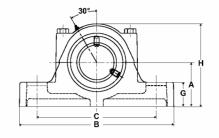
Bore Dia	motor		A 14	Basic			39		Dimens	sions inc	h / mm					Unit Wt.
inch	mm	Part No.	Bearing	Dynamic Rating Ib/N	A	В	Min.	Max	D	G	н	100	ж	1	Bolt Size	lb/kg
1 3/4		DRPBA-112-2	RCIA-112	ID/IN				Max								
	45	DRPBA-45MM-2	RCI-45MM													
1 15/16		DRPBA-115-2	RCIA-115	8070	2 7/8	10	6 3/4	8 1/2	2 9/16	1 1/2	5 1/4	2 61/64	1 3/4	3 1/4	5/8	17.5
	50	DRPBA-50MM-2	RCI-50MM	35897	73.0	254.0	171.5	215.9	65.1	38.1	133.4	75.0	44.5	82.6		7.94
2		DRPBA-200-2	RCIA-200													
	55	DRPBA-55MM-2	RCI-55MM	8570	3	11	7 3/4	9 1/4	2 9/16	1 9/16	5 5/8	3 1/8	1 7/8	3 5/8		19.7
2 3/16		DRPBA-203-2	RCIA-203	38121	76.2	279.4	196.9	235.0	65.1	39.7	142.9	79.4	47.6	92.1	5/8	8.94
2 1/4		DRPBA-204-2	RCIA-204													
	60	DRPBA-60MM-2	RCI-60MM													
27/16		DRPBA-207-2	RCIA-207	9030	3 1/4	12	8 1/2	10 3/8	2 7/8	1 3/4	6 1/8	3 5/16	2	3 15/16	5/8	25.5
2 1/2		DRPBA-208-2	RCIA-208	40167	82.6	304.8	215.9	263.5	73.0	44.5	155.6	84.1	50.8	100.0		11.57
	65	DRPBA-65MM-2	RCI-65MM													
2 11/16		DRPBA-211-2	RCIA-211													
2 3/4		DRPBA-212-2	RCIA-212													
	70	DRPBA-70MM-2	RCI-70MM	9630	3 3/4	13 1/2	9 5/16	11 9/16	3 1/8	2	7	3 11/16	2 1/4	4 23/32		35.2
2 15/16		DRPBA-215-2	RCIA-215	42836	95.3	342.9	236.5	293.7	79.4	50.8	177.8	93.7	57.2	119.9	3/4	15.97
	75	DRPBA-75MM-2	RCI-75MM													
3		DRPBA-300-2	RCIA-300													
	80	DRPBA-80MM-2	RCI-80MM													
3 3/16		DRPBA-303-2	RCIA-303													
3 1/4		DRPBA-304-2	RCIA-304													
	85	DRPBA-85MM-2	RCI-85MM	15320	4 1/2	16	10 7/8	13 7/8	4 3/8	2 1/4	8 1/2	4 3/16	2 1/2	5 7/16		67.8
3 7/16		DRPBA-307-2	RCIA-307	68147	114.3	406.4	276.2	352.4	111.1	57.2	215.9	106.4	63.5	138.1	7/8	30.75
3 1/2		DRPBA-308-2	RCIA-308													
	90	DRPBA-90MM-2	RCI-90MM													
	95	DRPBA-95MM-2	RCI-95MM													

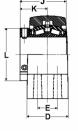
Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

> Housing: Cast Iron Four Bolt Pillow Block


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Single Collar

Seal:

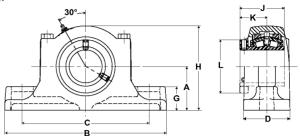
Single Lip Contact **Optional Seal:**

Temperature: -20°F to 220°F

DRPBA Series Four-Bolt Base Pillow Blocks - Single Lock Collar

ine Di		Tarl Wa	Herrican Investiga	SLOO Primme Potong	83	illia	(FIII)		5	1111	H.	100	E 277	a#.	Month.	Harri Harri	Unit.
V15: 6	(#) %	SPPEN SIGN DATE - DUSASIA DESPENSIONES SRPEN 1009984	RC 0-715 61 - 119049 101 - 4419 RC 160789	25.4m 67.324	5 327.0	0 3 345	% 3648	15 181.0	/ tsise #18.7	3 58-8	land land	= 551 238-1	~ 1M 138≪	311,01 79,31	5 15/18 53/8	ЭM	%5≥ 422

Housing: Cast Iron Two Bolt Pillow Block


Self Alignment: +/- 3 Degrees

Lock: Setscrew, Single Collar

Seal: Fel

Optional Seal: Single Lip Contact

Temperature: -20°F to 220°F

EDPBA Expansion Series Two-Bolt Base Pillow Blocks - Single Lock Collar

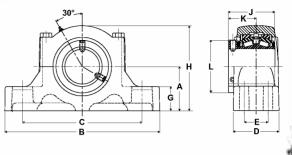
Bore Dia	meter										mensions inch / mm							
inch	mm	Part No.	hearing theret No.	Rating Ib/N	A	8	Min.	Max	D	G	H	3	ĸ	L	Bolt Size	iotar Expansion	Wt. lb/kg	
1 3/4		EDPBA-112-2	ERCIA-112															
	45	EDPBA-45MM-2	ERCI-45MM															
1 15/16		EDPBA-115-2	ERCIA-115	8070 35897	2 7/8 73.0	10 254.0	6 3/4 171.5	8 1/2 215.9	2 29/32 73.8	1 1/2 38.1	5 1/2 139.7	2 61/64 75.0	1 3/4 44.5	3 1/4 82.6	5/8	3/16 4.8	19.2 8.72	
	50	EDPBA-50MM-2	ERCI-50MM	33001	70.0	204.0	17 1.5	210.0	10.0	30.1	139.1	75.0	44.5	02.0		4.8	0.12	
2		EDPBA-200-2	ERCIA-200															
	55	EDPBA-55MM-2	ERCI-55MM	8570	3	11	7 3/4	9 1/4	3 1/32	1 9/16	5 13/16	3 1/8	1 7/8	3 5/8	F (O	3/16	21.8	
2 3/16		EDPBA-203-2	ERCIA-203	38121	76.2	279.4	196.9	235.0	77.0	39.7	147.6	79.4	47.6	92.1	5/8	4.8	9.89	
2 1/4		EDPBA-204-2	ERCIA-204															
	60	EDPBA-60MM-2	ERCI-60MM															
2 7/16		EDPBA-207-2	ERCIA-207	9030 40167	3 1/4 82.6	12 304.8	8 1/2 215.9	10 3/8 263.5	3 7/16 87.3	1 3/4 44.5	6 1/4 158.8	3 5/16 84.1	2 50.8	3 15/16 100.0	5/8	1/4 6.4	27.8 12.61	
2 1/2		EDPBA-208-2	ERCIA-208															
	65	EDPBA-65MM-2	ERCI-65MM															
2 11/16		EDPBA-211-2	ERCIA-211															
2 3/4		EDPBA-212-2	ERCIA-212		3 3/4 95.3	13 1/2 342.9	9 5/16 236.5			2 50.8					3/4	5/16 7.9		
	70	EDPBA-70MM-2	ERCI-70MM	9630				11 9/16	3 1/2		7 3/16 182.6	3 11/16 93.7	2 1/4 57.2	4 23/32 119.9			38.0	
2 15/16		EDPBA-215-2	ERCIA-215	42836				293.7	88.9								17.24	
	75	EDPBA-75MM-2	ERCI-75MM															
3		EDPBA-300-2	ERCIA-300															
	80	EDPBA-80MM-2	ERCI-80MM															
3 3/16		EDPBA-303-2	ERCIA-303															
3 1/4		EDPBA-304-2	ERCIA-304															
	85	EDPBA-85MM-2	ERCI-85MM	15320	4 1/2	16	10 7/8	13 7/8	4 1/2	2 1/4	8 11/16	4 3/16	2 1/2	5 7/16	7/8	5/16 7.9	75.8	
3 7/16		EDPBA-307-2	ERCIA-307	68147	114.3	406.4	276.2	352.4	114.3	57.2	220.7	106.4	63.5	138.1			34.38	
3 1/2		EDPBA-308-2	ERCIA-308															
	90	EDPBA-90MM-2	ERCI-90MM															
	95	EDPBA-95MM-2	ERCI-95MM															

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

> Housing: Cast Iron Four Bolt Pillow Block


Self Alignment: +/- 3 Degrees

> Lock: Setscrew, Single Collar

Seal:

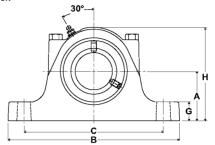
Single Lip Contact **Optional Seal:**

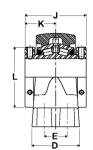
Temperature: -20°F to 220°F

EDPBA Expansion Series Four-Bolt Base Pillow Blocks - Single Lock Collar

See Di	191244	Service CO.	Description (Linear)			0.0				Dii iri	etror.			102 08		Name of	HA-COO	Ungo
		Hillian			100		1	700	28	Hill	33);		3		ill :		Line III	10.00
915° F		SSPBA DIT 4	EROIA V.					10100001										
	4	t bene block t		G2401	700	10.00		18	- irim	120	2.00	355	SCHOOL SERVICE	0.000	100000000000000000000000000000000000000	24	juni.	HH 0
795		CUMPERMEN	T09-8%	930	42500	-45	3048	3617.	3.2	-50:3	3600011	2445	133,4	79.2	15.53	8.8	:E54	: □\$ 18
	36	BOPBA COMPLE	ESCI MAN															

Housing: Cast Iron Four Bolt Pillow Block


Self Alignment: +/- 3 Degrees


Lock: Setscrew, Double Collar

Seal: Felt

Optional Seal: Single Lip Contact

Temperature: -20°F to 220°F

RPBXT Series Four-Bolt Base Pillow Blocks - SAF Mounting Dimensions

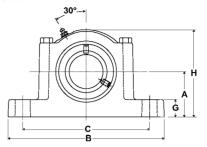
Bore Dia	nmotor.		5 15	Basic				1	Din	nension	s înch /	mm					Unit
100		Part No.	Bearing	Dynamic Rating	A	В	100		Ð	E	G	H	10	K	1	Bolt	Wt.
2 1/4	mm	RPBXT-204-4	RCI-204	lb/N		1000	Min.	Max.	1561			- 1000	- **	Misso		Size	lb/kg
2 1/4	60	RPBXT-60MM-4	RCI-204														
2 7/16	60	RPBXT-00/01/01-4	RCI-801/11/11	9030	3 1/4	11 1/4	8 5/8	9 5/8	3 1/8	1 7/8	1 1/4	6 1/8	4	2	3 15/16	1/2	25.5
2 1/10		RPBXT-208-4	RCI-207	40167	82.6	285.8	219.1	244.5	79.4	47.6	31.8	155.6	101.6	50.8	100.0	1/2	11.57
2 1/2	65	RPBXT-65MM-4	RCI-206														
2 44/46	03																
2 11/16		RPBXT-211-4	RCI-211														
2 3/4	70	RPBXT-212-4	RCI-212														
0.4544.0	70	RPBXT-70MM-4	RCI-70MM	9630 42836	3 3/4 95.3	13 330.2	10 254.0	11 279.4	3 1/2 88.9	2 1/8 54.0	1 1/2 38.1	7 177.8	4 1/2 114.3	2 1/4 57.2	4 23/32 119.9	5/8	36.2 16.42
2 15/16	7.5	RPBXT-215-4	RCI-215	42000	30.5	300.2	204.0	275.4	00.5	34.0	30.1	177.0	114.5	57.2	110.5		10.42
	75	RPBXT-75MM-4	RCI-75MM														
3	00	RPBXT-300-4	RCI-300														
0.040	80	RPBXT-80MM-4	RCI-80MM														
3 3/16		RPBXT-303-4	RCI-303														
3 1/4		RPBXT-304-4	RCI-304														
	85	RPBXT-85MM-4	RCI-85MM	15320	4 1/2	15 1/4	11 3/4	123/4	4 3/8	23/8	13/4	8 1/2	5	2 1/2	57/16	3/4	67.8
3 7/16		RPBXT-307-4	RCI-307	68147	114.3	387.4	298.5	323.9	111.1	60.3	44.5	215.9	127.0	63.5	138.1		30.75
3 1/2		RPBXT-308-4	RCI-308														
	90	RPBXT-90MM-4	RCI-90MM														
	95	RPBXT-95MM-4	RCI-95MM														
3 15/16		RPBXT-315-4	RCI-315														
	100	RPBXT-100MM-4	RCI-100MM	20980	4 15/16	16 1/2	127/8	14 1/8	4 3/4	2 3/4	2	9 5/16	6 1/4	3 1/8	5 15/16	3/4	93
4		RPBXT-400-4	RCI-400	93324	125.4	419.1	327.0	358.8	120.7	69.9	50.8	236.5	158.8	79.4	150.8	o, .	42.18
	105	RPBXT-105MM-4	RCI-105MM														
	110	RPBXT-110MM-4	RCI-110MM														
4 7/16		RPBXT-407-4	RCI-407	25750	6	18 3/8	14 1/2	16	5 1/4	3 1/4	2 1/2	10 7/8	6 3/4	3 3/8	6 13/32	7/8	114.7
4 1/2		RPBXT-408-4	RCI-408	114542	152.4	466.7	368.3	406.4	133.4	82.6	63.5	276.2	171.5	85.7	162.7	110	52.03
	115	RPBXT-115MM-4	RCI-115MM														
	120	RPBXT-120MM-4	RCI-120MM														
	125	RPBXT-125MM-4	RCI-125MM	35520	6	20 1/8	15 5/8	17 3/8	6	3 3/8	2 1/2	11 1/2	7 1/4	3 5/8	7 13/32	1	172.4
4 15/16		RPBXT-415-4	RCI-415	158001	152.4	511.2	396.9	441.3	152.4	85.7	63.5	292.1	184.2	92.1	188.1	'	78.20
5		RPBXT-500-4	RCI-500														

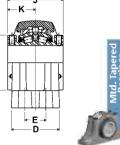
Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

> Housing: Cast Iron Four Bolt Pillow Block


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Double Collar

Seal:

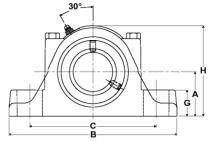
Single Lip Contact **Optional Seal:**

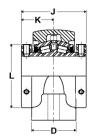
Temperature: -20°F to 220°F

ERPBXT Expansion Series Four-Bolt Base Pillow Blocks - SAF Mounting Dimensions

ne D	iometer		Bearing Insert	Basic Dynamic						Dīmen	isions i	nch / m	m					Unit
inch	mm	Part No.	No.	Rating	A	8	Mirri	Max	D	E	G	H		K	L	Bolt Size	Tirtal Expermina	Wt. lb/kg
2 1/4		ERPBXT-204-4	ERCI-204	TU/N			111111111111111111111111111111111111111	THE C										
	60	ERPBXT-60MM-4	ERCI-60MM															
27/16		ERPBXT-207-4	ERCI-207	9030	3 1/4	11 1/4	8 5/8	9 5/8	3 27/64	17/8	1 1/4	6 1/4	4	2	3 15/16	1/2	1/4	27.7
2 1/2		ERPBXT-208-4	ERCI-208	40167	82.6	285.8	219.1	244.5	86.9	47.6	31.8	158.8	101.6	50.8	100.0		6.35	12.56
	65	ERPBXT-65MM-4	ERCI-65MM															
2 11/16		ERPBXT-211-4	ERCI-211															
23/4		ERPBXT-212-4	ERCI-212															
	70	ERPBXT-70MM-4	ERCI-70MM	9630	3 3/4	13	10	11	3 1/2	2 1/8	1 1/2	7 3/16	4 1/2	2 1/4	4 23/32		5/16	39.0
2 15/16		ERPBXT-215-4	ERCI-215	42836	95.3	330.2	254.0	279.4	88.9	54.0	38.1	182.6	114.3	57.2	119.9	5/8	7.94	17.69
	75	ERPBXT-75MM-4	ERCI-75MM															
3		ERPBXT-300-4	ERCI-300															
	80	ERPBXT-80MM-4	ERCI-80MM															
3 3/16		EPRBXT-303-4	ERCI-303															
3 1/4		ERPBXT-304-4	ERCI-304															
	85	ERPBXT-85MM-4	ERCI-85MM	15320	4 1/2	15 1/4	11 3/4	12 3/4	4 1/2	23/8	1 3/4	8 11/16	5	2 1/2	57/16	0/4	5/16	75.3
3 7/16		ERPBXT-307-4	ERCI-307	68147	114.3	387.4	298.5	323.9	114.3	60.3	44.5	220.7	127.0	63.5	138.1	3/4	7.94	34.16
3 1/2		ERPBXT-308-4	ERCI-308															
	90	ERPBXT-90MM-4	ERCI-90MM															
	95	ERPBXT-95MM-4	ERCI-95MM															
3 15/16		ERPBXT-315-4	ERCI-315															
	100	ERPBXT-100MM-4	ERCI-100MM	20980	4 15/16	16 1/2	127/8	14 1/8	5 3/16	23/4	2	9 9/16	6 1/4	3 1/8	5 15/16	3/4	3/8	106.0
4		ERPBXT-400-4	ERCI-400	93324	125.4	419.1	327.0	358.8	131.8	69.9	50.8	242.9	158.8	79.4	150.8	3/4	9.84	48.08
	105	ERPBXT-105MM-4	ERCI-105MM															
	110	ERPBXT-110MM-4	ERCI-110MM															
4 7/16		ERPBXT-407-4	ERCI-407	25750	6	18 3/8	14 1/2	16	5 13/32	3 1/4	2 1/2	11 1/8	6 3/4	3 3/8	6 13/32	7/8	3/8	104.0
4 1/2		ERPBXT-408-4	ERCI-408	114542	152.4	466.7	368.3	406.4	137.3	82.6	63.5	282.6	171.5	85.7	162.7	170	9.84	47.17
	115	ERPBXT-115MM-4	ERCI-115MM															
	120	ERPBXT-120MM-4	ERCI-120MM															
	125	ERPBXT-125MM-4	ERCI-125MM	35520	6	20 1/8	15 5/8	17 3/8	6 3/32	3 3/8	2 1/2	11 13/16	7 1/4	3 5/8	7 13/32	1	3/8	190.0
4 15/16		ERPBXT-415-4	ERCI-415	158001	152.4	511.2	396.9	441.3	154.8	85.7	63.5	300.0	184.2	92.1	188.1		9.84	86.18
5		ERPBXT-500-4	ERCI-500															

> Housing: Cast Steel Two Bolt Pillow Block


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Double Collar

Seal:

Optional Seal: Single Lip Contact

-20°F to 220°F Temperature:

SPB Series Two-Bolt Base Pillow Blocks - Cast Steel Housing

Bore Di	ameter		Bearing	Basic Dynamic					Dimen	sions inc	h / mm					Unit Wt.
inch	mm	Part No.	Insert No.	Rating Ib/N	A	8	Min.	Max	D	6	H	J.	K	L	Bolt Size	lb/kg
1 1/2		SPB-108-2	RCI-108	ID/IN			1911111	The Laboratory Commercial Commerc								
	40	SPB-40MM-2	RCI-40MM	6140	2 1/8	7 3/4	5 9/16	6 7/16	2 5/16	1 1/4	4 3/8	3 3/8	1 11/16	27/8		12.0
1 5/8		SPB-110-2	RCI-110	27312	54.0	196.9	141.3	163.5	58.7	31.8	111.1	85.7	42.9	73.0	1/2	5.44
1 11/16		SPB-111-2	RCI-111													
1 3/4		SPB-112-2	RCI-112													
	45	SPB-45MM-2	RCI-45MM													
1 15/16		SPB-115-2	RCI-115	8070 35897	2 1/4 57.2	8 7/8 225.4	6 5/16 160.3	7 3/16 182.6	2 7/16 61.9	1 1/4	4 5/8 117.5	3 1/2 88.9	1 3/4 44.5	3 1/4	5/8	14.5 6.58
	50	SPB-50MM-2	RCI-50MM	33091	31.2	223.4	100.3	102.0	01.9	31.8	117.5	00.9	44.5	82.6		0.56
2		SPB-200-2	RCI-200													
	55	SPB-55MM-2	RCI-55MM	8570	2 1/2	9 5/8	6 11/16	7 15/16	2 9/16	1 7/16	5 1/8	3 3/4	1 7/8	3 5/8	5/8	17.3
2 3/16		SPB-203-2	RCI-203	38121	63.5	244.5	169.9	201.6	65.1	36.5	130.2	95.3	47.6	92.1	3/6	7.85
2 1/4		SPB-204-2	RCI-204													
	60	SPB-60MM-2	RCI-60MM													
2 7/16		SPB-207-2	RCI-207	9030 40167	2 3/4 69.9	10 3/8 263.5	6 15/16 176.2	8 11/16 220.7	2 3/4 69.9	1 5/8 41.3	5 5/8 142.9	4 101.6	2 50.8	3 15/16 100.0	5/8	22.8 10.34
2 1/2		SPB-208-2	RCI-208	10101		200.0		220	00.0	''						10.01
	65	SPB-65MM-2	RCI-65MM													
2 11/16		SPB-211-2	RCI-211													
2 3/4		SPB-212-2	RCI-212			11 3/4	8 1/16 204.8		3 76.2	1 3/4 44.5	6 3/8 161.9	4 1/2 114.3	2 1/4 57.2	4 23/32	3/4	
	70	SPB-70MM-2	RCI-70MM	9630	3 1/8			9 11/16								32.2
2 15/16		SPB-215-2	RCI-215	42836	79.4	298.5		246.1						119.9	3/4	14.61
	75	SPB-75MM-2	RCI-75MM													
3		SPB-300-2	RCI-300													
	80	SPB-80MM-2	RCI-80MM													
3 3/16		SPB-303-2	RCI-303													
3 1/4		SPB-304-2	RCI-304													
	85	SPB-85MM-2	RCI-85MM	15320	3 3/4	13 3/4	10 1/8	11 1/4	4 1/8	2 1/16	7 3/4	5	2 1/2	5 7/16	7/8	65.6
3 7/16		SPB-307-2	RCI-307	68147	95.3	349.3	257.2	285.8	104.8	52.4	196.9	127.0	63.5	138.1	170	29.76
3 1/2		SPB-308-2	RCI-308													
	90	SPB-90MM-2	RCI-90MM													
	95	SPB-95MM-2	RCI-95MM													

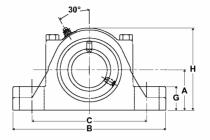
Metric dimensions for reference only.

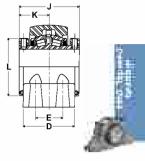
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Rolling Elements: Tapered Roller

> Housing: Cast Steel Four Bolt Pillow Block


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Double Collar

Seal:

Single Lip Contact **Optional Seal:**

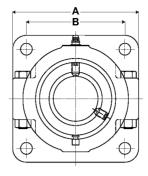
Temperature: -20°F to 220°F

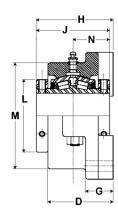
SPB Series Four-Bolt Base Pillow Blocks - Cast Steel Housing

Den: D				3400					-51		mini					700	Unit
1000	T.	Mareeman	 	350 g	(0)	21101	rin	111	III:	U.	131	.00	H.	-3	7)	Ben Ban	Habit
(1990) (130	91-07:4 3P5-100W34 5P5-00:1 31-000W44	POLICIONA POLICIONA POLICIONA PROPERMA	#19461 93324	1 to 126 2	:=:M 307.4	11 220 =	301 3903	110° 1143	834 272	57-th 61 0 :	1,647 -2,71,1	150 S	3 (A)*	5 15/10 100 6	ЭN	81 E
4 7/16 4 1/2	110 115	SPB-110MM-4 SPB-407-4 SPB-408-4 SPB-115MM-4	RCI-110MM RCI-407 RCI-408 RCI-115MM	25750 114542	4 3/4 120.7	16 1/2 419.1	11 3/4 298.5	13 7/8 352.4	4 5/8 117.5	2 1/4 57.2	2 3/4 69.9	9 5/8 244.5	6 3/4 171.5	3 3/8 85.7	6 13/32 162.7	3/4	105.2 47.7
) OPE	125	91-0049-7 878-12233-1 048-231 91-0404	POP 200H POP 200H POP 200H PROPERTY	7-500 15002)	1307	19 19 4073	10, 149 242 0	6; <i>2</i> 0; 40;2	a fai 138¢	9.14 20.0	a ar 194	1 275.4	7 % 1942	3.94 183	/ 4005a** - 164.1	19,6	6MFD 21 CF

Rolling Elements: Tapered Roller

Housing: Cast Iron Four Bolt Flange


Self Alignment: +/- 3 Degrees


Lock: Setscrew, Double Collar

Seal: Fel

Optional Seal: Single Lip Contact

Temperature: -20°F to 220°F

RFB Series Four-Bolt Flange Units

Gora Dia	- udas		Espling	Basic					Dīmen	sions inc	h/mm					
GOLF DIE	Liller	Folia.	Dimert.	Dynamic Rating	A	8	B.C.	D	G	#	j j	(8)	500	N	Bolt	b/kg
inch	mm		No.	Ib/N		- 1	Name of Street	11.00		TAV.	- 10	5721	thed		Size	o kg
1 3/16		RFB-103	RCI-103	2975	4	27/8	4 1/16	2 5/16	1	2 13/16	2 25/32	2 1/4	3 1/4	1 25/64	3/8	6.0
1 1/4		RFB-104	RCI-104	13233	101.6	73.0	103.2	58.7	25.4	71.4	70.6	57.2	82.6	35.3		2.72
1 3/8		RFB-106	RCI-106	4760	4 5/8	3 1/2	4 61/64	29/16	1	3 1/16	3	2 5/8	3 3/4	1 1/2		8.1
1,7,46	35	RFB-35MM	RCI-35MM	21174	117.5	88.9	125.8	65.1	25.4	77.8	76.2	66.7	95.3	38.1	1/2	3.67
1 7/16		RFB-107	RCI-107													
1 1/2	40	RFB-108	RCI-108	04.40	F 0/0	4.4/0	F 50/04	0.45/40	4.040	0.4/0	0.00	0.7/0	4.4/0	4.4440		400
4.500	40	RFB-40MM	RCI-40MM	6140	5 3/8	4 1/8	5 53/64	2 15/16	1 3/16 30.2	3 1/2	3 3/8	27/8	4 1/2	1 11/16 42.9	1/2	12.3 5.58
1 5/8		RFB-110	RCI-110	27312	136.5	104.8	148.0	74.6	30.2	88.9	85.7	73.0	114.3	42.9		5.58
1 11/16		RFB-111 RFB-112	RCI-111 RCI-112													
1 3/4	45	RFB-112 RFB-45MM	RCI-112 RCI-45MM													
1 15/16	45	RFB-45101101 RFB-115	RCI-45MM RCI-115	8070	5 5/8	4 3/8	6 3/16	3 1/16	1 3/16	3 5/8	3 1/2	3 1/4	4 3/4	1 3/4	1/2	14.5
1 13/16	50	RFB-50MM	RCI-115	35897	142.9	111.1	157.2	77.8	30.2	92.1	88.9	82.6	120.7	44.5	1/2	6.58
2	50	RFB-200	RCI-30MM													
	55	RFB-55MM	RCI-55MM	8570	6 1/4	4 7/8	6 57/64	3 1/4	1 3/8	37/8	3 3/4	3 5/8	5 1/4	1 7/8		19.0
2 3/16	55	RFB-203	RCI-203	38121	158.8	123.8	175.0	82.6	34.9	98.4	95.3	92.1	133.4	47.6	5/8	8.62
2 1/4		RFB-204	RCI-204	00121	100.0	120.0	170.0	02.0	04.0	00.4	00.0	02.1	100.4	41.0		0.02
- "	60	RFB-60MM	RCI-60MM													
2 7/16	00	RFB-207	RCI-207	9030	6 7/8	5 3/8	7 39/64	3 9/16	1 1/2	4 3/16	4	3 15/16	5 3/4	2	5/8	24.0
2 1/2		RFB-208	RCI-208	40167	174.6	136.5	193.3	90.5	38.1	106.4	101.6	100.0	146.1	50.8		10.89
	65	RFB-65MM	RCI-65MM													
2 11/16		RFB-211	RCI-211													
2 3/4		RFB-212	RCI-212													
	70	RFB-70MM	RCI-70MM	9630	7 3/4	6	8 31/64	3 15/16	1 5/8	4 11/16	4 1/2	4 23/32	6 1/2	2 1/4		33.4
2 15/16		RFB-215	RCI-215	42836	196.9	152.4	215.5	100.0	41.3	119.1	114.3	119.9	165.1	57.2	3/4	15.15
	75	RFB-75MM	RCI-75MM													
3		RFB-300	RCI-300													
	80	RFB-80MM	RCI-80MM													
3 3/16		RFB-303	RCI-303													
3 1/4		RFB-304	RCI-304													
	85	RFB-85MM	RCI-85MM	15320	9 1/4	7	9 29/32	4 1/2	17/8	5 1/4	5	5 7/16	8	2 1/2	3/4	57.4
3 7/16		RFB-307	RCI-307	68147	235.0	177.8	251.6	114.3	47.6	133.4	127.0	138.1	203.2	63.5	5/4	26.04
3 1/2		RFB-308	RCI-308													
	90	RFB-90MM	RCI-90MM													
	95	RFB-95MM	RCI-95MM													
3 15/16		RFB-315	RCI-315													
	100	RFB-100MM	RCI-100MM	20980	10 1/4	7 3/4	10 61/64	5 5/8	2 1/8	6 1/2	6 1/4	5 15/16	8 7/8	3 1/8	7/8	81.8
4		RFB-400	RCI-400	93324	260.4	196.9	278.2	142.9	54.0	165.1	158.8	150.8	225.4	79.4	170	37.10
	105	RFB-105MM	RCI-105MM													

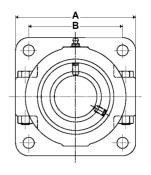
Metric dimensions for reference only

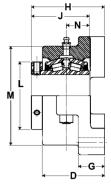
Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Rolling Elements: Tapered Roller

> Housing: Cast Iron Four Bolt Flange


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Single Collar

Seal:

Single Lip Contact **Optional Seal:**

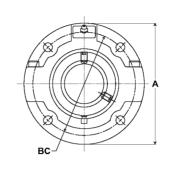
Temperature: -20°F to 220°F

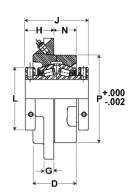
RFBA Series Four-Bolt Flange Units - Single Lock Collar

Bore Diar	meter		Descripe		Basic Dimensions inch / mm ynamic Unit Wt									Unit Wt		
inch	mm	Part No.	lemat)	Rating Ib/N	٨	8	8.C	D	G	H	j	L	M	NI	Bolt Size	lb/kg
1 3/16		RFBA-103	RCIA-103	2975	4	27/8	4 1/16	2 5/16	1	2 13/16	2 1/4	2 1/4	3 1/4	55/64	3/8	6.0
1 1/4		RFBA-104	RCIA-104	13233	101.6	73.0	103.2	58.7	25.4	71.4	57.2	57.2	82.6	21.8	3/8	2.72
1 3/8		RFBA-106	RCIA-106	4760	4 5/8	3 1/2	4 61/64	2 9/16	1	3 1/16	2 17/32	2 5/8	3 3/4	1 1/32	1/2	8.1
1 7/16		RFBA-107	RCIA-107	21174	117.5	88.9	125.8	65.1	25.4	77.8	64.3	66.7	95.3	26.2	1/2	3.67
1 1/2		RFBA-108	RCIA-108	C4.40	F 2/0	4.4/0	E EDICA	0.45/40	1.0/10	2.4/0	0.07/00	0.7/0	44/0	4 5/00		40.0
1 5/8		RFBA-110	RCIA-110	6140 27312	5 3/8 136.5	4 1/8 104.8	5 53/64 148.0	2 15/16 74.6	1 3/16 30.2	3 1/2 88.9	2 27/32 72.2	27/8 73.0	4 1/2 114.3	1 5/32 29.4	1/2	12.3 5.58
1 11/16		RFBA-111	RCIA-111	21012	150.5	104.0	140.0	7.0	50.2	00.5	12.2	7 0.0	114.5	20.4		0.00
1 3/4		RFBA-112	RCIA-112													
	45	RFBA-45MM	RCI-45MM	8070	5 5/8	4 3/8	6 3/16	3 1/16	1 3/16	3 5/8	2 61/64	3 1/4	4 3/4	1 13/64		145
1 15/16		RFBA-115	RCIA-115	35897	142.9	111.1	157.2	77.8	30.2	92.1	75.0	82.6	120.7	30.6	1/2	14.5 6.58
	50	RFBA-50MM	RCI-50MM	55551	142.0	''''	101.2	11.0	50.Z	02.1	10.0	02.0	120.1	00.0		0.50
2		RFBA-200	RCIA-200													
	55	RFBA-55MM	RCI-55MM	8570	6 1/4	4 7/8	6 57/64	3 1/4	1 3/8	3 7/8	3 1/8	3 5/8	5 1/4	1 1/4	5/8	19.0
2 3/16		RFBA-203	RCIA-203	38121	158.8	123.8	175.0	82.6	34.9	98.4	79.4	92.1	133.4	31.8	3/0	8.62
2 1/4		RFBA-204	RCIA-204													
	60	RFBA-60MM	RCI-60MM	9030	67/8	5 3/8	7 39/64	3 9/16	1 1/2	4 3/16	3 5/16	3 15/16	5 3/4	1 5/16		24.0
2 7/16		RFBA-207	RCIA-207	40167	174.6	136.5	193.3	90.5	38.1	106.4	84.1	100.0	146.1	33.3	5/8	10.89
2 1/2		RFBA-208	RCIA-208	10.101			100.0	00.0	00		"			55.5		10.00
	65	RFBA-65MM	RCI-65MM													
2 11/16		RFBA-211	RCIA-211													
2 3/4		RFBA-212	RCIA-212													
	70	RFBA-70MM	RCI-70MM	9630	7 3/4	6	8 31/64	3 15/16	1 5/8	4 11/16	3 11/16	4 23/32	6 1/2	1 7/16	3/4	33.4
2 15/16		RFBA-215	RCIA-215	42836	196.9	152.4	215.5	100.0	41.3	119.1	93.7	119.9	165.1	36.5	G, ,	15.15
	75	RFBA-75MM	RCI-75MM													
3		RFBA-300	RCIA-300													
	80	RFBA-80MM	RCI-80MM													
3 3/16		RFBA-303	RCIA-303													
3 1/4		RFBA-304	RCIA-304													
	85	RFBA-85MM	RCI-85MM	15320	9 1/4	7	9 29/32	4 1/2	1 7/8	5 1/4	4 3/16	57/16	8	1 11/16	3/4	57.4
3 7/16		RFBA-307	RCIA-307	68147	235.0	177.8	251.6	114.3	47.6	133.4	106.4	138.1	203.2	42.9	G, ,	26.04
3 1/2		RFBA-308	RCIA-308													
	90	RFBA-90MM	RCI-90MM													
	95	RFBA-95MM	RCI-95MM													
3 15/16		RFBA-315	RCIA-315													
	100	RFBA-100MM	RCI-100MM	20980	10 1/4	7 3/4	10 61/64	5 5/8	2 1/8	6 1/2	5 1/4	5 15/16	87/8	2 1/8	7/8	81.8
4		RFBA-400	RCIA-400	93324	260.4	196.9	278.2	142.9	54.0	165.1	133.4	150.8	225.4	54.0	110	37.10
	105	RFBA-105MM	RCI-105MM													

Rolling Elements: Tapered Roller

Housing: Cast Iron Piloted Flange


Self Alignment: +/- 3 Degrees


Lock: Setscrew, Double Collar

Seal: Fel

Optional Seal: Single Lip Contact

Temperature: -20°F to 220°F

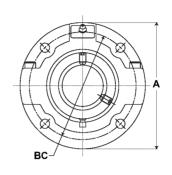
RFP Series Piloted Flange Cartridge Units

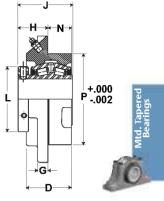
Ew.	•		Dearring	Basic	namic Unit											
Dem	dur	Pattin.	harpet.	Dynamic Rating	A	8.C.	D	6	367	Ji.	Vi.	N	P	Bolt Size	lb/kg	
inch	mm		Ñ.	lb/N	5.00	2007		Next	5547	5568	3447	16	185	Bon Gize		
1 3/16		RFP-103	RCI-103	2975	5	4 1/8	1 3/4	7/16	1 5/16	2 3/4	2 1/4	7/8	3 3/8	3/8	5.5	
1 1/4		RFP-104	RCI-104	13233	127.0	104.8	44.5	11.1	33.3	69.9	57.2	1,0	85.7	0,0	2.49	
1 3/8		RFP-106	RCI-106	4760	5 1/4	4 3/8	2	1/2	1 1/2	3	25/8		3 5/8		6.8	
	35	RFP-35MM	RCI-35MM	21174	133.4	111.1	50.8	12.7	38.1	76.2	66.7	15/16	92.1	3/8	3.08	
1 7/16		RFP-107	RCI-107				00.0									
1 1/2		RFP-108	RCI-108	04.40	0.410	F 4/0	0.414	4.0	4.0440	0.00	0.7/0	4.4%			40.4	
4.500	40	RFP-40MM	RCI-40MM	6140	6 1/8	5 1/8	2 1/4	1/2	1 9/16	3 3/8	27/8	1 1/8	4 1/4	7/16	10.1	
1 5/8		RFP-110	RCI-110	27312	155.6	130.2	57.2	12.7	39.7	85.7	73.0	28.6	108.0		4.58	
1 11/16		RFP-111	RCI-111													
1 3/4	ا .۔ ا	RFP-112	RCI-112													
4.540	45	RFP-45MM	RCI-45MM	8070	6 3/8	5 3/8	2 5/16	9/16	1 9/16	3 1/2	3 1/4	1 1/4	4 1/2	740	11.6	
1 15/16		RFP-115	RCI-115	35897	161.9	136.5	58.7	14.3	39.7	88.9	82.6	31.8	114.3	7/16	5.26	
_	50	RFP-50MM	RCI-50MM													
2	55	RFP-200	RCI-200	8570	7 1/8	6	2 1/2	9/16	1 11/16	3 3/4	3 5/8	1 15/16	5		14.5	
2 3/16	၂ ၁၁	RFP-55MM RFP-203	RCI-55MM RCI-203	38121	181.0	152.4	63.5	9/16 14.3	42.9	95.3	92.1	49.2	127.0	1/2	6.58	
2 1/4		RFP-203	RCI-203	30121	101.0	132.4	03.3	14.3	42.9	95.5	92.1	49.2	121.0		0.56	
2 1/4	60	RFP-60MM	RCI-204													
2 7/16	00	RFP-207	RCI-207	9030	7 5/8	6 1/2	2 3/4	5/8	1 13/16	4	3 15/16	1 7/16	5 1/2	1/2	19	
2 1/10		RFP-207 RFP-208	RCI-207	40167	193.7	165.1	69.9	15.9	46.0	101.6	100.0	36.5	139.7	1/2	8.62	
2 1/2	65	RFP-65MM	RCI-200													
2 11/16	0.5	RFP-211	RCI-211													
2 3/4		RFP-212	RCI-211													
2 014	70	RFP-70MM	RCI-70MM	9630	8 3/4	7 1/2	27/8	3/4	2	4 1/2	4 23/32	1 9/16	6 3/8		26.7	
2 15/16	'	RFP-215	RCI-215	42836	222.3	190.5	73.0	19.1	50.8	114.3	119.9	39.7	161.9	5/8	12.11	
2 10/10	75	RFP-75MM	RCI-75MM	42000	222.5	100.0	75.0	10.1	30.0	114.5	110.0	30.7	101.5		12.11	
3	'	RFP-300	RCI-300													
	80	RFP-80MM	RCI-80MM													
3 3/16		RFP-303	RCI-303													
3 1/4		RFP-304	RCI-304													
	85	RFP-85MM	RCI-85MM	15320	10 1/4	8 5/8	3 3/8	7/8	27/16	5	5 7/16	1 5/8	7 3/8		42.6	
3 7/16		RFP-307	RCI-307	68147	260.4	219.1	85.7	22.2	61.9	127.0	138.1	41.3	187.3	3/4	19.32	
3 1/2		RFP-308	RCI-308													
	90	RFP-90MM	RCI-90MM													
	95	RFP-95MM	RCI-95MM													
3 15/16		RFP-315	RCI-315													
	100	RFP-100MM	RCI-100MM	20980	10 7/8	9 3/8	4 3/8	15/16	2 11/16	6 1/4	5 15/16	27/16	8 1/8	2/4	55.2	
4		RFP-400	RCI-400	93324	276.2	238.1	111.1	23.8	68.3	158.8	150.8	61.9	206.4	3/4	25.04	
	105	RFP-105MM	RCI-105MM													
	110	RFP-110MM	RCI-110MM													
4 7/16		RFP-407	RCI-407	25750	13 1/2	11 3/4	4 5/8	1	3 1/32	6 3/4	6 13/32	2 3/8	10 1/4	3/4	91	
4 1/2		RFP-408	RCI-408	114542	342.9	298.5	117.5	25.4	77.0	171.5	162.7	60.3	260.4	3/4	41.28	
	115	RFP-115MM	RCI-115MM													
	120	RFP-120MM	RCI-120MM													
	125	RFP-125MM	RCI-125MM	35520	14 3/4	12 3/4	5 3/8	1 1/4	2 31/32	7 1/4	7 13/32	27/8	11	7/8	115	
4 15/16		RFP-415	RCI-415	158001	374.7	323.9	136.5	31.8	75.4	184.2	188.1	73.0	279.4	170	52.16	
5		RFP-500	RCI-500													

Metric dimensions for reference only.

Rolling Elements: Tapered Roller

> Housing: Cast Iron Piloted Flange


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Single Collar

Seal:

Single Lip Contact **Optional Seal:**

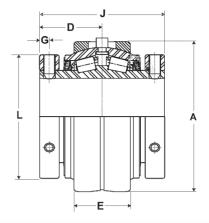
Temperature: -20°F to 220°F

RFPA Series Piloted Flange Cartridge Units - Single Lock Collar

Bore Dia	ameter		Benning	Basic	amic Polt Uni										Unit Wt.
inch	mm	Part No.	liment No.	Dynamic Rating Ib/N	A	B.C.	D	G	100	J.	L	N	ě	Bolt Size	lb/kg
1 3/16		RFPA-103	RCIA-103	2975	5	4 1/8	1 3/4	7/16	1 5/16	2 3/8	2 1/4	7/8	3 3/8	3/8	5.5
1 1/4		RFPA-104	RCIA-104	13233	127.0	104.8	44.5	11.1	33.3	60.3	57.2	22.2	85.7	3/0	2.49
1 3/8		RFPA-106	RCIA-106	4760	5 1/4	4 3/8	2	1/2	1 1/2	2 17/32	25/8	15/16	3 5/8	3/8	6.8
1 7/16		RFPA-107	RCIA-107	21174	133.4	111.1	50.8	12.7	38.1	64.3	66.7	23.8	92.1	3,0	3.08
1 1/2		RFPA-108	RCIA-108	6140	6 1/8	5 1/8	2 1/4	1/2	1 9/16	2 27/32	27/8	1 1/8	4 1/4		10.1
1 5/8		RFPA-110	RCIA-110	27312	155.6	130.2	57.2	12.7	39.7	72.2	73.0	28.6	108.0	7/16	4.58
1 11/16		RFPA-111	RCIA-111												
1 3/4		RFPA-112	RCIA-112												
4.45(4.0)	45	RFPA-45MM	RCI-45MM	8070	6 3/8	5 3/8	2 5/16	9/16	1 9/16	2 61/64	3 1/4	1 9/16	4 1/2	740	11.6
1 15/16		RFPA-115	RCIA-115	35897	161.9	136.5	58.7	14.3	39.7	75.0	82.6	39.7	114.3	7/16	5.26
	50	RFPA-50MM	RCI-50MM												
2		RFPA-200	RCIA-200	0570	7.40		0.4/0	0/40	4.44(40)	0.4/0	0.5/0	4.540	-		445
0.0440	55	RFPA-55MM	RCI-55MM	8570	7 1/8	6	2 1/2	9/16	1 11/16 42.9	3 1/8	35/8	1 5/16	5 127.0	1/2	14.5
2 3/16		RFPA-203	RCIA-203	38121	181.0	152.4	63.5	14.3	42.9	79.4	92.1	33.3	121.0		6.58
2 1/4	60	RFPA-204	RCIA-204												
27/16	60	RFPA-60MM	RCI-60MM	9030	7 5/8	6 1/2	2 3/4	5/8	1 13/16	3 5/16	3 15/16	1 7/16	5 1/2	1/0	19
2 7/16 2 1/2		RFPA-207 RFPA-208	RCIA-207 RCIA-208	40167	193.7	165.1	69.9	15.9	46.0	84.1	100.0	36.5	139.7	1/2	8.62
2 1/2	65	RFPA-200 RFPA-65MM	RCIA-206 RCI-65MM												
2 11/16	00	RFPA-03WIWI	RCI-03IVIIVI RCIA-211												
2 3/4		RFPA-212	RCIA-211												
2014	70	RFPA-70MM	RCI-70MM	9630	8 3/4	7 1/2	27/8	3/4	2	3 11/16	4 23/32	1 9/16	6 3/8		26.7
2 15/16	'0	RFPA-215	RCIA-215	42836	222.3	190.5	73.0	19.1	50.8	93.7	119.9	39.7	161.9	5/8	12.11
2 10/10	75	RFPA-75MM	RCI-75MM	42000	222.0	100.0	10.0	10.1	00.0	00.1	110.0	00.1	101.0		12.11
3	'	RFPA-300	RCIA-300												
	80	RFPA-80MM	RCI-80MM												
3 3/16	"	RFPA-303	RCIA-303												
3 1/4		RFPA-304	RCIA-304												
	85	RFPA-85MM	RCI-85MM	15320	10 1/4	8 5/8	3 3/8	7/8	27/16	4 3/16	57/16	1 5/8	7 3/8		42.6
3 7/16		RFPA-307	RCIA-307	68147	260.4	219.1	85.7	22.2	61.9	106.4	138.1	41.3	187.3	3/4	19.32
3 1/2		RFPA-308	RCIA-308												
	90	RFPA-90MM	RCI-90MM												
	95	RFPA-95MM	RCI-95MM												
3 15/16		RFPA-315	RCIA-315												
	100	RFPA-100MM	RCI-100MM	20980	10 7/8	9 3/8	4 3/8	15/16	2 11/16	5 1/4	5 15/16	27/16	8 1/8	3/4	55.2
4		RFPA-400	RCIA-400	93324	276.2	238.1	111.1	23.8	68.3	133.4	150.8	61.9	206.4	3/4	25.04
	105	RFPA-105MM	RCI-105MM												
	110		RCI-110MM												
4 7/16		RFPA-407	RCIA-407	25750	13 1/2	11 3/4	4 5/8	1	3 1/32	5 1/2	6 13/32	2 3/8	10 1/4	3/4	91
4 1/2		RFPA-408	RCIA-408	114542	342.9	298.5	117.5	25.4	77.0	139.7	162.7	60.3	260.4	3/4	41.28
	115		RCI-115MM												
	120		RCI-120MM												
	125		RCI-125MM	35520	14 3/4	12 3/4	5 3/8	1 1/4	2 31/32	6 13/64	7 13/32	2 7/8	11	7/8	115
4 15/16		RFPA-415	RCIA-415	158001	374.7	323.9	136.5	31.8	75.4	157.6	188.1	73.0	279.4	110	52.16
_ 5		RFPA-500	RCIA-500												

Rolling Elements: Tapered Roller

Housing: Cylindrical Cartridge Insert


Self Alignment: +/- 3 Degrees

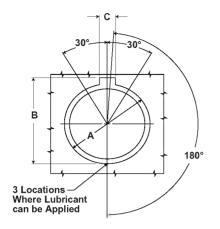
Lock: Setscrew, Double Collar

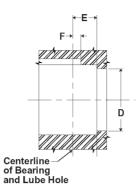
Seal: Fel

Optional Seal: Single Lip Contact

Temperature: -20°F to 220°F

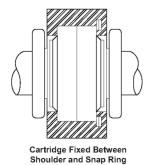
ERCI Series Replacement Cartridge Insert

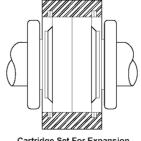

Bore Dia	ameter		Basic	J		Dimension	s inch / mm			Unit Wt.
inch	mm	Part No.	Dynamic Rating Ib/N	A +.000 /001	D	Е	G	J	L	lb/kg
1 3/4 1 15/16	45 50	ERCI-112 ERCI-45MM ERCI-115 ERCI-50MM ERCI-200	8070 35897	3.937 100.0	1 3/4 44.5	1 3/4 44.5	5/16 7.9	3 1/2 88.9	3 1/4 82.6	6.5 2.95
2 3/16	55	ERCI-55MM ERCI-203	8570 38121	4.437 112.7	1 7/8 47.6	1 3/4 44.5	5/16 7.9	3 3/4 95.3	3 5/8 92.1	7.7 3.49
2 1/4 2 7/16 2 1/2	60 65	ERCI-204 ERCI-60MM ERCI-207 ERCI-208 ERCI-65MM	9030 40167	4.782 121.5	2 50.8	1 13/16 46.0	5/16 7.9	4 101.6	3 15/16 100.0	10.0 4.54
2 11/16 2 3/4 2 15/16	70 75	ERCI-211 ERCI-212 ERCI-70MM ERCI-215 ERCI-75MM ERCI-300	9630 42836	5.374 136.5	2 1/4 57.2	2 50.8	7/16 11.1	4 1/2 114.3	4 23/32 119.9	13.0 5.90
3 3/16 3 7/16 3 1/2	80 85 90 95	ERCI-80MM ERCI-303 ERCI-85MM ERCI-307 ERCI-308 ERCI-90MM ERCI-95MM	15320 68147	6.593 167.5	2 1/2 63.5	2 1/4 57.2	7/16 11.1	5 127.0	5 7/16 138.1	22.0 9.98
3 15/16 4	100 105	ERCI-315 ERCI-100MM ERCI-400 ERCI-105MM	20980 93321	7.187 182.5	3 1/8 79.4	3 1/8 79.4	1/2 12.7	6 1/4 158.8	5 15/16 150.8	30.0 13.61
4 7/16 4 1/2	110 115	ERCI-110MM ERCI-407 ERCI-408 ERCI-115MM	25750 114542	7.999 203.2	3 3/8 85.7	3 1/4 82.6	1/2 12.7	6 3/4 171.5	6 13/32 162.7	38.4 17.42
4 15/16 5	120 125	ERCI-120MM ERCI-125MM ERCI-415 ERCI-500	35520 158001	9.061 230.1	3 5/8 92.1	3 3/4 95.3	5/8 15.9	7 1/4 184.2	7 13/32 188.1	55.0 24.95

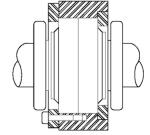

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.







ERCI Series Housing Bore Dimensions

Bore Di	ameter			Dimension	s inch / mm	rousing bore	
) linch !	iim)	+.002 /000 +.05 /000	B +.01 /00 +.25 /00	C +.01 /00 +.25 /00	D ±.01 ±.25	±.01 ±.25	F ±.005 ±.127
1 3/4 1 15/16 2	45 50 55	3.939 100.05	4.12 104.65	.44 11.18	3.63 42.20	.97 24.64	.25 6.35
2 3/16	55	4.439 112.75	4.62 117.35	.56 14.22	4.00 101.10	.97 24.64	.38 9.65
2 1/4 2 7/16 2 1/2	60 65	4.782 121.46	5.01 127.25	.56 14.22	4.38 111.25	1.03 26.16	.38 9.65
2 11/16 2 3/4 2 15/16 3	70 75	5,376 136,55	5.50 139.70	.56 14.22	5.12 130.05	1.16 29.46	.38 9.65
3 3/16 3 7/16 3 1/2	80 85 90 95	6.595 167.51	6.89 175.01	.75 19.05	6.00 152.40	1.28 32.51	.50 12.70
3 15/16 4	100 105	7.189 182.60	7.46 189.48	.75 19.05	6.62 168.15	1.75 44.45	.50 12.70
4 7/16 4 1/8	110 115	8.001 203.23	8.28 210.31	.75 19.05	7.25 184.15	1.81 45.97	.50 12.70
4 15/16 5	120 125	9.063 230.20	9.34 237.24	.75 19.05	8.50 215.90	2.06 52.35	.50 12.70

Cartridge Set For Expansion And Held Between Snap Rings

Cartridge Fixed Between Two Types of Collars

Features & Benefits Page I-9

Product Options Page I-12

SEALMASTER_{® RPB Bearings}

Rolling Elements: Tapered Roller

Housing: Cylindrical Cartridge Insert

Self Alignment: +/- 3 Degrees

Lock: Setscrew, Single and Double Collar

Seal: Felt

Optional Seal: Single Lip Contact

Temperature: -20°F to 220°F

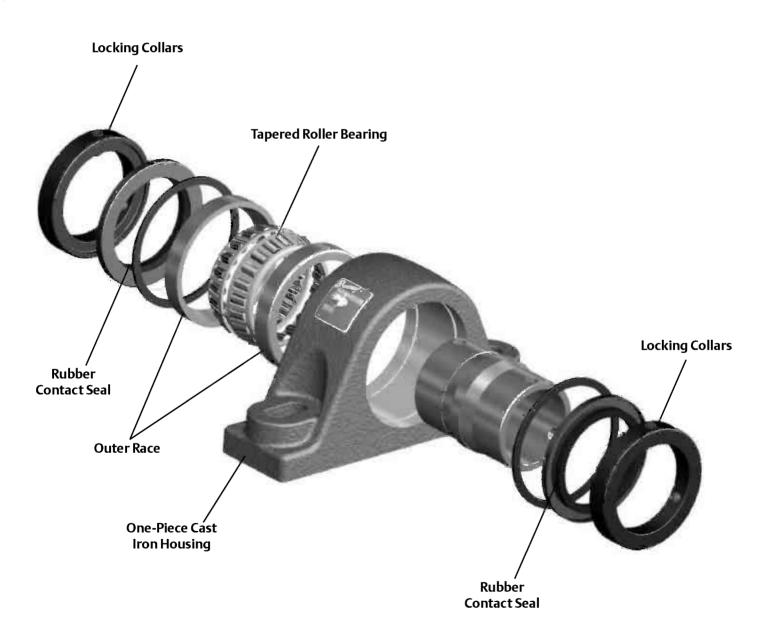
RCI and RCIA Series Replacement Cartridge Inserts - Inch

Bore Diameter	RCI Felt Seal	Contact Seal	Hi Temp S⊣al	Unit Wt. Ib/kg
inch				
1 3/16	RCI-103	RCI-103-C	RCI-103-N	2.0 .91
1 1/4	RCI-104	RCI-104-C	RCI-104-N	1.9 .86
1 3/8	RCI-106	RCI-106-C	RCI-106-N	2.9 1.32
1 7/16	RCI-107	RCI-107-C	RCI-107-N	2.7 1.22
1 1/2	RCI-108	RCI-108-C	RCI-108-N	4.5 2.04
1 5/8	RCI-110	RCI-110-C	RCI-110-N	4.2 1.91
1 11/16	RCI-111	RCI-111-C	RCI-111-N	4.0 1.81
1 3/4	RCI-112	RCI-112-C	RCI-112-N	5.3 2.40
1 15/16	RCI-115	RCI-115-C	RCI-115-N	4.8 2.18
2 7/16	RCI-207	RCI-207-C	RCI-207-N	7.4 3.36
2 1/2	RCI-208	RCI-208-C	RCI-208-N	7.2 3.27
2 11/16	RCI-211	RCI-211-C	RCI-211-N	11.5 5.22
2 3/4	RCI-212	RCI-212-C	RCI-212-N	11.3 5.13
2 15/16	RCI-215	RCI-215-C	RCI-215-N	10.3 4.67
3	RCI-300	RCI-300-C	RCI-300-N	10.0 4.54
3 3/16	RCI-303	RCI-303-C	RCI-303-N	19.6 8.89
3 7/16	RCI-307	RCI-307-C	RCI-307-N	17.8 8.07
3 1/2	RCI-308	RCI-308-C	RCI-308-N	17.3 7.85
3 15/16	RCI-315	RCI-315-C	RCI-315-N	23.1 10.48
4	RCI-400	RCI-400-C	RCI-400-N	22.6 10.25
4 7/16	RCI-407	RCI-407-C	RCI-407-N	30.4 13.79
4 1/2	RCI-408	RCI-408-C	RCI-408-N	29.9 13.56
4 15/16	RCI-415	RCI-415-C	RCI-415-N	45.6 20.68
5	RCI-500	RCI-500-C	RCI-500-N	44.4 20.14

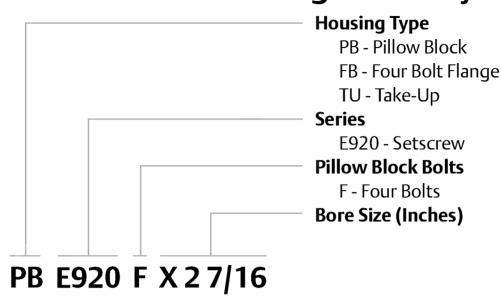
Bore Diameter inch	RCIA Felt Seal	Contact Seal	Hi-Temp Seal	Unit Wt. lb/kg
1 3/16	RCIA-103	RCIA-103-C	RCIA-103-N	2.0
1 1/4	RCIA-104	RCIA-104-C	RCIA-104-N	1.9 .86
1 3/8	RCIA-106	RCIA-106-C	RC[A: 106-N	2.9 1.32
1 7/16	RCIA-107	RCIA-107-C	RC[A⊧107-N	2.7 1.22
1 1/2	RCIA-108	RCIA-108-C	RC[A-108-N	4.5 2.04
1 5/8	RCIA-110	RCIA-110-C	RC[A-110-N	4.2 1.91
1 11/16	RCIA-111	RCIA-111-C	RC [A⊧111-N	4.0 1.81
1 3/4	RCIA-112	RCIA-112-C	RC I A 112-N	5.3 2.40
1 15/16	RCIA-115	RCIA-115-C	RC I A 115-N	4.8 2.18
2 7/16	RCIA-207	RCIA-207-C	RC[A-207-N	7.4 3.36
2 1/2	RCIA-208	RCIA-208-C	RC[A-208-N	7.2 3.27
2 11/16	RCIA-211	RCIA-211-C	RC I A-211-N	11.5 5.22
2 3/4	RCIA-212	RCIA-212-C	RC[A-212-N	11.3 5.13
2 15/16	RCIA-215	RCIA-215-C	RC[A:215-N	10.3 4.67
3	RCIA-300	RCIA-300-C	RC[A-300-N	10.0 4.54
3 3/16	RCIA-303	RCIA-303-C	RC[A-303-N	19.6 8.89
3 7/16	RCIA-307	RCIA-307-C	RC A 307-N	17.8 8.07
3 1/2	RCIA-308	RCIA-308-C	RC A 308-N	17.3 7.85
3 15/16	RCIA-315	RCIA-315-C	RCIA-315-N	23.1 10.48
4	RCIA-400	RCIA-400-C	RCIA 400-N	22.6 10.25
4 7/16	RCIA-407	RCIA-407-C	RC[A:407-N	30.4 13.79
4 1/2	RCIA-408	RCIA-408-C	RC[A:408-N	29.9 13.56
4 15/16	RCIA-415	RCIA-415-C	RCIA 415-N	45.6 20.68
5	RCIA-500	RCIA-500-C	RC[A-500-N	44.4 20.14

RPB Bearings **SEALMASTER**®

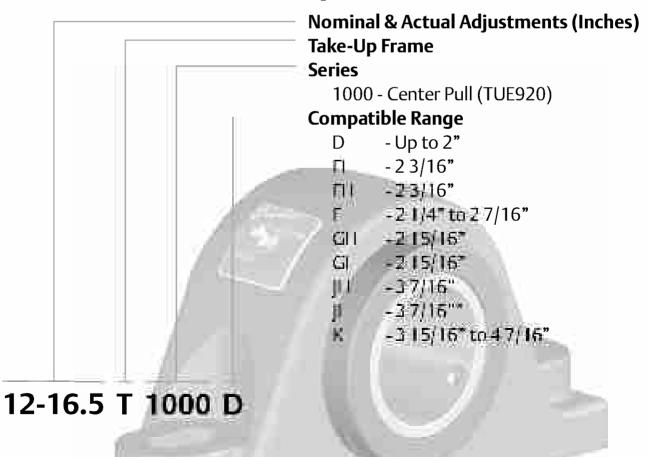
RCI-M and RCIA-M - Replacement Cartridge Inserts - Metric


Dilling	- 0H(A)		THE PERSON NAMED IN
() apprilat			(6)-IM-HERITAGE
8	He SEK	THE SECURITY	HARRISH WAY
40	RCI-40MM	RCI40MM-C	RCI40MM-N
47	RG FORM	TIC 45/M/10	ROMONN N
50	RCI-50MM	RCI50MM-C	RCI50MM-N
7.7	64 BB507	THI HOUSE	HOMENIA I
60	RCI-60MM	RCI60MM-C	RCI60MM-N
85	100,586,000	TAC REMEDIE	SACHEMBACK
70	RCI-70MM	RCI70MM-C	RCI70MM-N
17	GC 257Wr	ROMAN	- жерейн ч
80	RCI-80MM	RCI80MM-C	RCI80MM-N
35	10 G 1883W	1-concentrati	(KOMMON)
90	RCI-90MM	RCI90MM-C	RCI90MM-N
\$2	FC 49'#	PORPHIA	HONONW 4
100	RCI-100MM	RCI100MM-C	RCI100MM-N
Dei	ACCUSTOM/IN	etonoskie t	SETTIMESEA M
110	RCI-110MM	RCI110MM-C	RCI110MM-N
105	MAT THA	RUMSHH-L	po noma
120	RCI-120MM	RCI120MM-C	RCI120MM-N
1755	BOLLYSKIA	TEHOSNIN'O	HERIOSSWAN.

Batte (1 emple)	Farrer	Harrison	Title and the
1	1004-286N	16:345959915	DESIGNATION N
40	RCIA-40MM	RCIA40MM-C	RCIA40MM-N
ा व	RO A 45:9:	RODS-SWINE	RIMENUA
50	RCIA-50MM	RCIA50MM-C	RCIA50MM-N
60	ters or become	10 September 6	TOTAL WATER
60	RCIA-60MM	RCIA60MM-C	RCIA60MM-N
es:	500 A-65 (#:	ROWERY NEC	REPRESIDEN
70	RCIA-70MM	RCIA70MM-C	RCIA70MM-N
77	691, p. 251,000	Productions (4CK7*NM V
80	RCIA-80MM	RCIA80MM-C	RCIA80MM-N
66	100 A88 (20)	100000000	IIIAARSMANA
90	RCIA-90MM	RCIA90MM-C	RCIA90MM-N
95	FIC / 1001@	PCC000WAG	KILADAM V
100	RCIA-100MM	RCIA100MM-C	RCIA100MM-N
N5	HOME - ENTH	HOATCHOOLE	DE ADMINISTRA
110	RCIA-110MM	RCIA110MM-C	RCIA110MM-N
110	RCB CMW	BOATISHINE.	POWERWAY
120	RCIA-120MM	RCIA120MM-C	RCIA120MM-N
1005	COM TEMP	and a make a	DC-2425/98334


Mtd. Tapered Bearings

Browning® E920 Series Tapered Roller Bearing


Browning® 920 series mounted tapered roller bearings feature one-piece durable cast iron non-expansion housings with Type E mounting dimensions and limited misalignment. The E920 series contains setscrew locking collars for easy installation and contact face riding seals to provide a good balance between contaminant entry, grease retention and friction. Depending on your application requirements, these bearings are available in a wide variety of bore sizes and housing configurations as illustrated on the pages to follow.

E920 Series Tapered Roller Nomenclature Housing Assembly

Take-Up Frames

Features and Benefits

Tapered Roller Bearings

Browning® E920 Series mounted tapered roller bearings are available from 1 3/16" to 5" in a two and four bolt pillow blocks, four bolt flanges and take-up housing styles. All units are completely assembled, adjusted and lubricated at the factory and are ready for use.

Heavy Duty Tapered Roller Bearings

Heavy duty tapered roller bearings for radial, thrust and combination loading.

One-Piece Cast Iron Housing

Durable one-piece cast iron housings provide support load.

Contact Seal

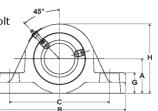
Rubber contact face riding seals rotate with the shaft to help retain lubricant and help exclude contaminants.

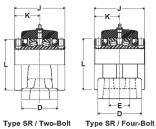
Collar Mount System

Two locking collars are standard on all units with two setscrews at 120° for balanced three point contact and holding power. Locking collars are black oxide treated.

E920 Series Bearings Browning

Rolling Elements: Tapered Roller


> Housing: Cast Iron, Two And Four Bolt


Pillow Blocks

Lock: Setscrew, Double Collar

Contact

Temperature: -20°F to 200°F

PBE920 Series Two and Four-Bolt Base Pillow Blocks

		Marson .															
Bore Diameter	Part No.	Dymanik Kaling	Type	A	8			D		G	н	ų.	K	i.	Bolt		Un t Wt. lb/kg
1 3/16	PBE920x 1 3/16	2975	0.0	1 1/2	6 3/8	Min. 4 5/16	Max.	1 7/8		7/8	3	2 3/4	1 25/64	2 1/4	2 Bolt	4 Bolt	4.0
1 1/4	PBE920x 1 1/4	13233	SR	38.1	161.9	109.5	127.0	47.6		22.2	76.2	69.9	35.3	57.2	1/2		1.81
1 3/8	PBE920x 1 3/8	4760	SR	1 7/8	7 3/8	5	6	2 1/8		1 1/8	3 3/4	3	1 1/2	2 3/4	1/2		6.9
1 7/16	PBE920x 1 7/16	21172		47.6	187.3	127.0	152.4	54.0		28.6	95.3	76.2	38.1	69.9	1,72		3.1
1 1/2	PBE920x 1 1/2	6140	0.0	2 1/8	7 7/8	5 11/16	6 1/2	2 1/2		1 1/4	4 1/4	3 3/8	1 11/16	3 3/16	4.0		9.5
1 5/8 1 11/16	PBE920x 1 5/8 PBE920x 1 11/16	27311	SR	54.0	200.0	144.5	165.1	63.5		31.8	108.0	85.7	42.9	81.0	1/2		4.31
1 3/4	PBE920x 1 11/16																
1 15/16	PBE920x 1 15/16	8070	SR	2 1/4	8 7/8	6 3/16	7 1/4	2 1/2		1 1/4	4 1/2	3 1/2	1 3/4	3 7/16	5/8		10.9
2	PBE920x 2	35895		57.2	225.4	157.2	184.2	63.5		31.8	114.3	88.9	44.5	87.3			4.94
2 2/46	DDE020v 2 2/46	8570	SR	2 1/2	9 5/8	6 11/16	8	2 5/8		1 7/16	5	3 3/4	1 7/8	3 3/4	5/8		14.0
2 3/16	PBE920x 2 3/16	38119	SK	63.5	244.5	169.9	203.2	66.7		36.5	127.0	95.3	47.6	95.3			6.35
2 1/4	PBE920x 2 1/4	9030		2 3/4	10 1/2	7 1/8	8 3/4	2 7/8		1 5/8	5 1/2	4	2	4 1/16			19.0
2 7/16	PBE920x 2 7/16	40165	SR	69.9	266.7	181.0	222.3	73.0		41.3	139.7	101.6	50.8	103.2	5/8		8.62
2 1/2	PBE920x 2 1/2																
2 11/16 2 3/4	PBE920x 2 11/16 PBE920x 2 3/4	9630		3 1/8	10	8 7/16	9 3/4	3		1 3/4	6 1/4	4 1/2	2 1/4	4 23/32			26.0
2 15/16	PBE920x 2 3/4 PBE920x 2 15/16	42834	SR	79.4	12 304.8	214.3	247.7	76.2		44.5	158.8	114.3	57.2	119.9	3/4		11.79
3	PBE920x 3	42004		10.4	004.0	214.0	271.1	10.2		77.0	100.0	114.0	01.2	110.0			11.70
3 3/16	PBE920x 3 3/16	45000		0.0/4		0.044	44.4/0	0.5/0		0.4/0	7.40	_	0.4/0	5 7/40			44.0
3 7/16	PBE920x 3 7/16	15320 68143	LN	3 3/4 95.3	14 355.6	9 3/4 247.7	11 1/2 292.1	3 5/8 92.1		2 1/8 54.0	7 1/2 190.5	5 127.0	2 1/2 63.5	5 7/16 138.1	7/8		44.0 19.96
3 1/2	PBE920x 3 1/2	00143		95.5	333.0	241.1	292.1	92.1		34.0	190.5	127.0	03.3	130.1			19.90
2 1/4	PBE920Fx 2 1/4	9030		2 3/4	10 1/2	7 1/8	8 3/4	3 1/2	1 7/8	1 5/8	5 1/2	4	2	4 1/16			19
2 7/16	PBE920Fx 2 7/16	40165	SR	69.9	266.7	181.0	222.3	88.9	47.6	41.3	139.7	101.6	50.8	103.2		5/8	8.62
2 1/2	PBE920Fx 2 1/2 PBE920Fx 2 11/16																
2 3/4	PBE920Fx 2 3/4	9630		3 1/8	12	8	9 7/8	4	2 1/8	1 3/4	6 1/4	4 1/2	2 1/4	4 23/32			26
2 15/16	PBE920Fx 2 15/16	42834	SR	79.4	304.8	203.2	250.8	101.6	54.0	44.5	158.8	114.3	57.2	119.9		5/8	11.79
3	PBE920Fx 3																
3 3/16	PBE920Fx 3 3/16	15220		3 3/4	14	9 11/16	11 7/16	4 1/2	2 3/8	2 1/8	7 1/2	5	2 1/2	5 7/16			44
3 7/16	PBE920Fx 3 7/16	15320 68143	LN	95.3	355.6	246.1	290.5	4 1/2 114.3	60	54.0	190.5	127.0	63.5	138.1		3/4	44 19.96
3 1/2	PBE920Fx 3 1/2																
3 15/16	PBE920Fx 3 15/16	20980	LN	4 1/4	15 1/4	10 7/16	12 7/8	4 1/2	2 1/4	2 7/16	8 1/2	6 1/4	3 1/8	5 15/16		3/4	65
4 7/40	PBE920Fx 4	93319		108.0	387.4	265.1	327.0	114.3	57.2	61.9	215.9	158.8	79.4	150.8			29.48
4 7/16 4 1/2	PBE920Fx 4 7/16 PBE920Fx 4 1/2	25750 114536	LN	4 3/4 120.7	16 5/8 422.3	11 1/4 285.8	13 7/8 352.4	4 5/8 117.6	2 1/2 63.5	2 3/4 69.9	9 3/8 238.1	6 3/4 171.5	3 3/8 85.7	6 13/32 162.7		3/4	65 29
4 1/2	PBE920Fx 4 1/2 PBE920Fx 4 15/16	35520		5 1/2	18 1/2	13	15 7/8	5 1/8	2 3/4	3 1/8	10 7/8	7 1/4	3 5/8	7 13/32			132
5	PBE920Fx 5	157993	LN	139.7	469.9	330.2	403.2	130.2	69.9	79.4	276.2	184.2	92.1	188.1		7/8	59.87
						,,,,,							<u> </u>				20.0.

^{*}Type LN and SR are different internal mounting configurations as shown in line drawings.

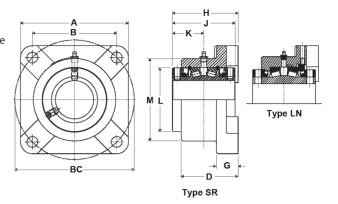
Metric dimensions for reference only.

Notall parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Features & Benefits Bearing Selection Nomenclature Aid Page I-3 Page I-40 Page I-41

E920 Series Bearings


Rolling Elements: Tapered Roller

> Housing: Cast Iron, Four Bolt, Flange

Lock: Setscrew, Double Collar

Seal: Contact

Temperature: -20°F to 200°F

FBE920 Series Four-Bolt Flange Units

Bore		Centre					D	imension	s inch / m	m				
Diameter inch	Part No.		Topx*	A	B.C.	8	D	G	146	Ä	<u>N</u>	*	Bolt Size	Unit We.
1 3/16	FBE920x 1 3/16	2975	O.D.	3 3/4	4 1/16	2 7/8	2 3/8	1 1/32	2 27/32	2 3/4	2 1/4	3	2/0	4.5
1 1/4	FBE920x 1 1/4	13233	SR	95.3	103.3	73.0	60.3	26.2	72.2	69.9	57.2	76.2	3/8	2.04
1 3/8	FBE920x 1 3/8	4760	SR	4 5/8	4 61/64	3 1/2	2 5/8	1 1/16	3 5/64	3	2 3/4	3 5/8	1/2	6.7
1 7/16	FBE920x 1 7/16	21172	SK	117.5	125.8	88.9	66.7	27.0	78.2	76.2	69.9	92.1	1/2	3.04
1 1/2	FBE920x 1 1/2													
1 5/8	FBE920x 1 5/8	6140 27311	SR	5 3/8 136.5	5 53/64 148.0	4 1/8 104.8	3 76.2	1 3/16 30.2	3 29/64 87.7	3 3/8 85.7	3 3/16 81.0	4 1/4 108.0	1/2	10.0 4.54
1 11/16	FBE920x 1 11/16													
1 3/4	FBE920x 1 3/4													
1 15/16	FBE920x 1 15/16	8070 35895	SR	5 5/8 142.9	6 3/16 157.2	4 3/8 111.1	3 1/8 79.4	1 3/16 30.2	3 5/8 92.1	3 1/2 88.9	3 7/16 87.3	4 1/2 114.3	1/2	12.0 5.44
2	FBE920x 2													
2 3/16	FBE920x 2 3/16	8570	SR	6 1/4	6 57/64	4 7/8	3 5/16	1 1/4	3 7/8	3 3/4	3 3/4	4 7/8	5/8	16.0
	1 BE920X 2 3/10	38119	SIX	158.8	175.0	123.8	84.1	31.8	98.3	95.0	95.3	123.8	3/0	7.26
2 1/4	FBE920x 2 1/4													
2 7/16	FBE920x 2 7/16	9030	SR	6 7/8	7 39/64	5 3/8	3 5/8	1 1/2	4 3/16	4	4 1/16	5 1/4	5/8	21.0
2 1/2	FBE920x 2 1/2	40165	Six	174.6	193.3	136.5	92.1	38.1	106.3	101.6	103.2	133.4	3/0	9.53
2 1/2	FBE920x 2 1/2													
2 11/16	FBE920x 2 11/16													
2 3/4	FBE920x 2 3/4	9630	SR	7 3/4	8 31/64	6	3 15/16	1 5/8	4 11/16	4 1/2	4 23/32	6 1/8	3/4	28.0
2 15/16	FBE920x 2 15/16	42834	OIX	196.9	215.5	152.4	100.0	41.3	119.1	114.3	119.9	155.6	0/4	12.70
3	FBE920x 3													
3 3/16	FBE920x 3 3/16													
3 7/16	FBE920x 3 7/16	15320 68143	LN	9 1/4 235.0	9 29/32 251.6	7 177.8	4 9/16 115.9	1 7/8 47.6	5 1/4 133.4	5 127.0	5 7/16 138.1	7 1/2 190.5	3/4	46.0 20.87
3 1/2	FBE920x 3 1/2													
3 15/16	FBE920x 3 15/16	20980	LN	10 1/4	10 31/32	7 3/4	5 11/16	2 3/16	6 9/16	6 1/4	5 15/16	8 1/4	7/8	64.0
4	FBE920x 4	93319	LIV	260.4	278.6	196.9	144.5	55.6	166.7	158.6	150.8	209.6	170	29.03

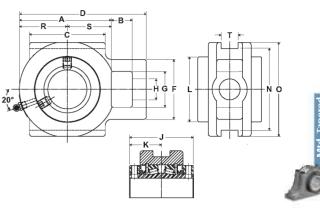
^{*}Type LN and SR are different internal mounting configurations as shown in line drawings.

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

E920 Series Bearings Browning®


Rolling Elements: Tapered Roller

Housing: Cast Iron, Take Ups

Lock: Setscrew, Double Collar

Seal: Contact

Temperature: -20°F to 200°F

TUE920 Series Take Up Units

Bore		Desert)imensi	ons incl	h / mm							thus:
Diame er	Part No.	Habes this	A	.00	C	o	析	G	/H	100	к	ï	N.	0	R	5	=	Wit. Birtige
1 3/8*	TUE920x 1 3/8	4760	3 3/4	5/8	2 3/4	5 3/32	2 7/16	1 7/16	13/16	3	1 1/2	2 3/4	3 1/2	4 1/8	1 3/4	1 29/32	17/32	6.0
1 7/16*	TUE920x 1 7/16	21172	95.8	15.9	69.9	129.4	61.9	36.5	20.6	76.2	38.1	69.9	88.9	104.8	47.3	48.4	13.5	2.72
1 1/2	TUE920x 1 1/2	6140	4 5/16	1 1/16	3 1/4	6	2 7/8	1 15/16	1 1/16	3 3/8	1 11/16	3 3/16	4	4 3/4	2 1/4	2 1/8	11/16	9.0
1 11/16	TUE920x 1 11/16	27311	109.5	27.0	82.6	152.4	73.0	49.2	27.0	85.7	42.9	81.0	101.6	120.7	55.5	54.0	17.5	4.08
1 3/4	TUE920x 1 3/4	8070	4 3/8	1 1/16	3 1/2	6 3/16	2 7/8	1 15/16	1 1/16	3 1/2	1 3/4	3 7/16	4	4 3/4	2 1/2	2 1/8	11/16	12.0
1 15/16	TUE920x 1 15/16 TUE920x 2	35895	111.3	27.0	88.9	157.2	73.0	49.2	27.0	88.9	44.5	87.3	101.6	120.7	57.3	54.0	17.5	5.44
2 3/16	TUE920x 2 3/16	8570	4 7/8	1 3/16	3 3/4	6 13/16	3 1/2	2 1/4	1 3/16	3 3/4	1 7/8	3 3/4	4 1/2	5 1/4	2 1/2	2 3/8	13/16	16.0
2 3/10	10E920x 2 3/10	38119	123.7	30.2	95.3	173.0	88.9	57.2	30.2	95.3	47.6	95.3	114.3	133.4	63.4	60.3	20.6	7.26
2 7/16	TUE920x 2 7/16	9030	5 3/4	1 5/16	4 3/4	7 15/16	3 3/4	2 1/4	1 5/16	4	2	4 1/16	5 1/8	5 7/8	3	2 3/4	1 1/16	21.0
2 1/2	TUE920x 2 1/2	40165	146.1	33.3	120.7	201.6	95.3	57.2	33.3	101.6	50.8	103.2	130.0	149.2	76.2	69.9	27.0	9.53
2 11/16	TUE920x 2 11/16																	
2 3/4	TUE920x 2 3/4	9630	6 3/16	1 9/16	4 3/4	8 3/4	4 1/4	2 3/4	1 9/16	4 1/2	2 1/4	4 23/32	5 15/16	6 3/4	3 1/4	3	1 13/16	30.0
2 15/16	TUE920x 2 15/16	42834	157.2	39.7	120.7	222.3	108.0	69.9	39.7	114.3	57.2	119.9	150.6	171.5	81.0	76.2	46.0	13.61
3	TUE920x 3																	
3 7/16	TUE020v 2 7/46	15320	7 5/8	1 13/16	6 1/4	10 7/16	4 7/8	2 7/8	1 13/16	5	2 1/2	5 7/16	6 13/16	7 5/8	4	3 5/8	1 13/16	44.0
3 1/10	TUE920x 3 7/16	68143	193.8	46.0	158.8	265.1	123.8	73.0	46.0	127.0	63.5	138.1	173.0	193.7	101.7	92.1	46.0	19.96
3 15/16	TUE920x 3 15/16	20980	8 9/16	2 1/8	7	11 13/16	5 5/8	3 3/8	2 3/16	6 1/4	3 1/8	5 15/16	8 5/8	9 7/16	4 1/2	4 1/8	2 1/16	70.0
3 13/16	10E820X 3 13/10	93319	217.2	54.0	177.8	300.0	142.9	85.7	55.6	158.8	79.4	150.8	219.1	239.7	112.4	104.8	52.4	31.75
4 7/16	TUE020v 4 7/40	25750	8 9/16	2 1/8	7	11 13/16	5 5/8	3 3/8	2 3/16	6 3/4	3 3/8	6 13/32	8 5/8	9 7/16	4 1/2	4 1/8	2 1/16	74.0
47710	TUE920x 4 7/16	114536	217.2	54.0	177.8	300.0	142.9	85.7	55.6	171.5	85.7	162.7	219.1	239.7	112.4	104.8	52.4	33.57

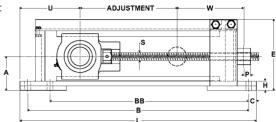
Part Numbers are specified by TUE 920 and bore size: Example, TUE920 x 1 3/16.

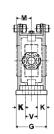
These Take-Up Bearings are to be used with Take-Up Frames shown on page I-45 and I-46.

Bearing unit and frame must be ordered separately.

* Take -Up frames not available in these sizes.

Page I-3




E920 Series Bearings

Housing: All:

All Steel Take-Up Frame, Removeable Top Permits Assembling Of Take-Up Unit On Shelf Before Inserting In Take-Up Frame

T1000 Take Up Frames

Bore									Dir	nens <u>io</u>	ns in <u>c</u>	h / mm									
Diameter	200	Adjust	ment																-		72
inch		Nominal	Actual	ħ	8	88	C	I	G	Ħ	K	4	1111	P	(4)	=	٧	w	No.	Size	
1 3/4	12-16.5T1000D	12	16.5	3 15/16	27 1/2	26 1/2						29 1/2									60.0
1 07 1	12 10:01 10003	304.8	419.1	100.0	698.5	673.1						749.3									27.22
1 15/16	18-22.5T1000D	18	22.5	3 15/16	33 1/2	32 1/2	1	8 9/32	4	1 1/4		35 1/2	1 7/8	1 1/4	1-8NC	5 3/8		5 5/8	2	5/8	70.0
	10 22:01 10002	457.2	571.5	100.0	850.9	825.5	25.4	210.3	101.6	31.8		901.7	47.6	31.8	. 5.15	136.5		142.9	_	5,5	31.75
2	24-28.5T1000D	24	28.5	3 15/16	39 1/2	38 1/2						41 1/2									80.0
		609.6	723.9	100.0	1,003.3	977.9						1,054.1									36.29
	12-17T1000EL	12	17.0	4 3/16	27 1/2							29 1/2									65.0
		304.8	431.8	106.4	698.5							749.3									29.48
2 3/16	18-23T1000EL	18	23.0	4 3/16	33 1/2		1	8 21/32	4	1 3/8		35 1/2	2	1 5/8	1 1/8-7NC	4 9/16		5 15/16	2	5/8	77.0
		457.2	584.2	106.4	850.9		25.4	219.9	101.6	34.9		901.7	50.8	41.3		115.9		150.8			34.93
	24-29T1000EL	24	29.0	4 3/16	39 1/2							41 1/2									86.0
		609.6	736.6	106.4	1,003.3							1,054.1									39.01
	12-17T1000EH	12	17.0	4 7/16	27 1/2							29 1/2									68.0
		304.8	431.8	112.7	698.5		_	0 20/22	,	1 5/0		749.3	١ ,	1 E/O							30.8
2 3/16	18-23T1000EH	18 457.2	23.0 584.2	4 7/16 112.7	33 1/2 850.9		1 25.4	8 29/32 226.2	4	1 5/8		35 1/2 901.7	2 50.8	1 5/8 41.3	1 1/8-7NC	4 9/16 115.9		5 15/16 150.8	2	5/8	80.0 36.29
		24	29.0	4 7/16	39 1/2		25.4	220.2	101.6	41.3		41 1/2	50.6	41.3		115.5		130.0			91.0
	24-29T1000EH	609.6	736.6	112.7	1,003.3							1,054.1									41.28
		12	16.6	4 3/8	28 1/2							30 1/2									71.0
	12-16.6T1000F	304.8	421.64	111.1	723.9							774.7									32.21
		18	22.6	4 3/8	34 1/2							36 1/2									81.0
2 7/16	18-22.6T1000F	457.2	574.04	111.1	876.3		1	9 9/32	4	1 1/8		927.1	2 1/8	1 3/4		5 5/16		6 9/16			36.74
		24	28.6	4 3/8	40 1/2		25.4	235.7	101.6	l		42 1/2	54.0	44.5	1 1/4-7NC	134.9		166.7	2	3/4	91.0
2 1/2	24-28.6T1000F	609.6	726.44	111.1	1,028.7							1,079.5									41.28
		30	34.6	4 3/8	46 1/2							48 1/2									111.0
	30-34.6T1000F	762.0	878.84	111.1	1,181.1							1,231.9									50.35
		12	15.5	4 15/16	30 1/2							32 1/2									105.0
2 11/16	12-15.5T1000GL	304.8	393.7	125.4	774.7							825.5									47.63
		18	21.5	4 15/16	36 1/2							38 1/2									120.0
2 3/4	18-21.5T1000GL	457.2	546.1	125.4	927.1		1	10 11/16	5	31/32	1 1/2	977.9	2 3/8	1/2	4 4 10 01:0	6 1/2	2	8 1/2		F (0	54.43
0.45446	04.07.5740000	24	27.5	4 15/16	42 1/2		25.4	271.5	127.0	24.6	38.1	44 1/2	60.3	12.7	1 1/2-6NC	165.1	50.8	215.9	4	5/8	135.0
2 15/16	24-27.5T1000GL	609.6	698.5	125.4	1,079.5							1,130.3									61.23
2	20 22 ET4000C	30	33.5	4 15/16	48 1/2							50 1/2									150.0
3	30-33.5T1000GL	762	850.9	125.4	1,231.9							1,282.7									68.04

Part Numbers are specified by "T1000" with travel adjustment and bore size.

Example 12-16.6T1000 has 12"-16.6" adjustment and will accommodate a TUE920x 2 7/16" or USTU5000-207 bearing unit.

These Take-Up Frames are to be used with TUE Take-Up Units shown on page I-44 and USTU Take-Up Units shown on page H-21.

Bearing unit and frame must be ordered separately.

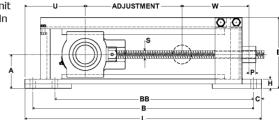
Frames give greater ACTUAL adjustment, often permitting use of shorter, more compact frames.

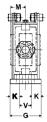
Frames with over 12" nominal adjustment have a third foot in the center for extra support.

Metric dimensions for reference only

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$


E920 Series Bearings Browning®



Housing: All Steel Take-Up Frame,

Removeable Top Permits Assembling Of Take-Up Unit On Shelf Before Inserting In

Take-Up Frame

T1000 Take Up Frames Continued

Bore									Dir	nensio	ns inc	h / mm									Wolf
Diameter	Part No.	Adjust	ment	17500	U/S	United at	5851	08.0	-	900	741	All	355	Wes	102	1990	JAN 20	4450	I	Reg i	Wit.
inch		Nominal	Aptual	ā.	В	88	C		G	[[]]	к	ė.	M	112	S	U	V	W	20	Size	lhive
2 11/16	12-15.5T1000GH	12	15.5	5 1/8	30 1/2							32 1/2									109.0
2 11710	12-10.01 1000311	304.8	393.7	130.2	774.7							825.5									49.44
2 3/4	18-21.5T1000GH	18	21.5	5 1/8	36 1/2							38 1/2									126.0
		457.2	546.1	130.2	927.1		1	10 7/8	5	1 5/32	1 1/2	977.9	2 3/8	1/2	1 1/2-6NC	6 1/2	2	8 1/2	4	5/8	57.15
2 15/16	24-27.5T1000GH	24	27.5	5 1/8	42 1/2		25.4	276.2	127.0	29.4	38.1	44 1/2	60.3	12.7		165.1	50.8	215.9			141.0
		609.6	698.5	130.2	1,079.5							1130.3									63.96
3	30-33.5T1000GH	30	33.5	5 1/8	48 1/2							50 1/2									156.0
		762.0	850.9	130.2	1,231.9							1,282.7									70.76
	12-15.5T1000JL	12 304.8	15.5 393.7	5 7/16 138.1	32 812.8							34 1/4 870.0									138.0 62.60
3 3/16		18	21.5	5 7/16	38							40 1/4									156.0
	18-21.5T1000JL	457.2	546.1	138.1	965.2		1 1/8	11 5/8	5	1 1/32	1 1/2		2 19/32	1		7 5/16	2	9 3/16			70.76
3 7/16		24	27.5	5 7/16	44		28.6	295.3	127.0		38.1	46 1/4	65.9	25.4	1 3/4-5NC	185.7	50.8	233.4	4	3/4	173.0
3 1/2	24-27.5T1000JL	609.6	698.5	138.1	1117.6							1174.8									78.47
3 1/2		30	33.5	5 7/16	50							52 1/4									191.0
	30-33.5T1000JL	762	850.9	138.1	1,270.0							1,327.2									86.64
	40 45 5T4000 III	12	15.5	5 5/8	32							34 1/4									145.0
	12-15.5T1000JH	304.8	393.7	142.9	812.8							867									65.77
3 3/16	18-21.5T1000JH	18	21.5	5 5/8	38							40 1/4									163.0
3 7/16	10-21.011000311	457.2	546.1	142.9	965.2			11 13/16	l	1 7/32	1 1/2	1022.4	2 19/32	l .	1 3/4-5NC	7 5/16	2	9 3/16	4	3/4	73.94
01710	24-27.5T1000JH	24	27.5	5 5/8	44		28.6	300.0	127.0	31.0	38.1	46 1/4	65.9	25.4	0/1 0/10	185.7	50.8	233.4	·	0,1	179.0
3 1/2		609.6	698.5	142.9	1,117.6							1174.8									81.19
	30-33.5T1000JH	30	33.5	5 5/8	50							52 1/4									197.0
		762.0	850.9	142.9	1,270.0							1327.2									89.36
3 11/16	12-18T1000K	12	18.0	7	36							38 1/2									191.0
3 15/16		304.8 18	457.2 24	177.8 7	914.4 42							977.9 44 1/2									86.64 223.0
0 10,10	18-24T1000K	18 457.2	609.6	/ 177.8	1,066.8		4 4 / 4	1445/00	_	1 7/10	1 0/4	1,130.3	2 24 /22	1 5'0		7.410	24/2	10 7/10			101.15
4		457.2 24	30	7	48		31.8	14 15/32 367.5	6 152.4	1 7/16 36.5	1 3/4 44.5	50 1/2	2 31/32 75.4	1 5/8 41.3	2-4 1/2NC	7 1/2 190.5	2 1/2 63.5	10 7/16 265.1	4	3/4	249.0
1.7/16	24-30T1000K	609.6	762	177.8	1219.2		01.0	301.3	.02.4	55.5	15	1,282.7		,,,,		,00.0	00.0				112.94
4 7/16		30	36	7	54							56 1/2									274.0
4 1/2	30-36T1000K	762	914.4	177.8	1,371.6							1,435.1									124.28

Part Numbers are specified by "T1000" with travel adjustment and bore size.

Example 12-16.6T1000 has 12"-16.6" adjustment and will accommodate a TUE920x 2 7/16" or USTU5000-207 bearing unit.

These Take-Up Frames are to be used with TUE Take-Up Units shown on page I-44 and USTU Take-Up Units shown on page H-21.

Bearing unit and frame must be ordered separately.

Frames give greater ACTUAL adjustment, often permitting use of shorter, more compact frames.

Frames with over 12" nominal adjustment have a third foot in the center for extra support.

Table of Contents

Load Katings and Life	I-48
Table 1 – Life Adjustment Factor for Reliability	
Table 2 – Sealmaster RPB and Browning E920 Tapered Roller Bearing Load Ratings	
Table 3 – Sealmaster USRB Spherical Roller Bearing Load Ratings	
Load and Speed	I-56
Table 4 - Sealmaster RPB and Browning E920 Tapered Roller Bearing Load / Speed Chart	
Table 5 – Sealmaster USRB Spherical Roller Bearing Load / Speed Chart	
Speed Limit Tables	I-58
Table 6 – Sealmaster RPB Tapered Roller Bearing Maximum Speed Rating	
Table 7 – Browning E920 Tapered Roller Bearing Maximum Speed Rating	
Table 8 – Sealmaster USRB Spherical Roller Bearing Maximum Speed Rating	
Installation and Lubrication	I-59
Sealmaster RPB	
Browning E920	
Sealmaster USRB Sealmaster USRB Split Pillow Block Housings	
seammaster osko spirtrinow biock nousings	
Vibration Analysis	I-75
Table 9 - Tapered Roller Bearing Vibration and Geometry Information	
Table 10 - Spherical Roller Bearing Vibration and Geometry Information	

Load Ratings and Life

Life Calculations

The L10 (rating) life for any given application and bearing selection can be calculated in terms of millions of revolutions by using the bearing Basic Dynamic Rating and applied radial load (or, equivalent radial load in the case of radial bearing applications having combined radial and thrust loads). The L10 life for any given application can be calculated in terms of hours, using the bearing Basic Dynamic Rating, applied load (or equivalent radial load) and suitable speed factors. The BDR for double row spherical roller bearings is based on one million revolutions and the equation to calculate their L10 life is as follows:

Spherical Roller Bearing

$$L_{10} = \left(\frac{C}{P}\right)^{10/3} x \frac{1,000,000}{60 x n} = \left(\frac{C}{P}\right)^{10/3} x \frac{16667}{n}$$

Where: L_{10} = The # of hours that 90% of identical bearings under ideal conditions will operate at a specific speed and condition before fatique is expected to occur.

> C = Basic Dynamic Rating (lbs) 1.000.000 Revolutions

P = Constant Equivalent Radial Load (lbs)

n = Speed(RPM)

The BDR for tapered roller bearings is based on 90 million revolutions instead of one million for other types of bearings. Therefore there is a specific equation used to calculate their L10 life.

Tapered Roller Bearing

$$L_{10} = \left(\frac{C90}{P}\right)^{10/3} \frac{90,000,000}{60 \times n} = \left(\frac{C90}{P}\right)^{10/3} \frac{1,500,000}{n}$$

Where: L_{10} = The # of hours that 90% of identical bearings under ideal conditions will operate at a specific speed and condition before fatique is expected to occur.

> C90 = 2-Row Basic Dynamic Rating (lbs) 90,000,000 Revolutions

P = Constant Equivalent Radial Load (lbs)

n = Speed (RPM)*

Note: L10 life does not apply to rod ends and plain spherical bearings due to the sliding motion between components versus a rolling motion. Normal operation of these types of bearings results in wear of the raceways or fatique or fracture of the outer member. Give consideration to this in the design of the equipment.

Shock and Vibration

Vibration and shock loading can act a additional loading to the steady expected applied load. When shock or vibration is present, mulitply the theoretical life by the factors below to determine adjusted theoretical

Mounted Roller Bearing	Shock Vibration Factors
Steady Loading	1.0
Light Shock / Vibration	0.5
Moderate Shock / Vibration	0.3

Additionally, the ABMA provides application factors for all types of bearings which need to be considered to determine an adjusted Rated Life (Lna). L10 life rating is based on laboratory conditions yet other factors are encountered in actual bearing application that will reduce bearing life. Lna life rating takes into account reliability factors, material type, and operating conditions.

$$L_{na} = a_1 \times a_2 \times a_3 \times L_{10}$$

Where:

L_{na} = Adjusted Rated Life.

a. = Reliability Factor. Adjustment factor applied where estimated fatique life is based on reliability other than 90% (See Table No 1).

a₂ = Material Factor. Life adjustment for bearing race

Table No. 1 Life Adjustment Factor for Reliability

Reliability %	L _{na}	a ₁
90	L10	1
95	L5	0.62
96	L4	0.53
97	L3	0.44
98	L2	0.33
99	L1	0.21
50	L50	5

material. Power Transmission Solutions bearing races are manufactured from bearing quality steel. Therefore the a₂ factor is 1.0.

a, = Life Adjustment Factor for Operating Conditions. This factor should take into account the adequacy of lubricant, presence of foreign matter, conditions causing changes in material properties, and unusual loading or mounting conditions. Assuming a properly selected and mounted bearing having adequate seals and lubricant operating below 250°F and tight fitted to the shaft, the a_3 factor should be 1.0.

^{*} For speeds less than 50 RPM, use 50 RPM when doing L10 calculations.

Load Ratings and Life Continued

Mounted bearings are typically "slip fitted" to the shaft and rely on design features such as the inner race length and locking device for support.

Vibration and shock loading can act as an additional loading to the steady expected applied load. When shock or vibration is present, an a³ Life Adjustment Factor can be applied. Shock loading has many variables which often are not easily determined. Typically, it is best to rely on one's experience with the particular application. Consult Application Engineering for assistance with applications involving shock or vibration loading.

The a³ factor takes into account a wide range of application and mounting conditions as well as bearing features and design. Accurate determination of this factor is normally achieved through testing and infield experience. Power Transmission Solutions offers a wide range of options which can maximize bearing performance. Consult Application Engineering for more information. See sample calculations on page I-54.

Combined Load – Tapered Roller Bearings

1. Calculate the bearing internal thrust reaction (FIR):

FIR =
$$\frac{0.6 \text{ x F}}{\text{K}}$$
 - applied radial load
- factor K in Table No. 6

2. If the thrust load (Fa) is less than or equal to FIR, then calculate the equivalent radial load as follows:

$$P = (0.5 \times F_r) + (0.83 \times K \times F_a)$$

3. If the thrust load (Fa) is greater than FIR then calculate the equivalent radial load as follows:

$$P = (0.4 \times F_r) + (K \times F_a)$$

4. Calculate the expected L10 life using the single row basic dynamic load rating:

L10 =
$$\left(\frac{\text{single row load rating}}{P}\right)^{10/3} \times \frac{3000 \times 500}{n}$$

Table No. 2 - Sealmaster RPB and Browning E920 Tapered Roller Bearing Load Ratings

Bore S	iize	Radial Ratir	ng (pounds)	(1)	Factor K		rust on Pillow lousing
inch	mm	2 Row	1 Row	Thrust Rating (pounds)	ractor K	2 Bolt Base	4 Bolt Base
1 3/16 - 1 1/4	-	2975	1710	1390	1.23	960	-
1 3/8 - 1 7/16	35	4760	2740	2080	1.31	1600	-
1 1/2 - 1 11/16	40	6140	3530	2600	1.36	1580	-
1 3/4 - 2	45 - 50	8070	4640	2540	1.83	2500	-
2 3/16	55	8570	4910	2980	1.65	2360	-
2 1/4 - 2 1/2	60 - 65	9030	5220	3470	1.51	2350	5700
2 11/16 - 3	70 - 75	9630	5510	4260	1.30	3340	5700
3 3/16 - 3 1/2	80 - 95	15320	8790	7410	1.19	4450	10980
3 15/16 - 4	100 - 105	20980	12100	9800	1.23	-	7250
4 7/16 - 4 1/2	110 - 115	25750	14800	13100	1.13	-	6680
4 15/16 - 4 1/2	120 - 125	35520	20400	16000	1.27	-	9000

⁽¹⁾ For thrust load pillow block applications, the bearing thrust rating must be compared to the allowable thrust load capacity of the housing. In a number of sizes, the allowable thust capacity of the pillow block is less than the thrust rating of the bearing. When this circumstance exists, do not exceed the pillow block housing thrust capacity. In thrust applications utilizing flange or piloted flange housings, please contact application engineering for allowable housing thrust limits.

Load Ratings and Life Continued

Combined Load - Double Row **Spherical Roller Bearings**

- 1. Calculate Fa/Fr and compare the value to the "e" value found in following tables. Fa/Fr must be less than 1.
- 2. Choose values for "X" and "Y" from Table 3.

Table No. 3 - Sealmaster USRB Spherical Roller Bearing Load Ratings

Bore Size	Basic Dynamic Rating	Basic Static Rating		F _a /F	r ≤ e	F _a /F	, > e	Combined Station	Load Factors
(inch)	C (lb)	C _o (lb)	е	х	Υ	х	Υ	X _°	Y _o
1 1/8 - 1 1/2	20368	23609	.34	1.0	2.0	0.67	2.9	1.0	1.9
1 11/16 - 1 3/4	22689	28021	.32	1.0	2.1	0.67	3.2	1.0	2.1
1 15/16 - 2	23520	29918	.31	1.0	2.2	0.67	3.2	1.0	2.1
2 3/16	28087	34981	.30	1.0	2.3	0.67	3.4	1.0	2.2
2 7/16 - 2 1/2	44691	59535	.31	1.0	2.2	0.67	3.3	1.0	2.2
2 11/16 - 3	47447	65610	.29	1.0	2.3	0.67	3.4	1.0	2.3
3 3/16 - 3 /12	72640	105628	.29	1.0	2.3	0.67	3.5	1.0	2.3
3 11/16 - 4	96050	136151	.30	1.0	2.3	0.67	3.4	1.0	2.2
4 7/16 - 4 1/2	111537	161283	.30	1.0	2.3	0.67	3.4	1.0	2.2
4 15/16 - 5	158816	247307	.32	1.0	2.1	0.67	3.2	1.0	2.1
5 7/16	196682	290447	.33	1.0	2.0	0.67	3.0	1.0	2.0
5 15/16	261346	390391	.35	1.0	1.9	0.67	2.9	1.0	1.9
6 7/16 - 7	334229	498544	.35	1.0	1.9	0.67	2.9	1.0	1.9
7 1/2 - 8	363818	587106	.35	1.0	1.9	0.67	2.9	1.0	1.9

3. Calculate equivalent load using the following equation:

P = XFr + YFa

4. Calculate the L10 life using the life equation on page I-48.

Load Ratings and Life Continued

Variable Load Formula

Root mean load (RML) is to be used when a number of varying loads are applied to a bearing for varying time limits. Maximum loading still must be considered for bearing size selection.

$$RML^* = \sqrt[10/3]{\frac{(L_1^{10/3}N_1) + (L_2^{10/3}N_2) + (L_3^{10/3}N_3)}{100}}$$

Where.

RML = Root Mean Load (lbs.) L1, L2, etc. = Load in pounds N1, N2, etc. = Percent of total time operated at loads L1, L2, etc.

Mean Speed Formula

The following formula is to be used when operating speed varies over time.

Mean Speed =
$$\frac{S_1 N_1 + S_2 N_2 + S_3 N_3}{100}$$

 S_1S_2 , etc = Speeds in RPM

N₁N₂, etc = Percentage of total time operated at speeds S₁S₂, etc

Bearing Life In Oscillating Applications

The equivalent rotative speed (ERS) is used in life calculations when the bearing does not make complete revolutions during operation. The ERS is then used as the bearing operating speed in the calculation of the L10 (Rating) Life. The formula is based on sufficient angular rotation to have roller paths overlap.

ERS = Equivalent Rotative Speed

N = Total number of degrees per minute through which the bearing will rotate.

$$ERS = \frac{N}{360}$$

In the above formula, allowance is made for the total number of stress applications on the weakest race per unit time, which, in turn, determines fatigue life and the speed factors. The theory behind fretting corrosion is best explained by the fact that the rolling elements in small angles of oscillation retrace a path over an unchanging area of the inner or outer races where the lubricant is prevented by inertia from flowing in behind the roller as the bearing oscillates in one direction. Upon reversal, this small area of rolling contact is traversed by the same roller in the dry state. The friction of the two unlubricated surfaces causes fretting corrosion and produces failures which are unpredictable from a normal life standpoint.

With a given bearing selected for an oscillating application, the best lubrication means is a light mineral oil under positive flow conditions. With a light oil, there is a tendency for all areas in the bearing load zone to be immersed in lubricant at all times. The full flow lubrication dictates that any oxidized material which may form is immediately carried away by the lubricant, and since these oxides are abrasive, further wear tends to be avoided. If grease lubrication must be used, it is best to consult with either the bearing manufacturer or the lubricant manufacturer to determine the best possible type of lubricant. Greases have been compounded to resist the detrimental effect of fretting corrosion for such applications.

^{*} Apply RML to rating at mean speed to determine resultant life.

Load Ratings and Life Continued

Static Load Rating

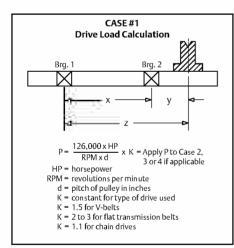
The "static load rating" for rolling element bearings is that uniformly distributed static radial load acting on a non-rotating bearing, which produces a contact stress of 580,000 psi at the center of the most heavily loaded rolling element. At this stress level, plastic deformation begins to be significant. Experience has shown that the plastic deformation at this stress level can be tolerated in most bearing applications without impairment of subsequent bearing operation. In certain applications where subsequent rotation of the bearing is slow and where smoothness and friction requirements are not too exacting, a higher static load limit can be tolerated. Where extreme smoothness is required or friction requirements are critical, a lower static load limit may be necessary.

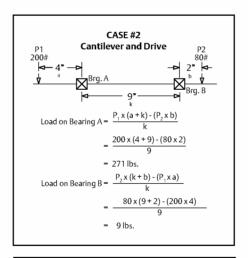
Load Ratings and Life Continued

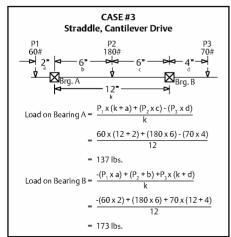
Minimum Bearing Load:

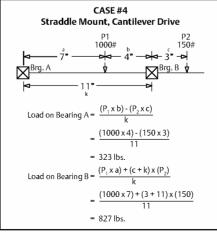
Skidding, or sliding, of the rolling elements on the raceway instead of a true rolling motion can cause excessive wear. Applications with high speeds and light loading are particularly prone to skidding. As a general guideline, rolling element bearings should be radially loaded at least 2% of Basic Dynamic Rating for roller bearings. For applications where load is light relative to the bearings dynamic load rating, consult Application Engineering for assistance.

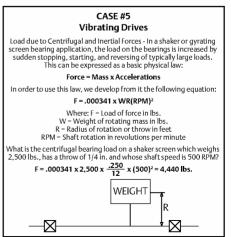
Computing Bearing Loads


In the computation of bearing loads in any application of an Power Transmission Solutions unit, the principal factor determining the selection of the unit is the equivalent radial load to which the bearing will be subjected. These radial loads result from any one or any combination of the following sources:


- 1. Weights of machine parts supported by bearings.
- 2. Tension due to belt or chain pull.
- 3. Centrifugal force from out of balance, eccentric or cam action.


The resulting load from any one, or any combination of the above sources is further determined by knowing:


- 1. The magnitude of the load.
- 2. Direction of the load.
- 3. The point of load application.
- 4. The distance between bearing centers.


Bearing loads are the result of force acting on the shaft. Direction, magnitude, and location with respect to the bearings must be considered when calculating bearing loads. The following cases are typical examples of loads encountered and methods of calculating bearing loads.

Load Ratings and Life Continued

Mounted Roller Bearing Selection -New Applications:

Using variations of the life formulas and application information, it is possible to select bearings based on desired life, load applied, and shaft speed. This method is applicable only when thrust load is less than or equal to 1/2 the radial load.

- 1. Determine required application hours (Lna).
- 2. Calculate L10 using adjustment factors:

$$L10 = \frac{L_a}{a_1 \times a_2 \times a_3}$$

3. Calculate Basic Dynamic Radial Rating (Creq).

Creq =
$$Px \left(\frac{L10 \times N}{3,000 \times 500} \right)^{3/10}$$

P = Constant Equivalent Radial Load (lbs)

N = Speed(RPM)

- 4. Use Table 2 on page I-49, find a basic Dynamic Radial Rating Value greater than or equal to Creq calculated in step # 3.
- 5. Select any bearing from the row in step # 4 or larger.
- 6. Proceed with housing, seal, and lock selection pages I-3 to I-5.

Typical operating temperature range for standard bearings is -20° to 200° F for Browning and -20°F to 220°F for Sealmaster Gold. For operating temperatures outside this range, contact Application Engineering. For Maximum speed information, see tables on page I-58.

Application Examples:

Question #1:

What is the bearing life (L₁₀ hours) for an RPB207-2 Tapered Roller Bearing with no shock conditions and the following application criteria?

Design Radial Load (P) = 5,000 lbs. Speed (n) = 100 RPM

Shaft Size = 27/16"

Operating Temperature = 125°F

Solution:

1. Begin with the L₁₀ life formula:

$$L_{10} = (C/P)^{10/3} \times \frac{500 \times 3,000}{n}$$

2. RPB207-2 has 2 7/16" shaft size. From Table 2 on page I-49, the radial rating is 9,030 lbs.

$$L_{10} = \left(\frac{9,030}{5,000}\right)^{10/3} \times \frac{500 \times 3,000}{100} = 107,601$$

Question #2:

What is the bearing life (L₁₀ hours) for an USRB5000-207 Spherical Roller Bearing with no shock conditions and the same application criteria?

Solution:

1. Begin with the L₁₀ life formula:

$$L_{10} = (C/P)^{10/3} \times \frac{16,667}{n}$$

2. USRB5000-207 has 2 7/16" shaft size. From Table 3 on page I-50, the radial rating is 44,691 lbs.

$$L_{10} = \left(\frac{44,691}{5,000}\right)^{10/3} x \frac{16,667}{100} = 246,997$$

Load Ratings and Life Continued

Combined Radial and Thrust Load Application Examples:

Question #1:

What is the bearing life (L₁₀ hours) for an RPB207-2 Tapered Roller Bearing with no shock conditions and the following application criteria?

Design Radial Load (Fr) = 5,000 lbs. Design Thrust Load (Fa) = 1,000 lbs. Speed (n) = 100 RPM Shaft Size = 27/16" Operating Temperature = 125°F

Solution:

1. Find the K factor value from Table 2 on page I-49, K = 1.51

2. Calculate the internal thrust reaction (FIR):

FIR =
$$\frac{0.6 \text{ x F}_r}{\text{K}}$$
 - applied radial load
- factor K in Table No. 2
FIR = $\frac{0.6 \text{ x } 5000}{1.51}$ = 1,987 lbs.

3. Since the thrust load is less than the internal thrust reaction (FIR) use the following formula from page I-49 to calculate the equivalent radial load:

P =
$$(0.5 \times F_r) + (.83 \times K \times F_a)$$

P = $(0.5 \times 5000) + (.83 \times 1.51 \times 1000) = 3,753$ lbs.

4. Calculate the expected L_{10} life using the single row rating. Single row rating = 5,220 lbs. This is found in Table 2 on page I-49.

$$L_{10} = \left(\frac{\text{single row load rating}}{P}\right)^{10/3} x \frac{500 x 3000}{n}$$

$$L_{10} = \left(\frac{5,220}{3,753}\right)^{10/3} \times \frac{500 \times 3000}{100} = 45,054 \text{ hrs.}$$

Question #2:

What is the bearing life (L_{10} hours) for an USRB5000-207 Spherical Roller Bearing with no shock conditions and the same application criteria?

Solution:

1. Calculate Fa/Fr and compare the value to the "e" value found in Table 3 on page I-50.

$$Fa/Fr = 1,000/5,000 = .20$$

2. Choose values for "x" and "y" based on Step 1 above from Table 3 on page I-50.

3. Calculate the equivalent load.

4. Calculate the expected L_{10} life using the rating from the equation on page I-48.

$$L_{10} = (C/P)^{10/3} \times \frac{16,667}{n}$$

$$= \left(\frac{44,691}{7,200}\right)^{10/3} \times \frac{16,667}{100}$$

$$= 73,251 \text{ hrs.}$$

Shock Load Considerations

Question #3:

What is the bearing life (L_{10} hours) for the bearing in Question #1 and #2 with moderate shock conditions and the same application criteria from above?

Solution:

1. Calculate the Adjusted Rate Life

$$Lna = a_1 \times a_2 \times a_3 \times L_{10}$$

2. (a₁) = Life Adjustment Factor for Reliability = 1.0

3. (a_3) = Life Adjustment Factor for Operating Conditions = 1.0

4. (a_3) = For moderate shock (from mounted Roller Bearing Shock Vibration Factors Table on page I-48) = 0.5

RPB207-2 Tapered Roller Bearing:

$$L_{10} = .5 \times 45,054 = 22,527 \text{ hrs.}$$

USRB5000-207 Spherical Roller Bearing:

$$L_{10} = .5 \times 73,251 = 36,626 \text{ hrs.}$$

Table 4 - Sealmaster RPB and Browning E920 Tapered Roller Bearing Load / Speed Chart

								R	evolutio	ons Per	Minute									
Bore	Size		Basic Dy Rati		Thrust															
	1	"K" Factor	D <u>o</u> uble	Single	Rating	Hours	50	100	150	250	500	750	1000	1500	1750	2000	2500	3000	3500	4000
inch	mm	1 40.01	Row lb/N	Row*	lb/N															
			10714	16/14	12714	5000	3360	3360	3360	3142	2552	2260	2073	1836	1753	1684	1575	1491	1424	1368
4040			2075	4740	4000	10000	3360	3360	2975	2552	2073	1836	1684	1491	1424	1368	1279	1211	1156	1111
1 3/16	-	1.23	2975	1710 7006	1390	30000	2975	2416	2140	1836	1491	1320	1211	1072	1024	984	920	871	832	799
1 1/4			13233	7006	6183	50000	2552	2073	1836	1575	1279	1133	1039	920	878	844	789	747	714	685
						100000	2073	1684	1491	1279	1039	920	844	747	714	685	641	607	580	556
						5000	5376	5376	5376	5028	4084	3616	3317	2937	2804	2694	2520	2386	2278	-
1 3/8			4760	2740	2080	10000	5376	5376	4760	4084	3317	2937	2694	2386	2278	2188	2047	1938	1850	-
1 7/16	35	1.31	21174	12188	9252	30000	4760	3866	3424	2937	2386	2112	1938	1716	1638	1574	1472	1394	1331	-
,				12100	OLOL	50000	4084	3317	2937	2520	2047	1812	1662	1472	1406	1350	1263	1196	1142	-
						100000	3317	26741	2386	2047	1662	1472	1350	1196	1142	1097	1026	971	927	-
						5000	6934	6934	6934	6485	5268	4664	4279	3789	3617	3475	3250	3077	-	-
1 1/2			6140	3530	2600	10000	6934	6934	6140	5268	4279	3789	3475	3077	2938	2823	2640	2500	-	-
1 11/16	40	1.36	27312	15702	11565	30000	6140	4987	4416	3789	3077	2725	2500	2213	2113	2030	1899	1798	-	-
						50000	5268	4279	3789	3250	2640	2338	2144	1899	1813	1742	1629	1542	-	-
						100000	4279	3475	3077	2640	2144	1899	1742	1542	1473	1415	1323	1253	-	-
						5000	9114	9114	9114	8524	6923	6130	5624	4979	4754	4568	4272	-	-	-
1 3/4	45	4.00	8070	4640	2540	10000	9114	9114	8070	6923	5624	4979	4568	4045	3862	3710	3470	-	-	-
1 15/16	50	1.83	35897	20640	11298	30000	8070	6555	5804	4979	4045	3581	3285	2909	2777	2668	2496	-	-	-
2						50000	6923	5624	4979	4272	3470	3072	2818	2496	2383	2289	2141	-	-	-
						100000	5624	4568	4045	3470	2818	2496	2289	2027	1935	1859	1739	-	-	-
						5000 10000	9679 9679	9679 9679	9679 8570	9052	7352 5972	6510 5288	5972 4851	5288 4295	5049 4101	4851 3940	4537 3685	-	-	_
2 3/16	55	1.65	8570	4910	2980	30000	9679 8570	6961	9194	7352 5288	4295	3803	3489	3089	2950	2834	2650	_	-	
2 3/10	33	1.03	38121	21841	13256	50000	7352	5972	5288	4537	3685	3263	2993	2650	2530	2431	2274]	-	-
						100000	5972	4851	4295	3685	2993	2650	2431	2153	2055	1975	1847	-	_	_
						5000	10198	10198	10198	9538	7747	6860	6293	5572	5320	5111	-	-	- -	<u> </u>
2 1/4						10000	10198	10198	9030	7747	6293	5572	5111	4526	4321	4152]] [
27/16	60	1.51	9030	5220	3470	30000	9030	7335	6495	5572	4526	4007	3676	3255	3108	2986	[[
2 1/2	65	1.51	40167	23220	15435	50000	7747	6293	5572	4780	3883	3438	3154	2793	2666	2562			-	
						100000	6293	5111	4526	3883	3154	2793	2562	2268	2166	2081	l -	_	_	_
						5000	10876	10876	10876	10171	8262	7316	6711	5942	5674		-	-	-	-
2 11/16						10000	10876	10876	9630	8262	6711	5942	5451	4826	4608	_	_	_	-	_
2 15/16	70	1.30	9630	5510	4260	30000	9360	7822	6926	5942	4826	4274	3920	3471	3314	_	_	_	-	_
3	75		42836	24510	18949	50000	8262	6711	5942	5098	4141	3666	3363	2978	2843	_	_	_	-	_
						100000	6711	5451	4826	4141	3363	2978	2732	2419	2310	-	-	-	-	_
						5000	17302	17302	17302	16181	13143	11638	10676	9453	-	-	-	-	-	-
3 3/16	80		45000	0700	4740	10000	17302	17302	15320	13143	10676	9453	8671	7678	-	-	-	-	-	-
3 7/16	85 90	1.19	15320	8790 39100	4710 20951	30000	15320	12444	11018	9453	7678	6799	6273	5522	-	-	-	-	-	-
3 1/2	95		68147	39100	20951	50000	13143	10676	9453	8110	6587	5833	5351	4738	-	-	-	-	-	-
	33					100000	10676	8671	7678	6587	5351	4738	4346	3848	-	-	-	-	-	-
						5000	23694	23694	23694	22159	17999	15938	14620	12945	-	-	-	-	-	-
3 15/16	100		20980	12100	9800	10000	23694	23694	20980	17999	14620	12945	11875	10515	-	-	-	-	-	-
4	105	1.23	93324	53823	43593	30000	20980	17041	15089	12945	10515	9311	5841	7563	-	-	-	-	-	-
7	100		55024	00020	40000	50000	17999	14620	12945	11106	9021	7988	7327	6488	-	-	-	-	-	-
						100000	14620	11875	10515	9021	7327	6488	5952	5270	-	-	-	-	-	-
						5000	29081	29081	29081	27198	22091	19561	17944	-	-	-	-	-	-	-
47/16	110		25750	14800	13100	10000	29081	29081	25750	22091	17944	15889	14575	-	-	-	-	-	-	-
41/2	115	1.13	114542	65834	58272	30000	25750	20915	18520	15889	12906	11427	10483	-	-	-	-	-	-	-
,_					55212	50000	22091	17944	15889	13631	11072	9804	8993	-	-	-	-	-	-	-
						100000	17944	14575	12906	11072	8993	7963	7305	-	-	-	-	-	-	-
						5000	40114	40114	40114	37517	30473	26983	24752	-	-	-	-	-	-	-
4 15/16	120		35520	20400	16000	10000	40114	40114	35520	30473	24752	21917	20105	-	-	-	-	-	-	-
5	125	1.27	158001	90744	71172	30000	35520	28851	25547	21917	17802	15763	14460	-	-	-	-	-	-	-
			.50001	331 77		50000	30473	24752	21917	18803	15273	13524	12405	-	-	-	-	-	-	-
						100000	24752	20105	17802	15273	12405	10985	10076	-	-	-	-	-	-	-

This chart displays the Sealmaster RPB and Browning E920 Series Tapered Roller Bearings load capacity for a given L10 life speed and shaft size. Values in the table represent load at ideal conditions. The shaded areas indicate maximum speed for the Sealmaster RPB series only. For combined load determination, see the Bearing Selection section on page I-49. Areas designated by "-" exceed maximum speed value.

^{*}Single Row Basic Dynamic Rating required for determining combined loads as shown on page I-49.

Table 5 - Sealmaster USRB Spherical Roller Bearing Load / Speed Chart

Corica	Bore	L,,						Re	volutions	s per Min	ute					
Series	Size	L ₁₀ Hours	50	100	150	250	500	750	1000	1500	1750	2000	2500	3000	3500	4000
107	1 1/8 1 3/16 1 1/4 1 3/8 1 7/16 1 1/2	5000 10000 30000 50000 100000	9039 7342 5281 4530 3680	7342 5964 4289 3680 2989	6501 5281 3798 3258 2647	5577 4530 3258 2795 2271	4530 3680 2647 2271 1844	4011 3258 2343 2010 1633	3680 2989 2150 1844 1498	3258 2647 1903 1633 1326	3111 2527 1817 1559 1266	2989 2428 1746 1498 1217	2795 2271 1633 1401 1138	2647 2150 1546 1326 1077	2527 2053 1476 1266 1029	2428 1972 1418 1217 988
111	1 11/16 1 3/4	5000 10000 30000 50000 100000	10069 8179 5882 5046 4099	8179 6643 4778 4099 3329	7242 5882 4231 3630 2948	6213 5046 3630 3114 2529	5046 4099 2948 2529 2054	4468 3630 2610 2240 1819	4099 3329 2395 2054 1669	3630 2948 2120 1819 1478	3465 2815 2025 1737 1411	3329 2704 1945 1669 1355	3114 2529 1819 1561 1268	2948 2395 1722 1478 1200	2815 2286 1644 1411 1146	2704 2197 1580 1355 1101
115	1 15/16 2	5000 10000 30000 50000 100000	10438 8478 6098 5231 4249	8478 6886 4953 4249 3451	7507 6098 4386 3762 3056	6441 5231 3762 3228 2622	5231 4249 3056 2622 2130	4632 3762 2706 2322 1886	4249 3451 2482 2130 1730	3762 3056 2198 1886 1532	3592 2918 2099 1800 1462	3451 2803 2016 1730 1405	3228 2622 1886 1618 1314	3056 2482 1785 1532 1244	2918 2370 1705 1462 1188	2803 2277 1638 1405 1141
203	2 3/16	5000 10000 30000 50000 100000	12465 10124 7282 6247 5074	10124 8224 5915 5074 4122	8965 7282 5237 4493 3650	7691 6247 4493 3855 3131	6247 5074 3650 3131 2543	5532 4493 3232 2772 2252	5074 4122 2964 2543 2066	4493 3650 2625 2252 1829	4290 3485 2506 2150 1746	4122 3348 2408 2066 1678	3855 3131 2252 1932 1569	3650 2964 2132 1829 1486	3485 2830 2036 1746 1419	3348 2719 1956 1678 1363
207	2 7/16 2 1/2	5000 10000 30000 50000 100000	19833 16110 11586 9940 8074	16110 13085 9411 8074 6558	14265 11586 8333 7149 5807	12238 9940 7149 6133 4982	9940 8074 5807 4982 4047	8802 7149 5142 4411 3583	8074 6558 4717 4047 3287	7149 5807 4177 3583 2910	6826 5545 3988 3421 2779	6558 5327 3831 3287 2670	6133 4982 3583 3074 2497	5807 4717 3392 2910 2364	5545 4504 3239 2778 2257	- - - -
215	2 11/16 2 3/4 2 15/16 3	5000 10000 30000 50000 100000	21056 17103 12301 10553 8572	17103 13892 9991 8572 6962	15144 12301 8847 7590 6165	12992 10553 7590 6512 5289	10553 8572 6165 5289 4296	9344 7590 5459 4683 3804	8572 6962 5008 4296 3489	7590 6165 4434 3804 3090	7247 5886 4234 3632 2950	6962 5655 4067 3489 2834	6512 5289 3804 3264 2651	6165 5008 3602 3090 2510	- - - -	- - - -
307	3 3/16 3 7/16 3 1/2	5000 10000 30000 50000 100000	32237 26184 18832 16157 13123	26184 21268 15297 13123 10659	23185 18832 13545 11620 9439	19891 16157 11620 9969 8098	16157 13123 9439 8098 6577	14306 11620 8358 7170 5824	13123 10659 7666 6577 5342	11620 9439 6788 5824 4730	11095 9012 6482 5561 4517	10659 8658 6227 5342 4339	9969 8098 5824 4996 4058	- - - -	- - - -	- - - -
315	3 11/16 3 15/16 4	5000 10000 30000 50000 100000	42626 34623 24902 21364 17353	34623 28123 20226 17353 14095	30657 24902 17910 15365 12480	26302 21364 15365 13182 10707	21364 17353 12480 10707 8697	18917 15365 11051 9481 7701	17353 14095 10137 8697 7064	15365 12480 8976 7701 6255	14671 11916 8571 7353 5972	14095 11448 8234 7064 5738	13182 10707 7701 6607 5366	- - - -	- - - -	- - - -
407	4 7/16 4 1/2	5000 10000 30000 50000 100000	49499 40205 28917 24808 20150	40205 32657 23488 20150 16367	35601 28917 20798 17843 14493	30542 24808 17843 15307 12434	24808 20150 14493 12434 10099	21967 17843 12833 11009 8942	20150 16367 11772 10099 8203	17843 14493 10423 8942 7264	17036 13838 9952 8538 6935	16367 13294 9562 8203 6663	1 1 1 1	- - - -	- - - -	- - - -
415	4 15/16 5	5000 10000 30000 50000 100000	70481 57248 41174 35324 28692	57248 46500 33444 28692 23305	50691 41174 29613 25406 20636	43489 35324 25406 21796 17704	35324 28692 20636 17704 14380	31278 25406 18272 15676 12733	28692 23305 16762 14380 11680	25406 20636 14842 12733 10342	24258 19703 14171 12158 9875	- - - -		- - - -	- - - -	
507	5 7/16 5 1/2	5000 10000 30000 50000 100000	87285 70897 50991 43746 35533	70897 57587 41418 35533 28862	62777 50991 36674 31463 25556	53858 43746 31463 26993 21925	43746 35533 25556 21925 17809	38736 31463 22629 19414 15769	35533 28862 20758 17809 14465	31463 25556 18381 15769 12808	- - - -	- - -	- - - -	- - - -	- - - -	- - - -
515	5 15/16	5000 10000 30000 50000 100000	115982 94207 67756 58129 47215	94207 76520 55035 47215 38351	83417 67756 48731 41808 33958	71565 58129 41808 35867 29133	58129 47215 33958 29133 23664	51471 41808 30069 25797 20953	47215 38351 27583 23664 19221	41808 33958 24424 20953 17019	- - - -	- - - -	1 1 1 1	- - - -	- - - -	- - - -
615	6 7/16 6 1/2 6 15/16 7	5000 10000 30000 50000 100000	143889 116874 84059 72115 58576	116874 94931 68277 58576 47578	103488 84059 60457 51867 42129	88784 72115 51867 44498 36143	72115 58576 42129 36143 29357	63856 51867 37304 32004 25995	58576 47578 34219 29357 23846	51867 42129 30300 25995 21115	- - - -		1 1 1 1	- - - -	- - - -	- - - -
708	7 1/2 7 15/16 8	5000 10000 30000 50000 100000	161458 131145 94322 80921 65728	131145 106523 76613 65728 53388	116124 94322 67839 58200 47273	99625 80921 58200 49931 40556	80921 65728 47273 40556 32942	71653 58200 41859 35911 29169	65728 53388 38398 32942 26757	58200 47273 34000 29169 23693	- - - -	- - - -	- - - -	- - - -	- - - -	- - - -

This chart displays the Sealmaster Unitized Spherical Roller Bearing (USRB) load capacity for a given L10 life, speed and shaft size. Values in the Table represent estimated load at ideal conditions. The shaded areas indicate maximum speed for USRB felt seals. For combined load determination, see the Bearing Selection section on page I-50. Areas designated by "—" exceed maximum speed value. For actual maximum speed limits see table on page I-58.

Speed Limit Tables

Table 6 - Sealmaster RPB Tapered Roller Bearing Maximum Speed Rating

	Moderary Operato 'ni Speer'									
∃ores	# [epociti RFMi								
Josh	OU FOX	7 7777113311								
1 3/16 - 1 1/4		4000								
1 3/8 - 1 7/16	35	3500								
1 1/2 - 1 11/16	40	3000								
1 3/4 - 2 3/16	45 - 50	2500								
2 1/4 - 2 1/2	60 - 65	2000								
2 11/16 - 3	70 - 75	1750								
3 3/16 - 3 1/2	80 - 95	1500								
3 15/16 - 4 1/2	100 - 115	1250								
4 15/16 - 5	120 - 125	1000								

^{*} Tapered Roller Bearing maximum speeds are not limited by seals, value listed is for all seal designs.

Table 7 - Browning E920 Tapered Roller Bearing Maximum Speed Rating

Nooman Sprinte d Syxon		
Borne State	5 xx:1 (RPM).	
1 3/16 - 1 1/4	3500	
1 3/8 - 1 7/16	3000	
1 1/2 - 1 11/16	2500	
1 3/4 - 2 3/16	2000	
2 1/4 - 2 1/2	1750	
2 11/16 - 3	1500	
3 3/16 - 4	1000	
4 7/16 - 5	750	

Table 8 - Sealmaster USRB Spherical Roller Bearing Maximum Speed Rating

	Nextinuis Cumutor of Boxes			
Eory Bis: Josh	Fel. Scal (RPW)	Gonzal Scu (RPM)		
1 1/8 - 1 1/2	4000	3000		
1 11/16 - 1 3/4	4000	2750		
1 15/16 - 2	4000	2500		
2 3/16	3750	2200		
2 7/16 - 2 1/2	3250	1750		
2 11/16 - 3	3000	1600		
3 3/16 - 3 1/2	2500	1350		
3 11/16 - 4	2250	1200		
4 7/16 - 4 1/2	2000	1100		
4 15/16 - 5	1750	900		

Values in these tables represent speeds at ideal conditions. Other application factors may reduce the speed rating of a bearing. Seal limits evaluated at a load of c/10.

Sealmaster RPB Tapered Roller Bearing Installation

Mounting Lock Collar Units:

lead to equipment failure.

NOTICE

- These bearings are designed for maximum permissible static misalignment of \pm 3 degrees. Installation, handling or operation of the bearing in excess of the maximum of \pm 3 degrees can cause reduction in bearing performance and may
- Do not strike or hammer on any component of the bearing and/or shaft. Impact can result in damage to the bearing that may cause reduction in bearing performance and may lead to equipment failure.

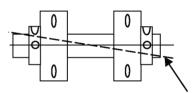
Step 1: Inspect Shaft and Bore

Shaft should be within tolerance range shown in Table I, clean and free of nicks and burrs. Mount bearings on unused section of shafting or repair/replace shafting as required. Inspect both the shaft and bearing bore for debris or contaminants. Wipe clean as necessary.

Table I

Recommended Shaft Tolerances		
Nominal Bore Diameter Tolerance (inch)		
200-1	50,00 + 4 00.5	
2 3/16 - 4	+0.000 / -0.001	
4 7/16 - 5	+0.000 / -0.0015	

Step 2: Check Support Surfaces


Make sure the base of the housing and the support surfaces are clean and free from burrs. If the housing elevation is adjusted with shims these must cover the entire contact area between the housing and the support surface.

Step 3: Install Unit

To aid installation, keep weight off bearing during mounting. Slide unit onto shaft by pushing on the inner ring. If it is difficult to mount bearing on shaft, use a piece of emery cloth to reduce any high spots on the shaft.

Step 4: Fasten Unit in Place

Install housing mounting bolts and check bearing alignment. Align the bearing units as closely as possible. Tighten mounting bolts to recommended fastener torques. Check the shaft for freedom of rotation by rotating shaft with hand in both directions.

Step 5: Position Insert

If expansion units are used, the insert must be located in the housing to allow for axial shaft expansion and/or contraction. Position bearing insert to obtain the required axial expansion in desired directions. It may be necessary to unload the bearing while moving the assembly.

Mounted Roller Bearing Engineering Section **Browning SEAL**

Installation Instructions continued

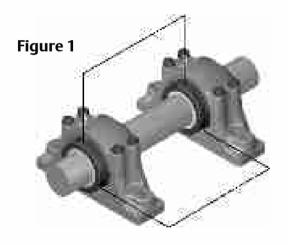
Step 6: Tighten Setscrews

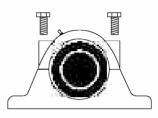
Setscrews in multiple bearing applications should be aligned as shown in Figure 1.

Tighten bearing units to the shaft as follows:

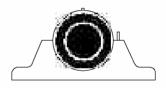
- a) Torque the first setscrew to one half of the recommended torque in Table II.
- b) Torque the second setscrew to the full recommended torque. Go back to the first setscrew and tighten to the full recommended torque.

If the bearing unit has two lock collars, repeat the same procedure for the second lock collar. Check shaft again for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.




Table II

Lock Collar Setscrew Torque			
Bore Size		Hex Size	Foot-Pounds
inch	mm	TICK CIZC	1 cot-1 canas
1.91 - 1000	□ 26° (D)	=±96	302
1 3/4 - 2 1/2	45 - 65	3/16	19
* 116 MH = 150	295-745	11990	629
3 15/16 - 4	100 - 105	5/16	83
4 7/16 - 5	110 - 125	3/8	155


Replacing Existing Sealmaster Inserts:

Note: Replacement Sealmaster bearing inserts are intended for use in Sealmaster housings only.

Step 1: Remove Housing Cap Bolts

Step 2: Remove Top Half of Housing

Step 3: Remove Bearing from Shaft

Loosen the setscrews and slide the bearing off the shaft.

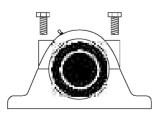
Step 4: Inspect Shaft and Bore

Shaft should be within tolerance range shown in Table I, clean and free of nicks and burrs. Mount bearings on unused section of shafting or repair/replace shafting as required. Inspect both the shaft and bearing bore for debris or contaminants. Also be sure to inspect the housing for damages. Wipe housing bore clean as necessary and check that the lubrication hole is clean and free of debris.

Installation Instructions continued

Step 5: Load New Insert


Slide bearing onto shaft and seat the bearing in the housing base.


Step 6: Install Top Half of Housing

Check to assure that the rubber grommet is properly seated in the lube hole in the top half of the housing. Position the insert so that the lock pin lines up with the lock pin slot in the top half of the housing. Be sure that the lock pin is not positioned in the lube hole.

Be sure to check the bearing inserts for proper alignment. Align the bearings.

Install the top half of the housing. Tighten down the cap bolts to the recommended torque in Tables III, IV, V, or VI, based on the housing type. Rotate the shaft by hand to check for freedom of rotation.

Step 7: Refer to Steps 5 and 6 from the Previous Installation Section

Table III

	Pillow Block Housing			
Bore S	Bore Size Housing Cap Tightenii			
ınch	mm	Torque (Foot-Pounds)		
4292, 334		38		
1 3/8 - 2 3/16	35 - 55	30		
247-2	et sm	79		
3 3/16 - 4 1/2	80 - 115	265		
- 15/10 - 1	13-131	826		

Table IV

Flange Bearing Housing			
Bore Size Housing Cap Tighte		Housing Cap Tightening	
inch	mm	Torque (Foot-Pounds	
1 3/16 - 2	35 - 50	30	
2 3/16 - 3	55 - 75	75	
16.600	80 - 129	144	

Table V

Piloted Flange Housing			
Bore	Size	Outside Bolts	Inside Bolts
inch	mm	Tightening Torque (Foot-Pounds)	Tightening Torque (Foot-Pounds)
18/46	35 - 50	M	47
2 3/16 - 3	55 - 75	50	8
316/446	8000405	() 78° H/	
4 7/16 - 5	110 - 125	150	75

Table VI

Expansion Pillow Block Housing			
Bore Size		Housing Cap Tightening Torque (Foot-Pounds)	
Arrest Halat		17	
1 3/4 - 2 3/16	35 - 55	30	
2.17 - 3	64-45	- 4	
3 3/16 - 3 1/2	80 - 95	265	
315016-410	320-1-3	10	
4 15/16 - 5	120 - 125	265	

Mounted Roller Bearing Engineering Section **Browning SEAL**

Sealmaster RPB Tapered Roller Bearing Lubrication:

Pre-Mounting Checklist:

All Sealmaster RPB Mounted Tapered Roller Bearings are delivered with a high quality lithium complex grease with an EP additive. The bearing is ready for use with no initial lubrication required. The grease consists of a lithium complex thickener, mineral oil, and NLGI grade 2 consistency.

Compatibility of grease is critical; therefore consult with Application Engineering and your grease supplier to insure greases are compatible. For best performance it is recommended to relubricate with lithium complex thickened grease with a comparable NLGI consistency and base oil properties.

Relubricatable Sealmaster bearings are supplied with grease fittings or zerks for ease of lubrication with hand or automatic grease guns. Always wipe the fitting and grease nozzle clean.

Caution: If possible, it is recommended to lubricate the bearing while rotating, until grease purge is observed from the seals. If this is not an option due to safety reasons, follow the alternate lubrication procedure below.

Alternate Lubrication Procedure:

Stop rotating equipment. Add one half the recommended amount shown in Table VII. Start the bearing and run for a few minutes. Stop the bearing and add the second half of the recommended amount. A temperature rise after lubrication, sometimes 30°F (17°C), is normal. Bearing should operate at temperatures less than 200°F (94°C) and should not exceed 250° (121°C) for intermittent operation. For lubrication quidelines, see Tables VIII.

Note: Table VIII are general recommendations. Experience and testing may be required for specific applications.

Note: Grease charges in Table VII are based on the use of lithium complex thickened grease with a NLGI grade 2 consistency.

Expansion Bearing Applications:

Before installation, make certain proper expansion is accounted for. Expansion units should be placed in a location where relative movement between the bearing insert and the housing can be tolerated. For most applications using expansion type units, the fixed unit (non-expansion unit) is placed at the drive end of the shaft. Use Table IX to review the total available bearing expansion. If the application requires additional expansion, consult Application Engineering.

Table VII

Greas	Grease Charge for Relubrication			
Bore S	Bore Size			
inch	mm	(Mass - Ounces)		
1007-100		0.50		
1 3/8 - 1 7/16	35	0.20		
1 1/2 - 1 11/16	40	0.30		
1 3/4 - 2	45 - 50	0.50		
#40.53	(3)	6.64		
2 1/4 - 2 1/2	60 - 65	0.65		
W1008-1	AP - 75	9.8		
3 3/16 - 3 1/2	80 - 95	1.25		
0.4536 4	150 156	256		
4 7/16 - 4 1/2	110 - 115	3.00		
# 18-18- x	1.0 - 125	9/2		

Table VIII

Calulance Goul Security and All una			
Engrassiani.	Temperation of the	Speed School Man	HI Saft a
Dirty	20 to 250	0 - 100%	Daily to 1 Week
		0 25%	4 to 10 Months
Clean	20 to 125	26 - 50%	1 to 4 Months
		51 - 75%	1 Week to 1 Month
	1	76 - 100%	Daily to 1 Week
		0 =25%	2 to 6 Weeks
	125 to 175	26 - 50%	1 Week to 1 Month
	125 to 175	51 - 75%	Daily to 1 Week
		76 - 100%	Daily to 1 Week
	175 to 250	0 100%	Daily to 1 Week

Table IX

Total Available Pillow Block Housing Expansion			
Bore	Size	Expa	nsion
inch	mm	inch	mm
L 2005 CV D/300	Sign (M)	26-00	7.61
2 1/4 - 2 1/2	60 - 65	1/4	6.35
2 11/15 - 15 - 27	(A) with	3610	7239
3 15/16 - 5	100 - 125	3/8	9.53

Browning E920 Tapered Roller Bearing Installation

Mounting Lock Collar Units:

NOTICE

• Do not strike or hammer on any component of the bearing and/or shaft. Impact can result in damage to the bearing that may cause reduction in bearing performance and may lead to equipment failure.

Step 1: Inspect Shaft and Bore

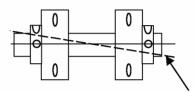
Shaft should be within tolerance range shown in Table I, clean and free of nicks and burrs. Mount bearings on unused section of shafting or repair/replace shafting as required. Inspect both the shaft and bearing bore for debris or contaminants. Wipe clean as necessary.

Table I

Recommended Shaft Tolerances		
Nominal Bore Diameter Tolerance (inch)		
200-2	9100 (4000)5	
2 3/16 - 4	+0.000 / -0.001	
47:0-5 -0.0007-0.0015		

Step 2: Check Support Surfaces

Make sure the base of the housing and the support surfaces are clean and free from burrs. If the housing elevation is adjusted with shims these must cover the entire contact area between the housing and the support surface.


Step 3: Install Unit

To aid installation, keep weight off bearing during mounting. Slide unit onto shaft by pushing on the inner ring. If it is difficult to mount bearing on shaft, use a piece of emery cloth to reduce any high spots on the shaft.

Step 4: Fasten Unit in Place

Install housing mounting bolts and check bearing alignment. Align the bearing units as closely as possible.

Tighten mounting bolts to recommended fastener torques. Check the shaft for freedom of rotation by rotating shaft with hand in both directions.

Step 5: Tighten Setscrews

Setscrews in multiple bearing applications should be aligned as shown in Figure 1. Tighten bearing units to the shaft as follows:

- Torque the first setscrew to one half of the recommended torque in Table II.
- b) Torque the second setscrew to the full recommended torque. Go back to the first setscrew and tighten to the full recommended torque.

Repeat the same procedure for the second lock collar. Check shaft again for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.

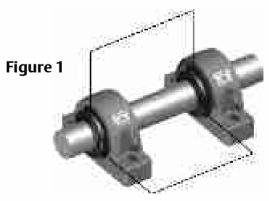


Table II

Lock Collar Setscrew Torque		
Bore Size	Foot-Pounds	
F#38 - 1103B	(12)	
1 3/4 - 2 1/2	19	
T108-43W	2503	
3 15/16 - 4	95	
47/15-9	345	

Browning E920 Tapered Roller Bearing Lubrication:

Pre-Mounting Checklist:

All Browning E920 Tapered Roller Bearings are delivered with a high quality lithium grease with an EP additive. The bearing is ready for use with no initial lubrication required. The grease consists of a lithium thickener, mineral oil, and NLGI grade 2 consistency.

Compatibility of grease is critical; therefore consult with Application Engineering and your grease supplier to insure greases are compatible. For best performance it is recommended to relubricate with lithium thickened grease with a comparable NLGI consistency and base oil properties.

Relubricatable Browning bearings are supplied with grease fittings or zerks for ease of lubrication with hand or automatic grease guns. Always wipe the fitting and grease nozzle clean.

CAUTION: If possible, it is recommended to lubricate the bearing while rotating, until grease purge is observed from the seals. If this is not an option due to safety reasons, follow the alternate lubrication procedure below.

Alternate Lubrication Procedure:

Stop rotating equipment. Add one half of the recommended amount shown in Table III. Start the bearing and run for a few minutes. Stop the bearing and add the second half of the recommended amount. A temperature rise after lubrication, sometimes 30°F (17°C), is normal. Bearing should operate at temperatures less than 200°F (94°C) and should not exceed 250° (121°C) for intermittent operation. For lubrication guidelines, see Table IV.

Note: Table IV are general recommendations. Experience and testing may be required for specific applications.

Note: Grease charges in Table III are based on the use of lithium thickened grease with a NLGI grade 2 consistency.

Table III

Grease Cha	Grease Charge for Relubrication		
Bore Size	Grease Charge (Mass - Ounces)		
276.4.4	5.45		
1 3/8 - 1 7/16	0.30		
7 W - 1 mits	5.15		
1 3/4 - 2	0.42		
2 3/16	0.69		
2 1/4 - 2 1/2	0.75		
1176-3	212		
3 3/16 - 3 1/2	1.50		
\$250 ±	1,720		
4 7/16 - 4 1/2	2.79		
(Carron	Sten		

Table IV

(etulorophisu) Geografia englis la ma				
Environment	Temperatura d'Es	ala ou Haxi	Гисина	
Dirty	20 to 250	0 - 100%	Daily to 1 Week	
		0 25%	4 to 10 Months	
	001.405	26 - 50%	1 to 4 Months	
20 to 125	20 10 125	51 - 75%	1 Week to 1 Month	
		76 - 100%	Daily to 1 Week	
Clean		0 25%	2 to 6 Weeks	
125 to 17	405 to 475	26 - 50%	1 Week to 1 Month	
	125 to 175	51 - 75%	D-11. to 4 \M1.	
		76 - 100%	Daily to 1 Week	
	175 to 250	0 100%	Daily to 1 Week	

Table V

Maximum Operational Speed		
Bore Size	Speed (RPM)	
10/06 (1/01)	2007	
1 3/8 - 1 7/16	3000	
114-116-5	254.	
1 3/4 - 2 3/16	2000	
2 1/4 - 2 1/2	1750	
2 11/16 - 3	1500	
53/6-4	0%-	
4 7/16 - 5	750	

Sealmaster USRB Spherical Roller Bearing Installation

Mounting Lock Collar Units:

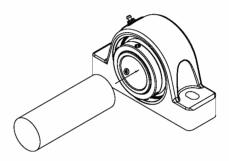
NOTICE

- These bearings are designed for maximum permissible misalignment of ± 2 degrees. Installation, handling or operation of the bearing in excess of the maximum of ± 2 degrees can cause reduction in bearing performance and may lead to equipment failure.
- Do not strike or hammer on any component of the bearing and/or shaft. Impact can result in damage to the bearing that may cause reduction in bearing performance and may lead to equipment failure.

Step 1: Inspect Shaft and Bore

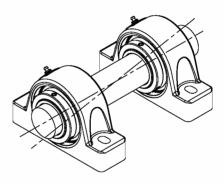
Shaft should be within tolerance range shown in Table I, clean and free of nicks and burrs. Mount bearings on unused section of shafting or repair/replace shafting as required. Inspect both the shaft and bearing bore for debris or contaminants. Wipe clean as necessary.

Table I


Recommended Shaft Tolerances		
Nominal Bore Diameter	Tolerance (inch)	
1135.2	9000.40003	
2 3/16 - 4	+0.000 / -0.001	
4709-5	-0.500+.0.0015	

Step 2: Check Support Surfaces

Make sure the base of the housing and the support surfaces are clean and free from burrs. If the housing elevation is adjusted with shims these must cover the entire contact area between the housing and the support surface.


Step 3: Install Unit

To aid installation, keep weight off bearing during mounting. Slide unit onto shaft by pushing on the inner ring. If it is difficult to mount bearing on shaft, use a piece of emery cloth to reduce any high spots on the shaft.

Step 4: Fasten Unit in Place

Install housing mounting bolts and check bearing alignment. Align the bearing units as closely as possible.

Tighten mounting bolts to recommended fastener torques. Check the shaft for freedom of rotation by rotating shaft with hand in both directions.

Step 5: Position Insert

If expansion units are used, the insert must be located in the housing to allow for axial shaft expansion and/or contraction. Position bearing insert to obtain the required axial expansion in desired directions. It may be necessary to unload the bearing while moving the assembly.

Mounted Roller Bearing Engineering Section **Browning SEAL**

Installation Instructions continued

Step 6: Tighten Setscrews

Setscrews in multiple bearing applications should be aligned as shown in Figure 1. Tighten bearing units to the shaft as follows:

- a) Torque the first setscrew to one half of the recommended torque in Table II.
- b) Torque the second setscrew to the full recommended torque. Go back to the first setscrew and tighten to the full recommended torque.

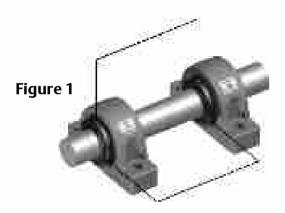


Table II

LOCK	Collar Setscrew To	orque
Bore Size	Hex Size	Foot-Pounds
730-434	25-	30
1 15/16 - 2 1/2	3/16	25
27/10/2/12	59	25
3 11/16 - 4 1/2	5/16	120
4 3317	51	

If the bearing unit has two lock collars, repeat the same procedure for the second lock collar. Check shaft again for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.

Mounting Adapter Lock Units:

Step 1: Inspect Shaft and Bore

Shaft should be within tolerance range shown in Table I, clean and free of nicks and burrs. Mount bearings on unused section of shafting or repair/replace shafting as required. Inspect both the shaft and bearing bore for debris or contaminants. Wipe clean as necessary.

NOTICE: Do not apply any additional lubricant (ex. Grease, oil, or anti-seize) to bearing tapered surfaces, bore or shafting. Bearing components have a light oil, rust preventative coating that should not be removed. Application of additional lubricant may cause reduction in bearing performance and may lead to equipment failure.

Table III

Recommended Shaft Tolerances (Adapter Lock)		
Nominal Bore Diameter	ominal Bore Diameter Tolerance (inch)	
1101.2	20000000000000	
2 3/16 - 4	+0.000 / -0.004	
11 MIN - 1	ири.,; Цс.ь.	

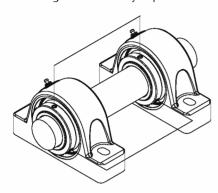
Step 2: Check Support Surfaces

Make sure the base of the housing and the support surfaces are clean and free from burrs. If the housing elevation is adjusted with shims these must cover the entire contact area between the housing and the support surface.

Step 3: Install Unit

NOTICE: One expansion unit is to be used in conjunction with one non-expansion unit for applications using adapter lock units. Failure to utilize one expansion and one nonexpansion unit is likely to result in reduced bearing performance.

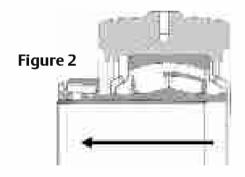
To aid installation, keep weight off bearing during mounting. Slide unit onto shaft by pushing on the inner ring. If it is difficult to mount bearing on shaft, use a piece of emery cloth to reduce any high spots on the shaft.



Mounted Roller Bearing Engineering Section

Installation Instructions continued

Step 4: Fasten Unit in Place


Install housing mounting bolts and check bearing alignment. Align the bearing units as closely as possible.

Tighten mounting bolts to recommended fastener torques. Check the shaft for freedom of rotation by rotating shaft with hand in both directions.

Step 5: Position Insert

Expansion inserts must be located in the housing to allow for axial shaft expansion and/or contraction. If the direction of shaft expansion or contraction is in the direction shown in Figure 2, locate the bearing insert as shown. If the direction of shaft expansion or contraction is opposite to that shown in Figure 2, center the insert in the housing.

Step 6: Tighten Cap Screws

Tighten bearing units to the shaft as follows:

- a) Tighten the cap screws in the specified order, as shown in Figure 3. Continue tightening until all cap screws have become snuq.
- b) Using a torque wrench, tighten each cap screw in the specified order to one half of the recommended torque in Table IV.
- c) In the same order, repeat the procedure tightening each cap screw to the full recommended torque. Once complete, follow the same pattern and verify that each cap screw has met the full recommended torque value and all cap screws have achieved equivalent resistance.

Check shaft for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.

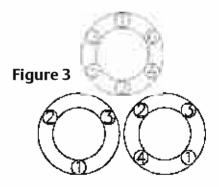


Table IV

Adapter Lock Cap Screw Information			
Bore Size	Torque (inch - Pounds)	Hex Size	# Cap Screws
1100 1365	th.	69;	
1 11/16 - 1 3/4	40	1/8	3
1 15/16 2	30	1/8	3
2 3/16	45	1/8	3
TORKS OF	107	3.00	
2 11/16 - 3	55	1/8	4
\$ \$376 -2 7.9	10	3/16	1 4
3 11/16 - 4	80	3/16	4
± 1,76 → 1	12	3/16	
4 15/16 - 5	130	3/16	6

Installation Instructions continued

Replacing Existing Sealmaster Inserts:

Step 1: Loosen and Remove Housing Mounting Bolts

Step 2: Remove Bearing from Shaft

For lock collar units, loosen the setscrews. For adapter lock units, loosen the cap screws in the specified order as shown in Figure 3. Once locking mechanism is loosened, slide the bearing off the shaft.

Step 3: Remove the Bearing Insert from the Housing

Carefully remove retaining ring and spacer (nonexpansion units) from the housing bore. Clean rings before reuse. Remove insert from housing.

Step 4: Inspect and Prepare Housing

Housings should be inspected for damage prior to installation. Wipe housing bore clean as necessary and check that the lubrication hole is clean and free of debris. Wetting of the housing bore with oil or grease may be done to ease installation of bearing insert.

Step 5: Load New Insert

Slide the bearing insert into the housing.

Step 6: Secure Bearing in Housing

Replace the spacer into housing (non-expansion units only). Install retaining rings into the grooves in the housing bore.

Step 7: Refer to Steps 1 - 6 from the Previous Installation Sections for the Respective **Locking Mechanism**

Sealmaster USRB Spherical Roller Bearing Lubrication:

Pre-Mounting Checklist:

All Sealmaster Spherical Roller Bearings are delivered with a high quality lithium complex grease with an EP additive. The bearing is ready for use with no initial lubrication required. The grease consists of a lithium complex thickener, mineral oil, and NLGI grade 2 consistency.

Compatibility of grease is critical; therefore consult with Application Engineering and your grease supplier to insure greases are compatible. For best performance it is recommended to relubricate with lithium complex thickened grease with a comparable NLGI consistency and base oil properties.

Relubricatable Sealmaster bearings are supplied with grease fittings or zerks for ease of lubrication with hand or automatic grease guns. Always wipe the fitting and grease nozzle clean.

Caution: If possible, it is recommended to lubricate the bearing while rotating, until grease purge is observed from the seals. If this is not an option due to safety reasons, follow the alternate lubrication procedure below.

Mounted Roller Bearing Engineering Section

Installation Instructions continued

Waller Market

Alternate Lubrication Procedure:

Stop rotating equipment. Add one half the recommended amount shown in Table V. Start the bearing and run for a few minutes. Stop the bearing and add the second half of the recommended amount. A temperature rise after lubrication, sometimes 30°F (17°C), is normal. Bearing should operate at temperatures less than 200°F (94°C) and should not exceed 250° (121°C) for intermittent operation. For lubrication guidelines, see Table VI.

Note: Table VI are general recommendations. Experience and testing may be required for specific applications.

Note: Grease charges in Table V are based on the use of lithium complex thickened grease with a NLGI grade 2 consistency.

Expansion Bearing Applications:

Before installation, make certain proper expansion is accounted for. Expansion units should be placed in a location where relative movement between the bearing insert and the housing can be tolerated. For most applications using expansion type units, the fixed unit (non-expansion unit) is placed at the drive end of the shaft. Use Table VIII to review the total available bearing expansion. If the application requires additional expansion, consult Application Engineering.

NOTICE: One expansion unit is to be used in conjunction with one non-expansion unit for applications using adapter lock units. Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

Table V

Grease Char	rge for Relubrication
Bore Size	Grease Charge (Mass - Ounces)
1.05 1.52	287
1 11/16 - 1 3/4	0.20
202.9	b.6°
2 3/16	0.40
2 7/16 - 2 1/2	0.60
2 11/16 - 3	0.75
111/16	i liga
3 11/16 - 4	2.00
47/18-419	2.91
4 15/16 - 5	4.00

Table VI

A STATE OF THE STA	delutance hon Focument and at mes		
Both start	Topopo al marte.	% Catalo Maxi	Procuents
Dirty	20 to 250	0 100%	Daily to 1 Week
		0 25%	4 to 10 Months
	-00 to 405	26 - 50%	1 to 4 Months
	20 to 125	51 - 75%	1 Week to 1 Month
		76 - 100%	Daily to 1 Week
Clean		0 25%	2 to 6 Weeks
	405 to 475	26 - 50%	1 Week to 1 Month
	125 to 175	51 - 75%	D=16. +- 4.10/1
		76 - 100%	Daily to 1 Week
	175 to 250	0 100%	Daily to 1 Week

Table VII

Maximum Operational Speed		
Bore Size	Felt Seal (RPM)	Contact Seal (RPM)
30 7/8	±2.00	⊞-8000 ⊕
1 11/16 - 1 3/4	4000	2750
Urani	4,10	(344)
2 3/16	3750	2200
2 7/16 - 2 1/2	3250	1750
2 11/16 - 3	3000	1600
2242 245	16(0)	770
3 11/16 - 4	2250	1200
430-5-412	2300	1100
4 15/16 - 5	1750	900

Table VIII

Total Available Housing Expansion (inch)			
Bore Size	Setscrew	Adapter Lock	
200 1.39	TROC-	0311	
1 11/16 - 3 1/2	1/4	7/32	
81140.4	(C è	3/2	
4 7/16 - 5	3/8	9/32	

Mounted Roller Bearing Engineering Section **Browning SEAL**

Sealmaster USRB Spherical Roller Bearing Split Pillow Block Housing Installation

Mounting Lock Collar Units:

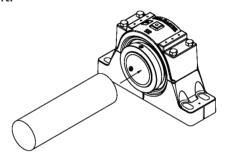
NOTICE

- These bearings are designed for maximum permissible misalignment of ± 2 degrees. Installation, handling or operation of the bearing in excess of the maximum of ± 2 degrees can cause reduction in bearing performance and may lead to equipment failure.
- Do not strike or hammer on any component of the bearing and/or shaft. Impact can result in damage to the bearing that may cause reduction in bearing performance and may lead to equipment failure.

Step 1: Inspect Shaft and Bore

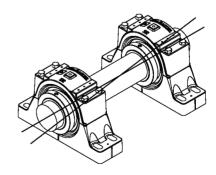
Shaft should be within tolerance range shown in Table I, clean and free of nicks and burrs. Mount bearings on unused section of shafting or repair/replace shafting as required. Inspect both the shaft and bearing bore for debris or contaminants. Wipe clean as necessary.

Table I


Recommended Shaft Tolerances		
Nominal Bore Diameter Tolerance (inch		
1000y	000254-55000	
2 7/16 - 4	+0.000 / -0.001	
47710 - 546	10.000077-2:00-0	
6 7/16 - 7	+0.000 / -0.002	

Step 2: Check Support Surfaces

Make sure the base of the housing and the support surfaces are clean and free from burrs. If the housing elevation is adjusted with shims these must cover the entire contact area between the housing and the support surface.


To aid installation, keep weight off bearing during mounting. Slide unit onto shaft by pushing on the inner ring. If it is difficult to mount bearing on shaft, use a piece of emery cloth to reduce any high spots on the shaft.

Step 4: Fasten Unit in Place

Install housing mounting bolts and check bearing alignment. Align the bearing units as closely as possible.

Tighten mounting bolts to recommended fastener torques. Check the shaft for freedom of rotation by rotating shaft with hand in both directions.

Step 5: Position Insert

Expansion units must be located in the housing to allow for axial shaft expansion and/or contraction. Position bearing insert to obtain the required axial expansion in desired directions. It may be necessary to unload the bearing while moving the assembly.

Mounted Roller Bearing Engineering Section

Installation Instructions continued

Step 6: Tighten Setscrews

Setscrews in multiple bearing applications should be aligned as shown in Figure 1. Tighten bearing units to the shaft as follows:

- a) Torque the first setscrew to one half of the recommended torque in Table II.
- b) Torque the second setscrew to the full recommended torque. Go back to the first setscrew and tighten to the full recommended torque.

If the bearing unit has two lock collars, repeat the same procedure for the second lock collar. Check shaft again for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.

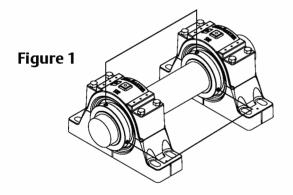


Table II

Lock Collar Setscrew Torque		
Bore Size	Hex Size	Foot-Pounds
1 7/16 - 1 3/4	5/32	14
1 15/16 - 2 1/2	3/16	25
+9,000 = 6.0	47	56
3 15/16 - 4 1/2	5/16	120
2 EUR - E 15-15	50	164
6 7/16 - 7	1/2	428

Mounting Adapter Lock Units:

Step 1: Inspect Shaft and Bore

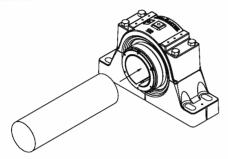
Shaft should be within tolerance range shown in Table III, clean and free of nicks and burrs. Mount bearings on unused section of shafting or repair/replace shafting as required. Inspect both the shaft and bearing bore for debris or contaminants. Wipe clean as necessary.

NOTICE: Do not apply any additional lubricant (ex. Grease, oil, or anti-seize) to bearing tapered surfaces, bore or shafting. Bearing components have a light oil, rust preventative coating that should not be removed. Application of additional lubricant may cause reduction in bearing performance and may lead to equipment failure.

Recommended Shaft Tolerances		
Tolerance (inch)		
100000 FAC-1888		
+0.000 / -0.004		
+0.600, 12.000		
+0.000 / -0.006		

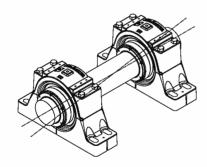
Step 2: Check Support Surfaces

Make sure the base of the housing and the support surfaces are clean and free from burrs. If the housing elevation is adjusted with shims these must cover the entire contact area between the housing and the support surface.

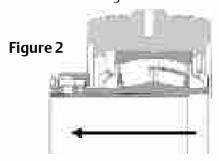

Step 3: Install Unit

NOTICE: One expansion unit is to be used in conjunction with one non-expansion unit for applications using adapter lock units. Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

Installation Instructions continued


To aid installation, keep weight off bearing during mounting. Slide unit onto shaft by pushing on the inner ring. If it is difficult to mount bearing on shaft, use a piece of emery cloth to reduce any high spots on the shaft.

Step 4: Fasten Unit in Place


Install housing mounting bolts and check bearing alignment. Align the bearing units as closely as possible.

Tighten mounting bolts to recommended fastener torques. Check the shaft for freedom of rotation by rotating shaft with hand in both directions.

Step 5: Position Insert

Expansion inserts must be located in the housing to allow for axial shaft expansion and/or contraction. If the direction of shaft expansion or contraction is in the direction shown in Figure 2, locate the bearing insert as shown. If the direction of shaft expansion or contraction is opposite to that shown in Figure 2, center the insert in the housing.

Step 6: Tighten Cap Screws

Tighten bearing units to the shaft as follows:

- a) Tighten the cap screws in the specified order, as shown in Figure 3. Continue tightening until all cap screws have become snug.
- b) Using a torque wrench, tighten each cap screw in the specified order to one half of the recommended torque in Table IV.
- c) In the same order, repeat the procedure tightening each cap screw to the full recommended torque. Once complete, follow the same pattern and verify that each cap screw has met the full recommended torque value and all cap screws have achieved equivalent resistance.

Check shaft for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.

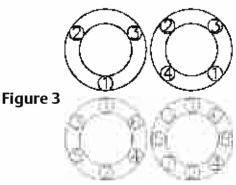


Table IV

Adapter Lock Cap Screw Information			
Bore Size	Torque (inch - Pounds)	Hex Size	# Cap Screws
+ 5,00 (1000)	16	196	1 1
1 15/16 - 2	30	1/8	3
27-10-129	600	34	1 3
2 15/16 - 3	55	1/8	4
3 (718 - 2 179)	= \$00	338	- 4
3 15/16 - 4	80	3/16	4
1300 1 3	1/2	D/06	1 /
4 15/16 - 5	130	3/16	6
5.5th - 15.	1:	5400	
5 15/16	175	3/16	8
6 7/16 - 7	225	1/4	8
7 1/2 - 8	275	1/4	8

Mounted Roller Bearing Engineering Section

Installation Instructions continued

Replacing Existing Sealmaster Inserts:

Step 1: Remove Housing Cap Bolts

Step 2: Remove Top Half of Housing

Step 3: Remove Bearing from Shaft

For lock collar units, loosen the setscrews. For adapter lock units, loosen the cap screws in the specified order as shown in Figure 3. Once locking mechanism is loosened, slide the bearing off the shaft.

Step 4: Inspect Shaft and Bore

Shaft should be within tolerance range shown in Table III, clean and free of nicks and burrs. Mount bearings on unused section of shafting or repair/replace shafting as required. Inspect both the shaft and bearing bore for debris or contaminants. Also be sure to inspect the housing for damages. Wipe housing bore clean as necessary and check that the lubrication hole is clean and free of debris.

Step 5: Load New Insert

Slide bearing onto shaft and seat the bearing in the housing base.

Step 6: Install Top Half of Housing

Be sure to check the bearing inserts for proper alignment. Align the bearings.

Install the top half of the housing. Tighten down the cap bolts to the recommended torque in Tables V. Rotate the shaft by hand to check for freedom of rotation.

Table V

Cap Bolt Tightening Torque		
Casting	Bore Size	Foot-Pounds
. Mrc	1.000 1140	- 31
511	1 15/16 - 2	31
3,41	# 72 to - 2 ha	74.
517	2 15/16 - 3	75
560	27/12/34/2	16.
522	3 15/16 - 4	150
1885	36297E 4132	10.5
528	4 15/16 - 5	266
3411	9.000 n.000	W
534	5 15/16	266
166	577 t - 0342	Séc
538	6 15/16 - 7	600
544	F10002	00E:

Step 7: Refer to Steps 5 and 6 from the Previous Installation Sections for the Respective Locking Mechanism

Sealmaster USRB Spherical Roller Bearing Split Pillow Block Housing Lubrication:

Pre-Mounting Checklist:

Lubrication:

All Sealmaster Spherical Roller Bearings are delivered with a high quality lithium complex grease with an EP additive. The bearing is ready for use with no initial lubrication required. The grease consists of a lithium complex thickener, mineral oil, and NLGI grade 2 consistency.

Compatibility of grease is critical; therefore consult with Application Engineering and your grease supplier to insure greases are compatible. For best performance it is recommended to relubricate with lithium complex thickened grease with a comparable NLGI consistency and base oil properties.

Relubricatable Sealmaster bearings are supplied with

Installation Instructions continued

grease fittings or zerks for ease of lubrication with hand or automatic grease guns. Always wipe the fitting and grease nozzle clean.

Caution: If possible, it is recommended to lubricate the bearing while rotating, until grease purge is observed from the seals. If this is not an option due to safety reasons, follow the alternate lubrication procedure below.

Alternate Lubrication Procedure:

Stop rotating equipment. Add one half the recommended amount shown in Table VI. Start the bearing and run for a few minutes. Stop the bearing and add the second half of the recommended amount. A temperature rise after lubrication, sometimes 30°F (17°C), is normal. Bearing should operate at temperatures less than 200°F (94°C) and should not exceed 250° (121°C) for intermittent operation. For lubrication quidelines, see Table VII.

Note: Table VII are general recommendations. Experience and testing may be required for specific applications.

Note: Grease charges in Table VI are based on the use of lithium complex thickened grease with a NLGI grade 2 consistency.

Expansion Bearing Applications:

Before installation, make certain proper expansion is accounted for. Expansion units should be placed in a location where relative movement between the bearing insert and the housing can be tolerated. For most applications using expansion type units, the fixed unit (non-expansion unit) is placed at the drive end of the shaft. Use Table IX to review the total available bearing expansion. If the application requires additional expansion, consult Application Engineering.

NOTICE: One expansion unit is to be used in conjunction with one non-expansion unit for applications using adapter lock units. Failure to utilize one expansion and one non-expansion unit is likely to result in reduced bearing performance.

Table VI

Grease Ch	Grease Charge for Relubrication					
Bore Size	Grease Charge (Mass - Ounces)					
₹50±1±4	877					
1 15/16 - 2	0.30					
2700 2 4	1.12					
2 15/16 = 3	0.80					
3 7/16 - 3 1/2	1.20					
3 15/16 _ 4	2.00					
# 5286 of 150	7775					
4 15/16 5	4.00					
5 7/16 - 5 1/2	6.10					
5 15/16	10.60					
6 7/16 - 7	13.90					
7 1/2 - 8	17.60					

Table VII

(a) Lince bon Hagninin ands) nea						
H144111111111	emperitur (†)	-are-i - : lala on maxi	ma.a.			
Dirty	20 to 250	0 - 100%	Daily to 1 Week			
		0 =25%	4 to 10 Months			
	20 to 125	26 - 50%	1 to 4 Months			
	20 to 125	51 - 75%	1 Week to 1 Month			
		76 - 100%	Daily to 1 Week			
Clean		0 25%	2 to 6 Weeks			
	405 to 475	26 - 50%	1 Week to 1 Month			
	125 to 175	51 - 75%	Dalla ta d'Marala			
		76 - 100%	Daily to 1 Week			
	175 to 250	0 =100%	Daily to 1 Week			

Table VIII

Maximum Operational Speed					
Bore Size	Felt Seal (RPM)	Contact Seal (RPM)			
1 7/16 - 1 1/2	4000	3000			
1 15/16	4000	2500			
2017 512	2200	300			
2 15/16 🕳 🕳	3000	1600			
3 7/16 - 3 1/2	2500	1350			
3 15/16	2250	1200			
1.7" 2.17" lim	(410)	I IDH			
4 15/16 - 5	1750	900			
1-21 E + 0.16	100	865			
5 15/16	1300	800			
6 7/16 - 7	1200	750			
7 1/2 - 8	1100	750			

Table IX

Total Available Housing Expansion (inch)						
Casting	Bore Size	Setscrew	Adapter Lock			
509	7/46 1/1	7/3	7/4 6			
511	1 15/16 - 2	1/4	7/32			
515	2 7/16 - 2 1/2	5/16	9/32			
517	2 15/16 - 3	3/8	11/32			
22:	2718-216	368	`` B `			
522	3 15/16 - 4	3/8	5/16			
526	4 7/16 - 4 1/2	3/8	9/32			
528	4 15/16 - 5	3/8	9/32			
532	5 7/16 - 5 1/2	3/8	9/32			
534	5 15/16	3/8	9/32			
536	6 7/16 - 6 1/2	3/8	9/32			
538	6 15/16 - 7	3/8	9/32			
544	7 1/2 - 8	3/8	9/32			

Mounted Roller Bearing Engineering Section

Vibration Analysis

The following equations are used to calculate the fundamental frequencies for Mounted Tapered Roller Bearings.

- 1. All information can be linked to three factors:
 - Shaft Size
 - Unit number
 - Insert number
- 2. Use the information from Step 1 to select the vibration geometry information (R, I, O and F) from the Table 9.
- 3. Use the information to calculate the fundamental bearing frequencies:
 - Roller Spin Frequency (Hz) = R x RPM
 - Inner Roller Pass Frequency (Hz) = I x RPM
 - Outer Roller Pass Frequency (Hz) = O x RPM
 - Fundamental Train Frequency (Hz) = F x RPM

Bearing Symbols for Vibration Analysis

RPM = Shaft Speed (Revolutions per Minute)

R = Roller Spin Frequency Factor

I = Inner Roller Pass Frequency Factor

O = Outer Roller Pass Frequency Factor

F = Fundamental Train Frequency Factor

Table 9 - Sealmaster RPB and Browning E920 Vibration Geometry Information

Bore Size		Factor for Roller Spin	Factor for Inner Roller Pass	Factor for Outer Roller Pass	Factor for F.T.F.
ınch	mm	R	ı	0	F
1 3/16 - 1 1/4		0.1258	_ 0.1782	_ 0.1384	0.0073
1 3/8 - 1 7/16	35	0.1173	0.1892	0.1442	0.0072
1 777 1 2300	30	55 1000	2.3701	10.680	0.0062
1 3/4 - 2	45 - 50	0.1083	0.1626	0.1207	0.0071
2546	96	C. 210	31796	VA077	0.0072
2 1/4 - 2 1/2	60 - 65	0.1345	0.1958	0.1542	0.0073
2 11/16 - 3	70 - 75	0.1578	0.2202	0.1798	0.0075
3 3/16 - 3 1/2	80 - 95	0.1706	0.2368	0.1966	0.0076
Singe-1	100 - 8%	6.375	(0.05)	10006	1600000
4 7/16 - 4 1/2	110 - 115	0.1601	0.2289	0.1878	0.0075
41096-1	120 125	0.507	0.7292	V.4877	0.0075

Vibration Analysis

The following equations are used to calculate the fundamental frequencies for Mounted Spherical Roller Bearings.

- 1. All information can be linked to three factors:
 - Shaft Size
 - Unit number
 - Insert number
- 2. Use the information from Step 1 to select the vibration geometry information (R, I, O and F) from Table 10.
- 3. Use the information to calculate the fundamental bearing frequencies:
 - Roller Spin Frequency (Hz) = R x RPM
 - Inner Roller Pass Frequency (Hz) = Ix RPM
 - Outer Roller Pass Frequency (Hz) = O x RPM
 - Fundamental Train Frequency (Hz) = F x RPM

Bearing Symbols for Vibration Analysis

RPM = Shaft Speed (Revolutions per Minute)

R = Roller Spin Frequency Factor

I = Inner Roller Pass Frequency Factor

O = Outer Roller Pass Frequency Factor

F = Fundamental Train Frequency Factor

Table 10 - USRB Vibration Geometry Information

Bore Size	Factor for Roller Spin	Factor for Inner Roller Pass	Factor for Outer Roller Pass	Factor for F.T.F.
	R	L	0	F
1 1/8 - 1 1/2	0.0977	0.1549	0.1117	0.0070
1 11/16 - 1 3/4	0.1077	0.1722	0.1278	0.0071
1.15(10) 2	10000	0: 274	0, 252	9.0072
2 3/16	0.1106	0.1717	0.1283	0.0071
2 7/16 - 2 1/2	0.1105	0.1812	0.1354	0.0071
2 11/16 - 3	0.1204	0.1983	0.1517	0.0072
12 6-342	0.105	0. 455	0, 444	0.0072
3 11/16 - 4	0.1088	0.1816	0.1351	0.0071
1998 = 67	(全)性	11 < 3	11/2/17	W18069
4 15/16 - 5	0.1171	0.1894	0.1439	0.0072
69:4-548	(45,038)	0.732	0.225	0.0075
5 15/16	0.1009	0.1735	0.1265	0.0070
97-0096 .	140008	99.9579	000030	10000000
7 1/2 - 8	0.1115	0.1809	0.1357	0.0071

Rod Ends and Spherical Plain Bearings

Rod ends and spherical plain bearings are designed to support a load, accommodate angular motion, misalignment and oscillation in mechanical motion systems. Rod ends consist of a threaded housing with an integral spherical plain bearing or a threaded housing formed around a ball. Spherical plain bearings consist of an outer race and hardened spherical ball. Spherical plain bearings provide a similar function as rod ends and require housing support.

Bearing Configurations

Male And Female Thread Types In Right And Left Hand Threads With The Option Of Grease Fittings.

Mounting Requirements

Light Press Or Mechanical Fit, Threaded Rod.

Bore Size Range

3/16" To 2"

Materials Housing & Balls

Carbon Steel, Alloy Steel, Stainless Steel

Races

Carbon Steel, Bronze, Delrin*, Stainless And PTFE Liners

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin; E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

SEALMASTER® Rod End Bearings

Rod End Selection Guide

Brand	lmage	Product Series	Housing / Race Material	Bore Size Range
	91	AR / ARE	HT Steel / Steel	3/16" - 3/4"
		ARE-20	HT Steel / Steel	3/16" - 3/4"
		TR / TRE	Steel / Steel	3/16" - 1"
Sealmaster Rod Ends		CFF-T / CFM-T	Steel / PTFE Liner	3/16" - 1"
	9	TF / TM	Steel / Bronze	3/16" - 3/4"
		CFF / CFM	Steel	3/16" - 1"
		CTFD / CTMD	Steel / Delrin*	3/16" - 3/4"

HT = Heat Treated SS = Stainless Steel

^{*}The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin;E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

D	Design Characteristics			Design Characteristics Features					
Static Load	Reversing Load	Shock <u>Lo</u> ad	Relative Base Cost	Construction	Max Temp. (°F)	Grease Fitting	Left Hand Thread	Y-Stud	Page No.
•	•	•	\$\$\$	3 Piece	350	Optional	Standard		J-13, J-15
•	•	•	\$\$\$	3 Piece	350	Optional	Standard		J-14
•	•	•	\$	3 Piece	350	Optional	Standard	Optional	J-16 to J-17
•	•	•	\$\$	2 Piece	250		Standard	Optional	J-18 to J-19
•	•	•	\$	3 Piece	350	Optional	Standard	Optional	J-20 to J-21
•	•	0	\$	2 Piece	350	Optional	Standard	Optional	J-22 to J-23
0	0	0	\$	3 Piece	150		Standard-	Optional	J-24 to J-25

○ = Not Recommended

Poor **←** → Best

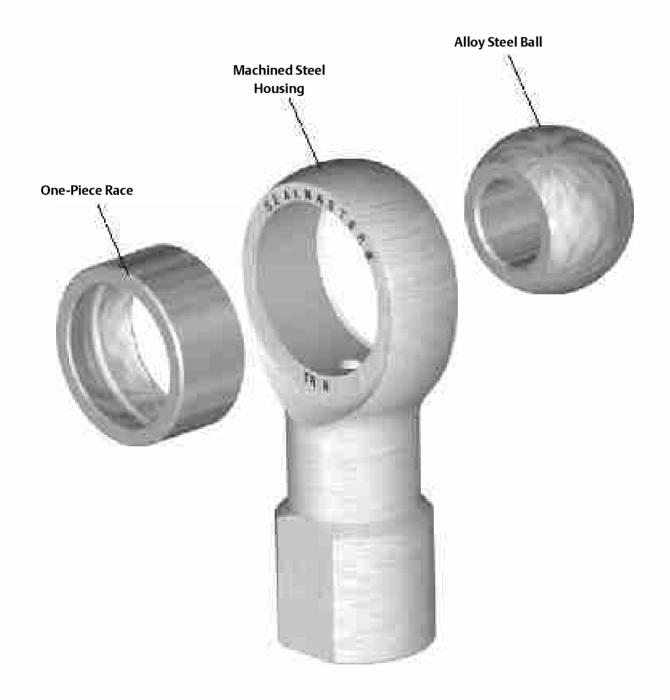
SEALMASTERRod End Bearings

Spherical Plain Bearings Selection Guide

Brand	lmage	Product Series	Outer / Race Material	Bore Size Range
		SBG	Bronze / Steel Ball	3/16" - 1"
		SBG-S	HT Steel / Steel Ball	3/16" - 1"
		SBG-SA	HT Steel / Steel Ball	1/2" - 1"
Sealmaster Spherical Plain Bearings		SBG-SS	SS / SS Ball	3/16" - 1"
		COR	SS / SS Ball	3/16" - 1"
		СОМ	Steel / Steel Ball	3/16" - 1"
	6	FLBG	Steel Outer / Bronze Race / Steel Ball	3/16" - 1"
Sealmaster Heavy Duty		BTS-LS	Steel / Steel Ball	3/4" - 1 1/2"
Spherical Plain Bearings		BH-LS	Steel / Steel Ball	1"- 2"

HT = Heat Treated

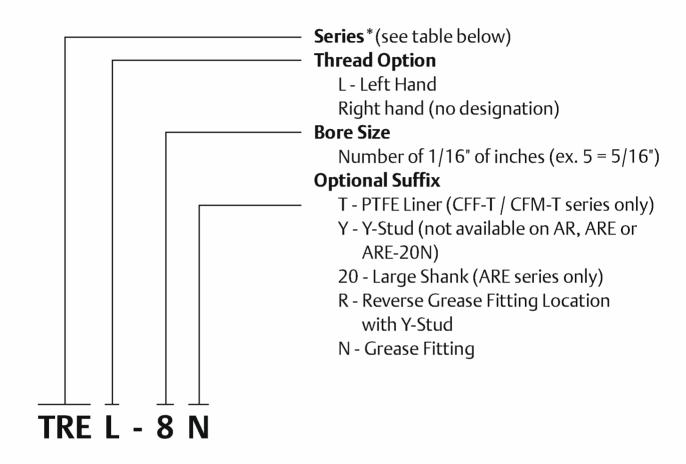
SS = Stainless Steel


	Design Cha	RACTERISTICS	8		FEAT	URES	-	
Static Load	Reversing Load	Shock Load	Relative Base Cost	Construction	Max Temp. (°F)	Groove on Ball ID and Inter- connecting Hole	Seal	Page No.
•	•	0	\$	2 Piece	350			J-32
•	•	•	\$	2 Piece	350			J-32
•	•	•	\$	2 Piece	350	Standard	=-	J-32
•	•	•	\$\$	2 Piece	500		-	J-32
•	•	•	\$\$	2 Piece	500			J-33
•	•	•	\$	2 Piece	350		-	J-34
•	•	•	\$\$	3 Piece	350	500		J-35
	•	•	\$\$\$	2 Piece	250	_	Standard	J-36
•		•	\$\$\$	2 Piece	350	=	=	J-37

○ = Not Recommended Poor ← → Best

Sealmaster Rod Ends Bearings

Sealmaster two and three piece rod end bearing housing designs have been optimized for overall strength. This housing advantage and variety of outer race materials including brass, steel, DELRIN*, and PTFE liners provide a wide selection of application solutions. Sealmaster rod end bearings can be joined together or connected with a threaded rod or tube as linkage assemblies for flexibility in motion transfer. In addition Sealmaster rod end bearings can accommodate angular misalignment to provide ease in assembly and smooth motion transfer in a variety of applications.



^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin;E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

Rod End Bearing Nomenclature

*	Series	Description	i
---	--------	-------------	---

TR Three Piece Rod End (Internal Threads)

Three Piece Rod End (Male External Threads) TRE

Alloy Rod End (Internal Threads) AR

ARE Alloy Rod End (External Threads)

CFF Commercial Female (Internal Threads)

Commercial **M**ale (External Threads) CFM

Three Piece Female (Internal Threads) TF

Three Piece Male (External Threads) TM

Commercial Three Piece Female Delrin* (Internal Threads) **CTFD**

Commercial Three Piece Male DELRIN (External Threads) **CTMD**

The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin; E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

SEALMASTER Rod End Bearings

Features and Benefits

Three-Piece Rod Ends

Sealmaster three-piece rod ends incorporate a one-piece race formed around a hardened steel chrome plated ball in a controlled manufacturing process. Three-piece construction offers flexibility for alternative race materials designed to help solve specific application problems. Consult Application Engineering for material combinations available to meet your application needs.

Machined Steel Housing

- Protective coated for corrosion resistance
- Higher average tensile strength and fatigue life vs. competition
- Wrench flat on female rod ends facilitates assembly
- Full catalog thread depth for maximum thread engagement

One-piece Race

- Reduces pound-out in applications with high frequency oscillation, vibration or shock loading
- Improved spherical ball-race conformity for even load distribution
- Precision ball-race fit
- Less wear than rod ends with two-piece race designs
- Manufactured in steel, aluminum bronze and self lubricating Delrin[®]

Ball

- Alloy steel heat treated and chrome plated for corrosion resistance
- Better wear resistance properties than carbon steel tin nickel plated balls

Two-Piece Rod Ends

Sealmaster two-piece design rod ends consist of a machined housing formed around a hardened steel chrome plated ball. This construction offers more load capacity than three-piece designs with like housing materials because of greater housing cross section.

Machined Steel Housing

- Protective coated for corrosion resistance
- Wrench flat on female rod ends facilitates assembly

Ball

Alloy steel, heat treated, chrome plated for wear resistance properties

Multiple Configurations

- Three-piece design rod ends with heat treated alloy steel housing for high static, radial loads. The construction also helps reduce "pound-out" in applications with high frequency oscillation, vibration or shock loading.
- One-piece carbon steel outer race with protective coating for corrosion resistance
- Alloy steel, heat treated, chrome plated ball for wear resistance properties
- Wrench flat on female rod ends facilitates assembly
- Bore sizes form 3/16" to 3/4"
- Grease fittings available on ¼" through ¾" bore sizes
- Male and female versions with right and left hand threads
- The ARE-20N Series offers an oversized shank for additional shank strength

CFM-T

Sealmaster CFF-T and CFM-T Precision Two Piece Rod Ends

- Two piece construction with self-lubricating PTFE liner for applications where grease lubrication is not practical or desirable
- Manufactured with consistent, no load, rotational torque values for accurate linkage control
- Machined carbon steel housings with protective coating for corrosion
- Alloy steel, heat treated, chrome plated ball for wear resistance properties
- Wrench flat on female rod ends facilitates assembly
- Bore sizes form 3/16" to 3/4"
- Male and female versions with right and left hand threads

TRF

Sealmaster TR and TRE Precision Series Rod Ends

- Three-piece construction to help reduce "pound-out" in applications with high frequency oscillation, vibration or shock loading
- One-piece carbon steel outer race with protective coating for corrosion
- Alloy steel, heat treated, chrome plated ball for wear resistance properties
- Wrench flat on female rod ends facilitates assembly
- Bore sizes from 3/16" to 1"
- Grease fittings available on 1/4" through 1" bore sizes
- Male and female versions in both right and left hand threads

Multiple Configurations continued

Sealmaster TF/TM, CFF/CFM, CFTD, CTMD **Commercial Series Rod Ends**

- Two and three-piece design
- Variety of material and construction combinations
- Machined carbon steel housings with protective coating for corrosion resistance
- Alloy steel, heat treated, chrome plated ball for wear resistance properties
- Wrench flat on female rod ends facilitates assembly
- Bore sizes from 3/16" to 3/4"
- Grease fitting available on CFF/CFM and TF/TM series in 1/4" through 3/4" bore sizes
- Male and female versions in both right and left hand threads

TF and TM

TF and TM series is designed with one-piece bronze race for lower coefficient of friction.

CFF and CFM

- CFF and CFM series with two piece construction has a greater housing cross section and increased load capacity than three piece rod ends with like housing materials.
- The commercial CFF, CFM series provides a lower cost alternative to the precision grade three piece rod ends with like housing material.

CTFD and CTMD

- CTFD and CTMD series with self-lubricating Delrin* race for light duty applications where oil and grease should be avoided.
- The rod end utilizes a DELRIN acetal resin race material with lower coefficient of friction than metal to metal versions.
- Delrin material withstands vibration without galling or fretting and absorbs little moisture compared to bearings with nylon races.

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin; E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

Multiple Configurations continued

CFF-Y

Sealmaster Rod Ends with Y-Studs

- Y-studs are available on Sealmaster TR/TRE, TR-N/TRE-N, CFF/CFM, CFF-N/ CFM-N and CTFD/CTMD rod ends bore sizes from 3/16" to 3/4".
- They are designed to facilitate right angle connections and accommodates up to ± 25 degrees of angular misalignment in any direction.
- The Y-stud contains a hex wrench flat to facilitate assembly advantages and are manufactured from carbon steel and plated for corrosion protection.
- Caution when selecting rod ends with Y-studs: Catalog load ratings are not applicable with Y-studs because of the reduced stud strength due to bending. For load ratings with Y-stud contact Application Engineering.

SEALMASTER_{® Rod End Bearings}

Design Modifications

Sealmaster rod ends can be ordered with the following design modifications at an extra cost.

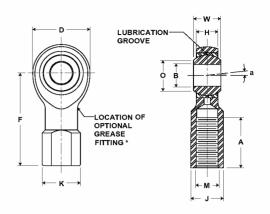
Stock Modifications	Design Modifications	Option Offered on These Series	Ordering Instructions and Example for Specifying
9	Zerk Type Fitting	AR, ARE, ARE-20, TR, TRE, TF, TM, CFF, CFM	Add "N" to part number suffix Example:TRE-8N (available on sizes 4-16 only) Caution: Catalog load ratings of rod ends are not applicable when grease fittings are specified, because of the reduced cross section of the head. When selecting rod ends with grease fittings, consult Application Engineering for static load capacities.
	Y-Studs	TR, TRE, TF, TM, CFF, CFM, CFF-T, CFM-T, CTFD, CTMD	Add "Y" to part number suffix Example: TRE-8Y (see page J-37 for stud specifications) Caution when selecting rod ends with Y-studs: Catalog load ratings are not applicable with Y-studs because of the reduced stud strength due to bending. For load ratings with Y-stud contact Application Engineering.
Special Modifications	Design Modifications	Option Offered on These Series	Ordering Instructions and Example for Specifying
0	Alloy Steel Race	AR, ARE, ARE-20, TR, TRE	Add "S" to part number suffix Example ARE-8S
0	Stainless Steel Race	AR, ARE, ARE-20, TR, TRE	Add "SS" to part number suffix Example TRE-6SS

Rod End Bearings **SEAL**

Basic Construction Type: Female 3 pc. Extra Capacity,

Precision

Outer Member Material: Alloy Steel, Heat Treated


Protective Plating for Corrosion Resistance

Race Material: Carbon Steel with Protective

Plating for Corrosion Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

AR, AR-N Series Rod Ends

					13 1 13	production in	e i kur					June Brent	Mark to the later	
DAME:		7//	i www		(8)					1,000	0.00		THE PARTY OF THE P	West 1970
	100	772	# 60%) F 60%		- UTV			100			w			
AR-3	1900	312	250	625	1.062	531	#10-32	375	312	437	306	3700	6 1/2	030
AIN-5	4.826	7.92	6.35	15.88	26.97	13.49	#10-32	9.53	7.92	11.10	7.77	16458	0 1/2	014
-10/7E	J-514	42.5	241	.2166	1 1997	2110	15000	747	-25	2641	2924	244	21	4.54
W. 17	5.700	0.59	7/14	H-25	30,32	17, 26	- 440-2011-	11.51	0.50	277	7.41	170077	-	.527
AR-5	_3125	437	344	875	1.375	719	5/16-24	531	437	625	447	7500	7	.080
AR-3	7.938	11.10	8.74	22.23	34.93	18.26	3/10-24	13.49	11.10	15.88	11.35	33362	,	036
1R.6	3270	30	300	1,000	1 633	000	38-24	602	794	710	表現り	5720	8.	540
2007	\$4 50m	1.7	300cm	55-0s	# 3Mt	95-90	a cred	0.#	100	40	1121	Mr.		157
AR-7	4375	562	437	1.125	1.812	1.031	7/16-20	750	625	812	586	11000	7	180
AR-I	11.113	14.27	11.10	28.58	46.02	26.19	1/16-20	19.05	15.88	20.62	14.88	48930	,	082
/F; 0	-:441	\$95	700	1.112	9435	1 1546	/2.30	107	(24)	. K#	et.es	(Cesti)	6	14(1)
(959)	1,723	5,85	12.70	29.32	58.08	20-36	1422.000	22.23	322	23.53	17.75	50071	500	.534
AD 10	6250	750	562	1.500	2.500	1.469	5/8-18	1.000	875	1.125	839	17300	8	430
AR-10	15.875	19.05	14.27	38.10	63.50	37.31	3/6-16	25.40	22.23	28.58	21.31	76954	0	195
(a) (iii	2500	679	-0.57	1,750	2,874	1,710	III W	1.125	3602	1,252	375	2200.0	-	249
300	13.434	33.3°	845m	M. IN.	9000	Birth	HE W	300 500	16.15	11.15	2600	101 Bes	70.	326

NOTES

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the AR-N series; Example: AR-8N.
- 2. Grease fittings are available on sizes 4 through 12 only.
- *3. Load ratings apply to the AR series only. For AR-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: ARL-8.
- 5. For design modifications, see page J-13.

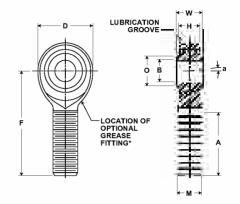
Basic Construction Type: Male 3 pc. Extra Capacity,

Precision

Outer Member Material: Alloy Steel, Heat Treated

Protective Plating for Corrosion Resistance

Race Material: Carbon Steel with Protective


Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

Feature: Large Shank

ARE-20, ARE-20N Series Male Rod Ends

					i marin i i i i i	100 me	W20			An Let	Total Street	1000000
2-0303								Tending:	•	202	en la marie	Unit
	111	1019	1.1		4, ,	CW	HEAV.	2411	715	67	-7.1	
ARE-3-20	1900	_312	250	625	1.250	719	1/4-28	_437	306	3700	6 1/2	030
ANL-5-20	4.826	7.92	6.35	15.88	31.75	18.26	174-20	11.10	7.77	16458	0 1/2	014
/SE=M	35.3	June 1	2011	7500	(30)	1465	54534	#20	201	17,00	8.9	057
//WE	6355	2.55	7.14	1.75	20.07	20.0	JF 154-348	4.72	a.H	23827	9/17	.047
ARE-5-20	3125	437	344	875	1.875	1.219	3/8-24	625	447	7500	7	090
ARE-3-20	7.938	11.10	8.74	22.23	47.63	30.96	3/0-24	15.88	11.35	33362	,	041
and Novi	#502	35236	=90	3,72	982	t.219	p-15-180	335	9502	5520	27	189
STATES:	6825	41.57	36.55	0.48	#K.M.	2006	Distribute.	56.54	367901	-7.0	7,1	gr.a
ARE-7-20	4375	562	437	1.125	2.125	1.344	1/2-20	812	586	11000	7	180
ANL-1-20	11.113	14.27	11.10	28.58	53.98	34.14	1/2-20	20.62	14.88	48930	,	082
озинском	74175	67%	1490	110	17306	HKN	204-2403-2401	62.0	lec:	tier:	600	265
ARE-8-20	12/700	1188	19.79	11.10	6.00	57.5) 64 -30	2:20	1570	29001	600	
ARE-10-20	6250	750	562	1.500	2.625	1.594	3/4-16	1.125	839	17300	8	460
ARE-10-20	15.875	19.05	14.27	38.10	66.68	40.49	3/4-10	28.58	21.31	76954	O	209
em de n	1962	40%	11007	53920	2/874	9500	1977	3207	1950	70K+	28	Mr.
57000	40.300	22.20	17.45	44.45	73.03	49 30	111	98,92	24.84	103100		327

NOTES

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the ARE-20N series; Example: ARE-8-20N.
- 2. Grease fittings are available on sizes 4 through 12 only.
- *3. Load ratings apply to the ARE-20 series only. For ARE-20N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: AREL-8-20.
- 5. For design modifications, see page J-13.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

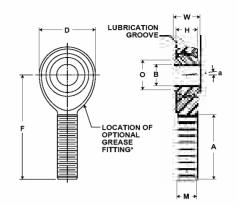
Rod End Bearings **SEAL**

Basic Construction Type: Male 3 pc. Extra Capacity,

Precision

Outer Member Material: Alloy Steel, Heat Treated

Protective Plating for Corrosion Resistance


Race Material: Carbon Steel with Protective

Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

ARE, ARE-N Series Male Rod Ends

				1111	illian		W			Mar Charles	Mariana de la composición della composición dell	(200111100)
THE STATE OF								fish Ciare	-01	Line III	Ottopilian.	- William
	111	100	5	49	00000	1.11						
ARE-3	1900	312	250	625	1.250	719	#10-32	437	306	2850	6 1/2	030
ARE-3	4.826	7.92	6.35	15.88	31.75	18.26	#10-32	11.10	7.77	12677	0 1/2	014
ARE I	950	5.6	111	15.	1.5%	- 419	Tiposes.	200	311	- Cut	0.1	Ho:
770820-9-	5.550	9.9%	2.49	10.00	20.37	24.01	14.28	12.72	5.45	19770	911	02)
ARE-5	3125	437	344	875	1.875	1.219	5/16-24	625	447	7280	7	080
ARE-3	7.938	11.10	8.74	22.23	47.63	30.96	3/10-24	15.88	11.35	32383	1	036
an a	2750	(200)	3405	1000	505560	3.245	72272	2180	3/8/15	1980	- 53	196
34542212	25.50	= 45	960	3650	12.21	28.3MC	144.7	JESE	201.57	4.5514	70	Digit 1
ARE-7	4375	562	437	1.125	2.125	1.344	7/16-20	812	586	11000	7	170
ARE-I	11.113	14.27	11.10	28.58	53.98	34.14	7710-20	20.62	14.88	48930	'	077
overno.	6706	24	0.00	11/20	199	(0)	La Arrest	40	1991	(33.00	607	200
ARE &	6757	12.25	14.75	25.57	41	80.9	102-20	1000	17.53	90057	(0)	7710
ARE-10	6250	750	562	1.500	2.625	1.594	5/8-18	1.125	839	17300	8	410
ARE-10	15.875	19.05	14.27	38.10	66.68	40.49	3/0-10	28.58	21.31	76954	0	186
-10.10	7520	379	.es7	15750	2.87%	- Fp9	64.06	714	1078	29200	- 7/	MC.
70000	15,05	20.27	77340	E4.75	13.27	42.00	7710	25.32	24.00	52495		390

NOTES

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the ARE-N series; Example: ARE-8N.
- 2. Grease fittings are available on sizes 4 through 12 only.
- *3. Load ratings apply to the ARE series only. For ARE-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: AREL-8.
- 5. For design modifications, see page J-13.

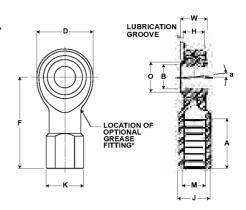
Female 3 pc. General Purpose, **Basic Construction Type:**

Precision

Outer Member Material: Carbon Steel with Protective

Plating for Corrosion

Resistance


Race Material: Carbon Steel with Protective

Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

TR. TR-N Series Female Rod Fnds

					Distant	22.00				Commence Commence Co		See not	west non-	Litter
F-114		- 7	T					MILTER.		Fall Non.			112.17	
	1115	11			1635	**		A.A.	(0)	HIL.	(241)	100	6.9	link
TR-3	1900	312	250	625	1.062	531	#10-32	375	312	437	306	1850	6 1/2	030
IK-3	4.826	7.92	6.35	15.88	26.97	13.49	#10-32	9.53	7.92	11.10	7.77	8229	0 1/2	014
0165	2:,;	320	.221	754	131.2	23	20042465	023	3.78	.00.	321	2750		14
11/2	195	14.5	17.19	10-10-	27.02	1414	0000000	11/47	Pite	12.30	7.17	1200	E ::	1200
TR-5	3125	437	344	875	1.375	719	5/16-24	531	437	625	447	3350	7	080
IK-5	7.938	11.10	8.74	22.23	34.93	18.26	3/10-24	13.49	11.10	15.88	11.35	14902	,	.036
100	2970.0	230	43	1,300	1,075	523€	82360	688	#40	TIE	7217	4450	5%	340
133	\$ -7%	11.00	10.0	226-1111	11.75	27.01	933	11130	930	1116,3415	20.37	(Section)	- 53	394
TR-7	4375	562	437	1.125	1.812	1.031	7/16-20	750	625	812	586	5350	7	180
11X-7	11.113	14.27	11.10	28.58	46.02	26.19	1110-20	19.05	15.88	20.62	14.88	23798		082
Erforce	40.00	377	824	1,512	2,725	加铁		: BTI)	250	987	3628	1420		139
100	ur≒d.	· = ale	11156 41.7	75.50	5-15	W. 50	P.P.	WW.	140	57000	3224	-981.4	E .	150
- TR-10	6250	750	562	1.500	2.500	1.469	5/8-18	1.000	875	1.125	.839	8050	8	430
111-10	15.875	19.05	14.27	38.10	63.50	37.31	3/0-10	25.40	22.23	28.58	21.31	35808	Ů	195
15-12	7539	3257	427	1.720	2.275	194	3-640	1025	955	1.312	5.76	11304	70	540
#1777.F60-1	## D14	1000	11000	/18:16	14.42	45.63	5-45,000,00	118.66	12H0r	101/201	24.21	54041	100	34
** TR-16	1.0000	1.375	1.000	2.750	4.125	2.094	1 1/4-12	1.688	1.500	1.875	1.269	21000	8 1/2	2.250
117-10	25.400	34.93	25.40	69.85	104.78	53.19	1 1/4-12	42.88	38.10	47.63	32.23	93413	0 1/2	1.021

NOTES

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the TR-N series; Example: TR-8N.
- 2. Grease fittings are available on sizes 4 through 16 only.
- *3. Load ratings apply to the TR series only. For TR-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: TRL-8.
- 5. Add letter "Y" to the part number suffix to indicate stud. Example: TR-8Y.
- 6. For design modifications, see page J-13.
- **7. Tolerances for "D" dimensions is +.030, -.010. For "H" dimensions is +.030, -.010.

Metric dimensions for reference only.

 $Not all \ parts \ are \ available \ from \ stock. \ Please \ contact \ customer \ service \ for \ availability \ (800) \ 626-2120.$

 $For more information on bearing \ capabilities \ outside \ of our standard \ of ferring, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Rod End Bearings

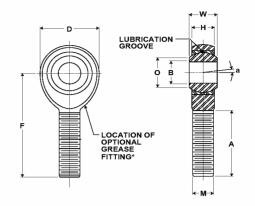
Basic Construction Type: Male 3 pc. General Purpose,

Precision

Outer Member Material: Carbon Steel with Protective

Plating for Corrosion

Resistance


Race Material: Carbon Steel with Protective

Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

TRE, TRE-N Series Female Rod Ends

		A.I. sees	-	110	HE WAY	diame.				Zur zum	Part programme	NATIONAL SECTION
Petter			-	D				mak mang	Te	Final	m weekland	min-
	100	111	3,0	NA L	121	1111	117		100	HEDE	-30	
TRE-3	1900	312	250	625	1.250	719	#10-32	437	306	900	6 1/2	030
IRE-3	4.826	7.92	6.35	15.88	31.75	18.26	#10-32	11.10	7.77	4003	0 1/2	014
TREA	Frial	745	316	:-5	1,644	24.14	1/428	245	200	1770	80	the.
11.679-8646	5,350	926	2.16	10.94	-95	(C) #1	11-1-12	(A)/41	0.47	1350	B2.5	10%
TRE-5	3125	437	344	875	1.875	1.219	5/16-24	625	447	2500	7	080
IKE-9	7.938	11.10	8.74	22.23	47.63	30.96	3/16-24	15.88	11.35	11121	1	036
1112	5.67MT	3890)	W/SE	1.000	Last.	50.007	1.1 (4)	71.2	3997	10020	- 10	1963
775227	9.726	270	35.24	25 (4)	O 25	97.55	3300	10.28	(7) (5)	17.763	h/)	054
TRE-7	4375	562	437	1.125	2.125	1.344	7/16-20	812	586	5000	7	170
IIXL-I	11.113	14.27	11.10	28.58	53.98	34.14	1110-20	20.62	14.88	22241	,	077
Y-TH-E	4730	220	3,830	1713	2.10	.466	1(43420)	1631		707	8.1	307
) 310-X	ID-AL	Trut .	2906	20170	17.00	50 pt 1	interestric	5.00	1635	#ttiff	- 10	1111
TRE-10	6250	750	562	1.500	2.625	1.594	5/8-18	1.125	839	8050	8	410
INE-10	_ 15.875	19.05	14.27	38.10	66.68	40.49	3/0-10	28.58	21.31	35808	O	186
142.3	0.699	(24%))	2506	1 2291	3.60%	3.53	3346.	F/895	E#/00	94023965	- 23	0.001
1	49.0EC	21.23	18,43	⇒ 34	72.28	45.68	26 10	33.32	14.54	50,20	70	290
** TRE-16	1.0000	1.375	1.000	2.750	4.125	2.094	1 1/4-12	1.875	1.269	21000	8 1/2	2.250
INE-10	25.400	34.93	25.40	69.85	104.78	53.19	1 1/4-12	47.63	32.23	93413	0 1/2	1.021

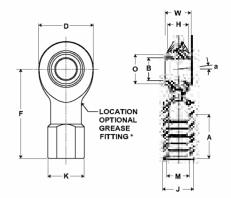
NOTES

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the TRE-N series; Example: TRE-8N.
- 2. Grease fittings are available on sizes 4 through 16 only.
- *3. Load ratings apply to the TRE series only. For TRE-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: TREL-8.
- 5. Add letter "Y" to the part number suffix to indicate stud; Example: TRE-8Y.
- 6. For design modifications, see page J-13.
- ** 7. Tolerances for "D" Dimension is +.030, -.010. For "H" Dimension is +.030, -.010.

Basic Construction Type: Female 2 pc. General Purpose,

Precision

Carbon Steel with Protective **Outer Member Material:**


Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

PTFE Fabric Liner Feature:

CFF-T Series Female Rod Ends

							, em					Mosec -		Parison.
Bed III	W. 11											Henrika	intin.	
	111	1000	80/H	No.	1,27	Mile	197.5	Cett	1.408	111		1121	5.5	1000
CFF-3T	1900 4.826	312 7.92	250 6.35	625 15.88	1.062 26.97	469 11.91	#10-32	375 9.53	312 7.92	437 11.10	306 7.77	865 3848	6 1/2	030 014
39030	-500 6-500	2.77 9.9h	381 7 14	4=3 2.0%	1517 3932	16.50	(0.8%)	1594 - gr	18/9 1.25	1270	82	las. 3812	West.	660. 307
CFF-5T	3125 7.938	437 11.10	344 8.74	875 22.23	1.375 34.93	656 16.66	5/16-24	531 13.49	.437 11.10	625 15.88	.447 11.35	2080 9252	7	080 036
41(4)	72790 H-5257	500 1270	400 1651	60 S	1.62%	781 1914	isv-c+	488 77.1	(R)	7.3 10.94	20% (C)E	2907	4	2-42- 00.0
CFF-7T	4375 11.113	562 14.27	437 11.10	1.125 28.58	1.812 46.02	906 23.01	7/16-20	750 19.05	625 15.88	812 20.62	.586 14.88	3160 14056	7	180 082
CRF-81	Charles 2.22	1,76: 15,591	1671	30.X	50 1 to 50 5M	(100) W.10	-94t	108 17.00	and mm	80. 28 90	3 Hri 37,65-	91° 2718281	143	-0
CFF-10T	6250 15.875	750 19.05	562 14.27	1.500 38.10	2.500 63.50	1.344 34.14	5/8-18	1.000 25.40	875 22.23	1.125 28.58	.839 21.31	5460 24287	8	430 _195
10.1 31	2/5/10 3/000	22:29	287 1530	 44,43	20mg 73.00	1231 3050	34	1,792 38,26	1304 2540	20.25 1715	8 24,54	9790 97700	N.	.H41 .297
CFF-16T	1.0000 25.400	1.375 34.93	1.000 25.40	2.750 69.85	4.125 104.78	2.000 50.80	1 1/4-12	1.688 42.88	1.500 38.10	1.875 47.63	1.269 32.23	21000 93413	8 1/2	2.250 1.021

- 1. To order left hand threaded units add letter "L" to part number prefix; Example: CFFL-8T.
- 2. "T" in part number prefix indicates PTFE liner.
- 3. Add letter "Y" to the part number suffix to indicate stud; Example: CFF-8TY.
- 4. For design modifications, see page J-13.

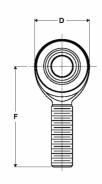
 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

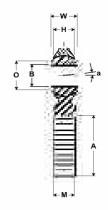
Rod End Bearings

Basic Construction Type: Male 2 pc. General Purpose,

Precision

Carbon Steel with Protective **Outer Member Material:**


Plating for Corrosion


Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

PTFE Fabric Liner Feature:

CFM-T Series Male Rod Ends

	į			10.00		THE				Con Core	West and the second	No.
1910								100	n n	0.111		**************************************
	100	11	100		97	6.47	Water	723	N.E.	501	197	1340
CFM-3T	1900	312	250	625	1.250	719	#10-32	437	306	865	6 1/2	030
OT WI-51	4.826	7.92	6.35	15.88	31.75	18.26	#10-02	11.10	7.77	3848	0 1/2	014
Semantini	257.31	1.56	34		1-50	-,100	364-800	26-1	741)	599	100	360
(3.00 m 253.00)	0.903	958	7.1-	19.05	22.07	24.61	139T 109-2	12.70	8,41	0565	- 10	529
CFM-5T	3125	437	344	875	1.875	1.219	5/16-24	625	447	2080	7	080
CFIVI-31	7.938	11.10	8.74	22.23	47.63	30.96	3/10-24	15.88	11.35	9252	'	036
ALHer	3700	(220)	SACC	1 209	1.1.36	323	57-01	715	955(3)	2559	- 30	120
533553	K 625	3575	1000	South	06.5%	25#	22.5	10.596	9000	121-120	8	25/4
CFM-7T	4375	562	437	1.125	2.125	1.344	7/16-20	812	586	3160	7	170
CITIVI-7 I	11.113	14.27	11.10	28.58	53.98	34.14	1110-20	20.62	14.88	14056	'	077
CFMST	190779	736	2.45	171	370	453	1/2/26	40.	1807	(554)	500	Stat
EMMISSIO	107 mc	' a da	198	- AN 70	11.7	47,41	+146500	7620	71.75	- Was -	2.	118
CFM-10T	6250	750	562	1.500	2.625	1.594	5/8-18	1.125	839	5460	8	410
CI WI-101	_15.875	19.05	14.27	38.10	66.68	40.49	3/0-10	28.58	21.31	24287	0	_186
PER B	198328	400	3844	1.390	1362/00	3666	903908	(20%)	1960	=3491		N-94
56-50	10 00%	22.23	7,42	=4.63	2030	30505	ALP 341	30732	34 (4	3602	- 8/	200
CFM-16T	1.0000	1.375	1.000	2.750	4.125	2.094	1 1/4-12	1.875	1.269	21000	8 1/2	2.250
OFINI-101	25.400	34.93	25.40	69.85	104.78	53.19	1 1/4-12	47.63	32.23	93413	0 1/2	1.021

NOTES

- 1. To order left hand threaded units add letter "L" to part number prefix. Example: CFML-8T.
- 2. "T" in part number prefix indicates PTFE liner.
- 3. Add letter "Y" to the part number suffix to indicate stud; Example: CFM-8TY.
- 4. For design modifications, see page J-13.

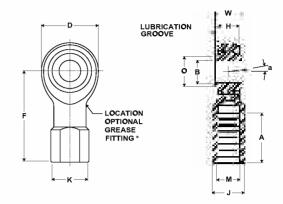
J-9

ASTER® Rod End Bearings

Basic Construction Type: Female 3 pc. General Purpose,

Commercial

Outer Member Material: Carbon Steel with Protective


Plating for Corrosion

Resistance

Race Material: Bronze

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

TF, TF-N Series Female Rod Ends

				A.T	, Dime		in in					eras himm	Casemani	(mage)
Red No.		-71	- 17				_	Hanney.		fiel Des		Market His	Tarter William	and the
	111	200		1889		11 31	10			100	1000	MH	117	
TF-3	1900	312	250	625	1.062	531	#10-32	375	312	437	306	1850	6 1/2	030
11 -5	4.826	7.92	6.35	15.88	26.97	13.49	#10-52	9.53	7.92	11.10	7.77	8229	0 1/2	014
100	7741.	2015	281		328	13-	000000	1,4580	-5/2	11000	28	3.001	(140)	Attable
10.00	0.053	5.2	7.4	18000	33,52	10.27	7,8139,1874	1/01	5.77	12.70	3.4	1,2219	101777	027
TF-5	3125	437	344	875	1.375	719	5/16-24	531	437	625	447	3350	7	080
1F-5	7.938	11.10	8.74	22.23	34.93	18.26	3/10-24	13.49	11.10	15.88	11.35	14902	'	036
15-6	5/5/7	(070)	405	1,000	622	907	30.34	250	789 8 6	2.4	2007/5	4450	6	93990
133	954	(32.6)	1034	14, 10	40-24	Setu	100	troft.	1427	18.24	10.10	Her lets	.537/	1457
TF-7	4375	562	437	1.125	1.812	1.031	7/16-20	750	625	812	586	5350	7	180
11 -7	11.113	14.27	11.10	28.58	46.02	26.19	1710-20	19.05	15.88	20.62	14.88	23798	'	082
	2007	et.eb	99.	1180	3.025	1 itst	Carbon China	****	7-10	937	1841	Voit-		166
T7.0	12.00	1538	12.70	15,52	53,55	2530	1(2.25)	28.25	5.00	25.60	17.73	3221	245	17.00
TF-10	6250	750	562	1.500	2.500	1.469	5/8-18	1.000	875	1.125	.839	8050		430
11-10	15.875	19.05	14.27	38.10	63.50	37.31	3/6-16	25.40	22.23	28.58	21.31	35808	8	195
1000	7625	275	627	1,750	2.875	1770	St B	171752	0.7	用基準的	975	10,920	1972	540
H.S	In No.	90.00	1055	31.16	声性	-the		8.74	#. T	12000	\$4.90	MODE	18	3530

NOTES

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the TF-N series; Example: TF-8N.
- 2. Grease fittings are available on sizes 4 through 12 only.
- *3. Load ratings apply to the TF series only. For TF-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: TFL-8.
- 5. Add letter "Y" to the part number suffix to indicate stud; Example: TF-8Y.
- 6. For design modifications, see page J-13.

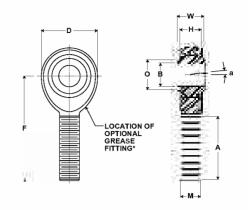
 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Rod End Bearings **SEA**

Basic Construction Type: Male 3 pc. General Purpose,

Commercial

Outer Member Material: Carbon Steel with Protective


Plating for Corrosion

Resistance

Race Material: Bronze

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

TM, TM-N Series Male Rod Ends

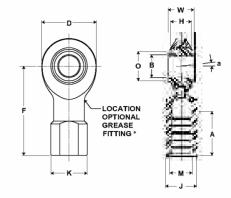
				9 Hill		Pint.				Mark to and	Name of Participation of the P	Towns and
F-186								Transfers		THE STATE OF	367	La constant
	100	74-6		781	75	117	KHEW	120	100		WE.	III WAS
TM-3	1900	312	250	625	1.250	719	#10.22	437	306	900	6.4/0	030
TIVI-3	4.826	7.92	6.35	15.88	31.75	18.26	#10-32	11.10	7.77	4003	6 1/2	014
1901	- Mr	30±	490	750	1344	1981	18000000	444	2001	1790	+	250
3580	0.300	9.91	7 14	245	30.07	34 74	18397	13.70	2.41	7552	1.77	(22)
TM E	3125	437	344	875	1.875	1.219	E/4C 04	625	447	2500	7	080
TM-5	7.938	11.10	8.74	22.23	47.63	30.96	5/16-24	15.88	11.35	11121	7	036
114	33.95	995	(1996)	925	9,500	3.240	72237	3F300	35 T	4000	E	120
11.0	3-50±	1270	95511	Unit.	68.2.3	2000	29534	98594	3030	10.60	. 5	151
TM-7	4375	562	437	1.125	2.125	1.344	7/16-20	812	586	5000	7	170
I IVI-1	11.113	14.27	11.10	28.58	53.98	34.14	7/10-20	20.62	14.88	22241	,	077
- Artistant	-196	101	1941	122-	9.734	1.09	100000	91/	1644	736	1000	100
T'10	2770	15.98	1.27	1697	6 99	32.44	1/2/25	29.86	17 Yr	3/116	\ C	12
TM 40	6250	750	562	1.500	2.625	1.594	5/0.40	1.125	839	8050	0	410
TM-10	15.875	19.05	14.27	38.10	66.68	40.49	5/8-18	28.58	21.31	35808	8	186
144000	.7500	87E	357	75.	2676	3720	3100000	130	#38	1130	83	.010
	=c.5	32.95	- 25	1(5-4)	/3010	17.00	1/15 1/16	72137	装顶	2000		38.0

NOTES

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the TM-N series; Example: TM-8N.
- 2. Grease fittings are available on sizes 4 through 12 only.
- *3. Load ratings apply to the TM series only. For TM-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: TML-8.
- 5. Add letter "Y" to the part number suffix to indicate stud; Example: TM-8Y.
- 6. For design modifications, see page J-13.

Basic Construction Type: Female 2 pc. General Purpose,

Commercial


Outer Member Material: Carbon Steel with Protective

Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

CFF. CFF-N Series Female Rod Fnds

					1		firm					Singular		4
-10	To the				400					7 - m-		A PROPERTY OF	1000	
	111	149	7/17	E2	7.27	100	WHEN Y	100	110	R.		-		-
CFF-3	1900	312	250	625	1.062	469	#10-32	375	312	437	306	2000	6 1/2	030
CFF-3	4.826	7.92	6.35	15.88	26.97	11.91	#10-32	9.53	7.92	11.10	7.77	8896	0 1/2	014
(j. 11-je	1250.5 431.5	.875 2.5*	281	.:50 3 ***	3/2 24/7	005 006	31966	.420 1 1	374 504	:500 411.61	.3 H	\$200 1680)	SE.	995 1147
CFF-5	3125 7.938	437 11.10	344 8.74	875 22.23	1.375 34.93	656 16.66	5/16-24	531 13.49	437 11.10	625 15.88	447 11.35	3800 16903	7	080 036
cer o	9649 9645	加工	491 18-31	25,65	2.62± 41.26	AH 1984	36.01	700 97,45	861 143	7.00 1824	217 1336	56'04 6.341	9	190 304
CFF-7	4375 11.113	.562 14.27	437 11.10	1.125 28.58	1.812 46.02	906 23.01	7/16-20	750 19.05	625 15.88	812 20.62	586 14.88	6500 28913	7	180 082
h 1#:	5005 12 Het	3620 . In 181	56C	1.512	2, 27	1.30	179.293	325 11.0	19C IH In	3932 2017	.600 fr.77	9609 (9619	:46	260 110
CFF-10	6250 15.875	750 19.05	562 14.27	1.500 38.10	2.500 63.50	1.344 34.14	5/8-18	1.000 25.40	.875 22.23	1.125 28.58	.839 21.31	10000 44482	8	430 195
CTF I	10 000 10 000	3/h 22/23	101. 17-48	112-25 4-45	9 ar- 7) 38	1.KF >0.65	34 5	26.26	1 mm 25.40	7.00 f 09.02	Self Self-	11140. 52270	72	64± 203
CFF-16	1.0000 25.400	1.375 34.93	1.000 25.40	2.750 69.85	4.125 104.78	2.000 50.80	1 1/4-12	1.688 42.88	1.500 38.10	1.875 47.63	1.269 32.23	25200 112095	8 1/2	2.250 1.021

NOTES

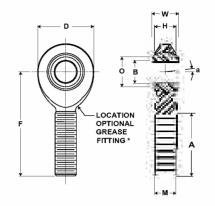
- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the CFF-N series; Example: CFF-8N.
- 2. Grease fittings are available on sizes 4 through 16 only.
- *3. Load ratings apply to the CFF series only. For CFF-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: CFFL-8.
- 5. Add letter "Y" to the part number suffix to indicate stud; Example: CFF-8Y.
- 6. For design modifications, see page J-13.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Rod End Bearings

Basic Construction Type: Male 2 pc. General Purpose,

Commercial


Outer Member Material Carbon Steel with Protective

Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

CFM, CFM-N Series Male Rod Ends

		1			Himmine;	-	111			Water Street	e e l'armer	- Transport
SHARE								nu ===		and the second	WEWNER	
	-111	ii.	31	48	是沙耳	755	No.	660)	173		892	14
CFM-3	1900	312	250	625	1.250	719	#10-32	437	306	950	6 1/2	030
CEIVI-3	4.826	7.92	6.35	15.88	31.75	18.26	#10-32	11.10	7.77	4226	0 1/2	014
(92048)	2000	376	30.	750	1 502	901	2949	400	331	1000	2760	1000
College	290	HAT	* 14	V.C.	### ·	26.17	279688	-27-	777	104	100	107
CFM-5	3125	437	344	875	1.875	1.219	5/16-24	625	447	3000	7	080
OI W-3	7.938	11.10	8.74	22.23	47.63	30.96	3/10-24	15.88	11.35	13345	,	036
eru -	11599	MIT	(1299)	12.007	1300	9.200	10.34	(09.1	2285	900	SES	355
	±500	12.30	23.54	2.4.	2021	38.90	20.5	8.24	1573	2234		030
CFM-7	4375	562	437	1.125	2.125	1.344	7/16-20	812	586	6500	7	160
O1 W-1	11.113	14.27	11.10	28.58	53.98	34.14	1710-20	20.62	14.88	28913	'	073
The same		60E	200	2.2	2432	1.400	2000 200	,50±	233	0000	2000	26
No.	74.00	0.0500	19 (7)	10.0	(85.94)	207.107	1990	19:40	77.77	0.00		HID.
CFM-10	6250	750	562	1.500	2.625	1.594	5/8-18	1.125	839	10000	8	400
CHW-10	15.875	19.05	14.27	38.10	66.68	40.49	3/0-10	28.58	21.31	44482		_181
547 to	7864	W=	MD*	787	760-	7.784	34.13	7.11737	4281	24944	3	100
24.2	≘6,50%	22.23	17,30	46.45	78.00	49.00	11000000	3502	24.84	0222E	100	280
CFM-16	1.0000	1.375	1.000	2.750	4.125	2.094	1 1/4-12	1.875	1.269	25200	8 1/2	2.250
OLIM-10	25.400	34.93	25.40	69.85	104.78	53.19	1 1/4-12	47.63	32.23	112095	0 1/2	1.021

NOTES

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the CFM-N series; Example: CFM-8N.
- 2. Grease fittings are available on sizes 4 through 16 only.
- *3. Load ratings apply to the CFM series only. For CFM-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: CFML-8.
- 5. Add letter "Y" to the part number suffix to indicate stud; Example: CFM-8Y.
- 6. For design modifications, see page J-13.

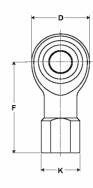
ASTER® Rod End Bearings

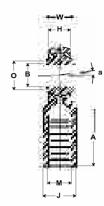
Basic Construction Type: Female 3 pc. General Purpose,

Commercial

Outer Member Material: Carbon Steel with Protective

Plating for Corrosion


Resistance


Race Material: Delrin*

Alloy Steel, Heat Treated, **Ball Material:**

Chrome Plated

Feature: Self-Lubricating

CTFD Series Female Rod Fnds

5	Commence I I				1	- de de de						Mar Boom	- Algeria	2000 Marie
7439	1000 1000 1000 1000 1000 1000 1000 100	15	 W		333			13/0	SMI.		9 €	(June)	2000	2000
CTFD-3	1900 4.826	312 7.92	250 6.35	625 15.88	1.062 26.97	531 13.49	#10-32	375 9.53	312 7.92	437 11.10	.306 7.77	800 3559	6 1/2	030 014
CTF3.4	2570	275 270	23) 21)	100 04.06	5J12 1122	210	18038	405 H + H	27% 250	-770	271 111	1960	38	57 0 620
CTFD-5	3125 7.938	437 11.10	344 8.74	875 22.23	1.375 34.93	719 18.26	5/16-24	531 13.49	437 11.10	625 15.88	.447 11.35	1570 6984	7	080 ,036
()))(50	(362) 832 2 5	200 200	42 C3) (10) 23 40	3/5/5 41.25	2007 2007	8435	1665 (1740	560 437	-/104 3/24	arut 848	1504 2504	8	3100 554
CTFD-7	4375 11.113	562 14.27	437 11.10	1.125 28.58	1.812 46.02	1.031 26.19	7/16-20	750 19.05	625 15.88	812 20.62	.586 14.88	2600 11565	7	180 082
GT04	3670 1270a	育	200 100	1.212	2,125	71.0	16530	9775 9775	750 1445	372 744.	det.	5435 In CDS	181	280
CTFD-10	6250 15.875	750 19.05	562 14.27	1.500 38.10	2.500 63.50	1.469 37.31	5/8-18	1.000 25.40	875 22.23	1.125 28.58	.839 21.31	4620 20551	8	430 195
111.00	F110	379 80.27	46° 7,4	1.750	240 252	774 616	5 00	1.125 29 50	1,020 25,00	27.31	277 p 36-01	580K 29750	4	540 1995:

NOTES

- 1. To order left hand threaded units add letter "L" to part number prefix; Example: CTFDL-8.
- 2. Add letter "Y" to the part number suffix to indicate stud; Example: CTFD-8Y.
- 3. For design modifications, see page J-13.
- 4. Caution: Prolonged exposure to ultraviolet light can cause loss of mechanical properties in DELRIN material.

Consult Application Engineering for application assistance.

Metric dimensions for reference only.

 $Not all \ parts \ are \ available \ from \ stock. \ Please \ contact \ customer \ service \ for \ availability \ (800) \ 626-2120.$

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delirin;E.l. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

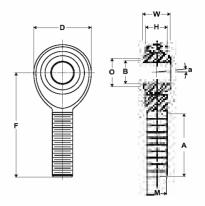
Rod End Bearings

Basic Construction Type: Male 3 pc. General Purpose,

Commercial

Outer Member Material: Carbon Steel with Protective

Plating for Corrosion


Resistance

Race Material: Delrin*

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

Feature: Self-Lubricating

CTMD Series Male Rod Ends

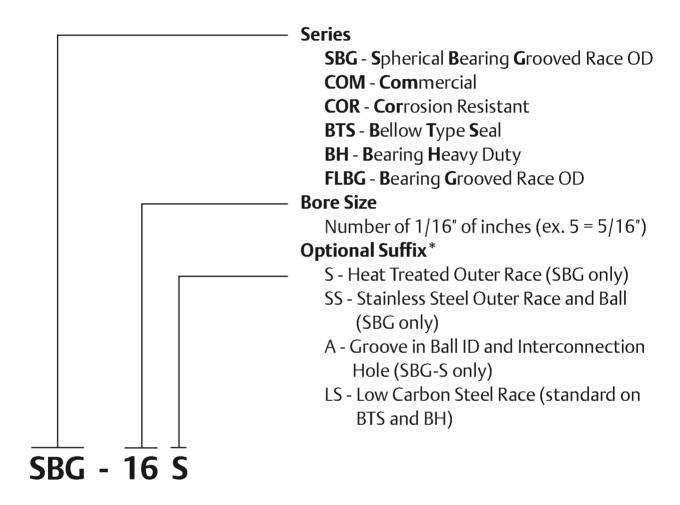
				Dilli	ere la com	. em				Sequent	he digrees	
PIARE:	WHILE THE PARTY OF	11	150 H	-	92)		J. F. J. D.	Est Man	M	100	pintinta Lam	STOPA II
CTMD-3	1900	312	250	625	1.250	719	#10-32	437	306	800	6 1/2	030
674C-	4.826	7.92 JT!	6.35 <u>1</u> 11	15.88 7'.0	31.75	18.26 500	14-35	11.10 .5C	7.77 271	3559 107.4	E E	014 550
CTMD-5	3125 7.938	437 11.10	344 8.74	875 22.23	1.875 47.63	1.219 30.96	5/16-24	625 15.88	447 11.35	1570 6984	7	080 036
1.HIS	26/38F 91/325	140± 10.76	10.5	1700. 2007	12525- 4527-	1,710 31.50	##	10.34	13. 5	21sp 0.5s	8	300 954
CTMD-7	4375 11.113	562 14.27	437 11.10	1.125 28.58	2.125 53.98	1.344 34.14	7/16-20	812 20.62	586 14.88	2600 11565	7	170 077
CONTRACT.	.6000 12740	6.32 Te 996	ars toss	0.1 82.6	LAT. et.a	1,115	16500	(0.32 (75) 201	586 1660	5/00 1581 f	ES.	200 mk
CTMD-10	6250 15.875	750 19.05	562 14.27	1.500 38.10	2.625 66.68	1.594 40.49	5/8-18	1.125 28.58	839 21.31	4620 20551	8	410 _186
t Mits	F1.00 18.007	872 3239	£67 17.40	1,7657 01010	2,875 73.75	1,770 (2.7L	***	1.500 (0.07	,278 2000	18281 1806.F		240 240

NOTES

- 1. To order left hand threaded units add letter "L" to part number prefix; Example: CTMDL-8.
- 2. Add letter "Y" to the part number suffix to indicate stud; Example: CTMD-8Y.
- 3. For design modifications, see page J-13.
- 4. Caution: Prolonged exposure to ultraviolet light can cause loss of mechanical properties in DELRIN® material. Consult Application Engineering for application assistance.

Bearing Selection	Nomenclature Aid	Features & Benefits	Product Options	Technical Engineering
J-3	J-8	J-9	J-13	J-38

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin;E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.


Sealmaster Spherical Plain Bearings

Sealmaster spherical plain bearings perform a similar function as rod end bearings and must be supported in a housing. Sealmaster spherical plain bearings are designed with a variety of outer race materials including steel, heat treated steel, bronze, stainless steel and heat treated stainless steel for flexibility in a wide range of application requirements. In addition Sealmaster spherical plain bearings can accommodate angular misalignment to provide ease in assembly and smooth motion transfer in a variety of applications.

Spherical Plain Bearing Nomenclature

SEALMASTER_® Spherical Plain Bearings

Features and Benefits

One-piece Race

- Helps reduce pound-out in applications with high frequency oscillation, vibration or shock loading
- Improved spherical ball-race conformity for even load distribution
- Precision ball-race fit
- Outer race lubrication grooves and interconnecting hole in outer race to direct grease to the ball and race area. The outer races are chamfered to facilitate installation and retention into housings
- Steel, heat treated steel, stainless steel, and heat treated stainless steel materials

Ball

- Alloy steel heat treated and chrome plated for corrosion resistance
- Heat treated stainless steel balls for corrosion resistance

Multiple Configurations

Sealmaster SBG Precision Spherical Plain Bearings

SBG series contain a bronze outer race and alloy steel, heat treated, chrome plated ball for wear resistance properties. This material combination provides for low coefficient of friction.

Sealmaster SBG-S Precision Spherical Plain Bearings

SBG-S series utilize an alloy steel, heat treated outer race with protective coating for corrosion resistance and alloy steel, heat treated, chrome plated ball for wear resistance properties

Sealmaster SBG-SS Precision Spherical Plain Bearings

SBG-SS series is manufactured with a 300 series stainless steel outer race for corrosion resistance and a stainless steel, heat treated ball for corrosion resistance.

Sealmaster SBG-SA Precision Spherical Plain Bearings

SBG-SA series is the same as the SBG-S series and has a groove in ball ID and interconnecting hole to facilitate lubrication from the shaft into the bearing

Multiple Configurations continued

Sealmaster COR Precision Spherical Plain Bearings

COR series spherical plain bearings have a stainless steel, heat treated outer race for strength and corrosion resistance and stainless steel, heat treated ball for corrosion resistance

Sealmaster FLBG Precision Spherical Plain Bearings

FLBG series is available in with a carbon steel outer race with protective coating for corrosion resistance and bronze race. Also contains an alloy steel, heat treated, chrome plated ball for wear resistance properties

Sealmaster COM Commercial Series Spherical Plain Bearings

- Bore sizes from 3/16" to 1"
- Materials include a carbon steel outer race with protective coating for corrosion resistance with an alloy steel, heat treated, chrome plated ball for wear resistance properties
- Outer race lubrication grooves and interconnecting hole in outer race direct grease to the ball and race area. The outer races are chamfered to facilitate installation and retention into housings

Sealmaster BH-LS Heavy Duty Spherical Plain Bearings

- Heavy duty bearings with radial static load capacities up to 221,000 lbs.
- Available in 1", 1-3/16", 1-1/4", 1-1/2", 1-3/4" and 2" bore sizes
- Materials include a carbon steel outer race with protective coating for corrosion resistance and alloy steel, heat treated, chrome plated ball for wear resistance properties
- Outer race lubrication grooves and interconnecting hole in outer race direct grease to the ball and race area. The outer races are chamfered to facilitate installation and retention into housings.

SEALMASTER_{® Spherical Plain Bearings</sup>}

Multiple Configurations continued

Sealmaster BTS-LS Sealed Spherical Plain Bearings

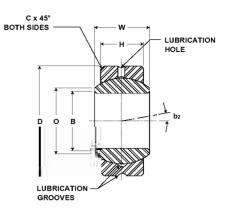
- This is a sealed design for applications where the bearing is exposed to dirt, dust, moisture and contaminants. They are available in four bore sizes (3/4", 1", 1-1/4" and 1-1/2")
- Materials include a carbon steel outer race with protective coating for corrosion resistance and alloy steel, heat treated, chrome plated ball for wear resistance properties
- Integral nitrile rubber "bellows type" seals misalign with the bearing and help reduce contaminant entry as well as seal in lubricant.
- Outer race lubrication grooves and interconnecting hole in outer race direct grease to the ball and race area. The outer races are chamfered to facilitate installation and retention into housings.

Design Modifications

Sealmaster spherical plain bearings can be ordered with the following design modifications at an extra cost.

Special Modifications	Design Modifications	Option Offered on These Series	Ordering Instructions and Example for Specifying		
	Groove on Ball I.D. and Interconnnecting Hole	SBG	Add "A" to part number suffix Example: SBG-8A		

Spherical Plain Bearings



Basic Construction Type: 2 pc. General Purpose,

Precision

Race Material: Variable, See Below

Ball Material: Variable, See Below

SBG, SBG-S, SBG-SA, SBG-SS Series Spherical Plain Bearings

						Time		Marini Marini				(filia (==a)	(4.600) ((())	
William.	#500 JUL	198300	Hillian Hillian						• 00		Š.,	_ 100	în	(())	
				J. William	-111	111			2510	177	War.	SHIP S	AVE - IIICH	L.	
SBG-3	SBG-3S		SBG-3SS	1900	.5625	.281	.218	.025	406	.293	2750	6480	4400	11 1/2	020
				4.826	14.288	7.14	5.54	.64	10.31	7.44	12233	28824	19572	2891	009
±8:0-4	335.64	100	380,488	2503	2502	943	250	.22	280	304	427.0	10000	2700	12/40	220
	-MAHODE		Section Check	4000	15.65	1700	1636	11/1	HIAD.	3.3%	Diget	-4117	34001	1140.040	7484
SBG-5	SBG-5S		SBG-5SS	3125	.7500	.375	.281	.025	562	.419	5800	13900	9200	12	030
366-3	300-33	1.0	300-333	7.938	19.050	9.53	7.14	.64	14.27	10.64	25800	61830	40924	12	014
58G-6	200			5750	20=	60%	297	3205	120	-107%	34900	90079	COMMO	- 2	20/80
ECISO	383.85		383-38E	mil	12.538	18.5	T-52	76	15,56	12.00	2-4/4	88 52	South	15	.018
SBG-7	SBG-7S		SBG-7SS	4375	.9062	.437	.343	.035	687	.530	9300	22300	14900	9 1/2	050
3BG-1	SBG-75		386-733	11.113	23.017	11.10	8.71	.89	17.45	13.46	41368	99195	66279	9 1/2	023
rman	1611 191	, and the second	W 5-12,000	560	1,0030	501	390	230	.78	1000	11200	201.10	25900 17003	440	.654
¥100 ¥44.	964550	1630, 255e	16.60(900)	190,901	12.000	17.31	100	166	12.1	th.74	04011	1 Phon	ditter of the	10.	1641
CD 0 40	OD 0 400	CD 0 400 A	ODO 4000	6250	1.1875	.625	.500	.035	968	.739	20000	48000	48000 32000		120
SBG-10	SBG-10S	SBG-10SA	SBG-1055	15.875	30.163	15.88	12.70	.89	24.59	18.77	88964	213515	213515 142343	9	054
2225	A1312-7/62	880F F288	932/1183	70000	1907205	707.4	280	545	CRO	39775	100007	79750	77000 : 346000	87	:200
880: 2	587,125	886 2	88G 199	person	10 = 100	1000	18:38	1000	10.35	200.00	Barre	1168611	\$28,51 27 Odu		1861
000.44	000 440	000 4404	000 4400	8750	1.5625	.875	.703	.045	1.312	.980	43000	103000	103000 69000	0.4/0	270
SBG-14	SBG-14S	SBG-14SA	OBG-1455	22.225	39.688	22.23	17.86	1.14	33.32	24.89	191274	458167	458167 306927	9 1/2	122
	ar an earl			1.200	1,5200	1.000	797	-16	1.120	1.08	1000	1800	12 (15)(99)(0.1	10.00	3/01
more se	70.44.16/4	H1052.509	104 199	25 400	44.420	25 40	15.24	1.14	58.10	20.40	231306	270023	15012# 00020G	0.00	172

NOTES:

- 1. Add letter "A" to suffix to indicate cross drilled oil hole in ball and race and a grooved I.D. on ball.
- 2. For design modifications, see page J-31.
- 3. For mounting information, see Recommended Housing Bore Diameters page J-43.

Material Specifications

SBG

Outer Race - Aluminum bronze

Ball - Alloy steel, heat treated, chrome plated

SBG-S

Outer Race - Alloy steel, heat treated with protective plating for corrosion resistance

Ball - Alloy steel, heat treated, chrome plated

SBG-SA

Outer Race - Alloy steel, heat treated with protective plating

for corrosion resistance

Ball - Alloy steel, heat treated, chrome plated

SBG-SS

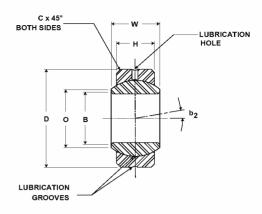
Outer Race - 300 series stainless steel Ball - Stainless steel, heat treated

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Bearing Selection Nomenclature Aid Features & Benefits Product Options Technical Engineering J-5 J-28 J-31 J-38



Basic Construction Type: 2 pc. Corrosion Resistant,

Precision

Stainless Steel, Heat Treated Race Material:

Ball Material: Stainless Steel, Heat Treated

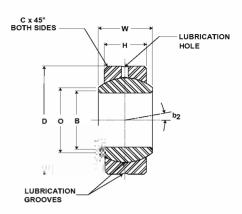
COR Series Spherical Plain Bearings

			11.0	e mineral market	HE.	115		Mary Control	THE RESIDENCE OF	11.00
8344	3.			17	- 6	The Indian		Water III	more selling	LUIN SER
	(0000)	000	5.30	W.	W		170		10.7	100
COR-3	1900	5625	281	218	025	_406	293	4800	11 1/2	020
JUR-3	4.826	14.288	7.14	5.54	64	10.31	7.44	21351	11 1/2	009
:es=	290	6.42	743	325	504	-20	ile)	+ 191	1546	1130
342.5	K scal	tener	19.41	15/05	44	1.66	75	.0000d	(3454SE)	850
COR-5	3125	7500	375	281	025	562	419	10400	12	030
50K-5	7.938	19.050	9.53	7.14	64	14.27	10.64	46262	12	014
2010	2700	41/6	7/4399	300	MAG.	(delt)	2)18	1/0000	14	Alep
14188	6.535	25,621	5.01	2.82	776	1,61	10.60	02375		010
COR-8	5000	1.0000	500	390	035	781	600	20000	10	070
30IX-0	12.700	25.400	12.70	9.91	89	19.84	15.24	88964	10	032
halver rest	200	1072	235	1557	833	,800	750	50000	w	.00:
208-PI	T. ath	280,160	1995	107 %	197	(1.79)	66.67	142414	<i>P</i> .	170
COR-12	7500	1.4375	750	593	045	1.187	920	54000	9	210
50R-12	19.050	36.513	19.05	15.06	1.14	30.15	23.37	240204	9	.095
OUR 14	435	38.5	120	653	1991	50000) A1420	11990	123201	7.08
AAAAAA	22,235	95,006	22.E	17/6E	154	82,82	2436	3425 1	17.72	12
COR-16	1.0000	1.7500	1.000	797	045	1.500	1.118	93500	9 1/2	380
20K-10	25.400	44.450	25.40	20.24	1.14	38.10	28.40	415909	9 1/2	172

1. For mounting information, see Recommended Housing Bore Diameters, page J-43.

Spherical Plain Bearings

Basic Construction Type: 2 pc. General Purpose,


Commercial

Race Material: Carbon Steel with Protective

Plating for Corrosion Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

COM Series Spherical Plain Bearings

			1		inti			of the latest the late	Mark Contract	11000
(ELLE)	- M'-L	100			114	-0.0		15.000 5.000 5.000	E STORY	Uide T
COM-3	1900 4.826	5625 14.288	281 7.14	218 5.54	025 64	406 10.31	293 7.44	3250 14457	11 1/2	020 009
LOW	2220 3220	(6-647	.143 1,74	247 379	AZI En	981 12:70	1.64 19.25	-929 3097	71390	00.1 665
COM-5	3125 7.938	7500 19.050	375 9.53	281 7.14	,025 64	562 14.27	419 10.64	6450 28691	12	030 014
OC:45	30%0 120	10,287	1260 2001	V22	dr.	660 1858	=th.	11100 23600	10	H/e
COM-7	4375 11.113	9062 23.017	437 11.10	343 8.71	035 89	687 17.45	530 13.46	10200 45372	9 1/2	050 023
110068	3600 41.50	1,00 25 000		333 234	661	78 IB:14	.00 (*.53	11600 11696	900	1007 1007
COM-10	6250 15.875	1.1875 30.163	625 15.88	500 12.70	035 89	968 24.59	739 18.77	21000 93413	9	120 054
10W/E	6470 1000a	HITCH JKS/3	700 Mice	none:	140	н и де да д е	(394) 85.62	2004KI 12004KP	143	9/⊂ 100±
COM-14	8750 22.225	1.5625 39.688	875 22.23	703 17.86	045 1.14	1.312 33.32	980 24.89	41100 182822	9 1/2	270 122
500	1 (191). 25 40;	67890 #4780	194. 26.43	2034	Den d	1.500 35.10	3.77% 28.43	147/01 2430/10	(800)	394. 175

NOTES

1. For mounting information, see Recommended Housing Bore Diameters, page J-43.

Basic Construction Type:

3 pc. General Purpose,

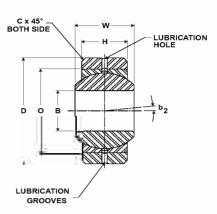
Precision

Outer Member Material:

Carbon Steel with Protective

Plating for Corrosion

Resistance


Race Material:

Bronze

Ball Material:

Alloy Steel, Heat Treated,

Chrome Plated

FLBG Series Spherical Plain Bearings

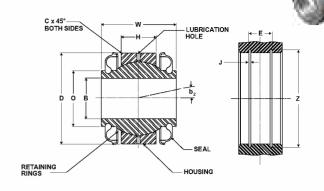
				renter -	iiii	Francis I		Not trial a mentarment		
Firm	Walle:	1	AVI.	- Was		107.7	100	A me	544.0	0
FLBG-3	1900 4.826	6250 15.875	281 7.14	187 4.75	020 51	406 10.31	293 7.44	2960 13167	16 1/2	020 009
P.200	2550 1 250	.1000 (0.000)	179 11 (81	221 7.11	120 A	DC." (2:0)	201	73:0 20:00	±(29)	346 964
FLBG-5	3125 7.938	8750 22.225	437 11.10	313 7.95	025 ,64	625 15.88	447 11.35	6550 29136	14 1/2	050 023
F.P34	11.528 11.528	11-000 25.466	190 1270	105 125	52n 64	eor lear	20 T	45941 38225	* #	3491 696
FLBG-7	4375 11.113	1.1875 30.163	562 14.27	437 11.10	040 1.02	812 20.62	586 14.88	11100 49375	11	120 054
) 000-81	.0000 m/ rdb	1.9120 11.704	087 17 (N	,581 13-84	346 1 14	,027 20130	13°	1900) 5645-1	12.2%	180 (40)
FLBG-10	6250 15.875	1.5625 39.688	875 22.23	687 17.45	045 1.14	1.187 30.15	802 20.37	25700 114319	12	330 150
F. P3: 2	70.00 20.07	773150	1/90 31/28	94.V 59.80	190 1 2 ⁹	1 N/4 = 38	20.32 20.32	211230	Š	⇒a) Pot
FLBG-16	1.0000 25.400	2.3750 60.325	1.125 28.58	875 22.23	065 1.65	1.750 44.45	1.345 34.16	48200 214404	10	940 426

1. For mounting information, see Recommended Housing Bore Diameters, page J-43.

Spherical Plain Bearings **SEA**

Basic Construction Type: 2 pc. Heavy Duty, Precision

Race Material: Carbon Steel with Protective


Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

Feature: Nitrile Rubber Seals

BTS-LS Series Spherical Plain Bearings

J-36

		-	AT .		Di			i iii e		Tura de	2000	VIDEO I		
meli	1	1		#	Henry		J.	7,000	1 2 10 10 10 10 10 10 10 10 10 10 10 10 10	Harrison Harrison	erata:≡ Hell	177		
BTS-12LS	7500	1.5000	1.250	.500	.015	1.250	1.000	1.250	1.576/1.584 .056/.060 .507 40.03/40.23 1.42/1.52	31500	13 1/2	250	TRUARC #5000-150	
B13-12L3	19.050	38.100	31.75	12.70	.38	31.75	25.40	31.75	12.88 1.551/1.556 .045/.048 39.4/39.52 1.14/1.22	140119	13 1/2	113	SPIROLOX #RR-150	
ETS ILE	417791	l lacin	11.48	biya.	Sel.	Will:	137	1002	2.754.2.76 .054.051 mi: 57.555.05 2.152.71	3756FT \$75427	118	u-s	00000000000000	
-010 -00	72,130	OT SER	47 63	22 20	1	47.01	74.93	42.55	22.40 (0.000) (30 (340)) (40 (40) 58 (2.66) (0.04) (40)		2.300	411	EFFECTION AND SERV	
BTS-20LS	1.2500	2.3750	1.875	.875	.015	2.000	1.625	1.687	2.499/2.511 .086/.091 .882 63.47/63.78 2.18/2.31	94000	9 1/2	990	TRUARC #5000-237	
B13-20L3	31.750	60.325	47.63	22.23	.38	50.80	41.28	42.85	22.40 2.453/2.459 .055/.058 62.31/62.46 1.4/1.47	418133	9 1/2	449	SPIROLOX #RR-237	
21/202	13830	950000	t.rm	154000	sseige.	ISSSE	(2.00c	76676	2,5%-2,900 - 7%-301 7500 - 25%-2590 - 7%-301	09,400 (7,8800	1272	1696	HOMES PERSONAL	
E HE ZHE	85,100	05,900	47.63	25,40	- 3 1	60,83	57,95	VC 83	25/06 I #/4/2 544 (38/104) 25/06/2015 3/4/2014		表现100mm (100mm)	E-100 (1900) (1900)	¥ ±	955

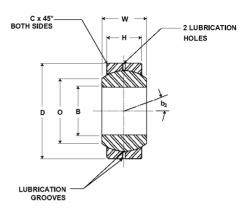
NOTES

- 1. Retaining rings are NOT furnished with the bearings.
- 2. For mounting information, see Recommended Housing Bore Diameters, page J-43.

Basic Construction Type:

2 pc. Heavy Duty, Precision

Race Material:


Carbon Steel with Protective Plating for Corrosion

Resistance

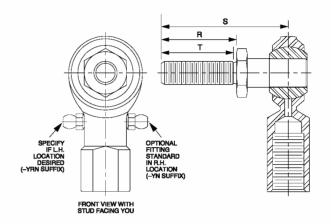
Ball Material:

Alloy Steel, Heat Treated,

Chrome Plated

BH-LS Series Spherical Plain Bearings

		nga.		parameter (jp==	2 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to		- Jaga page	And the second	THE WARRY
Time!	-line	W##	3314	100	Sin	Magazo	, and		L-MIGH	
BH-16LS	1.0000 25.400	2.0000 50.800	1.000 25.40	781 19.84	035 89	1.687 42.85	1.360 34.54	69500 309151	9	550 249
ni anas	1875 1875	2971. 9714	1 187 141 * 1	.007 2186	.778 104	2.0CL 11.7	1010 17-94	#07900 #80000	6397	642 375
BH-20LS	1.2500 31.750	2.3750 60.325	1.187 30.15	937 23.80	,035 89	2.000 50.80	1.610 40.89	100000 444822	8 1/2	900 408
HI- 3W-11	** 144C0X 60°-555	9 (3.15) 05.315	74.07 74.07	7 (M) 35,75	.::4 95	730 52.72	1.000	1:50% 0035%	52	L.1941
BH-28LS	1.7500 44.450	3.1250 79.375	1.562 39.67	1.250 31.75	040 1.02	2.625 66.68	2.110 53.59	178000 791783	8	1.950 885
21-32. i	#1000 90,000	0.900 \$8,905	0 mm (1)	1148 11492	1000 t/C01	1007 16622	(10th) 10th	985067	112	523Nd 1:107


^{1.} For mounting information, see Recommended Housing Bore Diameters, page J-43.

Rod Ends and Spherical Plain Bearing Engineering Section

Sealmaster Rods Ends with Y-Studs

A CONTRACTOR		Ti mans	Moreo Ter I V	n
Blom : Bloc	#137 +137 -0,07	*.033 *.033	in.	The ent files Share HAT JA
(341)	500	.968	7/16	#10-32
4	562	1.047	1/2	1/4-28
-6	687	1.234	19/32	5/16-24
- 6	906	1.540	13/16	3/8-24
17	1.125	1.930	1	7/16-20
196	1.125	2.000	1	1/2-20
110	1.500	2.500	1 3/8	5/8-18
12	1.812	3.000	1 5/8	3/4-16

Rod Ends with Y-Studs are available in the following series:

CTFD-Y, CTFDL-Y	TF-Y, TFL-Y
•	•
CTMD-Y, CTMDL-Y	TF-YN, TFL-YN
CFF-Y, CFFL-Y	TM-Y, TML-Y
CFF-YN, CFFL-YN	TM-YN, TML-YN
CFM-Y, CFML-Y	TR-Y, TRL-Y
CFM-YN, CFML-YN	TR-YN, TRL-YN
CFF-TY, CFFL-TY	TRE-Y, TREL-Y
CFM-TY. CFML-TY	TRE-YN. TREL-YN

- Sealmaster Y-studs are available with the above rod end series to facilitate right angle connections in a variety of linkage applications.
- To order, add the letter Y to the rod end part number; Example: TR-8Y.
- Sealmaster Y-studs are manufactured from carbon steel and plated for corrosion resistance.
- They are secured in the rod end bore, threaded and manufactured with a hex wrench flat.
- Rod ends with Y-studs can accommodate up to ± 25 degrees of angular misalignment in any direction for linkage design flexibility.
- Y-stud thread sizes are the same as the corresponding rod end and are available in right hand threads only.

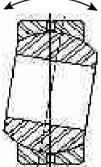
Caution: When selecting rod ends with Y-studs: Catalog load ratings are not applicable with Y-studs because of the reduced stud strength due to bending. For load ratings with Y-studs contact Application Engineering.

SEALMASTER® Rod End and Spherical Plain Bearings

Rod Ends and Spherical Plain Bearing Engineering Section

Sealmaster rod ends can be joined together or connected with a threaded rod or tube to form linkage assemblies allowing design engineers flexibility in transferring motion between points with long center distances. Normal operation of rod ends results in wear of the raceways or fatique or fracture of the outer member. Give consideration to this in the design of the equipment. Spherical plain bearings provide a similar function as rod ends and must be supported in a housing. Spherical plain bearings afford customers greater load rating per equivalent rod end bore size. This occurs because rod end load capacity is controlled by the head and shank geometry. Spherical plain bearings have a larger bearing area and generally are less restricted by the housing material or dimensions in which they are mounted.

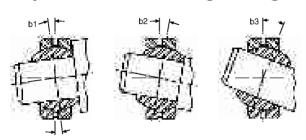
Load Ratings Rod Ends


Static radial load ratings are applied perpendicular to the bearing ball bore and are a function of strength of race and housing materials. Sealmaster static load ratings listed in this catalog are maximum working loads and factors of safety should be applied as necessary. External conditions including mounting components, bolts, pins and housings should be considered separately when designing this product into an application. Static axial load ratings are applied parallel or through the bearing ball bore. In general, rod ends are not intended to carry axial loads. Applications of rod ends with axial loading should be reviewed with Application Engineering.

Spherical Bearings

Static radial load ratings listed in the catalog are based on a maximum permanent set in the bearing race of .2% of normal ball diameter.

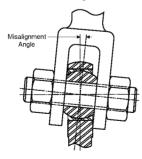
Static axial load ratings are approximately 20% of the radial static load ratings listed with each unit. Caution should be exercised in designing adequate housings to support spherical bearings.


Angular Misalignment

Sealmaster rod ends and spherical plain bearings are primarily selected for their ability to withstand misalignment. As an example, a rod end and a shaft may not always be positioned at right angles and misalignment capability is important. Misalignment can occur through wear, tolerance build-up, structural deflection, or in design. The angle of misalignment in a rod end is controlled by the outside diameter of the head and ball width. The maximum degree of misalignment is obtained when the head contacts the inside of the fork or clevis in which it is mounted. Greater than catalog misalignment can be accomplished by adding a spacer washer between the ball flat and the clevis I.D. or by selecting a rod end with a Y-Stud. The angle of misalignment in a spherical bearing is calculated somewhat differently than a rod end. Illustrated on the following page are common mountings for spherical bearings and the corresponding formula for calculating the angle of misalignment.

Rod Ends and Spherical Plain Bearing Engineering Section

Spherical Plain Bearing Misalignment Capabilities


BER 68 880; SBG-6, SBG-68 NRC-54, COM CDT (Ingres)									
PART NO.	(+/-) b1	(+/-) b2	(+/-) b3						
-3	7 1/2	11 1/2	29 1/2						
-4	9	13 1/2	30						
-5	8	12	26						
-6	7 1/2	10	26 1/2						
-7	6 1/2	9 1/2	20 1/2						
-8	7	10	20						
-10	6 1/2	9	18 1/2						
-12	7	9	21						
-14	7	9 1/2	16						
-16	7	9 1/2	16						

gbiebs sinks (depress)						
PART NO.	(+/-) b1	(+/-) b2	(+/-) b3			
-16	6 1/2	9	26			
-19	6 1/2	8 1/2	25 1/2			
-20	6 1/2	8 1/2	23 1/2			
-24	6	8	21 1/2			
-28	6	8	20			
-32	6 1/2	8 1/2	19			

SERIES F. RG (displace)							
PART NO.	· · · · · · · (+/-) h1 (+/-) h2						
-3	9 1/2	16 1/2	34 1/2				
-4	8	14 1/2	26				
-5	9	14 1/2	30				
-6	8	12 1/2	27				
-7	6 1/2	11	25				
-8	7 1/2	12 1/2	23				
-10	7 1/2	12	23				
-12	8 1/2	15	27 1/2				
-16	6 1/2	10	25				

SERIES RES Life playment)						
PART NO.	(+/-) b1	(+/-) b2	(+/-) b3			
-12	-	13 1/2	-			
-16	-	12	-			
-20	-	9 1/2	-			
-24	-	7 1/2	-			

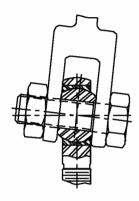
Rod End Misalignment Capabilities

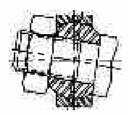
SER ES AR, ARE, ARE, 30, TR, TRE C() -(, C) M. (), (M, C) (, C) M. C) 'C CT/O, (decress)				
PART NO. (+/-) a				
-3	6 1/2			
-4	8			
-5	7			
-6	6			
-7	7			
-8	6			
-10	8			
-12	7			
-16	8 1/2			

Reference Letters

- B = Bore of Ball
- C = Chamfer on Outer Race
- D = Head or Diameter of Outer Race
- E = Ball Diameter
- H = Housing Width
- $V = \sqrt{(D-2C)^2 + H^2}$
- W = Ball Width

SEALMASTER® Rod End and Spherical Plain Bearings


Rod Ends and Spherical Plain Bearing Engineering Section


Common Retention Methods

Clevis mounting is a common practice in securing rod ends in an application. Generally they are assembled into the clevis (or yoke) with a bolt or machined pin.

Clevis Installation

Shoulder on Shaft with Lock Nut

	HoS (mil Greens) Afterg Lab le						
Boro Stac	Exting Yumber	Th tod Sist	Hest 4 too				
1/4" - 7/16"	#3018 (no ball check)	#6-40 UNF-2A	1/4"				
1/2" - 1	#3016 (no ball check)	#10-32 UNF-2A	1/4"				

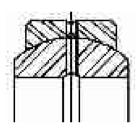
Lubrication

Sealmaster metal three-piece rod ends are greased from the factory and can be furnished with grease fittings on sizes #4 through #16 to facilitate relubrication in the field. Sealmaster CFF/CFM two-piece rod ends are oil coated and are also available with grease fittings. Sealmaster spherical bearings are oil coated except the stainless steel series which are dry. The BH-LS and BTS-LS series are greased from the factory.

Periodic relubrication helps prevent excessive wear, protects balls and races from corrosion, purges contamination and wear debris and helps to seal against contamination. Relubrication is recommended whenever possible for most applications. The length of interval between greasing is dependent on the application parameters and external conditions. Self-Lubricating PTFE and Delrin* rod ends are generally used where grease relubrication is not practical or desirable. Zerk type threaded grease fittings (designated as "N" suffix) are available on all rod end series except for PTFE and DELRIN. Replacement grease fittings can be ordered by identifying the appropriate rod end series and size.

Caution: Catalog load ratings of rod ends are not applicable when grease fittings are specified, because of the reduced cross section of the head. When selecting rod ends with grease fittings, consult Application Engineering for static load capacities.

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin; E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.



Rod Ends and Spherical Plain Bearing Engineering Section

Sealmaster spherical plain bearings are manufactured with two lubrication systems which provide a path for lubrication to the ball and race area.

Outer races are manufactured with lubrication grooves and an interconnecting hole in the outer race to direct grease to the ball and race area. Standard on the following series: COM, SBG, SBG-S, SBG-SS, COR, FLBG, HH-LS, BTS-LS

A groove on the ball I.D. and interconnecting hole on "A" series only, directs lubrication from the shaft to the ball and race area. Standard on the SBG-SA

Application

Sealmaster rod ends and spherical plain bearings are designed to provide an efficient smooth transfer of motion in a wide variety of applications and equipment. This motion is usually associated with various types of linkage controls. Commonly referred to as plain or sliding bearings, they are designed primarily to assist and provide motion transfer, support a load, allow for angular motion and angular misalignment. Sealmaster rod ends and spherical bearings serve the industrial market. Typical applications for rod ends and spherical plain bearings can be found in:

- Textile Equipment
- Food Processing
- Bakery Equipment
- Recreational Equipment
- Farm/Garden Machinery
- Bottling Equipment
- · Printing Machinery
- Material Handling
- Mining Machinery

- Packaging Machinery
- Labeling Machinery
- Industrial Fans
- Construction Equipment
- Exercise Machines
- Dairy Machinery
- Agricultural Equipment
- Transportation Equipment
- Off-Road Equipment

Rod Ends and Spherical Plain Bearing Engineering Section

Recommended Housing Diameters - Spherical Plain Bearings

Spherical Bearings		Housing Bore (inch)				
Series	Bearing O.D.	Steel H	lousing	Aluminun	n Housing	
SBG, SBG-S, SBG-SS, SBG-SA	+.0000 0005	Min	Max	Min	Max	
3	.5625	.5616	.5620	.5614	.5619	
4	.6562	.6553	.6557	.6551	.6556	
5	.7500	.7491	.7495	.7489	.7494	
6	.8125	.8116	.8120	.8114	.8119	
7	.9062	.9053	.9057	.9051	.9056	
8	1.0000	.9991	.9995	.9989	.9994	
10	1.1875	1.1866	1.1870	1.1864	1.1869	
12	1.4375	1.4366	1.4370	1.4364	1.4369	
14	1.5625	1.5616	1.5620	1.5614	1.5619	
16	1.7500	1.7491	1.7495	1.7489	1.7494	
FLBG	+.0000 0005	Min	Max	Min	Max	
3	.6250	.6241	.6245	.6239	.6244	
4	.7500	.7491	.7495	.7489	.7494	
5	.8750	.8741	.8745	.8739	.8744	
6	1.0000	.9991	.9995	.9989	.9994	
7	1.1875	1.1865	1.1870	1.1863	1.1869	
8	1.3125	1.3115	1.3120	1.3113	1.3119	
10	1.5625	1.5613	1.5620	1.5611	1.5619	
12	2.2500	2.2488	2.2495	2.2486	2.2494	
16	2.3750	2.3738	2.3745	2.3736	2.3744	
сом	+.0000 0007	Min	Max	Min	Max	
3	.5625	.5615	.5619	.5613	.5618	
4	.6562	.6552	.6556	.6550	.6555	
5	.7500	.7490	.7494	.7488	.7493	
6	.8125	.8115	.8119	.8113	.8118	
7	.9062	.9052	.9056	.9050	.9055	
8	1.0000	.9990	.9994	.9988	.9993	
10	1.1875	1.1864	1.1869	1.1862	1.1868	
12	1.4375	1.4364	1.4369	1.4362	1.4368	
14	1.5625	1.5614	1.5619	1.5612	1.5618	
16	1.7500	1.7489	1.7494	1.7487	1.7493	

Spherical	Spherical Bearings		Housing Bore (inch)				
Series	Bearing O.D.	Steel Housing		Aluminum Housing			
COR	+.0000 0005	Min	Max	Min	Max		
3	.5625	.5616	.5620	.5614	.5619		
4	.6562	.6553	.6557	.6551	.6556		
5	.7500	.7491	.7495	.7489	.7494		
6	.8125	.8116	.8120	.8114	.8119		
8	1.0000	.9991	.9995	.9989	.9994		
10	1.1875	1.1866	1.1870	1.1864	1.1869		
12	1.4375	1.4366	1.4370	1.4364	1.4369		
14	1.5625	1.5616	1.5620	1.5614	1.5619		
16	1.7500	1.7491	1.7495	1.7489	1.7494		
BTS-LS	+.0000 0007	Min	Max	Min	Max		
12	1.5000	1.4988	1.4993	1.4986	1.4992		
16	2.2500	2.2488	2.2493	2.2486	2.2492		
20	2.3750	2.3738	2.3743	2.3736	2.3742		
24	2.7500	2.7488	2.7493	2.7486	2.7492		
BH-LS	+.0000 0007	Min	Max	Min	Max		
16	2.0000	1.9988	1.9993	1.9986	1.9992		
19	2.3750	2.3738	2.3743	2.3736	2.3742		
20	2.3750	2.3738	2.3743	2.3736	2.3742		
24	2.7500	2.7488	2.7493	2.7486	2.7492		
28	3.1250	3.1238	3.1243	3.1236	2.1242		
32	3.5000	3.4988	3.4993	3.4986	3.4992		

Rod Ends and Spherical Plain Bearings

Application Inquiry Worksheet

Company Name	Contact
Address	Phone
	Fax
	Date
I. Application	
☐ Currently in use (if current application, what bearings ar	re now being used?)
□ New	_
Manufacturer	Manufacturer's Part No
Your Company's Part No.	
II. Engineering Detail	
□ Rod End □ 2 pc □ Steel Race □ DELRIN Race	☐ Spherical Bearing ☐ 3 pc ☐ Bronze Race ☐ TEFLON Liner
Misalignment Angle	(Degrees)
Radial Clearance	(Min/Max)
Axial Clearance	(Min/Max)
Preload Torque (lined rod ends only)	Min Max
Materials: Ball Race_	Housing
Protective Finish: Ball Race_	Housing
	Ball ID ☐ Ball & Race ID ☐ Grease (specify)
III. Operating Conditions	
•	Lbs.
□ Axial	
Type: ☐ Reversing ☐ Alternating ☐ Unidirection	
Operating Temperature Range	
Operating Speeds	
Motion	
	☐ Corrosive ☐ Contamination
Bearing Life Required	
<i>-</i>	on seperate sheet or attach part drawing if available.
	t to: Application Engineering 219-465-2263.
Customer Signature	Date
K- W → H	∴≖w-x
D WBF	RICATION C x 45° GROOVE C H → BOTH SIDES W — W — W
	H - LUBRICATION HOLE
	□ B → → → → → → → → → → → → → → → → → →
Female	Male Spherical
Rod End Loc OPT	Annow of Rod End
<u> </u>	ING'
← K →	LUBRICATION — GROOVES
- J →	H-M*s
TOTAL THE PROPERTY AND THE PROPERTY OF THE PROPERTY OF	CYCOL Foll Mint pro- Charles County He food He field to
TO MADE AND THE THE CALL OF THE	THE LESS OF THE LOCAL COMPANY OF THE
Male	
Female	

CRES Bearings

Corrosion Resistant Engineered Solutions (CRES) bearings address various industries and applications by providing multiple solutions utilizing a variety of materials and sealing elements. CRES bearings assist customers in meeting HACCP (Hazardous Analysis and Critical Control Point) procedures and stringent plant cleaning requirements including both CIP (Clean in Place) and SIP (Steam in Place).

MGILL. SEALMASTER. Corrosion Resistant Bearings

CRES Bearing Selection Guide

Cam Followers

Brand	Image	Series	Style	Duty	Туре
	B	CF-CR			
		CRES CAMROL	CCF-CR	Standard	Stud
McGill			CFE-CR		
WICGIII			CCFE-CR		
			CYR-CR		Yoke
			CCYR-CR		TORE

Mounted Roller Bearings

Brand	lmage	Series	Housing Style	Duty
	16	RPB-C2 CR	Two Bolt Pillow Block	
Sealmaster	6	RPB-C4 CR	Four Bolt Pillow Block	Standard
		RFB-CR	Four Bolt Flange	

Mounted Ball Bearings

Brand	Image	Series	Housing Style	Duty
	•	CRPS-PN	Pillow Block	
Sealmaster		CRFS-PN	Four Bolt Flange	Standard
		CRFTS-PN	Two Bolt Flange	

Corrosion Resistant Bearings **SEALMASTER**® **M**⁹GILL®

			Mate	ERIAL		Size Range					
O D	Econorio	Mounting	Inner and Outer Material	Rolling Element Material	Seal	Inch	Section Name	Pages			
Cylindrical	N/A										
Crowned	TWA	Hex Hole						K-13			
Cylindrical	Eccentric	TIEX TIGIC	440C Stainless Steel	440C Stainless Steel	LUBRI-DISC (up through 7/8" size)	3/4" -	CRES Cam	to K-16			
Crowned	Edddinaid					1,000 GRAINIGGS GIGGT 4400 GRAINIG	Tios Claimess Stosi	LUBRI-DISC+ (1" size and larger)	2 1/4"	Follower	
Cylindrical	N/A	Yoke Style						K-17			
Crowned		. c.s.c ctylo						to K-18			

Locк	Түре	MATE	RIAL		Size R	ANGE		
Single Lock Collar	Double Lock Collar	Inner and Outer Material	Rolling Element Material	Seal	Inch	Metric	Section Name	Pages
RPBA-C2 CR	RPB-C2 CR	Inner Ring:			1 3/16" - 3 1/2"	35 mm - 95 mm	RPB-CR	K-23 to K-24
RPBA-C4 CR	RPB-C4 CR	52100 Steel Outer Ring:	52100 Steel	Contact	2 1/4" - 5"	60 mm - 125 mm	Series Mounted Roller	K-25 to K-26
RFBA-CR	RFB-CR	Black Oxided 52100			1 3/16" - 4"	35 mm - 105 mm	Bearings	K-27 to K-28

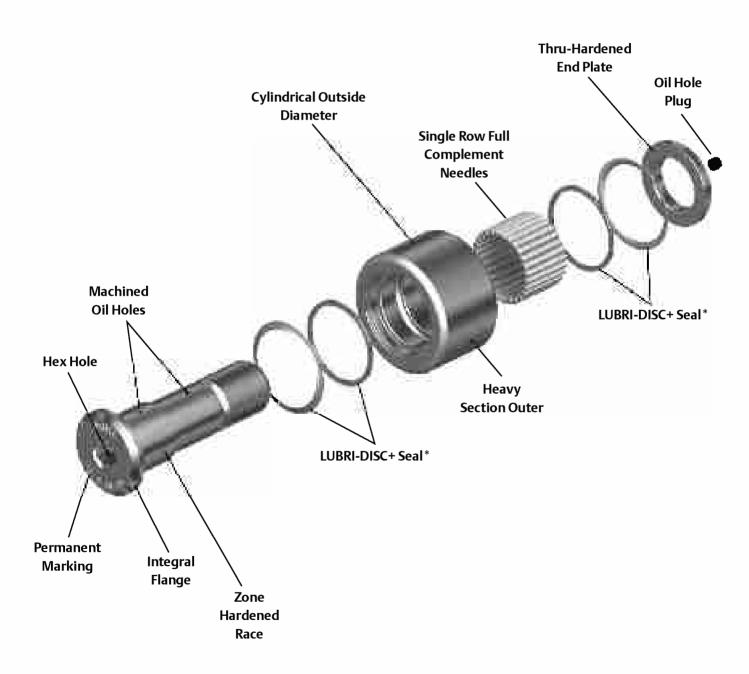
Lоск	Түре		Material		Size Range				
Setscrew	Concentric	Housing Material	Inner and Outer Material	Rolling Element Material	Seal	Inch	Metric	Section Name	Pages
CRPS-PN	CRPS-PN-T					3/4" - 2 7/16"	20 mm - 60 mm		K-35 to K-36
CRFS-PN	CRFS-PN-T	316 Stainless Steel	Phosphorus Nickel Coated 52100 Steel	52100 Steel	High Performance Seal (HPS)	3/4" - 2 7/16"	20 mm - 60 mm	PN Gold Mounted Ball Bearings	K-37 to K-38
CRFTS-PN	CRFTS-PN-T					3/4" - 2 3/16"	20 mm - 55 mm		K-39 to K-40

MGILL. SEALMASTER. Corrosion Resistant Bearings

CRES Bearing Selection Guide Cont.

Mounted Ball Bearings

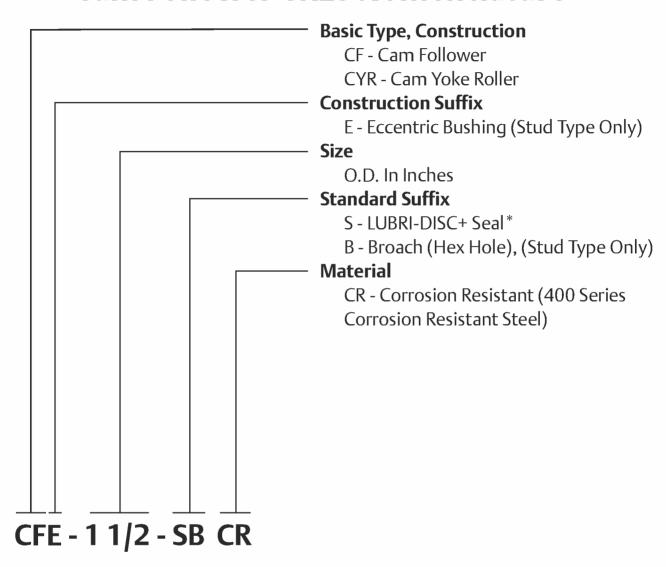
Brand	Image	Series	Housing Style	Duty
	â	CRBFRS-PN	Four Bolt Flange Reduced	
	03	CRBFTRS-PN	Two Bolt Flange Reduced	
		CRFBS-PN	Flange Bracket	
	(CRPC-PN	Pillow Block	
		CRTBC-PN	Tapped Base Pillow Block	
		CRFC-PN	Four Bolt Flange	
	0	CRFTC-PN	Two Bolt Flange	
		CRPLF-PN	Pillow Block - Low Base	
Sealmaster		CRTBF-PN	Tapped Base Pillow Block	Standard
		CRFCF-PN	Piloted Flange Cartridge	Sanda
	5	CREHBF-PN	Hanger Bearing - External Lube	
	THE STATE OF THE S	CRSTF-PN	Wide Slot Take Up	
	9	PN	Insert	
	9	ERX-PN	ER Style	
		NP-C CR	Pillow Block	
		SF-C CR	Four Bolt Flange	
		SFT-C CR	Two Bolt Flange	
1	9	FB-C CR	Flange Bracket	


Corrosion Resistant Bearings **SEALMASTER**® **M**GILL®

Lоск	Түре		MATERIAL			Size F	RANGE		
Setscrew	Concentric	Housing Material	Inner and Outer Material	Rolling Element Material	Seal	Inch	Metric	Section Name	Pages
	CRBFRS-PN-T					1 7/16" - 1 1/2"	40 mm		K-41
	CRBFTRS-PN-T	316 Stainless Steel				1 7/16" - 1 1/2"	40 mm		K-42
CRFBS-PN	CRFBS-PN-T					3/4" - 1 7/16"	20 mm - 35 mm		K-43 to K-44
CRPC-PN	CRPC-PN-T					3/4" - 1 1/2"	20 mm - 40 mm	PN Gold Mounted Ball Bearings	K-45 to K-46
CRTBC-PN	CRTBC-PN-T	High Strength	Phosphorus Nickel Coated 52100 Steel	52100 Steel	High Performance Seal (HPS)	3/4" - 1 1/2"	20 mm - 40 mm		K-47 to K-48
CRFC-PN	CRFC-PN-T	Composite				3/4" - 1 1/2"	20 mm - 40 mm		K-49 to K-50
CRFTC-PN	CRFTC-PN-T					3/4" - 1 1/2"	20 mm - 40 mm		K-51 to K-52
CRPLF-PN						1" - 2 3/16"	30 mm - 55 mm		K-53
CRTBF-PN						3/4" - 2"	20 mm - 50 mm		K-54
CRFCF-PN		Fluoropolymer Coated Cast Iron				1 3/16" - 2 7/16"	30 mm - 60 mm		K-55
CREHBF-PN						1" - 2 7/16"			K-56
CRSTF-PN						3/4" - 2 7/16"	20 mm - 60 mm		K-57
PN	PN-T	N/A				3/4" - 2 7/16"	20 mm - 60 mm		K-58 to K-59
ERX-PN	ERX-PN-T	- N/A				1/2" - 2 1/2"	20 mm - 60 mm	ERX-TREME PN Gold Style Ball Bearings	K-65 to K-66
NP-C CR						3/4" - 2 7/16"			K-71
SF-C CR	N/A		Black Oxide	F0100 04aal	Single Lip	3/4" - 2 7/16"		CR Gold	K-72
SFT-C CR	IN/A		52100 Steel	52100 Steel	Rubber Contact Seal	3/4" - 2 3/16"		Mounted Ball Bearings	K-73
FB-C CR						3/4" - 1 7/16"			K-74

MGILL CRES CAMROL Bearings

McGill CRES Cam Follower Bearings


McGill CAMROL® bearings are full complement needle bearings featuring 400 series corrosion resistant steel material and are available in two basic mounting styles for use mechanical automation or linear motion applications. Our basic features each contribute to superior performance, while the LUBRI-DISC ® and LUBRI-DISC +® seal feature helps prevent metal to metal contact within the bearing while providing a barrier for contaminant entry while still providing blowout protection when relubricating. In addition to the seal feature these bearings are available with several dimensional choices and combinations to provide a specific solution for the application. Within the following section you can learn more about these features and how the can be applied to your application.

^{*}LUBRI-DISC+ seal is used on bearings with a 1" O.D. and larger. Smaller sizes use LUBRI-DISC seals.

Similarion

Cam Follower CRES Nomenclature

^{*}LUBRI-DISC+ seal is used *** the arriving with a 1 full and larger firstless or used HBRI-DISC seals

MGILL CRES CAMROL Bearings

Features and Benefits

400 Series Corrosion Resistant Steel

Manufactured from bearing quality 400 series corrosion resistant steel components for improved resistance to both external and internal corrosion. CRES CAMROL bearings are dimensionally interchangeable with standard CAMROL® bearings and easily identifiable with "CR" designation

Single Row Full Complement Needle Rollers

The small roller diameter to length ratio of needle rollers provides the maximum amount of rollers, with minimal radial section, which helps support radial loads with minimal deflection. The CRES series also incorporate 400 series corrosion resistant steel needles providing a balance between corrosion resistance and bearing capacity.

Heavy Section Outer

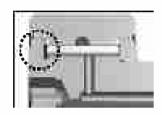
The heavy section outer helps support radial loading and provide proper rolling element support.

LUBRI-DISC+ SEAL

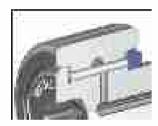
The LUBRI-DISC®+ seal is provided in sizes 1" and larger and offers a lip wiping seal for improved protection against liquid contamination while maintaining all the benefits of a standard Lubri-Disc® seal. The enhanced seal helps provide up to five times better protection against water entry due to wash down. The CAMROL standard for seals, the Lubri-Disc seal not only helps keep contaminants out and lubrication in the bearing, but with an integral back plate to separate the metal to metal contact between the outer ring and endplate(s) or flange. The back plate feature reduce friction resulting in lower operating temperatures which can extend grease life and allowing for higher operating speeds Our seal also includes vents to help prevent seal blowout during relubrication, while the outer raceway is machined with an reservoir for additional lubricant capacity. The Lubri-Disc+ seal balances sealing, lubricant capacity, and low drag operation essential to a precision cam follower suited for most industrial applications requiring a corrosion resistant solution.

Cylindrical Outside Diameter (OD)

The cylindrical OD can improve performance in certain applications such as improved track capacity by maximizing the contact area with the track.


CRES CAMROL Bearings MGGILL.

Features and Benefits continued


Zone Hardened Raceways

Inner studs are induction heat treated in the roller path and flange surfaces only. The remainder of the stud has a mild hardness (generally below 46HRC) resulting in a ductile stem that provides toughness.

Integral Flange

The integral flange helps maintain bearing integrity throughout the bearing life. Zone hardened to provide wear resistance from incidental contact with the outer or rollers, and provides a sealing surface for the LUBRI-DISC® or LUBRI-DISC+® seal.

Hardened Endplate

Similar to the flange, the endplate must provide a seal surface for the seal and resist wear from incidental contact with the outer or rollers. The hardened and ground endplate provides a sealing surface for the LUBRI-DISC® or LUBRI-DISC+® seal.

Factory Grease Fill

The cam follower and cam yoke roller bearings are factory lubricated with H1 food grade grease. Contact Application Engineering when application conditions require special lubricants.

(STSReiding)

Features and Benefits continued

Lubrication Holes

Depending on size, McGill CAMROL bearings may include lubrication holes to accept a standard drive fitting or included oil hole plug(s). The oil hole plug is recommended for closing unused hole to help protect against bearing contamination or lubrication loss.

Permanent Marking

Part number permanently marked on bearing face, helps bearing identification after years of service.

Hole Plug (s)

All McGill Cam followers include 1-2 (depending on # of holes) lubrication hole plugs to help provide proper lubrication path to the rolling elements and prevent contamination from entering the bearing through an unused hole.

Options

Eccentric Stud

Eccentric stud option provides a means of adjusting the radial position of the bearing which can improve the load sharing of inline bearing combinations. Cam follower load sharing helps reduce operation costs by reducing premature failures due to overloaded bearings, the need of precise mounting hole location tolerances and providing ability to realign bearing due to track wear.

Custom Capabilities

- Existomer Specified factory grease fill
- Greuse Fitting Installed
- Stud or thread length modifications
- Roller diameter variations or tolerances
- Com fallowers grouped or matched diameter tolerance / run out sets
- Custom engineered to order designs

MGILL. CRES CAMROL Bearings

Basic Construction Type: Stud Type 400 Series Stainless

Steel

Rolling Elements: Full Complement Needle 400

Series Corrosion Resistant Steel

LUBRI-DISC (7/8" & smaller) **Seal Type:**

LUBRI-DISC+ (1" & larger)

Lubrication: H1 Food Grade Grease

System Configuration: Concentric / Eccentric Stud

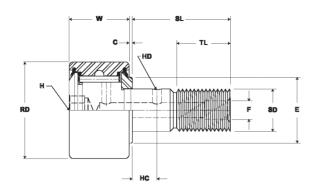
Mounting Feature: Hex Hole

Dimensional Interchange: Standard Camrol

CF-CR Series

Part No.	F	RD	,	N		SD	: FL	6	1.11	L.	ECC	G	BD	Track Roller	Track Roller
	Roller	Diameter	Rolle	r Width	Stud E	iameter	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall		Eccentric		Dynamic Rating	Static Rating
With Lubridisc Seals		ich im		ıch ım		ich im		ch ım	in m			inch mm		Fb/N	Ib/N
į.	Nom.	Tot.	Nom.	Tot.	Non.	Tot	(R#f)	(Ret)	(Ret)	(Ret)	(Ret)	+01-,001	±.001	tuerry.	10000
CF 1/2 SB CR	.500	+0/001	.375	+0/001	.190	+0/001	.625	.03	.25	1.03	N/A	N/A	N/A	610	300
CFE 1/2 SB CR	12.70	+0/03	9.53	+0/03	4.826	+0/03	15.88	.8	6.35	26.2	.010 .25	.375 9.5	.25 6.4	2,730	1,340
CF 9/16 SB CR	.5625	+0/001	.375	+0/001	.190	+0/001	.625	.03	.25	1.03	N/A	N/A	N/A	610	300
CFE 9/16 SB CR	14.29	+0/03	9.53	+0/03	4.826	+0/03	15.88	.8	6.35	26.2	.010 .25	.375 9.5	.25 6.4	2,730	1,340
CF 5/8 SB CR	.625	+0/001	.438	+0/001	.250	+0/001	.750	.03	.3125	1.22	N/A	N/A	N/A	860	600
CFE 5/8 SB CR	15.88	+0/03	11.13	+0/03	6.35	+0/03	19.05	.8	7.94	30.9	.015 .38	.437 11.1	.375 9.5	3,850	2,680
CF 11/16 SB CR	.6875	+0/001	.438	+0/001	.250	+0/001	.750	.03	.3125	1.22	N/A	N/A	N/A	860	600
CFE 11/16 SB CR	17.46	+0/03	11.13	+0/03	6.35	+0/03	19.05	.8	7.94	30.9	.015 .38	.437 11.1	.375 9.5	3,850	2,680
CF 3/4 SB CR	.750	+0/001	.500	+0/001	.375	+0/001	.875	.03	.375	1.41	N/A	N/A	N/A	1,500	1,580
CFE 3/4 SB CR	19.05	+0/03	12.70	+0/03	9.53	+0/03	22.2	.8	9.5	35.7	.015 .38	.500 12.7	.500 12.7	6,672	7,028
CF 7/8 SB CR	.875	+0/001	.500	+0/001	.375	+0/001	.875	.03	.375	1.41	N/A	N/A	N/A	1,500	1,580
CFE 7/8 SB CR	22.23	+0/03	12.70	+0/03	9.53	+0/03	22.2	.8	9.5	35.7	.015 .38	.500 12.7	.500 12.7	6,672	7,028
CF 1 SB CR	1.000	+0/001	.625	+0/001	.4375	+0/001	1.00	.03	.50	1.66	N/A	N/A	N/A	1,800	2,040
CFE 1 SB CR	25.40	+0/03	15.88	+0/03	11.11	+0/03	25.4	.8	12.7	42.1	.030 .76	.500 12.7	.625 15.8	8,006	9,074
CF 1 1/8 SB CR	1.125	+0/001	.625	+0/001	.4375	+0/001	1.00	.03	.50	1.66	N/A	N/A	N/A	1,800	2,040
CFE 1 1/8 SB CR	28.58	+0/03	15.88	+0/03	11.11	+0/03	25.4	.8	12.7	42.1	.030 .76	.500 12.7	.625 15.8	8,006	9,074

Note:
1. Clamping torque is based on lubricated threads. If threads are dry, double the value listed.


^{1.} Clamping torque is based on judicated threads. If threads are are ry, double the value listed.

2. Since load, Jubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speeds. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the operating speed approaches the listed limiting speed.

3. Use track roller dynamic load rating for life calculations. Maximum dynamic load skill cload should not exceed 50% of track roller dynamic load rating. If calculations must be reviewed by Application Engineering. If dynamic loads exceed 25% of basic dynamic rating, consideration should be given to use of CVR CRES series CAMROL bearing. For more information please contact Application Engineering (800) 626-2093.

4. The track roller static load rating is based on stud strength. Exceeding the static load rating may impair subsequent dynamic operation.

CRES CAMROL Bearings MG ILL.

CF-CR Series

Part No.	HC	HD	F	H Hex Hole	E	He GULLE	Housing Bore		Clamping	Limiting	WT
With Lubri Disc	Hole Center	Radial Hole Diameter	Lub. Hole Dia / Fitting	Suffix XX-	Min Boss Diameter	۾mm Embes	Diameter	Thread Type	Sorque	Speed	Bearing Weight
Seals	n	ich im		inch mm	in m	m	inch mm	. "	in-th Non	RPM	lb/kg
_	(Ret)	(Rief)	(Ret)	(Ref)	(Ret)	(Ref)	Norst. Tol.		1000000		
CF 1/2 SB CR		_	-	.125	.29	.015	.1903 +.0002/0003 4.833 +.0005/0008		8	11,500	.04
CFE 1/2 SB CR				3.175	7.5	.38	.253 +0.001/-0.001 6.43 +0.025/-0.025		.9	,	.02
CF 9/16 SB CR				.125	.29	.015	.1903 +.0002/0003 4.833 +.0005/0008		8		.04
CFE 9/16 SB CR	-	-	-	3.175	7.5	.38	.253 +0.001/-0.001 6.43 +0.025/-0.025	10-32	.9	10,000	.02
CF 5/8 SB CR				.125	.36	.015	.2503 +.0002/0003 6.358 +.0005/0008		18		.05
CFE 5/8 SB CR	-	-	-	3.175	9.1	.38	.378 +0.001/-0.001 9.601 +0.025/-0.025	1/4-28	2	9,200	.02
CF 11/16 SB CR				.125	.36	.015	.2503 +.0002/0003 6.358 +.0005/0008		18		.06
CFE 11/16 SB CR	-	-	-	3.175	9.1	.38	.378 +0.001/-0.001 9.601 +0.025/-0.025	1/4-28	2	8,300	.03
CF 3/4 SB CR	.25	.09	.19	.1875	.500	.02	.3753 +.0002/0003 9.533 +.0005/0008		48	2 422	.07
CFE 3/4 SB CR	6.4	2.4	4.8	5	12.70	.4	.503 +0.001/-0.001 12.77 +0.025/-0.025	3/8-24	5	6,400	.03
CF 7/8 SB CR	.25	.09	.19	.1875	.500	.02	.3753 +.0002/0003 9.533 +.0005/0008		48	F 400	.09
CFE 7/8 SB CR	6.4	2.4	4.8	5	12.70	.4	.503 +0.001/-0.001 12.77 +0.025/-0.025	3/8-24	5	5,400	.04
CF 1 SB CR	.25	.09	.19	.250	.64	.03	.4378 +.0002/0003 11.120 +.0005/0008		125	4 000	.17
CFE 1 SB CR	6.4	2.4	4.8	6.4	16.3	.8	.628 +0.001/-0.001 15.95 +0.025/-0.025	7/16-20	14	4,800	.08
CF 1 1/8 SB CR	.25	.09	.19	.250	.64	.03	.4378 +.0002/0003 11.120 +.0005/0008		125	3,400	.19
CFE 1 1/8 SB CR	6.4	2.4	4.8	6.4	16.3	.8	.628 +0.001/-0.001 15.95 +0.025/-0.025		14	3,400	.09

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

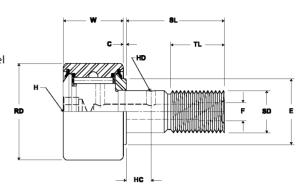
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

MGILL CRES CAMROL Bearings

Basic Construction Type: Stud Type 400 Series Stainless

Steel

Rolling Elements: Full Complement Needle 400


Series Corrosion Resistant Steel

LUBRI-DISC (7/8" & smaller) **Seal Type:** LUBRI-DISC+ (1" & larger)

Lubrication: H1 Food Grade Grease **System Configuration:** Concentric / Eccentric Stud

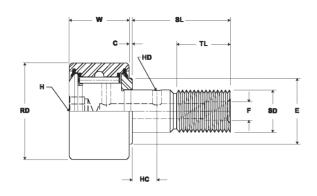
Mounting Feature: Hex Hole

Dimensional Interchange: Standard Camrol

CF-CR Series (continued)

Part No.	F	RD	,	W		SD	SL	C	71,	L.	ECC	G	BD	Track Roller	Track Roller
	Roller I	Diameter	Rolle	r Width	Stud D	iameter	Stud Length	Endplate Extension	Minimum Thread Length	Length Overall		Eccentric		Dynamic Rating	Static Rating
With Lubridisc Seals		ich im		ich nm	inch mm			ich im	ine m			inch mm		Fb/N	Ib/N
is .	Nom.	Tot.:	Nom.	Tot.	Nom.	Total	(R#f)	(Ret)	(Ret)	(Ret)	(R#f)	+61-,001	±.001	teers	100000
CF 1 1/4 SB CR	1.250	+0/001	.750	+0/001	.500	+0/001	1.25	.03	.625	2.03	N/A	N/A	N/A	2,300	3,650
CFE 1 1/4 SB CR	31.75	+0/03	19.05	+0/03	12.70	+0/03	31.8	.8	15.9	51.6	.030 .76	.625 15.8	.687 17.4	10,230	16,235
CF 1 3/8 SB CR	1.375	+0/001	.750	+0/001	.500	+0/001	1.25	.03	.625	2.03	N/A	N/A	N/A	2,300	3,650
CFE 1 3/8 SB CR	34.93	+0/03	19.05	+0/03	12.70	+0/03	31.8	.8	15.9	51.6	.030 .76	.625 15.8	.687 17.4	10,230	16,235
CF 1 1/2 SB CR	1.500	+0/001	.875	+0/001	.625	+0/001	1.50	.03	.75	2.41	N/A	N/A	N/A	4,000	4,400
CFE 1 1/2 SB CR	38.10	+0/03	22.23	+0/03	15.88	+0/03	38.1	.8	19.1	61.1	.030 .76	.75 19.1	.875 22.2	17,792	19,571
CF 1 5/8 SB CR	1.625	+0/001	.875	+0/001	.625	+0/001	1.50	.03	.75	2.41	N/A	N/A	N/A	4,000	4,400
CFE 1 5/8 SB CR	41.28	+0/03	22.23	+0/03	15.88	+0/03	38.1	.8	19.1	61.1	.030 .76	.75 19.1	.875 22.2	17,792	19,571
CF 1 3/4 SB CR	1.750	+0/001	1.000	+0/001	.750	+0/001	1.75	.03	.875	2.78	N/A	N/A	N/A	6,000	5,550
CFE 1 3/4 SB CR	44.45	+0/03	25.40	+0/03	19.05	+0/03	44.5	.8	22.2	70.6	.030 .76	.875 22.2	1 25.4	26,688	24,686
CF 1 7/8 SB CR	1.875	+0/001	1.000	+0/001	.750	+0/001	1.75	.03	.875	2.78	N/A	N/A	N/A	6,000	5,550
CFE 1 7/8 SB CR	47.63	+0/03	25.40	+0/03	19.05	+0/03	44.5	.8	22.2	70.6	.030 .76	.875 22.2	1 25.4	26,688	24,686
CF 2 SB CR	2.000	+0/001	1.250	+0/001	.875	+0/001	2.00	.03	2.00	3.28	N/A	N/A	N/A	8,200	6,750
CFE 2 SB CR	50.80	+0/03	31.75	+0/03	22.23	+0/03	50.8	.8	50.8	83.3	.030 .76	1 25.4	1.187 30.1	36,474	30,024
CF 2 1/4 SB CR	2.250	+0/001	1.250	+0/001	.875	+0/001	2.00	.03	2.00	3.28	N/A	N/A	N/A	8,200	6,750
CFE 2 1/4 SB CR	57.15	+0/03	31.75	+0/03	22.23	+0/03	50.8	.8	50.8	83.3	.030 .76	1 25.4	1.187 30.1	36,474	30,024

Note:
1. Clamping torque is based on lubricated threads. If threads are dry, double the value listed.


^{1.} Clamping torque is based on judicated threads. If threads are are ry, double the value listed.

2. Since load, Jubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speeds. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the operating speed approaches the listed limiting speed.

3. Use track roller dynamic load rating for life calculations. Maximum dynamic load skill cload should not exceed 50% of track roller dynamic load rating. If calculations must be reviewed by Application Engineering. If dynamic loads exceed 25% of basic dynamic rating, consideration should be given to use of CVR CRES series CAMROL bearing. For more information please contact Application Engineering (800) 626-2093.

4. The track roller static load rating is based on stud strength. Exceeding the static load rating may impair subsequent dynamic operation.

CRES CAMROL Bearings MG ILL.

CF-CR Series (continued)

Part No.	HC	HD	F	Н	Е	He	Housing Bore		Clamping	Limiting	WT
	Hole Center	Radial Hole Diameter	Lub. Hole Dia / Fitting	H∈x Hole Suffix XX-	Min Boss Diameter	Civiler Commo Raufico	Diameter	Thread	Torque	Speed	Bearing Weight
With Lubr⊪Dis Seals		inch mm		inch mm		ch m	inch mm	Туре	in-th	RPM	lb/kg
-	(Ret)	(Rivf)	(Ret)	(Ref)	(Ret)	(Ref)	Nom. Tol.		Nin	Instrum.	io/kg
CF 1 1/4 SB CR	.31	.09	.19	.250	.76	.03	.5003 +.0002/000 12.708 +.0005/000	1/2-20	175	3.100	.30
CFE 1 1/4 SB CI	7.9	2.4	4.8	6.4	19.4	.8	.690 +0.001/-0.00 17.53 +0.025/-0.02	1	20	0,100	.14
CF 1 3/8 SB CR	.31	.09	.19	.250	.76	.05	.5003 +.0002/000 12.708 +.0005/000	3	175	0.000	.35
CFE 1 3/8 SB CI	7.9	2.4	4.8	6.4	19.4	1.2	.690 +0.001/-0.00 17.53 +0.025/-0.02		20	2,800	.16
CF 1 1/2 SB CR	.38	.09	.19	.3125	.89	.06	.6253 +.0002/000 15.883 +.0005/000	3	325	0.500	.52
CFE 1 1/2 SB CI	9.5	2.4	4.8	7.9	22.6	1.6	.878 +0.001/-0.00 22.30 +0.025/-0.02	5/8-18 1 5	37	2,500	.24
CF 1 5/8 SB CR	.38	.09	.19	.3125	.89	.06	.6253 +.0002/000 15.883 +.0005/000	3	325	0.050	.60
CFE 1 5/8 SB CI	9.5	2.4	4.8	7.9	22.6	1.6	.878 +0.001/-0.00 22.30 +0.025/-0.02	5/8-18 1 5	37	2,350	.27
CF 1 3/4 SB CR	.44	.09	.19	.3125	1.05	.06	.7503 +.0002/000 19.058 +.0005/000	3	625		.84
CFE 1 3/4 SB CI	11.1	2.4	4.8	7.9	26.6	1.6	1.003 +0.001/-0.00 25.48 +0.025/-0.02	3/4-16 1 5	71	2,200	.38
CF 1 7/8 SB CR	.44	.09	.19	.3125	1.05	.06	.7503 +.0002/000 19.058 +.0005/000	3/4-16	625	2.000	.95
CFE 1 7/8 SB CI	11.1	2.4	4.8	7.9	26.6	1.6	1.003 +0.001/-0.00 25.48 +0.025/-0.02	1	71	2,000	.43
CF 2 SB CR	.50	.13	.19	.4375	1.20	.09	.8753 +.0002/000 22.233 +.0005/000		750	1,400	1.36
CFE 2 SB CR	12.7	3.2	4.8	11.1	30.6	2.4	1.190 +0.001/-0.00 30.23 +0.025/-0.02	1	85	1,400	.62
CF 2 1/4 SB CR	.50	.13	.19	.4375	1.20	.09	.8753 +.0002/000 22.233 +.0005/000	3	750	1.300	1.65
CFE 2 1/4 SB CI	12.7	3.2	4.8	11.1	30.6	2.4	1.190 +0.001/-0.00 30.23 +0.025/-0.02		85	1,300	.75

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

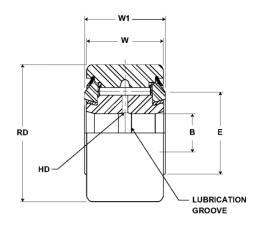
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

MGILL CRES CAMROL Bearings

Basic Construction Type: Yoke Type 400 Series Stainless

Steel

Rolling Elements: Full Complement Needle 400


Series Corrosion Resistant Steel

LUBRI-DISC (7/8" & smaller) Seal Type:

LUBRI-DISC+ (1" & larger)

Lubrication: H1 Food Grade Grease

Dimensional Interchange: Standard CAMROL

CYR-CR Series

Part No.		RD		W		В		w1	Track Roller	Track Roller
	Roller	Diametar	Rolle	r Width	Bore	Diameter	Over	all Width	Dynamic Rating	Static Rating
With Lubridisc Seals		nch nm		nch mm		inch mm		nch mm	West	54944
	Non-	Total	Nom.	Fol	Nom	Tol	Non.	Tel.	lb/N	IBIN
CYR 3/4 S CR	.750	+0/005	.500	+0/005	.2500	+.0002/0004	.5625	+.005/001	1,490	2,100
	19.05	+0/13	12.70	+0/13	6.35	+.0002/0004	14.28	+.127/254	6,675	9,400
CYR 7/8 S CR	.875	+0/005	.500	+0/005	.2500	+.0002/0004	.5625	+.005/001	1,490	2,100
	22.23	+0/15	12.70	+0/15	6.35	+.0002/0004	14.28	+.127/254	6,675	9,400
CYR 1 S CR	1.000	+0/005	.625	+0/005	.3125	+.0002/0004	.6875	+.005/001	2,000	5,400
	25.40	+0/17	15.88	+0/17	7.94	+.0002/0004	17.46	+.127/254	8,960	24,190
CYR 1 1/8 S CR	1.125	+0/005	.625	+0/005	.3125	+.0002/0004	.6875	+.005/001	2,000	5,400
	28.58	+0/19	15.88	+0/19	7.94	+.0002/0004	17.46	+.127/254	8,960	24,190
CYR 1 1/4 S CR	1.250	+0/005	.750	+0/005	.3750	+.0002/0004	.8125	+.005/001	3,530	7,700
	31.75	+0/21	19.05	+0/21	9.53	+.0002/0004	20.64	+.127/254	15,800	34,500
CYR 1 3/8 S CR	1.375	+0/005	.750	+0/005	.3750	+.0002/0004	.8125	+.005/001	3,530	7,700
	34.93	+0/23	19.05	+0/23	9.53	+.0002/0004	20.64	+.127/254	15,800	34,500
CYR 1 1/2 S CR	1.500	+0/005	.875	+0/005	.4375	+.0002/0004	.9375	+.005/001	4,390	11,200
	38.10	+0/25	22.23	+0/25	11.11	+.0002/0004	23.81	+.127/254	19,488	50,170
CYR 1 5/8 S CR	1.625	+0/005	.875	+0/005	.4375	+.0002/0004	.9375	+.005/001	4,390	11,200
	41.28	+0/27	22.23	+0/27	11.11	+.0002/0004	23.81	+.127/254	19,488	50,170
CYR 1 3/4 S CR	1.750	+0/005	1.000	+0/005	.5000	+.0002/0004	1.0625	+.005/001	5,540	14,800
	44.45	+0/29	25.40	+0/29	12.70	+.0002/0004	26.99	+.127/254	25,670	66,300
CYR 1 7/8 S CR	1.875	+0/005	1.000	+0/005	.5000	+.0002/0004	1.0625	+.005/001	5,540	14,800
	47.63	+0/31	25.40	+0/31	12.70	+.0002/0004	26.99	+.127/254	25,670	66,300
CYR 2 S CR	2.000	+0/005	1.250	+0/005	.6250	+.0002/0004	1.3125	+.005/001	7,270	17,600
	50.80	+0/33	31.75	+0/33	15.88	+.0002/0004	33.34	+.127/254	32,570	78,850
CYR 2 1/4 S CR	2.250	+0/005	1.250	+0/005	.6250	+.0002/0004	1.3125	+.005/001	7,270	17,600
	57.15	+0/35	31.75	+0/35	15.88	+.0002/0004	33.34	+.127/254	32,570	78,850

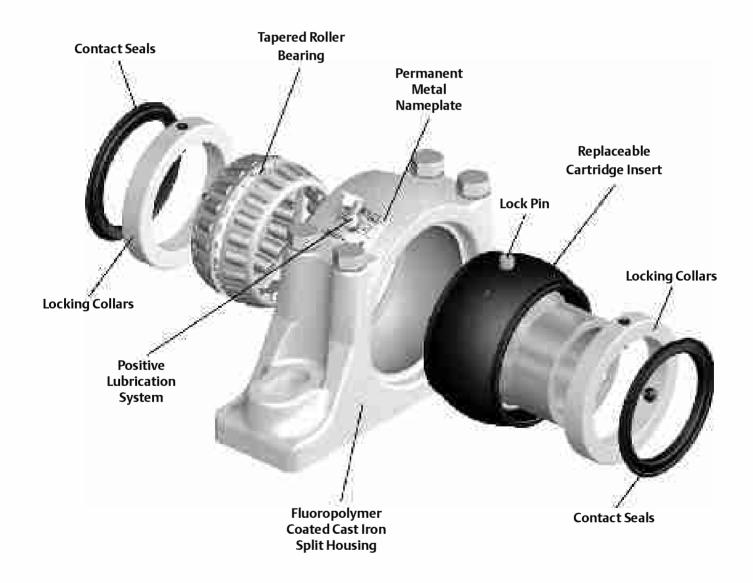
Note:

1. Clamping torque is based on lubricated threads. If threads are dry, double the value listed.

2. Since load, lubrication method, temperature and other factors affect the maximum operating speed, it is impossible to determine precise limiting speeds. The listed limiting speeds are based on lightly loaded bearings having adequate lubrication and are listed only as a design guide. More frequent relubrication is required when operating at higher speeds. Actual bearing testing in the specific application should be conducted if the operating speed approaches the listed limiting speed.

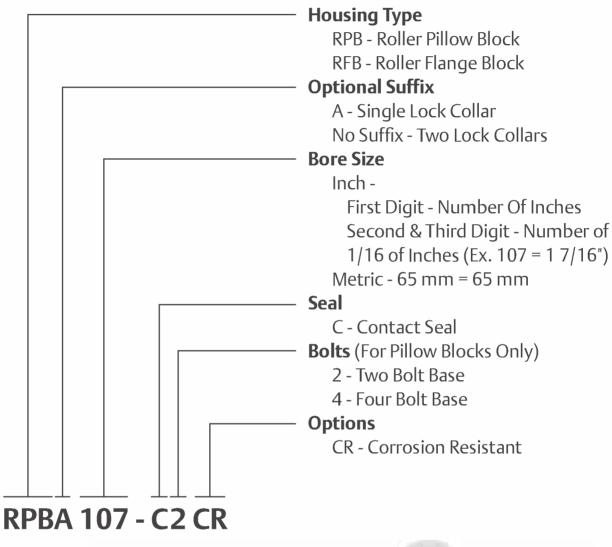
CYR-CR Series

Part No.	HC	10	11+			Recomended I	Bore Diameters			Umilion	WT
	Helia Green	Min. Clamping Diameter	Dales Commer Halles	Pus	sh Fit	Driv	e Fit	Pres	ss Fit	Limiting Speed	Béaring Weight
With Lubridisc Seals		inch mm			nch nm		ch ım		nch nm	770.00 c	1666
	(Ret)	(Ref)	(Ref)	Nom.	Tet:	Hom.	Tel.	Nom.	Tol	RPM	lb/kg
CYR 3/4 S CR	.25 6.4	.61 15.5	.02 .4	.2495 6.337	±.0002 ±.005	.2501 6.353	±.0002 ±.005	.2503 6.358	±.0002 ±.005	6,400	.06 .03
CYR 7/8 S CR	.25 6.4	.61 15.5	.02 .4	.2495 6.337	±.0002 ±.005	.2501 6.353	±.0002 ±.005	.2503 6.358	±.0002 ±.005	5,400	.08 .04
CYR 1 S CR	.25 6.4	.78 19.8	.03 .8	.3120 7.925	±.0002 ±.005	.3126 7.940	±.0002 ±.005	.3128 7.945	±.0002 ±.005	4,800	.15 .07
CYR 1 1/8 S CR	.25 6.4	.78 19.8	.03 .8	.3120 7.925	±.0002 ±.005	.3126 7.940	±.0002 ±.005	.3128 7.945	±.0002 ±.005	3,400	.17 .08
CYR 1 1/4 S CR	.31 7.9	.98 25.0	.03 .8	.3745 9.512	±.0002 ±.005	.3751 9.528	±.0002 ±.005	.3753 9.533	±.0002 ±.005	3,100	.24 .11
CYR 1 3/8 S CR	.31 7.9	.98 25.0	.05 1.2	.3745 9.512	±.0002 ±.005	.3751 9.528	±.0002 ±.005	.3753 9.533	±.0002 ±.005	2,800	.30 .14
CYR 1 1/2 S CR	.38 9.5	1.09 27.8	.06 1.6	.4370 11.100	±.0002 ±.005	.4376 11.115	±.0002 ±.005	.4378 11.120	±.0002 ±.005	2,500	.41 .19
CYR 1 5/8 S CR	.38 9.5	1.09 27.8	.06 1.6	.4370 11.100	±.0002 ±.005	.4376 11.115	±.0002 ±.005	.4378 11.120	±.0002 ±.005	2,350	.50 .23
CYR 1 3/4 S CR	.44 11.1	1.25 31.8	.06 1.6	.4995 12.687	±.0002 ±.005	.5001 12.703	±.0002 ±.005	.5005 12.713	±.0002 ±.005	2,200	.64 .29
CYR 1 7/8 S CR	.44 11.1	1.25 31.8	.06 1.6	.4995 12.687	±.0002 ±.005	.5001 12.703	±.0002 ±.005	.5005 12.713	±.0002 ±.005	2,000	.80 .36
CYR 2 S CR	.50 12.7	1.41 35.7	.09 2.4	.6245 15.862	±.0002 ±.005	.6251 15.878	±.0002 ±.005	.6245 15.862	±.0002 ±.005	1,400	1.05 .48
CYR 2 1/4 S CR	.50 12.7	1.41 35.7	.09 2.4	.6245 15.862	±.0002 ±.005	.6251 15.878	±.0002 ±.005	.6245 15.862	±.0002 ±.005	1,300	1.32 .59


Metric dimensions for reference only.

 $Not all \ parts \ are \ available \ from \ stock. \ Please \ contact \ customer \ service \ for \ availability \ (800) \ 626-2120.$

For more information on bearing capabilities outside of our standard of fering, please contact Application Engineering (800) 626-2093.


Sealmaster RPB-CR Series Mounted Tapered Roller Bearings

Sealmaster RPB-CR self aligning high capacity tapered roller bearings include a fluoropolymer coated housing and lock collars, stainless steel grease fittings, single lip contact seal and GoldPlex-FG (USDA H1) food grade grease for corrosion resistant applications. The fluoropolymer coating is resistant to most chemicals and hydrocarbon solvents. These bearings are used in applications where they may be subjected to moisture, corrosive and abrasive environments. Depending on your preference, these bearings are available in two or four bolt pillow blocks and four bolt flanges as illustrated on the pages to follow.

RPB-CR Bearing Nomenclature

ASTER ® RPB-CR Series Mounted Tapered Roller Bearings

Features and Benefits

Tapered Roller Bearings

Sealmaster® RPB-CR series contains heavy duty tapered roller bearings for radial, thrust and combination loading

Fluoropolymer Coated Cast Iron Split Housings

This non-stick coating on the housing and cap bolts, offers resistance to chemicals and performs better than painted or nickel coated housings in our testing. Stainless steel cap bolt washers and grease fittings also provide resistance to corrosion. Permanent metal nameplate allows for easy identification (For more information on fluoropolymer coating see page K-76).

Replaceable Cartridge Insert (RCI)

The heart of the RPB-CR is the unitized, self-aligning cartridge insert with integral seals and double locking collars. The replaceable cartridge insert can accomodate +/- 3° static misalignment capability has factory controlled clearances and is factory sealed and lubricated. The cartridges fit all housing styles and are field replaceable for quick change out. RCI outer races are black oxide treated.

Contact Seals

Single lip race mounted contact seal is composed of a steel inner seal with a bonded elastomeric sealing member. The steel inner seal is press fitted into the inside diameter of the outer race, while the bonded elastomeric sealing member is held in the proper rubbing contact position on the outer diameter of the inner race. Black oxided seal stampings inhibits corrosion.

Positive Lubrication System

Positive lubrication system provides direct grease path to the bearing. The unit is designed with two lubrication ports in the cartridge OD so that one of the lube holes in the cartridge lines up with grease fitting regardless of insert orientation in the housing. A rubber grommet in housing top recess directs lubricant into bearing cavity. Extra lubrication ports help prevent seal damage by venting excess pressure from over greasing. Sealmaster alignment pin helps prevent outer race rotation.

Collar Mount System

Two fluoropolymer coated locking collars are standard on all units with two setscrews at 120° for balanced three point contact. Precision manufactured diamond faceted setscrew design contributes to improved clamping and resistance to back out. Single locking collars are available where space limitations are present.

Specialized Food Grade Lubrication

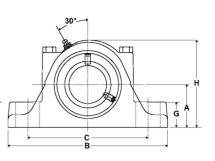
The Sealmaster RPB-CR bearings are factory filled with Sealmaster GoldPlex-FG (Food Grade) grease (USDA H1 approved) which is suitable for mounted bearing lubrication where incidental contact with food products may occur in any application where clean, routine lubrication is required. For more information on Sealmaster GoldPlex-FG see page L-6.

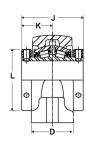
SEALMASTER® RPB-CR Series Mounted Tapered Roller Bearings

Rolling Elements: Tapered Roller

> Housing: Fluoropolymer Coated Cast

Iron Two Bolt Pillow Block


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Double Lock Collar

Single Lip Contact Seal:

Temperature: -20° to 220° F

> Grease: Sealmaster GoldPlex-FG

RPB-CR Series Two-Bolt Base Pillow Blocks

Вог	re	C4	Basic	Approx.					Dimension	s inch/mn	n				100
Diam	_	Standard Seal Part No.	Dynamic Rating	Wt. lb/kg	Α.,	8			D	G	H)		ĸ	I.	Bon Size
Inch	mm	DDD 400 00 0D	lb/N			200	Min.	Max.	1010		2010			10000	
1 3/16		RPB 103-C2 CR	2975 13233	4.8 2.2	1 1/2 38.1	6 1/4 158.8	4 9/16 115.9	4 15/16 125.4	1 7/8 47.6	7/8 22.2	3 1/8 79.4	2 3/4 69.9	1 3/8 34.9	2 1/4 57.2	1/2
1 1/4		RPB 104-C2 CR RPB 106-C2 CR	10200	2.2	00.1	100.0	110.0	120.4	41.0	ZZ.Z	10.4	00.0	04.0	01.2	
1 3/8 1 7/16		RPB 106-C2 CR	4760	7.7	1 7/8	7 1/4	5 5/16	5 15/16	2 1/16	1 1/8	3 13/16	3	1 1/2	2 5/8	1/2
17710	35	RPB 35MM-C2 CR	21172	3.5	47.6	184.2	134.9	150.8	52.4	28.6	96.8	76.2	76.2	66.7	1/2
1 1/2	00	RPB 108-C2 CR													
1 5/8		RPB 110-C2 CR	6140	10.9	2 1/8	7 3/4	5 9/16	6 7/16	2 5/16	1 1/4	4 3/8	3 3/8	1 11/16	2 7/8	1/2
1 0/0	40	RPB 40MM-C2 CR	27311	4.9	54.0	196.9	141.3	163.5	58.7	31.8	111.1	85.7	42.9	73.0	1,2
-	10		6140	10.9	2 1/8	7 3/4	5 9/16	6 7/16	2 5/16	1 1/4	4 3/8	3 3/8	1 11/16	2 7/8	
1 11/16		RPB 111-C2 CR	27311	4.9	54.0	196.9	141.3	163.5	58.7	31.8	31.8	31.8	31.8	73.0	1/2
1 3/4		RPB 112-C2 CR													
1 15/16		RPB 115-C2 CR									4.540				
2		RPB 200-C2 CR	8070 35895	13.2 6.0	2 1/4 57.2	8 7/8 225.4	6 5/16 160.3	7 3/16 182.6	2 7/16 61.9	1 1/4 31.8	4 5/8 117.5	3 1/2 88.9	1 3/4 44.5	3 1/4 82.6	5/8
	45	RPB 45MM-C2 CR	00000	0.0	01.2		100.0	102.0	01.0	01.0	111.0	00.0	1,1.0	02.0	
	50	RPB 50MM-C2 CR													
2 3/16		RPB 203-C2 CR	8570	15.7	2 1/2	9 5/8	6 11/16	7 15/16	2 9/16	1 7/16	5 1/8	3 3/4	1 7/8	3 5/8	5/8
	55	RPB 55MM-C2 CR	38119	7.1	63.5	244.5	169.9	201.6	65.1	36.5	130.2	95.3	47.6	92.1	3/0
2 1/4		RPB 204-C2 CR													
2 7/16		RPB 207-C2 CR	9030	20.7	2 3/4	10 3/8	6 15/16	8 11/16	2 3/4	1 5/8	5 5/8	4	2	3 15/16	5/8
	60	RPB 60MM-C2 CR	40165	9.4	69.9	263.5	176.2	220.7	69.9	41.3	142.9	101.6	50.8	100.0	3/0
	65	RPB 65MM-C2 CR													
2 11/16		RPB 211-C2 CR													
2 3/4		RPB 212-C2 CR													
2 15/16		RPB 215-C2 CR	9630	29.3	3 1/8	11 3/4	8 1/16	9 11/16	3	1 3/4	6 3/8	4 1/2	2 1/4	4 23/32	3/4
3		RPB 300-C2 CR	42834	13.3	79.4	298.5	204.8	246.1	76.2	44.5	161.9	114.3	57.2	119.9	0,1
	70	RPB 70MM-C2 CR													
	75	RPB 75MM-C2 CR													
3 3/16		RPB 303-C2 CR													
3 1/4		RPB 304-C2 CR													
3 7/16		RPB 307-C2 CR													
3 1/2		RPB 308-C2 CR	15320	56.0	3 3/4	13 3/4	10 1/8	11 1/4	4 1/8	2	7 3/4	5	2 1/2	5 7/16	7/8
	80	RPB 80MM-C2 CR	68143	25.4	95.3	349.3	257.2	285.8	104.8	52.4	196.9	127.0	63.5	138.1	
	85	RPB 85MM-C2 CR													
	90	RPB 90MM-C2 CR													
	95	RPB 95MM-C2 CR													

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

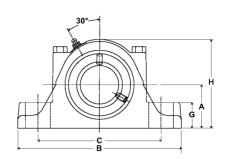
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

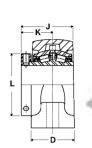
RPB-CR Series Mounted Tapered Roller Bearings

Rolling Elements: Tapered Roller

Housing: Fluoropolymer Coated Cast

Iron Two Bolt Pillow Block


Self Alignment: +/- 3 Degrees


Lock: Setscrew, Single Lock Collar

Seal: Single Lip Contact

Temperature: -20° to 220° F

Grease: Sealmaster GoldPlex-FG

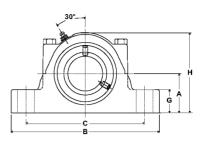
RPBA-CR Series Two-Bolt Base Pillow Blocks - Single Lock Collar

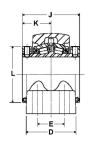
Bore		Chandard Cool	Basic	Approx.					Dimension	s inch/mm	1				100
Diame inch	ter mm	Standard Seal Part No.	Dynamic Rating Ib/N	Wt. Ib/kg	4	B	Min.	Max.	D	G	H	J.	K	¥	Boil Size
1 3/16		RPBA 103-C2 CR	2975	4.8	1 1/2	6 1/4	4 9/16	4 15/16	1 7/8	7/8	3 1/8	2 3/8	1 3/8	2 1/4	1/2
1 1/4		RPBA 104-C2 CR	13233	2.2	38.1	158.8	115.9	125.4	47.6	22.2	79.4	60.3	34.9	57.2	1/2
1 3/8		RPBA 106-C2 CR	4760	7.7	1 7/8	7 1/4	5 5/16	5 15/16	2 1/16	1 1/8	3 13/16	2 17/32	1 1/2	2 5/8	1/2
1 7/16		RPBA 107-C2 CR	21172	3.5	47.6	184.2	134.9	150.8	52.4	28.6	96.8	64.3	38.1	66.7	172
1 1/2		RPBA 108-C2 CR	0440	40.0	0.450	7.04	5040	0.740	0.540		4.040	0.07/00		0.7/0	
1 5/8		RPBA 110-C2 CR	6140 27311	10.9 4.9	2 1/8 54.0	7 3/4 196.9	5 9/16 141.3	6 7/16 163.5	2 5/16 58.7	1 1/4 31.8	4 3/8 111.1	2 27/32 72.2	1 11/16 42.9	2 7/8 73.0	1/2
1 11/16		RPBA 111-C2 CR													
1 3/4		RPBA 112-C2 CR													
1 15/16		RPBA 115-C2 CR	0070	40.0	0.4/4	0.7/0	0.540	7.040	0.7/40		4.5.00	0.04/04	104		
2		RPBA 200-C2 CR	8070 35895	13.2 6.0	2 1/4 57.2	8 7/8 225.4	6 5/16 160.3	7 3/16 182.6	2 7/16 61.9	1 1/4 31.8	4 5/8 117.5	2 61/64 75.0	1 3/4 44.5	3 1/4 82.6	5/8
	45	RPBA 45MM-C2 CR													
	50	RPBA 50MM-C2 CR													
2 3/16		RPBA 203-C2 CR	8570	15.7	2 1/2	9 5/8	6 11/16	7 15/16	2 9/16	1 7/16	5 1/8	3 1/8	1 7/8	3 5/8	5/8
	55	RPBA 55MM-C2 CR	38119	7.1	63.5	244.5	169.9	201.6	65.1	36.5	130.2	79.4	47.6	92.1	3/0
2 1/4		RPBA 204-C2 CR													
2 7/16		RPBA 207-C2 CR		00.7	0.044	40.00	0.45440		0.04	4.540	5.540	0.5440		0.4540	
2 1/2		RPBA 208-C2 CR	9030 40165	20.7 9.4	2 3/4 69.9	10 3/8 263.5	6 15/16 176.2	8 11/16 220.7	2 3/4 69.9	1 5/8 41.3	5 5/8 142.9	3 5/16 84.1	2 50.8	3 15/16 100.0	5/8
	60	RPBA 60MM-C2 CR													
	65	RPBA 65MM-C2 CR													
2 11/16		RPBA 211-C2 CR													
2 3/4		RPBA 212-C2 CR													
2 15/16		RPBA 215-C2 CR	9630	29.3	3 1/8	11 3/4	8 1/16	9 11/16	3	1 3/4	6 3/8	3 11/16	2 1/4	4 23/32	3/4
3		RPBA 300-C2 CR	42834	13.3	79.4	298.5	204.8	246.1	76.2	44.5	161.9	93.7	57.2	119.9	3/4
	70	RPBA 70MM-C2 CR													
	75	RPBA 75MM-C2 CR													
3 3/16		RPBA 303-C2 CR													
3 1/4		RPBA 304-C2 CR													
3 7/16		RPBA 307-C2 CR													
3 1/2		RPBA 308-C2 CR	15320	56	3 3/4	13 3/4	10 1/8	11 1/4	4 1/8	2	7 3/4	4 3/16	2 1/2	5 7/16	7/8
	80	RPBA 80MM-C2 CR	68143	25.4	95.3	349.3	257.2	285.8	104.8	50.8	196.9	106.4	63.5	138.1	170
	85	RPBA 85MM-C2 CR													
	90	RPBA 90MM-C2 CR													
	95	RPBA 95MM-C2 CR													

Rolling Elements: Tapered Roller

> Housing: Fluoropolymer Coated Cast

> > Iron Four Bolt Pillow Block


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Double Lock Collar

Seal: Single Lip Contact

-20° to 220° F Temperature:

> Sealmaster GoldPlex-FG Grease:

RPB-CR Series Four-Bolt Base Pillow Blocks

Bor		Ct 1 - 1 C - 1 D - 1	Basic	Approx.					Dime	nsions ind	ch/mm					E04
Diame inch	eter mm	Standard Seal Part No.	Dynamic Rating Ib/N	Wt. lb/kg	A	8	Min.	Max.	D	E	G	18		K	L	Bolt Size
2 1/4		RPB 204-C4 CR														
2 7/16		RPB 207-C4 CR				40.00	7.04			4.7/0	1.50	- F (0	.			
2 1/2		RPB 208-C4 CR	9030 40165	22.4 10.2	2 3/4 69.9	10 3/8 263.5	7 3/4 196.9	8 3/4 222.3	3 1/2 88.9	1 7/8 47.6	1 5/8 41.3	5 5/8 142.9	4 101.6	2 50.8	3 15/16 100.0	5/8
	60	RPB 60MM-C4 CR							""	''''						
2	65	RPB 65MM-C4 CR														
2 11/16		RPB 211-C4 CR														
2 3/4		RPB 212-C4 CR														
2 15/16		RPB 215-C4 CR	9630	31.5	3 1/8	11 3/4	8 3/4	10	3 3/4	2 1/8	1 3/4	6 3/8	4 1/2	2 1/4	4 23/32	5/8
3		RPB 300-C4 CR	42834	14.3	79.4	298.5	222.3	254.0	95.3	54.0	44.5	161.9	114.3	57.2	119.9	3/0
	70	RPB 70MM-C4 CR														
	75	RPB 75MM-C4 CR														
3 3/16		RPB 303-C4 CR														
3 1/4		RPB 304-C4 CR														
3 7/16		RPB 307-C4 CR														
3 1/2		RPB 308-C4 CR	15320	59.6	3 3/4	13 3/4	10 9/16	11 1/2	4 1/2	2 3/8	2 1/16	7 3/4	5	2 1/2	5 7/16	5/8
	80	RPB 80MM-C4 CR	68143	27.0	95.3	349.3	268.3	292.1	114.3	60.3	52.4	196.9	127.0	63.5	138.1	3/0
	85	RPB 85MM-C4 CR														
	90	RPB 90MM-C4 CR														
	95	RPB 95MM-C4 CR														
3 15/16		RPB 315-C4 CR														
4		RPB 400-C4 CR	20980	76.9	4 1/4	15 1/4	11	13	4 1/2	2 1/4	2 7/16	8 5/8	6 1/4	3 1/8	5 15/16	3/4
	100	RPB 100MM-C4 CR	93319	34.9	108.0	387.4	279.4	330.2	114.3	57.2	61.9	219.1	158.8	79.4	150.8	0, 1
	105	RPB 105MM-C4 CR														
4 7/16		RPB 407-C4 CR														
4 1/2		RPB 408-C4 CR	25750	95.6	4 3/4	16 1/2	11 3/4	13 7/8	4 5/8	2 1/2	2 3/4	9 5/8	6 3/4	3 3/8	6 1/2	3/4
	110	RPB 110MM-C4 CR	114536	43.4	120.7	419.1	298.5	352.4	117.5	63.5	69.9	244.5	171.5	85.7	165.1	
	115	RPB 115MM-C4 CR														
4 15/16		RPB 415-C4 CR														
5		RPB 500-C4 CR	35520	143.6	5 1/2	18 1/2	13 1/2	15 7/8	5 1/8	2 3/4	3 1/8	11	7 1/4	3 5/8	7 5/16	7/8
	120	RPB 120MM-C4 CR	157993	65.1	139.7	469.9	342.9	403.2	130.2	69.9	79.4	279.4	184.2	92.1	185.7	,,,,
	125	RPB 125MM-C4 CR														

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

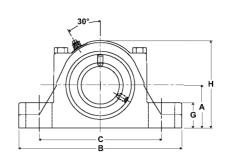
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

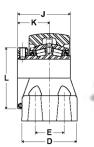
RPB-CR Series Mounted Tapered Roller Bearings **SEALM**

Rolling Elements: Tapered Roller

Housing: Fluoropolymer Coated Cast

Iron Four Bolt Pillow Block


Self Alignment: +/- 3 Degrees


Lock: Setscrew, Single Lock Collar

Seal: Single Lip Contact

Temperature: -20° to 220° F

Grease: Sealmaster GoldPlex-FG

RPBA-CR Series Four-Bolt Base Pillow Blocks - Single Lock Collar

Bor	re		Basic	Approx.					Dimer	nsions inc	:h/mm			_		was:
Diame	eter	Standard Seal Part No.	Dynamic Rating	Wi Ib/kg	(A)	8			D	£	G	#	J	ĸ	N.	Bolt Size
inch	mm	DDD 1 001 01 0D	lb/N	ID/KG	1887	220	Min.	Max.	2001	1000	. 1000	1000	7,532	. 11/2/2	//ce	. 2022/4
2 1/4		RPBA 204-C4 CR														
2 7/16		RPBA 207-C4 CR	9030	22.4	2 3/4	10 3/8	7 3/4	8 3/4	3 1/2	1 7/8	1 5/8	5 5/8	3 5/16	2	3 15/16	
2 1/2		RPBA 208-C4 CR	40165	10.2	69.9	263.5	196.9	222.3	88.9	47.6	41.3	142.9	84.1	50.8	100.0	5/8
	60	RPBA 60MM-C4 CR														
	65	RPBA 65MM-C4 CR														
2 11/16		RPBA 211-C4 CR														
2 3/4		RPBA 212-C4 CR														
2 15/16		RPBA 215-C4 CR	9630	31.5	3 1/8	11 3/4	8 3/4	10	3 3/4	2 1/8	1 3/4	6 3/8	3 11/16	2 1/2	4 23/32	3/4
3		RPBA 300-C4 CR	42834	14.3	79.4	298.5	222.3	254.0	95.3	54.0	44.5	161.9	93.7	63.5	119.9	
	70	RPBA 70MM-C4 CR														
	75	RPBA 75MM-C4 CR														
3 3/16		RPBA 303-C4 CR														
3 1/4		RPBA 304-C4 CR														
3 7/16		RPBA 307-C4 CR														
3 1/2		RPBA 308-C4 CR	15320	59.8	3 3/4	13 3/4	10 9/16	11 1/2	4 1/2	2 3/8	2 1/16	7 3/4	4 3/16	2 1/2	5 7/16	7/0
	80	RPBA 80MM-C4 CR	68143	27.1	95.3	349.3	268.3	292.1	114.3	60.3	52.4	196.9	106.4	63.5	138.1	7/8
	85	RPBA 85MM-C4 CR														
	90	RPBA 90MM-C4 CR														
	95	RPBA 95MM-C4 CR														
3 15/16		RPBA 315-C4 CR														
4		RPBA 400-C4 CR	20980	76.9	4 1/4	 15 1/4	11	13	4 1/2	2 1/4	2 7/16	8 5/8	5 1/4	3 1/8	5 15/16	
	100	RPBA 100MM-C4 CR	93319	34.9	108.0	387.4	279.4	330.2	114.3	57.2	61.9	219.1	133.4	79.4	150.8	5/8
	105	RPBA 105MM-C4 CR														
4 7/16		RPBA 407-C4 CR														
4 1/2		RPBA 408-C4 CR	25750	95.6	4 3/4	16 1/2	11 3/4	13 7/8	4 5/8	2 1/2	2 7/8	9 5/8	5 1/2	3 3/8	6 1/2	
	110	RPBA 110MM-C4 CR	114536	43.4	120.7	419.1	298.5	352.4	117.5	63.5	73.0	244.5	139.7	85.7	165.1	3/4
	115	RPBA 115MM-C4 CR														
4 15/16		RPBA 415-C4 CR														
5		RPBA 500-C4 CR	35520	143.6	5 1/2	18 1/2	13 1/2	15 7/8	5 1/8	2 3/4	3 1/8	11	6 13/64	3 5/8	7 5/16	
	120	RPBA 120MM-C4 CR	157993	65.1	139.7	469.9	342.9	403.2	130.2	69.9	79.4	279.4	157.6	92.1	185.7	7/8
	125	RPBA 125MM-C4 CR														

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

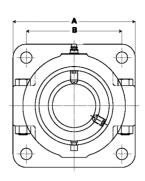
 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

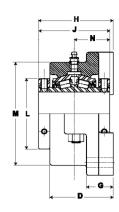
SEALMASTER® RPB-CR Series Mounted Tapered Roller Bearings

Rolling Elements: Tapered Roller

> Housing: Fluoropolymer Coated Cast

> > Iron Four Bolt Flange


Self Alignment: +/- 3 Degrees


> Lock: Setscrew, Double Lock Collar

Single Lip Contact Seal:

Temperature: -20° to 220° F

> Sealmaster GoldPlex-FG Grease:

RFB-CR Series Four-Bolt Flange Units

Bore Dia	meter		Basic	Approx.					Dimensior	ns inch/mn	1				
inch	mm	Standard Seal Part No.	Dynamic Rating Ib/N	We white	Ā	В	8.C	0	G	H		15	M	N	Boll S-∓∎
1 3/16	3,000	RFB 103C CR	2975	6.0	4	2 7/8	4 1/16	2 5/16	1	2 13/16	2 25/32	2 1/4	3 1/4	1 25/64	3/8
1 1/4		RFB 104C CR	13233	2.7	101.6	73.0	103.2	58.7	25.4	71.4	70.6	57.2	82.6	35.3	0,0
1 3/8		RFB 106C CR RFB 107C CR	4760	8.1	4 5/8	3 1/2	4 61/64	2 9/16	1	3 1/16	3	2 5/8	3 3/4	1 1/2	1/2
	35	RFB 35MM-C CR	21172	3.7	117.5	88.9	125.8	65.1	25.4	77.8	76.2	66.7	95.3	38.1	,,_
1 1/2		RFB 108C CR													
1 5/8		RFB 110C CR	6140	12.3	5 3/8	4 1/8	5 53/64	2 15/16	1 3/16	3 1/2	3 3/8	2 7/8	4 1/2	1 11/16	1/2
1 11/16		RFB 111C CR	27311	5.6	136.5	104.8	148.0	74.6	30.2	88.9	85.7	73.0	114.3	42.9	1/2
	40	RFB 40MM-C CR													
1 3/4		RFB 112C CR													
1 15/16		RFB 115C CR	8070	14.5	5 5/8	4 3/8	6 3/16	3 1/16	1 3/16	3 5/8	3 1/2	3 1/4	4 3/4	1 3/4	
2		RFB 200C CR	35895	6.6	142.9	111.1	157.2	77.8	30.2	92.1	88.9	82.6	120.7	44.5	1/2
	45	RFB 45MM-C CR	33033	0.0	142.0	'''''	157.2	17.0	30.2	32.1	00.5	02.0	120.7	44.5	
	50	RFB 50MM-C CR													
2 3/16		RFB 203C CR	8570	19.0	6 1/4	4 7/8	6 57/64	3 1/4	1 3/8	3 7/8	3 3/4	3 5/8	5 1/4	1 7/8	5/8
	55	RFB 55MM-C CR	38119	8.6	158.8	123.8	175.0	82.6	34.9	98.4	95.3	92.1	133.4	47.6	3/6
2 1/4		RFB 204C CR													
2 7/16		RFB 207C CR			0.7/0	- 0/0	7.00/04		4.440			0.45/40	- n/4		
2 1/2		RFB 208C CR	9030	24.0	6 7/8	5 3/8	7 39/64	3 9/16	1 1/2	4 3/16	4	3 15/16	5 3/4	2	5/8
	60	RFB 60MM-C CR	40165	10.9	174.6	136.5	193.3	90.5	38.1	106.4	101.6	100.0	146.1	50.8	
	65	RFB 65MM-C CR													
2 11/16		RFB 211C CR													
2 3/4		RFB 212C CR													
2 15/16		RFB 215C CR	9630	33.4	7 3/4	6	8 31/64	3 15/16	1 5/8	4 11/16	4 1/2	4 3/4	6 1/2	2 1/4	0/4
3		RFB 300C CR	42834	15.1	196.9	152.4	215.5	100.0	41.3	119.1	114.3	120.7	165.1	57.2	3/4
	70	RFB 70MM-C CR													
	75	RFB 75MM-C CR													
3 3/16		RFB 303C CR													
3 1/4		RFB 304C CR													
3 7/16		RFB 307C CR													
3 1/2		RFB 308C CR	15320	57.4	9 1/4	7	9 29/32	4 1/2	1 7/8	5 1/4	5	5 7/16	8	2 1/2	0/4
	80	RFB 80MM-C CR	68143	26.0	235.0	177.8	251.6	114.3	47.6	133.4	127.0	138.1	203.2	63.5	3/4
	85	RFB 85MM-C CR													
	90	RFB 90MM-C CR													
	95	RFB 95MM-C CR													
3 15/16		RFB 315C CR													
4		RFB 400C CR	20980	81.8	10 1/4	7 3/4	10 61/64	5 5/8	2 1/8	6 1/2	6 1/4	6	8 7/8	3 1/8	7.0
	100	RFB 100MM-C CR	93319	37.1	260.4	196.9	278.2	142.9	54.0	165.1	158.8	152.4	225.4	79.4	7/8
	105	RFB 105MM-C CR													

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

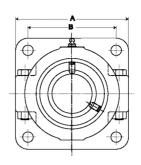
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

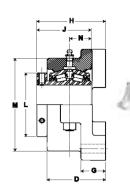
RPB-CR Series Mounted Tapered Roller Bearings **SEALN**

Rolling Elements: Tapered Roller

Housing: Fluoropolymer Coated Cast

Iron Four Bolt Flange Block


Self Alignment: +/- 3 Degrees


Lock: Setscrew, Single Lock Collar

Seal: Single Lip Contact

Temperature: -20° to 220° F

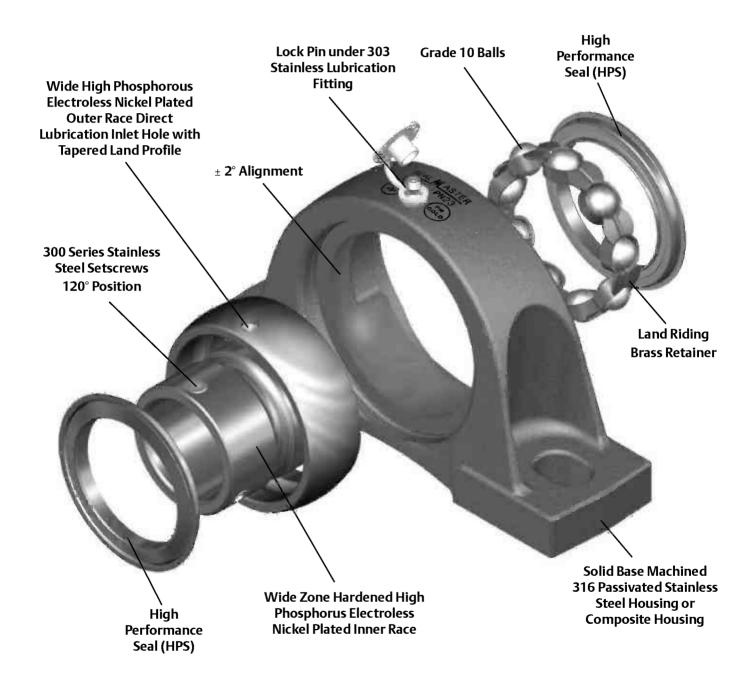
Grease: Sealmaster GoldPlex-FG

RFBA-CR Series Four-Bolt Flange Units - Single Lock Collar

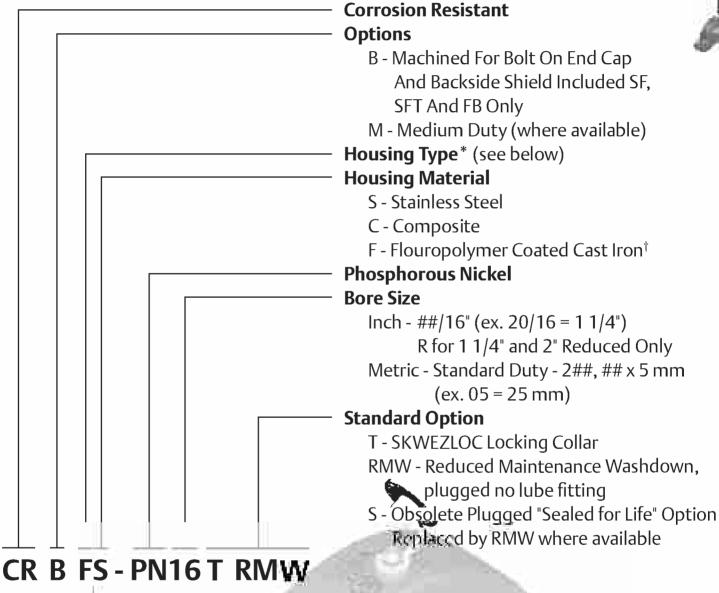
	•			Market St.					Dimensio	ns inch/mm	1				
inch	min	Standard Seal Part No.	1	-	A	В	B.C	D	G	H		E	М	Ñ	100
1 3/16		RFBA 103C CR	2975	6.0	4	2 7/8	4 1/16	2 5/16	1	2 13/16	2 1/4	2 1/4	3 1/4	55/64	3/8
1 1/4		RFBA 104C CR	13233	2.7	101.6	73.0	103.2	58.7	25.4	71.4	57.2	57.2	82.6	21.8	0,0
1 3/8		RFBA 106C CR	4760	8.1	4 5/8	3 1/2	4 61/64	2 9/16	1	3 1/16	2 17/32	2 5/8	3 3/4	1 1/32	1/2
1 7/16		RFBA 107C CR	21172	3.7	117.5	88.9	125.8	65.1	25.4	77.8	64.3	66.7	95.3	26.2	
1 1/2		RFBA 108C CR	6140	12.3	5 3/8	4 1/8	5 53/64	2 15/16	1 3/16	3 1/2	2 27/32	2 7/8	4 1/2	1 5/32	
1 5/8		RFBA 110C CR	27311	5.6	136.5	104.8	148.0	74.6	30.2	88.9	72.2	73.0	114.3	29.4	1/2
1 11/16		RFBA 111C CR													
1 3/4		RFBA 112C CR													
1 15/16		RFBA 115C CR	8070	14.5	5 5/8	4 3/8	6 3/16	3 1/16	1 3/16	3 5/8	2 61/64	3 1/4	4 3/4	1 13/64	4/0
2	45	RFBA 200C CR	35895	6.6	142.9	111.1	157.2	77.8	30.2	92.1	75.0	82.6	120.7	30.6	1/2
	45 50	RFBA 45MM-C CR RFBA 50MM-C CR													
2 3/16	50	RFBA 203C CR	8570	19.0	6 1/4	4 7/8	6 57/64	3 1/4	1 3/8	3 7/8	3 1/8	3 5/8	5 1/4	1 1/4	
2 3/10	55	RFBA 55MM-C CR	38119	8.6	158.8	123.8	175.0	82.6	34.9	98.4	79.4	92.1	133.4	31.8	5/8
2 1/4	00	RFBA 204C CR	00110	0.0	100.0	120.0	170.0	02.0	04.0	00.4	10.4	02.1	100.4	01.0	
2 7/16		RFBA 207C CR													
2 1/2		RFBA 208C CR	9030	24.0	6 7/8	5 3/8	7 39/64	3 9/16	1 1/2	4 3/16	3 5/16	3 15/16	5 3/4	1 5/16	5/8
- "-	60	RFBA 60MM-C CR	40165	10.9	174.6	136.5	193.3	90.5	38.1	106.4	84.1	100.0	146.1	33.3	0.0
	65	RFBA 65MM-C CR													
2 11/16		RFBA 211C CR													
2 3/4		RFBA 212C CR													
2 15/16		RFBA 215C CR	9630	33.4	7 3/4	6	8 31/64	3 15/16	1 5/8	4 11/16	3 11/16	4 3/4	6 1/2	1 7/16	
3		RFBA 300C CR	42834	15.1	196.9	152.4	215.5	100.0	41.3	119.1	93.7	120.7	165.1	36.5	3/4
	70	RFBA 70MM-C CR													
	75	RFBA 75MM-C CR													
3 3/16		RFBA 303C CR													
3 1/4		RFBA 304C CR													
3 7/16		RFBA 307C CR													
3 1/2		RFBA 308C CR	15320	57.4	9 1/4	7	9 29/32	4 1/2	17/8	5 1/4	4 3/16	5 7/16	8	1 11/16	3/4
	80	RFBA 80MM-C CR	68143	26.0	235.0	177.8	251.6	114.3	47.6	133.4	106.4	138.1	203.2	42.9	5/4
	85	RFBA 85MM-C CR													
	90	RFBA 90MM-C CR													
	95	RFBA 95MM-C CR													
3 15/16		RFBA 315C CR													
4		RFBA 400C CR	20980	81.8	10 1/4	7 3/4	10 61/64	5 5/8	2 1/8	6 1/2	5 1/4	6	8 7/8	2 1/8	7/8
	100	RFBA 100MM-C CR	93319	37.1	260.4	196.9	278.2	142.9	54.0	165.1	133.4	152.4	225.4	54.0	
	105	RFBA 105MM-C CR													

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.


For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Bearing Selection Page K-3 Nomenclature Aid Page K-20 Features & Benefits Page K-21 Technical Engineering Page K-75


Sealmaster PN Gold Mounted Ball Bearings

Sealmaster PN Gold mounted bearings feature high phosphorus, electroless nickel coated steel insert with patented seal technology available in either setscrew or SKWEZLOC™ concentric locking collar, within a variety of 316 stainless casting high strength composite flouropolymer coated cast iron housing configurations. The high performance triple lip seal is the latest innovation of over 10 patents on sealing technology. The combination of stainless flingers and FKM lip materials provide a strong contaminant resistance and GoldPlex FG (USDA H1) food grade grease loss. Specially engineered for industries with corrosive wash down environments such as food and beverage, pharmaceuticals and chemical processing. PN Gold mounted ball bearings provide outstanding performance in demanding corrosive environments.

Sealmaster PN Gold Nomenclature

Housing Type*

P - Pillow Block

FT - Z Bolt Flange

← 4 Bolt Flange

FB - Flange Bracket

18 - Japped Base

PL - Low Base Pillow Block

FC Flange Cartridge:

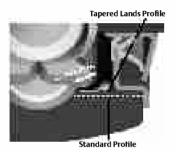
VI - Wide Slot take Up

EHB - Hanger Bearing

All housing styles are not available in all main drug.

^{**} Metric bore units are 'soft metric' - lube fi - rg 1 - r - rd 1 - rd † For more information on flouropolymer s + the trial

Features and Benefits


Bearing Races

The inner and outer ring of the Sealmaster PN Gold are a high phosphorous electroless nickel plated 52100 steel for exceptional corrosion resistance.

Wide Outer Race

Sealmaster has the industry's widest outer race. The high phosphorous, electroless nickel outer race is 20 to 30% wider than industry standard outer races. This feature results in increased grease capacity, improved sealing options and increases the surface area for absorption of shock load.

The outer race has a Tapered Land profile. The outer land surface in a conventional bearing is parallel to the axis of the inner ring. The Tapered Lands surface is tapered in a radial direction toward the bearing race. This subtle yet crucial design change ensures that lubricant will be easily redirected back to the raceway. With improved bearing lubricant circulation comes significantly longer bearing service life. This improved circulation and service life comes without any reductions in bearing radial or thrust capacities.

Note: The illustration to the left is an exaggerated figure to demonstrate the difference between standard vs. Tapered Lands.

For bearings that are maintained and relubricated on a regular basis, there is no significant difference in expected service life.

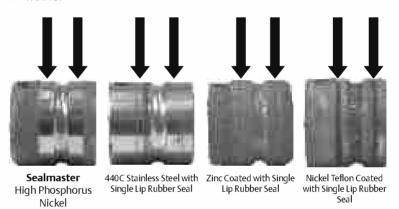
Multiple Locking Methods

Setscrew Locking

300 series stainless steel 120° spaced, balanced three point contact minimizes inner ring distortion vibration, reduces noise, and improves reliability.

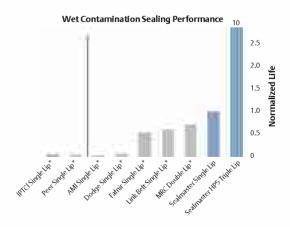
Skwezloc® Concentric Locking Collar

SKWEZLOC is a concentric collar clamp design that results in near-perfect concentricity of the shaft to bearing bore and maintains near perfect ball path roundness, while reducing fretting corrosion. This design eliminates the shaft damage of setscrew locking, and minimizes bearing induced vibration for smoother quieter operation. The collar is fluoropolymer coated with an Endurion* coated TORX head cap screw that outlasts stripping 12 times longer than hex head cap screws.

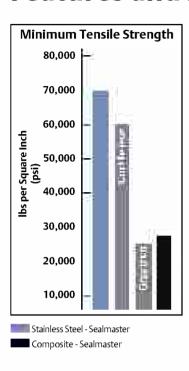

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Endurion; OMNOVA Solutions Inc. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

High Performance Seal (HPS)

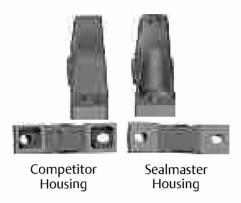
The triple lip contact seal design provides multi-directional sealing to minimize contamination ingress and retain lubrication – standard on all units. The 304 stainless steel shell and flingers protect from incoming contaminants and provide wear resistant contact surface to all three seal lips. The grease cavities in seal assembly are factory-filled with HI Food Grade lubricant prior to shipment for additional contaminant resistance.

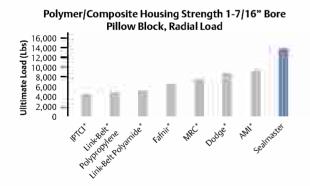

The illustrations below show the relative performance of seals in a wet contamination test as well as the test itself. Complete bearings with seals are sprayed with a 5% salt solution at 100°F. The bearings operate continuously at 500 RPM for 3 hours and idle for 1 hour. The cyclical condition test is complete after 480 hours.

The graphic below illustrates the relative performance of rubber contact seals in a slurry contamination test. The bearing is submerged halfway into a sand, salt and water mixture (as shown in illustration). The bearing rotates while a separate motor stirs the mixture. The test is stopped when the slurry mixture leaks past the seal.



Simulation of Slurry Contamination Test


^{*} The following trade names, trademarks and/or registered trademarks that follow are used in this material by Emerson for comparison purposes only, are NOT owned or controlled by Emerson and are believed to be owned by the following parties: AMI: Asahi Tec Corp. of japan; Dodge: Baldor Electric Company; Fafnir: Timken US Corporation; IPTCI: Paul E. Robbey Company; Link Belt: Rexnord Industries, Inc.; MRC: SKF USA Inc.; Peer: Peer Bearing Company. Emerson cannot and does not represent or warrant the accuracy of this information.


Stainless Steel Housing

High quality solid base designed investment cast passivated 316 stainless steel casting providing the highest amount corrosion resistance currently available for stainless steel housings. The investment cast process yields a smooth, easy to clean surface. The solid construction with machined base was designed for minimal gaps with no fillings.

Composite Housing

High strength composite with reinforced stainless steel bolt ferrules for high load capacity and increased strength around the bolt holes. The solid construction with machined base was designed for minimal gaps with no fillings.

^{*}Note: Trade names and trademarks can be found on page K-32

Specialized Food Grade Lubrication

The Sealmaster PN Gold bearings are factory filled with Sealmaster GoldPlex-FG (Food Grade) grease (USDA H1 approved) which is suitable for mounted bearing lubrication where incidental contact with food products may occur in any application where clean, routine lubrication is required. For more information on Sealmaster GoldPlex-FG see page L-6.

Lock Pin and Dimple

The Sealmaster exclusive locking pin and dimple system provides a direct lubricant into the bearing cavity & ball path instead of around a lubrication groove, prevents outer ring rotation (sometimes referred to as "creep"), and allows $\pm 2^\circ$ static misalignment of the bearing insert

Zone Hardening Inner Race

Sealmaster incorporates a unique heat treat process that hardens the inner race only where it is needed...under the ball path. The high phosphorous electroless nickel plated 52100 steel, zone hardened inner race results improved lock reliability as a result of less distortion at setscrew location and improved thread conformity resulting in improved clamping and resistance to setscrew back-out.

Land Riding Retainer

The Sealmaster unique land riding metal retainer design provides superior pocket clearance that allows for 360° grease circulation around the rolling elements resulting in better retained and utilized lubrication. The land riding design of the retainer minimizes wear on both Ball and retainer, while maximizing stability, which is especially important in applications involving vibration, shock loading or high operating speeds.

Accessories

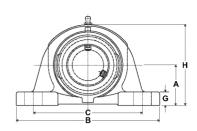
Optional accessories are available and can be found in the Accessories section starting on page L-1.

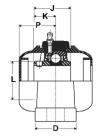
SEALMASTER® PN Gold Mounted Ball Bearings

Duty: Standard

Housing: 316 Passivated Stainless Steel

Pillow Block


Self-Alignment: +/- 2 Degrees


Lock: Setscrew

Seal: HPS

Temperature: -20° to 220°F

Grease: Sealmaster GoldPlex-FG

CRPS-PN Series Pillow Block Setscrew Locking

1		1 Jenes		BOAC				Citii		moneio	ns inch/r	nm							
Bo Diam		Part No	Bearing Insert	Demante	200	100	C	N.	1988	2000	2222	1000	0.00	87	7780 I	Bolt	Unit Wt	Open	Closed
inch	mm	00000000	No	Flatteria Haffi	٨	8	Min.	Max.	D	G	H	12)	K	L.	12.	Size	lb/kg	Gap	Сар
3/4	-	CRPS-PN12	PN-12	2611	1 5/16	5	3 3/8	4 1/8	1 1/2	1/2	2 9/16	1 7/32	23/32	1 3/16	1 41/64	3/8	1.90	ECO-12	ECC-12
-	20	CRPS-PN204	PN-204	11614	33.3	127.0	85.7	104.8	38.1	12.7	65.1	31.0	18.3	30.2	41.7	370	.86	200 12	200 12
1	-	CRPS-PN16	PN-16	2801	1 7/16	5 1/2	3 3/4	4 1/2	1 1/2	1/2	2 13/16	1 3/8	13/16	1 3/8	1 47/64	3/8	1.57	ECO-16	ECC-16
-	25	CRPS-PN205	PN-205	12459	36.5	139.7	95.3	114.3	38.1	12.7	71.4	34.9	20.6	34.9	44.1		.71		
1 3/16	-	CRPS-PN19	PN-19															ECO-19	
1 1/4	-	CRPS-PN20R	PN-20R	4381 19488	1 11/16 42.9	6 1/2 165.1	4 7/16 112.7	5 1/16 128.6	1 7/8 47.6	9/16 14.3	3 3/8 85.7	1 1/2 38.1	7/8 22.2	1 19/32 40.5	1 51/64 45.6	1/2	3.80 1.72	ECO-20R	ECC-19
-	30	CRPS-PN206	PN-206															ECO-19	
1 1/4	-	CRPS-PN20	PN-20															ECO-20	
1 3/8	-	CRPS-PN22	PN-22	5782	1 7/8	l	4 11/16	5 5/16	1 7/8	5/8	3 3/4	1 11/16	1	1 55/64	1 59/64	1/2	4.50		ECC-23
1 7/16	-	CRPS-PN23	PN-23	25720	47.6	166.7	119.1	134.9	47.6	15.9	95.3	42.9	25.4	47.2	48.8		2.04	ECO-23	
-	35	CRPS-PN207	PN-207																
1 1/2	-	CRPS-PN24	PN-24	7340	1 15/16	7 1/4	4 7/8	5 7/8	2 1/8	11/16	3 15/16	1 15/16	1 3/16	2 1/16	2 7/64	1/2	5.70	ECO-24	ECC-24
-	40	CRPS-PN208	PN-208	32650	49.2	184.2	123.8	149.2	54.0	17.5	100.0	49.2	30.2	52.4	53.6		2.59		
1 11/16	-	CRPS-PN27	PN-27	7004	0.4/0	7.40	5.740	0.4.40	0.470	11.110			4 0/40	0.40/04	0.4/0		0.50	ECO-27	
1 3/4	-	CRPS-PN28	PN-28	7901 35145	2 1/8 54.0	7 1/2 190.5	5 7/16 138.1	6 1/16 154.0	2 1/8 54.0	11/16 17.5	4 1/4 108.0	1 15/16 49.2	1 3/16 30.2	2 19/64 58.3	2 1/8 54.0	1/2	6.50 2.95	N/A	ECC-27
-	45	CRPS-PN209	PN-209															N/A	
1 15/16	-	CRPS-PN31	PN-31	7000	0.474	0.4/0		0.4/0	0.010	0/4	4040	0.4/00	4 0/00	0.45/00	0.5/0.4		7.00	ECO-31	
2	-	CRPS-PN32R	PN-32R	7889 35092	2 1/4 57.2	8 1/8 206.4	6 152.4	6 1/2 165.1	2 3/8 60.3	3/4 19.1	4 9/16 115.9	2 1/32 51.6	1 9/32 32.5	2 15/32 62.7	2 5/64 52.8	5/8	7.90 3.58	N/A	ECC-31
-	50	CRPS-PN210	PN-210															ECO-31	
2	-	CRPS-PN32	PN-32	0750		0.510	0.410	_	0.010		_		. 5110						
2 3/16	-	CRPS-PN35	PN-35	9752 43379	2 1/2 63.5	8 5/8 219.1	6 1/2 165.1	7 177.8	2 3/8 60.3	3/4 19.1	5 127.0	2 3/16 55.6	1 5/16 33.3	2 23/32 69.1	2 21/64 59.1	5/8	9.70 4.40	ECO-35	ECC-35
-	55	CRPS-PN211	PN-211																
2 3/8	-	CRPS-PN38	PN-38	44700	0.015	0.415	0.715	7.5.6	0.01:	710			4 0 14 5	0.0016	0.0716		40.76		
2 7/16	-	CRPS-PN39	PN-39	11789 52440	2 3/4 69.9	9 1/2 241.3	6 7/8 174.6	7 5/8 193.7	2 3/4 69.9	7/8 22.2	5 9/16 141.3	2 9/16 65.1	1 9/16 39.7	2 63/64 75.8	2 37/64 65.5	5/8	13.70 6.21	ECO-39	ECC-35
-	60	CRPS-PN212	PN-212																

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

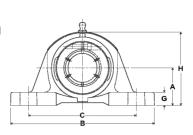
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

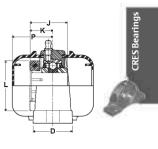
PN Gold Mounted Ball Bearings

Duty: Standard

Housing: 316 Passivated Stainless Steel

Pillow Block


Self-Alignment: +/- 2 Degrees


Lock: Skwezloc Locking Collar

Seal: HPS

Temperature: -20° to 220°F

Grease: Sealmaster GoldPlex-FG

CRPS-PN-T Series Pillow Block Skwezloc Locking Collar

Во			Bearing	Basic					Di	mensio	ns inch/n	nm					(in the second	1001010111	1
Diam inch	ESSTRES.	Part No.	Insert No.	Dynamic Rating	A	В	Min.	Max.	0	G	#	j.	×	L	P	Bolt Size	Unit Wt. lb/kg	Open Cap	Closed Cap
3/4	mm	CRPS-PN12T	PN-12T	Ib/N	1.5110	-			4.410	4.10	0.040	4.7/00	00/00	1.014	4 44 10 4		4.00		
_	20	CRPS-PN204T	PN-204T	2611 11614	1 5/16 33.3	5 127.0	3 3/8 85.7	4 1/8 104.8	1 1/2 38.1	1/2 12.7	2 9/16 65.1	1 7/32 31.0	23/32 18.3	1 3/4 44.5	1 41/64 41.7	3/8	1.90 .86	ECO-12	ECC-12
1	_	CRPS-PN16T	PN-16T	0004	4 7/40	5.4/0	0.014	4.4/0	4.4/0	4/0	0.40/40	4.0/0	40/40	4.45/4.0	4 47/04		4.57		
_	25	CRPS-PN205T	PN-205T	2801 12459	1 7/16 36.5	5 1/2 139.7	3 3/4 95.3	4 1/2 114.3	1 1/2 38.1	1/2 12.7	2 13/16 71.4	1 3/8 34.9	13/16 20.6	1 15/16 49.2	1 47/64 44.1	3/8	1.57 .71	ECO-16	ECC-16
1 3/16	_	CRPS-PN19T	PN-19T															ECO-19	
1 1/4	_	CRPS-PN20RT	PN-20RT	4381	1 11/16	6 1/2	4 7/16	5 1/16	1 7/8	9/16	3 3/8	1 1/2	7/8	2 3/16	1 51/64	1/2	3.60	ECO-20R	ECC-19
_	30	CRPS-PN206T	PN-206T	19488	42.9	165.1	112.7	128.6	47.6	14.3	85.7	38.1	22.2	55.6	45.6		1.63	ECO-19	
	00	514 5 1 142551	1112001															200 10	
1 1/4	-	CRPS-PN20T	PN-20T	5782 25720	1 7/8 47.6	6 9/16 166.7	4 11/16 119.1	5 5/16 134.9	1 7/8 47.6	5/8 15.9	3 3/4 95.3	1 11/16 42.9	1 25.4	2 7/16 61.9	1 59/64 48.8	1/2	4.50 2.04	ECO-20	ECC-23
1 3/8	-	CRPS-PN22T	PN-22T																
1 7/16	-	CRPS-PN23T	PN-23T	5782 25720	1 7/8 47.6	6 9/16 166.7	4 11/16 119.1	5 5/16 134.9	1 7/8 47.6	5/8 15.9	3 3/4 95.3	1 11/16 42.9	1 25.4	2 9/16 65.1	1 59/64 48.8	1/2	4.50 2.04	ECO-23	ECC-23
-	35	CRPS-PN207T	PN-207T	20120	47.0	100.7	110.1	134.3	47.0	10.0	33.3	42.0	20.4	03.1	40.0		2.04		
1 1/2	-	CRPS-PN24T	PN-24T	7340	1 15/16	7 1/4	4 7/8	5 7/8	2 1/8	11/16	3 15/16	1 15/16	1 3/16	2 11/16	2 7/64		5.70		
-	40	CRPS-PN208T	PN-208T	32650	49.2	184.2	123.8	149.2	54.0	17.5	100.0	49.2	30.2	68.3	53.6	1/2	2.59	ECO-24	ECC-24
1 11/16	-	CRPS-PN27T	PN-27T															ECO-27	
1 3/4	-	CRPS-PN28T	PN-28T	7901 35145	2 1/8 54.0	7 1/2 190.5	5 7/16 138.1	6 1/16 154.0	2 1/8 54.0	11/16 17.5	4 1/4 108.0	1 15/16 49.2	1 3/16 30.2	2 15/16 74.6	2 1/8 54.0	1/2	6.50 2.95	N/A	ECC-27
-	45	CRPS-PN209T	PN-209T	33143	34.0	130.3	130.1	134.0	34.0	17.5	100.0	45.2	30.2	74.0	34.0		2.55	ECO-27	
1 15/16	-	CRPS-PN31T	PN-31T																
2	-	CRPS-PN32RT	PN-31RT	7889 35092	2 1/4 57.2	8 1/8 206.4	6 152.4	6 1/2 165.1	2 3/8 60.3	3/4 19.1	4 9/16 115.9	2 1/32 51.6	1 9/32 32.5	3 3/8 85.7	2 5/64 52.8	5/8	7.90 3.58	ECO-31	ECC-31
-	50	CRPS-PN210T	PN-210T	33092	37.2	200.4	132.4	103.1	00.5	13.1	110.9	31.0	32.3	65.7	32.0		3.30		
2	-	CRPS-PN32T	PN-32T	9752 43379	2 1/2 63.5	8 5/8 219.1	6 1/2 165.1	7 177.8	2 3/8 60.3	3/4 19.1	5 127.0	2 3/16 55.6	1 5/16 33.3	3 1/2 88.9	2 21/64 59.1	5/8	9.70 4.40	ECO-35	ECC-35
2 3/16	-	CRPS-PN35T	PN-35T	9752	2 1/2	8 5/8	6 1/2	7	2 3/8	3/4	5	2 3/16	1 5/16	3 5/8	2 21/64		9.70		
-	55	CRPS-PN211T	PN-211T	43379	63.5	219.1	165.1	177.8	60.3	19.1	127.0	55.6	33.3	92.1	59.1	5/8	4.40	ECO-35	ECC-35
2 3/8	-	CRPS-PN38T	PN-38T																
2 7/16	-	CRPS-PN39T	PN-39T	11789 52440	2 3/4 69.9	9 1/2 241.3	6 7/8 174.6	7 5/8 193.7	2 3/4 69.9	7/8 22.2	5 9/16 141.3	2 9/16 65.1	1 9/16 39.7	4 1/8 104.8	2 37/64 65.5	5/8	13.70 6.21	ECO-39	ECC-39
-	60	CRPS-PN212T	PN-212T	3 2 770	00.0	271.0	114.0	100.7	00.0	LL.L	171.5	00.1	55.1	104.0	00.0		0.21		

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

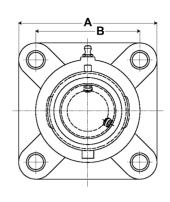
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

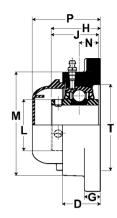
SEALMASTER• PN Gold Mounted Ball Bearings

Duty: Standard

Housing: 316 Passivated Stainless Steel

Four Bolt Flange


Self-Alignment: +/- 2 Degrees


Lock: Setscrew

Seal: HPS

Temperature: -20° to 220°F

Grease: Sealmaster GoldPlex-FG

CRFS-PN Series 4 Bolt Flange Setscrew Locking

Bor	_		- T+04100	Basic					Din	nension	s înch/ı	mm								5
Diame		Part No.	Bearing Insert No.	Dynamic Rating	L _K	78	D	G	543		Ø.	(10)	N	P	(F)	Bolt	Unit Wt lb/kg	Open Cap	Closed Cap	Backside Shield
inch	mm			lb/N	inex.	II VII I	0.440	OBI	161	CVIII		(1997).	_0000	000	2	Size	53823	0000		C=V(2)
3/4	-	CRFS-PN12	PN-12	2611 11614	3 3/8 85.7	2 1/2 63.5	31/32 24.6	7/16 11.1	1 9/32 32.5	1 7/32 31.0	1 3/16 30.2	2 1/2 63.5	1/2 12.7	2 19/64 58.3	2 50.8	3/8	1.50 .68	ECO-12	ECC-12	4BSS-12
-	20	CRFS-PN204	PN-204	11014	00.1	00.0	24.0		02.0	01.0	30.Z	00.0	12.7	00.0	00.0		.00			
1	-	CRFS-PN16	PN-16	2801	3 3/4	2 3/4	1 5/64	17/32	1 7/16	1 3/8		2 23/32	l	2 7/16	2 3/8	7/16	2.10	ECO-16	ECC-16	4BSS-16
-	25	CRFS-PN205	PN-205	12459	95.3	69.9	27.4	13.5	36.5	34.9	34.9	69.1	14.3	61.9	60.3		.95			
1 3/16	-	CRFS-PN19	PN-19															ECO-19		4BSS-19
1 1/4	-	CRFS-PN20R	PN-20R	4381 19488	4 1/4 108.0	3 1/4 82.6	1 7/32 31.0	17/32 13.5	1 9/16 39.7	1 1/2 38.1	1 19/32 40.5	3 7/32 81.8	5/8 15.9	2 37/64 65.5	2 7/8 73.0	7/16	3.05 1.38	ECO-20R	ECC-19	4BSS-20R
-	30	CRFS-PN206	PN-206															ECO-19		4BSS-19
1 1/4	1	CRFS-PN20	PN-20															ECO-20		4BSS-20
1 3/8	-	CRFS-PN22	PN-22	5782	4 5/8	3 5/8	1 11/32	9/16	1 3/4	1 11/16	1 55/64	3 3/4	11/16	2 3/4	3 5/16	1/2	4.10		ECC-23	4BSS-22
1 7/16	-	CRFS-PN23	PN-23	25720	117.5	92.1	34.1	14.3	44.5	42.9	47.2	95.3	17.5	69.9	84.1	1/2	1.86	ECO-23	ECC-23	4BSS-23
-	35	CRFS-PN207	PN-207																	4BSS-22
1 1/2	-	CRFS-PN24	PN-24	7340	5 1/8	4	1 1/2	9/16	2 1/64	1 15/16	2 1/16	4 5/64	3/4	3 1/64	3 1/2	1/0	5.50	ECO-24	ECC-24	4BSS-24
-	40	CRFS-PN208	PN-208	32650	130.2	101.6	38.1	14.3	51.2	49.2	52.4	103.6	19.1	76.6	88.9	1/2	2.49	ECO-24	ECC-24	N/A
1 11/16	-	CRFS-PN27	PN-27															ECO-27		4BSS-27
1 3/4	-	CRFS-PN28	PN-28	7901 35145	5 3/8 136.5	4 1/8 104.8	1 9/16 39.7	9/16 14.3	2 3/64 52.0	1 15/16 49.2	2 19/64 58.3	4 21/64 109.9	3/4 19.1	3 3/64 77.4	3 7/8 98.4	9/16	5.70 2.59	21/2	ECC-27	21/2
-	45	CRFS-PN209	PN-209															N/A		N/A
1 15/16	-	CRFS-PN31	PN-31																	4BSS-31
2	-	CRFS-PN32R	PN-32R	7889 35092	5 5/8 142.9	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 5/32 54.8	2 1/32 51.6	2 15/32 62.7	4 35/64 115.5	3/4 19.1	3 3/64	4 101.6	9/16	6.70 3.04	ECO-31	ECC-31	N/A
-	50	CRFS-PN210	PN-210																	4BSS-31
2	-	CRFS-PN32	PN-32																	4BSS-32
2 3/16	-	CRFS-PN35	PN-35	9752 43379	6 3/8 161.9	5 1/8 130.2	1 3/4 44.5	13/16 20.6	2 5/16 58.7	2 3/16 55.6	2 23/32 69.1	5 3/16 131.8	7/8 22.2	3 13/32 86.5	4 1/4 108.0	5/8	10.50 4.76	ECO-35	ECC-35	
-	55	CRFS-PN211	PN-211					20.0		55.5							5			4BSS-35
2 3/8	-	CRFS-PN38	PN-38																	4BSS-38
2 7/16	-	CRFS-PN39	PN-39	11789 52440	6 7/8 174.6	5 5/8 142.9	1 15/16 49.2	13/16 20.6	2 11/16 68.3	2 9/16 65.1	2 63/64 75.8	5 7/16 138.1	1 25.4	3 51/64 96.4	5 127.0	5/8	12.00 5.44	ECO-39	ECC-39	4BSS-39
-	60	CRFS-PN212	PN-212	32440	174.0	172.0	70.2	20.0	00.0	00.1	7 5.0	130,1	20.4	30.4	121.0		0.77			4BSS-38

Metric dimensions for reference only

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

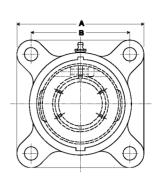
 $For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) \, 626-2093.$

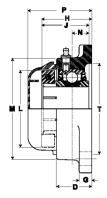
PN Gold Mounted Ball Bearings **SEAL**

Duty: Standard

Housing: 316 Passivated Stainless Steel

Four Bolt Flange


Self-Alignment: +/- 2 Degrees


Lock: Skwezloc Locking Collar

Seal: HPS

Temperature: -20° to 220°F

Grease: Sealmaster GoldPlex-FG

CRFS-PN-T Series 4 Bolt Flange Skwezloc Locking Collar

															<u> </u>					
Bor		1	Bearing	Basic					Din	nension	s inch/	mm					Unit Wt.	Орин	Closed	Backside
Diame Inch	mm	Part No.	Insert No.	Dynamic Rating Ib/N	٨	8	D	G	H		L	M	N	P	Ť	Bolt Size	lb/kg	Cap	Сар	Shield
3/4	-	CRFS-PN12T	PN-12T	2611	3 3/8	2 1/2	31/32	7/16	1 9/32	1 7/32	1 3/4	2 1/2	1/2	2 9/32	2	0.10	1.50	500.40	500.40	1000 10
-	20	CRFS-PN204T	PN-204T	11614	85.7	63.5	24.6	11.1	32.5	31.0	44.5	63.5	12.7	57.9	50.8	3/8	.68	ECO-12	ECC-12	4BSS-12
1	1	CRFS-PN16T	PN-16T	2801	3 3/4	2 3/4	1 5/64	17/32	1 7/16	1 3/8	1 15/16	2 45/64	9/16	2 7/16	2 21/64	7/16	2.10	ECO-16	ECC-16	4BSS-16
1	25	CRFS-PN205T	PN-205T	12459	95.3	69.9	27.4	13.5	36.5	34.9	49.2	68.7	14.3	61.9	59.1	7710	.95	LCO-10	LCC-10	4033-10
1 3/16	-	CRFS-PN19T	PN-19T															ECO-19		4BSS-19
1 1/4	-	CRFS-PN20RT	PN-20RT	4381 19488	4 1/4 108.0	3 1/4 82.6	1 7/32 31.0	17/32 13.5	1 9/16 39.7	1 1/2 38.1	2 3/16 55.6	3 13/64 81.4	5/8 15.9	2 9/16 65.1	2 7/8 73.0	7/16	3.05 1.38	ECO-20R	ECC-19	4BSS-20R
-	30	CRFS-PN206T	PN-206T															ECO-19		4BSS-19
1 1/4	-	CRFS-PN20T	PN-20T	5782 25720	4 5/8 117.5	3 5/8 92.1	1 11/32 34.1	9/16 14.3	1 3/4 44.5	1 11/16 42.9	2 7/16 61.9	3 3/4 95.3	11/16 17.5	2 3/4 69.9	3 5/16 84.1	1/2	4.10 1.86	ECO-20	ECC-23	4BSS-20
1 3/8	-	CRFS-PN22T	PN-22T																	4BSS-22
1 7/16	-	CRFS-PN23T	PN-23T	5782 25720	4 5/8 117.5	3 5/8 92.1	1 11/32 34.1	9/16 14.3	1 3/4 44.5	1 11/16 42.9	2 9/16 65.1	3 3/4 95.3	11/16 17.5	2 1/4 57.2	3 5/16 84.1	1/2	4.00 1.81	ECO-23	ECC-23	4BSS-23
ı	35	CRFS-PN207T	PN-207T																	4BSS-22
1 1/2	-	CRFS-PN24T	PN-24T	7340	5 1/8	4	1 1/2	9/16	2 1/64	1 15/16	2 11/16	4 5/64	3/4	3 1/64	3 1/2	1/2	5.50	ECO-24	ECC-24	4BSS-24
-	40	CRFS-PN208T	PN-208T	32650	130.2	101.6	38.1	14.3	51.2	49.2	68.3	103.6	19.1	76.6	88.9	1/2	2.49	L00-24	L00-24	N/A
1 11/16	-	CRFS-PN27T	PN-27T															ECO-27		4BSS-27
1 3/4	-	CRFS-PN28T	PN-28T	7901 35145	5 3/8 136.5	4 1/8 104.8	1 9/16 39.7	9/16 14.3	2 3/64 52.0	1 15/16 49.2	2 15/16 74.6	4 21/64 109.9	3/4 19.1	3 3/64 77.4	3 7/8 98.4	9/16	5.70 2.59	N/A	ECC-27	N/A
-	45	CRFS-PN209T	PN-209T															1071		1071
1 15/16	-	CRFS-PN31T	PN-31T																	4BSS-31
2	-	CRFS-PN32RT	PN-32RT	7889 35092	5 5/8 142.9	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 5/32 54.8	2 1/32 51.6	3 3/8 85.7	4 35/64 115.5	3/4 19.1	3 3/64 77.4	4 101.6	9/16	6.70 3.04	ECO-31	ECC-31	N/A
-	50	CRFS-PN210T	PN-210T																	4BSS-31
2	-	CRFS-PN32T	PN-32T	9752 43379	6 3/8 161.9	5 1/8 130.2	1 3/4 44.5	13/16 20.6	2 5/16 58.7	2 3/16 55.6	3 1/2 88.9	5 3/16 131.8	7/8 22.2	3 13/32 86.5	4 1/4 108.0	5/8	10.50 4.76	ECO-32	ECC-35	4BSS-32
2 3/16	-	CRFS-PN35T	PN-35T	9752	6 3/8	5 1/8	1 3/4	13/16	2 5/16	2 3/16	3 5/8	5 3/16	7/8	3 13/32	4 1/4	E /0	10.50	FCO 25	FCC 25	4DCC 25
	55	CRFS-PN211T	PN-211T	43379	161.9	130.2	44.5	20.6	58.7	55.6	92.1	131.8	22.2	86.5	108.0	5/8	4.76	ECO-35	ECC-35	4BSS-35
2 3/8	1	CRFS-PN38T	PN-38T															ECO-38	ECC-38	4BSS-38
2 7/16	-	CRFS-PN39T	PN-39T	11789 52440	6 7/8 174.6	5 5/8 142.9	1 15/16 49.2	13/16 20.6	2 11/16 68.3	2 9/16 65.1	4 1/8 104.8	5 7/16 138.1	1 25.4	3 51/64 96.4	5 127.0	5/8	11.80 5.35	ECO-39	ECC-39	4BSS-39
-	60	CRFS-PN212T	PN-212T															ECO-38	ECC-38	4BSS-38

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

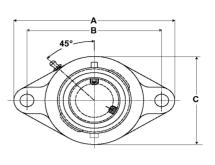
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

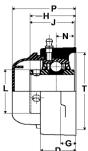
SEALMASTER® PN Gold Mounted Ball Bearings

Duty: Standard

Housing: 316 Passivated Stainless Steel

Two Bolt Flange


Self-Alignment: +/- 2 Degrees


> Lock: Setscrew

Seal: HPS

-20° to 220°F Temperature:

> Sealmaster GoldPlex-FG Grease:

CRFTS-PN Series 2 Bolt Flange Setscrew Locking

·				Basic		_			77.0	nension	-	mm					-			
Bore Diame		Part No.	Bearing Insert	Dynamic Rating	-	098	554	17631	2561	5555	9.8	1011	207	40	(94)	Bolt	⊎nit Wt	Орински	Closed	Backside Shielo
inch	mm	L.	No.	Ib/N	. ^	В	c	D	6	*	3	·	*	P		Size	lb/kg			Jilleta
3/4	-	CRFTS-PN12	PN-12	2611	4 13/32		2 3/8	31/32	7/16		1 7/32			2 19/64	2	3/8	1.20	ECO-12	ECC-12	2BSS-12
-	20	CRFTS-PN204	PN-204	11614	111.9	89.7	60.3	24.6	11.1	32.5	31.0	30.2	12.7	58.3	50.8	0,0	.54	200 12	200 .2	2500 12
1	-	CRFTS-PN16	PN-16	2801	4 7/8	3 57/64	2 3/4	1 5/64	17/32	1 7/16	1 3/8	1 3/8	9/16	2 7/16	2 3/8	7/16	1.60	ECO-16	ECC-16	2BSS-16
-	25	CRFTS-PN205	PN-205	12459	123.8	98.8	69.9	27.4	13.5	36.5	34.9	34.9	14.3	61.9	60.3	7710	.73	200-10	LCC-10	2033-10
1 3/16	1	CRFTS-PN19	PN-19															ECO-19		2BSS-19
1 1/4	1	CRFTS-PN20R	PN-20R	4381 19488	5 9/16 141.3	4 19/32 116.7	3 1/4 82.6	1 7/32 31.0	17/32 13.5	1 9/16 39.7	1 1/2 38.1	1 19/32 40.5	5/8 15.9	2 9/16 65.1	2 7/8 73.0	7/16	2.36 1.07	ECO-20R	ECC-19	2BSS-20R
-	30	CRFTS-PN206	PN-206															ECO-19		2BSS-19
1 1/4	1	CRFTS-PN20	PN-20															ECO-20		2BSS-20
1 3/8	1	CRFTS-PN22	PN-22	5782	6 1/8	5 1/8	3 3/4	1 11/32	9/16	1 3/4	1 11/16	1 55/64	11/16	2 3/4	3 5/16	1/2	3.20		ECC-23	2BSS-22
1 7/16	1	CRFTS-PN23	PN-23	25720	155.6	130.2	95.3	34.1	14.3	44.5	42.9	47.2	17.5	69.9	84.1	1/2	1.45	ECO-23	ECC-23	2BSS-23
-	35	CRFTS-PN207	PN-207																	N/A
1 1/2	1	CRFTS-PN24	PN-24	7340	6 3/4	5 21/32	4 1/8	1 1/2	9/16	2 1/64	1 15/16	2 1/16	3/4	3 1/64	3 1/2	1/2	4.50	ECO-24	ECC-24	2BSS-24
1.575	40	CRFTS-PN208	PN-208	32650	171.5	143.7	104.8	38.1	14.3	51.2	49.2	52.4	19.1	76.6	88.9	1/2	2.04	E00-24	E00-24	2BSS-208
1 11/16	1	CRFTS-PN27	PN-27															ECO-27		2BSS-27
1 3/4	-	CRFTS-PN28	PN-28	7901 35145	I	5 27/32 148.4		1 9/16 39.7	9/16 14.3	2 3/64 52.0	1 15/16 49.2	2 19/64 58.3	3/4 19.1	3 3/64 77.4	3 3/8 85.7	9/16	5.00 2.27	N/A	ECC-27	N/A
-	45	CRFTS-PN209	PN-209															IN/A		INA
1 15/16	1	CRFTS-PN31	PN-31																	2BSS-31
2	-	CRFTS-PN32R	PN-32R	7889 35092		6 3/16 157.2		1 9/16 39.7	9/16 14.3	2 5/32 54.8	2 1/32 51.6	2 15/32 62.7	3/4 19.1	3 1/16 77.8	4 101.6	9/16	5.40 2.45	ECO-31	ECC-31	N/A
-	50	CRFTS-PN210	PN-210																	IVA
2	-	CRFTS-PN32	PN-32																	N/A
2 3/16	-	CRFTS-PN35	PN-35	9752 43379	8 1/2 215.9	7 1/4 184.2	5 1/4 133.4	1 3/4 44.5	13/16 20.6	2 5/16 58.7	2 3/16 55.6	2 23/32 69.1	7/8 22.2	3 13/32 86.5	4 1/4 108.0	5/8	8.40 3.81	ECO-35	ECC-35	2BSS-35
-	55	CRFTS-PN211	PN-211																	2000-00

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

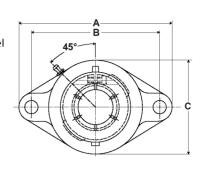
 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

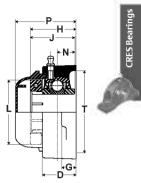
PN Gold Mounted Ball Bearings **SEAL**

Duty: Standard

Housing: 316 Passivated Stainless Steel

Two Bolt Flange


Self-Alignment: +/- 2 Degrees


Lock: Skwezloc Locking Collar

Seal: HPS

Temperature: -20° to 220°F

Grease: Sealmaster GoldPlex-FG

CRFTS-PN-T Series 2 Bolt Flange Skwezloc Locking Collar

Bor			Bearing	Basic					Dim	ensions	s inch/n	nm					10000	-		
Diamo	eter mm	Part No.	Insert No.	Dynamic Rating Ib/N	Ā	n	c	D	G	*	9	L	×	P	Ü	Bolt Size	Unit Wt. Ib/kg	Cap	Closed	Backside Shield
3/4	-	CRFTS-PN12T	PN-12T	2611	4 13/32	3 17/32	2 3/8	31/32	7/16	1 9/32	2 1/2	1 3/4	1/2	2 17/64	2		1.20			
-	20	CRFTS-PN204T	PN-204T	11614	111.9	89.7	60.3	24.6	11.1	32.5	63.5	44.5	12.7	57.5	50.8	3/8	.54	ECO-12	ECC-12	2BSS-12
1	-	CRFTS-PN16T	PN-16T	2801	4 7/8	3 57/64	2 3/4	1 5/64	17/32	1 7/16	2 3/4	1 15/16	9/16	27/16	23/16		1.60			
-	25	CRFTS-PN205T	PN-205T	12459	123.8	98.8	69.9	27.4	13.5	36.5	69.9	49.2	14.3	61.9	55.6	7/16	.73	ECO-16	ECC-16	2BSS-16
1 3/16	-	CRFTS-PN19T	PN-19T															ECO-19		2BSS-19
1 1/4	-	CRFTS-PN20RT	PN-20RT	4381 19488	5 9/16 141.3	4 19/32 116.7	3 1/4 82.6	1 7/32 31.0	17/32 13.5	1 9/16 39.7	3 1/4 82.6	2 3/16 55.6	5/8 15.9	2 37/64 65.5	2 9/16 65.1	7/16	2.20 1.00	ECO-20R	ECC-19	2BSS-20R
-	30	CRFTS-PN206T	PN-206T															ECO-19		2BSS-19
1 1/4	-	CRFTS-PN20T	PN-20T	5782 25720	6 1/8 155.6	5 1/8 130.2	3 3/4 95.3	1 11/32 34.1	9/16 14.3	1 3/4 44.5	3 3/4 95.3	2 7/16 61.9	11/16 17.5	2 25/32 70.6	2 15/16 74.6	1/2	3.20 1.45	ECO-20	ECC-23	2BSS-20
1 3/8	-	CRFTS-PN22T	PN-22T																	2BSS-22
1 7/16	-	CRFTS-PN23T	PN-23T	5782 25720	6 1/8 155.6	5 1/8 130.2	3 3/4 95.3	1 11/32 34.1	9/16 14.3	1 3/4 44.5	3 3/4 95.3	2 9/16 65.1	11/16 17.5	2 25/32 70.6	2 15/16 74.6	1/2	3.40 1.54	ECO-23	ECC-23	2BSS-23
-	35	CRFTS-PN207T	PN-207T																	2BSS-22
1 1/2	-	CRFTS-PN24T	PN-24T	7340	6 3/4	5 21/32	4 1/8	1 1/2	9/16	2 1/64	4 1/8	2 11/16	3/4	3 3/64	3 19/64	4.10	4.50	F60.04	ECC 04	2BSS-24
-	40	CRFTS-PN208T	PN-208T	32650	171.5	143.7	104.8	38.1	14.3	51.2	104.8	68.3	19.1	77.4	83.7	1/2	2.04	ECO-24	ECC-24	2BSS-208
1 11/16	-	CRFTS-PN27T	PN-27T															ECO-27		2BSS-27
1 3/4	1	CRFTS-PN28T	PN-28T	7901 35145	7 1/16 179.4	5 27/32 148.4	4 3/8 111.1	1 9/16 39.7	9/16 14.3	2 3/64 52.0	4 3/8 111.1	2 15/16 74.6	3/4 19.1	3 5/64 78.2	3 7/8 98.4	9/16	5.00 2.27	N/A	ECC-27	N/A
_	45	CRFTS-PN209T	PN-209T															IWA		IN/A
1 15/16	1	CRFTS-PN31T	PN-31T																	2BSS-31
2	-	CRFTS-PN32RT	PN-32RT	7889 35092	7 7/16 188.9	6 3/16 157.2	4 9/16 115.9	1 9/16 39.7	9/16 14.3	2 5/32 54.8	4 9/16 115.9	3 3/8 85.7	3/4 19.1	3 5/64 78.2	4 101.6	9/16	6.70 3.04	ECO-31	ECC-31	N/A
-	50	CRFTS-PN210T	PN-210T																	IN/A
2	1	CRFTS-PN32T	PN-32T	9752 43379	8 1/2 215.9	7 1/4 184.2	5 1/4 133.4	1 3/4 44.5	13/16 20.6	2 5/16 58.7	5 1/4 133.4	3 1/2 88.9	7/8 22.2	3 27/64 86.9	4 1/4 108.0	5/8	8.40 3.81	ECO-35	ECC-35	N/A
2 3/16	1	CRFTS-PN35T	PN-35T	9752	8 1/2	7 1/4	5 1/4	1 3/4	13/16	2 5/16	5 1/4	3 5/8	7/8	3 27/64	4 1/4	E10	8.40	ECO-35	ECC-35	2BSS-35
-	55	CRFTS-PN211T	PN-211T	43379	215.9	184.2	133.4	44.5	20.6	58.7	133.4	92.1	22.2	86.9	108.0	5/8	3.81	1200-35	LCC-35	2000-00

Metric dimensions for reference only.

 $Not all \ parts \ are \ available \ from \ stock. \ Please \ contact \ customer \ service \ for \ availability \ (800) \ 626-2120.$

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Bearing Selection Page K-3 Nomenclature Aid Page K-30 Features & Benefits Page K-31 Technical Engineering Page K-75

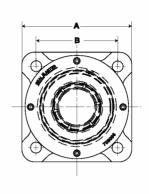
SEALMASTER® PN Gold Mounted Ball Bearings

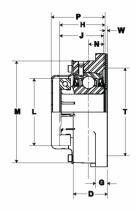
Duty: Standard

Housing: 316 Passivated Stainless Steel

Four Bolt Reduced Flange

Self-Alignment: +/- 2 Degrees


> Lock: Skwezloc Locking Collar


Seal:

Temperature: -20° to 220°F

> Sealmaster GoldPlex-FG Grease:

Relube: Reduced Maintenance

CRBFRS-PN-T RMW Series 4 Bolt Reduced Flange Skwezloc Locking Collar

		5-210 -	a Described	Dial						7	time not time						WAS STEEDEN	vices was the
Dair Tess	60A) Gara	rothw	erani Na	Raileng Hall	W	39	٥		T (M)	80	55 (WITH	Z	(E)	(4)	#00) #400	M.,	City 100	especial.
830		ORD 1825 1132 1 1989	±same	Ú														se was
137		· PUTS ALS TSM//	06050	37-Y 3773 I	100	i ii Neir	ALT.	34-1 44-1	9.25 C.S 154	The state of the s	566-1771-27 11" 15-25	9.3493 9745	7 JF 000	SACH FOR	175	11.35 1-34	20224-0033	o sersos.
±	4	oran sanuaci nice	come	1														544605

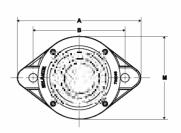
^{*} Standard option is as shown with Bolt On Cap, SKWEZLOC Locking Collar, Reduced Maintenance Option, with Back Side Shield

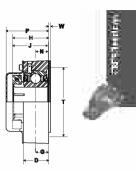
PN Gold Mounted Ball Bearings **SEALA**

Duty: Standard

Housing: 316 Passivated Stainless Steel

Two Bolt Reduced Flange


Self-Alignment: +/- 2 Degrees


Lock: Skwezloc Locking Collar

Seal: HPS

Temperature: -20° to 220°F

Grease: Sealmaster GoldPlex-FG **Relube:** Reduced Maintenance

CRBFTRS-PN-T RMW Series 2 Bolt Reduced Flange Skwezloc Locking Collar

300	- Headas	574	L.					1177	TIT	Will					-Aleman	112000	mores	
Darenter The god	Trof low? Resert He	maata:	100	18	111	24	1000	76	36	70410		11/30	\$10.00	Solt Office		***	Cet	=1444
RAILE	CH 14-82 FOR 15-88	1004				T										i		Dan KS
1.28	SENTENCE OF TENEVERY	2730	Albert Street	+ 15.Y + 6=		Part of the last o	2130	24571 448		1286 1658	±4 200	D.Cherselle	549 (%) 189 (5)	Company of the Compan	dent f≠	W.C.	002/05	a.ba /s
	ade les especialists estats	id.																1-a111148

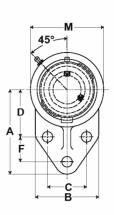
^{*} Standard option is as shown with Bolt On Cap, SKWEZLOC Locking Collar, Reduced Maintenance Option, with Back Side Shield.

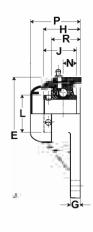
SEALMASTER_{® PN Gold Mounted Ball Bearings</sup>}

Duty: Standard

Housing: 316 Passivated Stainless Steel

Flange Bracket


Self-Alignment: +/- 2 Degrees


> Lock: Setscrew

Seal: HPS

Temperature: -20° to 220°F

> Grease: Sealmaster GoldPlex-FG

CREBS-PN Series Flange Bracket Setscrew Locking

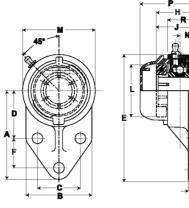
Ramy Observation	Total Control	5.7					1 100	71.0	1117	1111									and the second	
Obeveise nett om	Partly Spain Partly Spain Say	Tielays 1		(6)	9311	(II)	117	60) i	7,6	300		% 0	823	9348		97				94
246	55712 Page - \$449	39/11	*	23.8	1 62	11.00	4	(100g)	1018	Line	1 632	tisern.	116	72	24	1.132	222	2.344	27714	# للد
- 19	CLAMPASS, JPSS4	mytel	W.E.	963	(21)	6429	13542	241	CD:	20	35	583	26	Ħ	13	W.		(A)	375	3000
1 25	CRFBS-PN16 PN-16 CRFBS-PN205 PN-205	2801 12459	3 3/8 85.7	21/2 63.5	1 5/8 41.3	1 13/16 46.0	43/4 120.7	1 1/8 28.6	3/8 9.5	1 1/2 38.1	1 3/8 34.9	1 3/8 34.9	2 3/4 69.9	9/16 14.3	2 5/32 54.8	1 9/64 29.0	3/8	2 10 95	ECO-16	ECC-16
	saths ama distra	-15/1	Jan 2 4 1	. 4. 1. 75.1.7	4.7.7		KWO LL	47.57						o de Partir	1.744	2401			mar s	
1 (4) -	COOTS-TEST FRANC	Aim. 2322	2.2YI 95.1	73M 884	1 %: 17 %	THE PERSON NAMED IN	27.4 126.2	4.4 74.7	92	117	550° 33°1	116.2 28.2		3% 53	355	15 27	ea.	1.0° 24	r da+nes	noc-us
30	COMESSALL 111		803)	0.010250	GRAIN?	200	Amilys.	KO/OTH-	Carr	2001	274411	NVIII-	2.50	5.34	174015			1.0138	Emm	
1 1/4	CRFBS-PN20 PN-20																		ECO-20	
1 3/8	CRFBS-PN22 PN-22	5782	41/4	3 1/4	2	23/8	6 1/8	1 1/4	1/2	1 7/8	1 11/16	1 55/64	3 3/4	11/16	2 25/32	1	1/2	3 10	ECO-22	ECC-23
1 7/16	CRFBS-PN23 PN-23	25720	108.0	82.6	50.8	60.3	155.6	31.8	12.7	47.6	42.9	47.2	95.3	17.5	70.6	37.3	1/2	1 41	ECO-23	ECC-23
35	CRFBS-PN207 PN-207																		ECO-22	

PN Gold Mounted Ball Bearings **SEALA**

Duty: Standard

Housing: 316 Passivated Stainless Steel

Flange Bracket


Self-Alignment: +/- 2 Degrees

Lock: Skwezloc Locking Collar

Seal: HPS

Temperature: -20° to 220°F

Grease: Sealmaster GoldPlex-FG

CRFBS-PN-T Series Flange Bracket Skwezloc Locking Collar

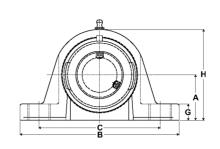
	730		Panden	C-U	Ш,					3)	777	-	HITTOO						den	2000-0-2118-0	NORTH STRAIG
	erio Talan	7.7	Parents of the last of the las		20		m.	W.	117		200	26	•	10		17.	117	0.25	(621).	arn Fall Falls	Court Cod	Court top
7241		6875674.41	=Var	150	Ye.	11/4/4	e reg	1###0	1180	1	5(16)	+3%	123700	TI ON	F 880	1786		200	SID	(086)	S 16	2344
-17	8	annewer.	Lessex	994	10%	16	96)	high, il	399.1	227	69	na.	110	+100	[863]	(E)	*AF	326	770	14.	3 10	200
1		CRFBS-PN16T	PN-16T	2801	3 3/8	2 1/2	1 5/8	1 13/16	1 1/2	1 1/8	3/8	4 3/4	23/4	115/16	19/64	1 3/8	9/16	2 13/32	3/8	210	ECO-16	ECC-16
	25	CRFBS-PN205T	PN-205T	12459	85.7	63.5	41.3	46.0	38.1	28.6	9.5	120.7	69.9	49.2	29.0	34.9	14.3	61.1	3/0	95	LCO-10	200-10
1.145	11.	CHIE-TA-91	Net	ersexto.	Name to	1000		weetings.	or 200		10004		olonia	Cath	7.760as	Bracket		A-15,000			DECOMP.	
118		27 May (2007)	18/2(1)	KVI NAM	#276 9865	0.274 1824	- 10 - 10	iM Sp.)	417 417	91 ×	95 90	1,798 1502	3 JA 244	2.57 W 19500	1982 924	109	13	2 1992 1413	1%	134 138	53(20)	23329
	4	TERM FROM	14204											2 2 5000							270. Apr.	
1 1/4		CRFBS-PN20T	PN-20T	5782 25720	4 1/4 108.0			2 3/8 60.3	17/8 47.6			61/8 155.6		27/16 61.9	115/32 37.3	1 11/16 42.9	11/16 17.5	2 25/32 70.6	1/2	3 10 1 41	ECO-20	ECC-23
126.7		t a ndroll	Time.																		SHE	
1 **		CHES-WAS		27-25 25-20	Married Street, Street, St. Co.	3 .3 506	1000	204 223	172 47 h	4 A 31 k	32 107	#16. 192.5	25.1 25.1	2 C 6	17.5 17.5	4 / 6 428	# 2.6 #.8	52853 766	10	3/40 6-44	DECOR	200,-29
	24	atect (cc)	0.880																	=	3,002	

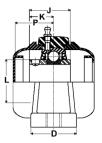
SEALMASTER• PN Gold Mounted Ball Bearings

Duty: Standard

Housing: High Strength Composite

Pillow Block


Self-Alignment: +/- 2 Degrees


> Lock: Setscrew

Seal: HPS

Temperature: 0° to 150°F

> Grease: Sealmaster GoldPlex-FG

CRPC-PN Series Pillow Block Setscrew Locking

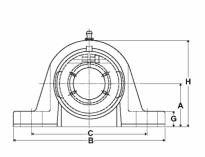
Во	re		Bearing	Basic					Din	nensions	s inch/m	m					Unit		
Diam inch		Part No.	Inser. No.	Dynamic Rating Ib/N	*	8	Min.	Max.	0	G	Н	300	18	L	P.	Bolt Size		Open Cap	Closed
3/4	1	CRPC-PN12	PN-12	2611	1 5/16	5	3 3/8	4 1/8	1 1/2	9/16	2 35/64	1 7/32	23/32	1 3/16	1 41/64	3/8	.80	ECO-12	ECC-12
1	20	CRPC-PN204	PN-204	11614	33.3	127.0	85.7	104.8	38.1	14.3	64.7	31.0	18.3	30.2	41.7	5/0	.36	ECO-12	E00-12
1	1	CRPC-PN16	PN-16	2801	1 7/16	5 1/2	3 3/4	4 1/2	1 1/2	9/16	2 13/16	1 3/8	13/16	1 3/8	1 47/64	3/8	.83	ECO-16	ECC-16
1	25	CRPC-PN205	PN-205	12459	36.5	139.7	95.3	114.3	38.1	14.3	71.4	34.9	20.6	34.9	44.1	50	.38	ECO-16	ECC-10
1 3/16	1	CRPC-PN19	PN-19															ECO-19	
1 1/4	-	CRPC-PN20R	PN-20R	4381 19488	1 11/16 42.9	6 1/2 165.1	4 7/16 112.7	5 1/16 128.6	1 7/8 47.6	11/16 17.5	3 21/64 84.5	1 1/2 38.1	7/8 22.2	1 19/32 40.5	1 51/64 45.6	1/2	1.35 .61	ECO-20R	ECC-19
-	30	CRPC-PN206	PN-206															ECO-19	
1 1/4	1	CRPC-PN20	PN-20															ECO-20	
1 3/8	ı	CRPC-PN22	PN-22	5782	1 7/8	6 9/16	4 11/16	5 5/16	1 7/8	11/16	3 3/4	1 11/16	1	1 55/64	1 59/64	1/2	2.03		ECC-23
1 7/16	-	CRPC-PN23	PN-23	25720	47.6	166.7	119.1	134.9	47.6	17.5	95.3	42.9	25.4	47.2	48.8	112	.92	ECO-23	E00-23
-	35	CRPC-PN207	PN-207																
1 1/2	-	CRPC-PN24	PN-24	7340	1 15/16	7 1/4	5 1/16	5 11/16	2 1/8	11/16	4 1/64	1 15/16	1 3/16	2 1/16	2 7/64	1/2	2.50	ECO-24	ECC-24
ı	40	CRPC-PN208	PN-208	32650	49.2	184.2	128.6	144.5	54.0	17.5	102.0	49.2	30.2	52.4	53.6	1/2	1.13	200-24	200-24

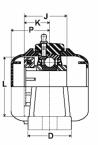
PN Gold Mounted Ball Bearings **SEALN**

Duty: Standard

Housing: High Strength Composite

Pillow Block


Self-Alignment: +/- 2 Degrees


Lock: Skwezloc Locking Collar

Seal: HPS

Temperature: 0° to 150°F

Grease: Sealmaster GoldPlex-FG

CRPC-PN-T Series Pillow Block Skwezloc Locking Collar

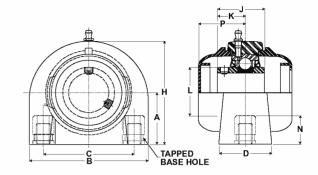
J. K.	Mar		Dagery				III mer		. 00	1001	11111	,					nalisana a		constituents.
3 Sec Inch	eler mm	(a till		Comments:		907H	W		3000	00	176	li.	2	90	300		onawi Mari		VIII
15		SPECIE ET	8440	100	2.0	- Teal	13.2	173	10110	w.s	V 2042 F	17.52	12784	1.1	91/24	18	30 Se	250-12	EXCOPAR.
	80	2390.24994	71 77 T	**	123	12:22	223	157	#	92	-47	W. C.	23	465	W.40	+*	30		- Andrews - Andrews
1	Ť.	CRPC-PN16T	PN-16T	2801	1 7/16	5 1/2	3 3/4	4 1/2	1 1/2	9/16	2 13/16	1 3/8	13/16	1 15/16	1 47/64	3/8	83	ECO-16	ECC-16
	25	CRPC-PN205T	PN-205T	12459	36.5	139.7	95.3	114.3	38.1	14.3	71.4	34.9	20.6	49.2	44.1	3,0	38	200-10	200-10
1 356		CECTAL III	2446		Ħ												5000	704	
10-1		container	PART	200 200	1.76.7	2 2 660	475.4 475.7	क्षेत्रको । विश्वकी	= 37 07 €	7.78 7.7	3757	311	7W	#15% #5%	3634 456	-	#34 70	70.00	PATE 1
92	33	SENSON WE	4E/9124															7000	
1 1/4		CRPC-PN20T	PN-20T	5782 25720	1 7/8 47.6	6 9/16 166.7	4 11/16 119.1	5 5/16 134.9	1 7/8 47.6	11/16 17.5	3 3/4 95.3	1 11/16 42.9	1 25.4	2 7/16 61.9	1 59/64 48.8	1/2	1 97 89	ECO-20	ECC-23
23	\exists	GRP11-76381	7422		10.000									2000000	150104		11.4%		
1.025		GM/9- E221	11427	5-762 85722	47.0	60-16 1867	= 1 2 1 3.	1 2/10 (2-12	4/8	17/18 17/3	234	1 17 g 42 9 d	254	2:294 -63 L	1M24 46 E	12:	1,22	20.042	uesau
1.5	22	210-146	(E) (E2)																
1 1/2		CRPC-PN24T	PN-24T	7340	1 15/16	7 1/4		5 11/16	2 1/8	11/16	4 1/64	1 15/16	1 3/16	2 11/16	2 7/64	1/2	2.50	ECO-24	ECC-24
10	40	CRPC-PN208T	PN-208T	32650	49.2	184.2	128.6	144.5	54.0	17.5	102.0	49.2	30.2	68.3	53.6	''-	1 13	20021	20021

SEALMASTER_{® PN Gold Mounted Ball Bearings</sup>}

Duty: Standard

Housing: High Strength Composite

Tapped Base


Self-Alignment: +/- 2 Degrees

> Lock: Setscrew

Seal: HPS

Temperature: 0° to 150°F

> Grease: Sealmaster GoldPlex-FG

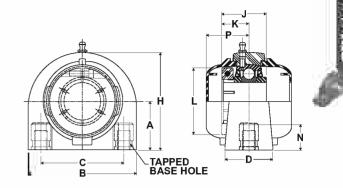
CRTBC-PN Series Tapped Base Pillow Block Setscrew Locking Collar

55.7	75	N. 2.10 P. W.	Партор	Santa Symmetri					Olivini)		i di ini	111 221				ana.	Belli III	204120000
Diam.	Armer Datu	******		Sympani Hosenia Teles	933	90	(0)	0.0	23	E(60))).	((t)		Ŧ0.,	3	機関で	Ki,	Coast VIII	Himmin Sep
10	-allica	2570363-1	SERVE)	78		21(4)	Î.	33.	19.4	1.752	20.10	1.5	2.3	1.473-	58 T	.55 22	nedect of	EDCOM
	-20	SPT'S PROV	28-37	00017	(00.56)	AV.=	11.4	×1	46.7	4.4	18.1	111	43	20	250	24		C. C. Service Co.
1	(3)	CRTBC-PN16	PN-16	2801	1 7/16	3	2	1 1/2	2 13/16	1 3/8	13/16	1 3/8	1/2	1 47/64	3/8-16	93	FCO 16	ECC-16
	25	CRTBC-PN205	PN-205	12459	36.5	76.2	50.8	38.1	71.4	34.9	20.6	34.9	12.7	44.1	3/0-10	_42	ECO-16	ECC-10
1 138	Ŧ	2570	14.4	34					Ť								tacer	
1-1	Œ,	STRUCK	#UME	102	1 16- -3.7	101	7	367 333	7-26) 16-7	2017	77) 22	1.87% 2.5	790 4.5	36	east.	375	F22305	106. 3
	36	CETTOTAN	74-366		36560	SPECIFIC	30130000		2529122	908000	V121		* /	3413000			1000 E	
1 1/4	94	CRTBC-PN20	PN-20	11													ECO-20	
1 3/8		CRTBC-PN22	PN-22	5782	1 7/8	4 1/4	3 1/4	1 7/8	3 3/4	1 11/16	1	1 55/64	3/4	1 59/64	1/2 13	2.27		ECC-23
1 7/16	13	CRTBC-PN23	PN-23	25720	47.6	108.0	82.6	47.6	95.3	42.9	25.4	47.2	19.1	48.8	1/2 13	1 03	ECO-23	ECC-23
	35	CRTBC-PN207	PN-207	41														
- 64	F	27 824225	119.04	MC.	1 -246	9337	4.00	75.9	2/ 296	-16-2	i lane	1460	174 6	353	2012	170	15050	S2541:
	4	Date State	7-514	12450	-9.3	10.1	AR.E.	F.A.	101	34.9	AB.T.	15.4	9:	15.6	155	26	F-5-4	0.12017/

Duty: Standard

Housing: High Strength Composite

Tapped Base


Self-Alignment: +/- 2 Degrees

> Lock: Skwezloc Locking Collar

Seal: HPS

Temperature: 0° to 150°F

> Sealmaster GoldPlex-FG Grease:

CRTBC-PN-T Series Tapped Base Pillow Block Skwezloc Locking Collar

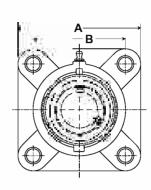
fich. Darretes	290000	Distance:	Hard	,	10 11			0.00	12015	101	10.7			0000	Overen.	(3-00)	ocišeni:
har on	N-11+	1100	Dyrmete Hefting/	300		##	000	933	10	OCH	10	ğ	10	123	Lite		(1C=1)
303	CHRISTIA	FE-137	201	10.4	10.08	i u	UL	12.27E	1534	25/32	1/2/4	14.	Altes	1890	J.	25000000000	H00.12
313	recognisari.	ERRORE		35.0	30	**	**	**	17	***	4	8	H(2)	1.00 411	李军	BASEN TO	ILL/COLD:
1	CRTBC-PN16T	PN-16T	2801	1 7/16	3	2	1 1/2	2 13/16	1 3/8	13/16	1 15/16	1/2	1 47/64	3/8-16	.93	ECO-16	ECC-16
25	CRTBC-PN205T	PN-205T	12459	36.5	76.2	50.8	38.1	71.4	34.9	20.6	49.2	12.7	44.1	3/0-10	42	ECO-16	ECC-16
295	CORRENAL	Physical														Y549	
die	ерте жирт	Property.	417	1 54 2 1	9.7	War.	165	30/2 682	53 38	32.7	36/4/ 58/2	24	1964 384	w 3 d	27	** O OFF	के देश जाते. जाते के स्वर्थ
12	ETTHE-PRODUCT	THAMP	1/2	-16.30m/s /				WETE		200000	****	100	3355			Moderate.	
1 1/4	CRTBC-PN20T	PN-20T	5782 25720	1 7/8 47.6	4 1/4 108.0	3 1/4 82.6	1 7/8 47.6	3 3/4 95.3	1 11/16 42.9	1 25.4	2 7/16 61.9	3/4 19.1	1 59/64 48.8	1/2 13	2.27 1 03	ECO-20	ECC-23
1990 E 6	Caucava.	16,454	CFTOTE						23.74								
/218	Court (SZ)	56-001	1/50 15/10	1 //e/ =====	130 t	2 3-4 22 8	75 468	Apple Up S	Here data	1164	2,970 88.	24	15-04 -48.5	95m	12 12	-100 A	600.00
- dr	C* 004/555; v	1-1-20															
1 1/2	CRTBC-PN24T	PN-24T	7340	1 15/16	4 5/8	3 1/2	1 7/8	3 15/16	1 15/16	1 3/16	2 11/16	3/4	2 7/64	1/2-13	2.77	ECO-24	ECC-24
40	CRTBC-PN208T	PN-208T	32650	49.2	117.5	88.9	47.6	100.0	49.2	30.2	68.3	19.1	53.6	1/2=13	1 26	ECO-24	E00-24

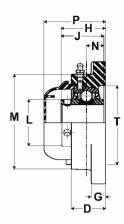
SEALMASTER_{® PN Gold Mounted Ball Bearings</sup>}

Duty: Standard

Housing: High Strength Composite

Four Bolt Flange


Self-Alignment: +/- 2 Degrees


> Lock: Setscrew

Seal: HPS

Temperature: 0° to 150°F

> Grease: Sealmaster GoldPlex-FG

CRFC-PN Series 4 Bolt Flange Setscrew Locking Collar

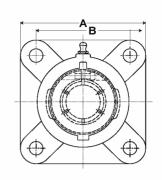
		900000000	See 1 188							200							New Y	255500	57(211-7)	CONTRACT OF
CL.	her	(Paul pag	100 100 100 100 100	Cerne t Heliev)(2	((0))	10.	305	E(0)))	(0)	28	(0)	9000	100			Viti	1111	Till Comp
ZHC		central t	2448	1001	l.v.	134	13/2	et in	9.4	1772	UNIN	278	12	27964	Ž.	NAME OF	φ.	L		Was and the
	85	2872 St 204	#E571	74	277	22%	TE.	24.6	24.9		36.1	#2Y	2.	=10	27.9	W78	Pa	Herbert Chin	REDUCE	ABSE I
1	Ħ	CRFC-PN16	PN-16	2801	51/64	2 3/4	17/32	1 5/64	1 7/16	1 3/8	1 3/8	2 21/32	9/16	2 23/64	2 3/16	7/16	99	FCO 16	ECC-16	4BSS-16
	25	CRFC-PN205	PN-205	12459	96.4	69.9	13.5	27.4	36.5	34.9	34.9	67.5	14.3	59.9	55.6	7710	45	ECO-16	ECC-10	4033-10
55		operate a	2444															E.Z. S		VEST 1
# X		STATE WAY	PH-HIP	-264 \$455	10.72 1002	5 (A) 35 (A)	170	1999 1883	36 C	70 1114	1363t 463	334 2.0	500 120	UESA UESA U	2356 954	₩.€	710	ranous.	nso 4	epital iga
3	33	STATE	16.777	34,000,00			1111111111			L DACASA	1225		473,		0.00		46.0	PAGE E		100-1
1 1/4		CRFC-PN20	PN-20															ECO-20		4BSS-20
1 3/8	\mathbb{H}	CRFC-PN22	PN-22	5782	4 53/64	3 5/8	9/16	1 11/32	1 3/4	1 11/16	1 55/64	3 21/32	11/16	2 43/64	2 15/16	1/2	2 21		ECC-23	4BSS-22
1 7/16	Ξ	CRFC-PN23	PN-23	25720	122.6	92.1	14.3	34.1	44.5	42.9	47.2	92.9	17.5	67.9	74.6	1/2	1 00	ECO-23	ECC-23	4BSS-23
	35	CRFC-PN207	PN-207																	N/A
1.2		white dolor	erkis-	290)	3 N	78	% :	70	2.553	339	Catalana.	1664	ан	2.45546	N SOF		875	COLOR I		Aboc 14
		21-11-1-200	61825	10000	350	309.3	47	267	部計	30.5	584	HIMEZ	78.4	274.W	537.	100	100	Terres -	0.000	474

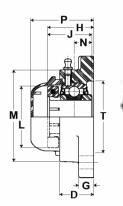
PN Gold Mounted Ball Bearings **SEALM**

Duty: Standard

Housing: High Strength Composite

Four Bolt Flange

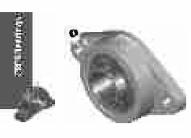

Self-Alignment: +/- 2 Degrees


Lock: Skwezloc Locking Collar

Seal: HPS

Temperature: 0° to 150°F

Grease: Sealmaster GoldPlex-FG



CRFC-PN T Series 4 Bolt Flange Skwezloc Locking Collar

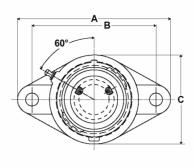
Chin									N 100 M	Hele;	111115									OTT INVESTIGATION
Cterr		(Cath	District (PA) (M)	Communic Forming 14.8	333	(C)	0.00%	m	900			BEC 18		(7)		2018 Maria	Long	2) 20)	272	Harmaton Historia
A4		and September	F9-72	18.1			-44	77	1222	6.52	199	2277		Marca			32		-	
	70	4835-15 M-T	man i	11/4	377E 1972	215 330	11	34. 34.	32.5	1137	盟	2.50	27	1000	177	127	78 36	3800/4	MOC/III	4686 G
1	-	CRFC-PN16T	PN-16T	2801	3 51/64	23/4	17/32	1 5/64	1 7/16	1 3/8	1 15/16	2 21/32	9/16	2 23/64	23/16		.99			
	25	CRFC-PN205T	PN-205T	12459	96.4	69.9	13.5	27.4		34.9	49.2	67.5	14.3	59.9	55.6	7/16	45	ECO-16	ECC-16	4BSS-16
3.6		erin e	04.7			Ħ												THE PE		74749
140		der septem	4,0,25	978 970	1102 1107	7.4* ****	Type df.	353 30.6	4.941	1 (2) 2011	1266 1006	SOM:	27 (58	917E	2246	40	423 36	*:#T	poe da	YTTYR
	54	corore and	THE THE	88000					LANGAIN.		10000		2.0	722	i pentu			rosset.		757540
1 1/4		CRFC-PN20T	PN-20T	5782 25720	4 53/64 122.6	3 5/8 92.1	9/16 14.3	1 11/32 34.1	1 3/4 1 44.5	11/16 42.9	2 7/16 61.9	3 21/32 92.9	11/16 17.5	2 43/64 67.9	215/16 74.6	1/2	2 21 1 00	ECO-20	ECC-23	4BSS-20
123		XITTS#187	7167																	400000
67,9		GICON ME	I THEAT	1/61 15/38	# 53/5- 220	1,55 1,2	Verte	172 (51	^# ==	C 6	1946 45.1	20.02 900	124	25.194 25%	2 5 % 42 8	88	142 112	110000	LCC-OR	-Ecz
20		er er makt	(4420)																	124
1 1/2		CRFC-PN24T	PN-24T	5307	5 1/4	4	9/16	1 1/2	21/64 1	15/16	211/16	4 1/64	3/4	2 15/16	3 9/32	1/2	2.78	ECO-24	ECC-24	4BSS-24
	40	CRFC-PN208T	PN-208T	23607	133.4	101.6	14.3	38.1	51.2	49.2	68.3	102.0	19.1	74.6	83.3	1/2	1 26	ECO-24	ECC-24	N/A

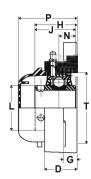
SEALMASTER_{® PN Gold Mounted Ball Bearings</sup>}

Duty: Standard

Housing: High Strength Composite

Two Bolt Flange


Self-Alignment: +/- 2 Degrees


> Lock: Setscrew

Seal: HPS

Temperature: 0° to 150°F

> Grease: Sealmaster GoldPlex-FG

CRFTC-PN Series 2 Bolt Flange Setscrew Locking Collar

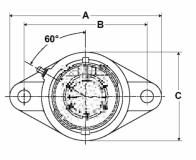
		00.00000	Campres	277				Diff	1000		1111								
5 ## Iristi	an.	Felle	Brantog Steat No.	Ourney Paranti Tan	00 90	02	90.	((0))	36	00	I(e)	X	, ide	80	- 12	TO ST	in.	III ISSAN	Henry III
ťΫ	-2100	/ particular	P# 8	200	0.502515	4 42%	W.	7.00	4.12	1714	100	12	. 94	4	363	5	233-1	6.4-1	2720 G
	25	THTT:::4203	March.	1674	1125 -0	100	3.	r	125	71.44	3.2	12%	Ne c	111	300	22	5-00-1	- LD AC+III	1,24
1		CRFTC-PN16	PN-16	2801	4 15/16 3 57/6	64 2 23/32	1 5/64	17/32	1 7/16	1 3/8	1 3/8	9/16	2 23/64	2 3/16	740	.83	E00.40	500.40	2BSS-16
Ŧ	25	CRFTC-PN205	PN-205	12459	125.4 98.8	69.1	27.4	13.5	36.5	34.9	34.9	14.3	59.9	55.6	7/16	.38	ECO-16	ECC-16	N/A
24		10 To 10 W	late a			7									Ħ		139-0		E85/0
11-		C-C-4.04	- war	7301 73052	# HTM - 124 		170	1000 1000	(本) (A)()	1.15 83.1	1 (252	194	22 A	327.0 12	-12	2.0		uters.	1895-2011
	î	OL POPPESS	11423			1,1 -000	0.40	1000 F	-1150	+201	111,000	1 20	ana.	0.940			Libour		Link
1 1/4		CRFTC-PN20	PN-20									_					ECO-20		2BSS-20
1 3/8	1	CRFTC-PN22	PN-22	5782	6 21/64 51/8	3 45/64	1 11/32	9/16	1 3/4	1 11/16	1 55/64	11/16	2 43/64	215/16		3 20		Ť	2BSS-22
1 7/16		CRFTC-PN23	PN-23	25720	160.7 130.	94.1	34.1	14.3	44.5	42.9	47.2	17.5	67.9	74.6	1/2	1 45	ECO-23	ECC-23	2BSS-23
	35	CRFTC-PN207	PN-207																2BSS-22
110		4+12-0#	Para	2540	2 1869 2 79	3 7%	7.0	- 4/W	it za	1,1272	176	34	× 590	1.424		3.6	133	1153	2373 W
	1	9-11 PW-1	4.2.	330%	150 5	1990	363	113	162	19/	D-8	194	16.2	ra r	\$/A	-79	7700		A. W. C. A.

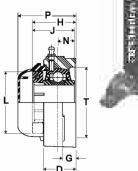
PN Gold Mounted Ball Bearings **SEALN**

Duty: Standard

Housing: High Strength Composite

Two Bolt Flange


Self-Alignment: +/- 2 Degrees


Lock: Skwezloc Locking Collar

Seal: HPS

Temperature: 0° to 150°F

Grease: Sealmaster GoldPlex-FG

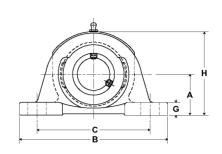
CRFTC-PN-T Series 2 Bolt Flange Skwezloc Locking Collar

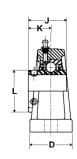
District		1212200000	Quantity:			This is the state of the state								Contraction of the	F0-0-22	AMERICAN PROPERTY.			
		Parriett		Operate Spirit Spirit	re l	(0)	100	10	300	000	XX	10		-23	10)	32	Grand	Oher	Ciscell Contains
13	TO	6475546 =	pu-		11 5000		10.000					22.01	1000	1005335	00.00	Ħ	1000	-	†
2.7	-	S. Carlo Section		2011 1'018	1935 1935	2.3 F)(2 20.7	41.9	H-,53 49.8	A14	1964 545	2000 1000 1000	1	12	21354 360	52.3	35	G. K	30(2) Kar	200 at 10005 V
	35		36/70/2																
1	13	CRFTC-PN16T	PN-16T	2801 12459	4 15/16 125.4	98.8	2 23/32 69.1	1 5/64 27.4	17/32 13.5	1 7/16 36.5	1 3/8 34.9	1 15/16 49.2	9/16 14.3	2 23/64 59.9	23/16 55.6	7/16	.83 .38	ECO-16	ECC-16 2BSS-16
	25	CRFTC-PN205T	PN-205T																ECC-10 2D55-10
116		CT-3-76 W	pp.c	+21 1240	S 14A PS		now.	30# 30#	800	sekt Sett	7.8	traveti Spirit	10 P	Action and the	nec M	W.E.	e F	Think	perts. W
44		क गामा श्रह	**************************************															TOO WE	100-4 1000-00
72	56	CHTC-THTPT	70.70															2002/0	Satty #
1 1/4		CRFTC-PN20T	PN-20T	5782 25720	6 21/64 160.7	5 1/8 130.2	3 45/64 94.1	111/32 34.1	9/16 14.3	1 3/4 44.5	1 11/16 42.9	2 7/16 61.9	11/16 17.5	2 43/64 67.9	215/16 74.6	1/2	1 97 89	ECO-20	ECC-23 2BSS-20
100		CTSHAME!	rates:	wei wei	51.65 80°	#144 WW	5-654 -951	117 <u>9</u> 241	14 (a 143	30 44	111.8	zivis eb i	leit 102	4-354 e-5	digir Ad	-	27 20	8889	30 C-22
825		< 1 (9-5.2)	UMAS																TREAT MERSON
150		21 y W.	To allo																20153488
1 1/2	==1	CRFTC-PN24T	PN-24T	7340 32650	6 29/32	5 21/32 143.7	47/64 104.4	1 1/2 38.1	9/16	2 1/64	1 15/16 49.2	2 11/16 68.3	3/4 : 19.1	2 15/16 74.6	319/64 83.7	1/2	2.50 1 13	ECO-24	2BSS-24 ECC-24
10	40	CRFTC-PN208T	PN-208T		175.4				14.3	51.2									2BSS-208

MASTER ® PN Gold Mounted Ball Bearings

Duty: Standard

Housing: Flouropolymer Coated Cast


Self-Alignment: +/- 2 Degrees


> Lock: Setscrew

HPS Seal:

Temperature: -20° to 220°F

> Grease: Sealmaster GoldPlex-FG

CRPLF-PN Series Low Base Pillow Block Setscrew Locking

Bore Diameter		Part No*	Bearing Insert No.	Basic Dynamic Rating	Dimensions inch/mm											
					· Ai	181	10		ъ	G	180	(39)	180	2026	Bolt	Limit Wil.
inch	mm		lb/N	lb/N			Min.	Max.	ŭ		-11-17	1.31			Size	
1	-	CRPLF-PN16	PN-16	2801 12459	1 5/16 33.3	5 1/2 139.7	3 7/8 98.4	4 3/8 111.1	1 1/2 38.1	1/2 12.7	2 11/16 68.3	1 3/8 34.9	13/16 20.6	1 3/8 34.9	3/8	2.0 .91
-	30	CRPLF-PN205	PN-205													
1 3/16	-	CRPLF-PN19	PN-19	4381 19488	1 9/16 39.7	6 1/2 165.1	4 7/16 112.7	5 1/16 128.6	1 7/8 47.6	7/16 11.1	3 1/4 82.6	1 1/2 38.1	7/8 22.2	1 19/32 40.5	1/2	3.6 1.6
1 1/4	-	CRPLF-PN20R	PN-20R													
-	35	CRPLF-PN206	PN-206													
1 1/4	-	CRPLF-PN20	PN-20	5782 25720	1 13/16 46.0	6 9/16 166.7	4 11/16 119.1	5 5/16 134.9	1 7/8 47.6	9/16 14.3	3 11/16 93.7	1 11/16 42.9	1 25.4	1 55/64 47.2	1/2	
1 3/8	-	CRPLF-PN22	PN-22													4.4
1 7/16	-	CRPLF-PN23	PN-23													2.0
-	35	CRPLF-PN207	PN-207													
1 1/2	i	CRPLF-PN24	PN-24	7340 32650	1 15/16 49.2	7 1/4 184.2	4 7/8 123.8	5 7/8 149.2	2 1/8 54.0	11/16 17.5	3 15/16 100.0	1 15/16 49.2	1 3/16 30.2	2 1/16 52.4	1/2	5.7 2.6
-	40	CRPLF-PN208	PN-208													
1 11/16	-	CRPLF-PN27	PN-27	7901 35145	2 1/16 52.4	7 1/2 190.5	5 7/16 138.1	6 1/16 154.0	2 1/8 54.0	5/8 15.9	4 3/16 106.4	1 15/16 49.2	1 3/16 30.2	2 19/64 58.3	1/2	
1 3/4	-	CRPLF-PN28	PN-28													6.2 2.8
-	45	CRPLF-PN209	PN-209													
1 15/16	-	CRPLF-PN31	PN-31	7889 35092	2 3/16 55.6	8 1/8 206.4	6 152.4	6 1/2 165.1	2 3/8 60.3	11/16 17.5	4 1/2 114.3	2 1/32 51.6	1 9/32 32.5	2 15/32 62.7	5/8	7.8 3.5
-	50	CRPLF-PN210	PN-210													
2	ı	CRPLF-PN32	PN-32	9752 43379	2 7/16 61.9	8 5/8 219.1	6 1/2 165.1		2 3/8 60.3	11/16 17.5	4 15/16 125.4	2 3/16 55.6	1 5/16 33.3	2 23/32 69.1	5/8	
2 3/16	ı	CRPLF-PN35	PN-35					7 177.8								9.7 4.4
-	55	CRPLF-PN211	PN-211													

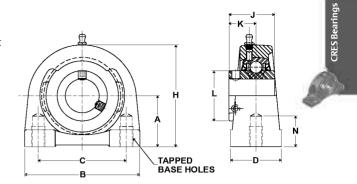
^{*}Housing is Flouropolymer coated cast iron and housing design does not allow for snap on end cap. For additional sizes and Skwezloc concentric locking collar availability contact customer service.

PN Gold Mounted Ball Bearings **SEAL**

Duty: Standard

Housing: Flouropolymer Coated Cast

Iron


Self-Alignment: +/- 2 Degrees

Lock: Setscrew

Seal: HPS

Temperature: -20° to 220°F

Grease: Sealmaster GoldPlex-FG

CRTBF-PN Series Tapped Base Pillow Block Setscrew Locking

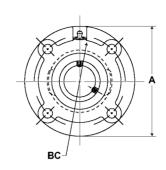
Во	re			Banit				Dimension	s inch/mm				N	Bolt	
Diam inch		Part No.*	Brg. No.	Eyyamin Rajing Ibih	A	В	c	0	H)	į	K	, lla	Min. ap Depth	UNC-2B	⊍nit Wt. lb/kg
3/4	-	CRTBF-PN12	PN-12	2611	1 5/16	3 1/8	2	1 1/2	2 9/16	1 7/32	23/32	1 3/16	1/2	3/8-16	1.8
0.787	20	CRTBF-PN204	PN-204	11614	33.3	79.4	50.8	38.1	65.1	31.0	18.3	30.2	12.7	3/0-10	.82
1	ı	CRTBF-PN16	PN-16	2801	1 7/16	3	2	1 1/2	2 13/16	1 3/8	13/16	1 3/8	1/2	3/8-16	2.0
-	25	CRTBF-PN205	PN-205	12459	36.5	76.2	50.8	38.1	71.4	34.9	20.6	34.9	12.7	3/0-10	.91
1 3/16	1	CRTBF-PN19	PN-19												
1 1/4	1	CRTBF-PN20R	PN-20R	4381 19488	1 11/16 42.9	4 101.6	3 76.2	1 1/2 38.1	3 13/32 86.5	1 1/2 38.1	7/8 22.2	1 19/32 40.5	5/8 15.9	7/16-14	3.5 1.59
-	30	CRTBF-PN206	PN-206												
1 1/4	1	CRTBF-PN20	PN-20												
1 3/8	-	CRTBF-PN22	PN-22	5782	1 7/8	4 1/4	3 1/4	1 7/8	3 3/4	1 11/16	1	1 55/64	3/4	1/2-13	4.5
1 7/16	1	CRTBF-PN23	PN-23	25720	47.6	108.0	82.6	47.6	95.3	42.9	25.4	47.2	19.1	1/2-13	2.04
-	35	CRTBF-PN207	PN-207												
1 1/2	-	CRTBF-PN24	PN-24	7340	1 15/16	4 5/8	3 1/2	1 7/8	3 15/16	1 15/16	1 3/16	2 1/16	3/4	1/2-13	6.0
-	40	CRTBF-PN208	PN-208	32650	49.2	117.5	88.9	47.6	100.0	49.2	30.2	52.4	19.1	172-10	2.72
1 11/16	-	CRTBF-PN27	PN-27												
1 3/4	-	CRTBF-PN28	PN-28	7901 35145	2 1/8 54.0	5 127.0	3 3/4 95.3	2 50.8	4 1/4 108.0	1 15/16 49.2	1 3/16 30.2	2 19/64 58.7	3/4 19.1	1/2-13	6.5 2.95
-	45	CRTBF-PN209	PN-209												
1 15/16	-	CRTBF-PN31	PN-31												
2	-	CRTBF-PN32R	PN-32R	9752 43379	2 1/4 57.2	5 1/2 139.7	4 101.6	2 50.8	4 5/8 117.5	2 1/32 51.6	1 9/32 32.5	2 15/32 62.7	7/8 22.2	5/8-11	8.0 3.63
-	50	CRTBF-PN210	PN-210												

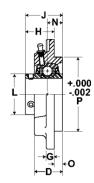
*Housing is Flouropolymer coated cast iron and housing design does not allow for snap on end cap. For additional sizes and Skwezloc concentric locking collar availability contact customer service.

MASTER PN Gold Mounted Ball Bearings

Duty: Standard

Housing: Flouropolymer Coated Cast


Self-Alignment: +/- 2 Degrees


> Lock: Setscrew

HPS Seal:

Temperature: -20° to 220°F

> Sealmaster GoldPlex-FG Grease:

CRFCF-PN Series Flange Cartridge Setscrew Locking

B	ore	Jerres i ia		Basic			. 232		Dimer	nsions inc	:h/mm				-	10
	neter	Part No.*	Bearing Insert No.	Dynamic Rating	A	BC	D	G	н	ar.	£	N	o	P.	Bolt	HereWi.
inch	mm			lb/N											Size	
1 3/16	-	CRFCF-PN19	PN-19													
1 1/4	-	CRFCF-PN20R	PN-20R	4381 19488	4 3/8 111.1	3 5/8 92.1	1 3/16 30.2	3/8 9.5	1 5/16 33.3	1 9/16 39.7	1 19/32 40.5	5/8 15.9	1/4 6.4	3.000 76.20	5/16	3.0 1.36
-	30	CRFCF-PN206	PN-206													
1 1/4	-	CRFCF-PN20	PN-20													
1 3/8	-	CRFCF-PN22	PN-22	5782	5	4 1/8	1 9/32	3/8	1 5/16	1 11/16	1 55/64	11/16	3/8	3.375	3/8	3.9
1 7/16	-	CRFCF-PN23	PN-23	25720	127.0	104.8	32.5	9.5	33.3	42.9	47.2	17.5	9.5	85.73	3/0	1.77
-	35	CRFCF-PN207	PN-207													
1 1/2	-	CRFCF-PN24	PN-24	7340	5 1/4	4 3/8	1 27/64	7/16	1 1/2	1 15/16	2 1/16	3/4	7/16	3.625	0.10	4.7
-	40	CRFCF-PN208	PN-208	32650	133.4	111.1	36.1	11.1	38.1	49.2	52.4	19.1	11.1	92.08	3/8	2.13
1 11/16	-	CRFCF-PN27	PN-27													
1 3/4	-	CRFCF-PN28	PN-28	7901 35145	6 1/8 155.6	5 1/8 130.2	1 29/64 36.9	7/16 11.1	1 1/2 38.1	1 15/16 49.2	2 19/64 58.3	3/4 19.1	7/16 11.1	4.250 107.95	7/16	6.0 2.72
-	45	CRFCF-PN209	PN-209													
1 15/16	-	CRFCF-PN31	PN-31													
2	-	CRFCF-PN32R	PN-32R	7889 35092	6 1/8 155.6	5 1/8 130.2	1 27/64 36.1	7/16 11.1	1 9/16 39.7	2 1/32 51.6	2 15/32 62.7	3/4 19.1	15/32 11.9	4.250 107.95	7/16	6.5 2.95
-	50	CRFCF-PN210	PN-210													
2	-	CRFCF-PN32	PN-32													
2 3/16	-	CRFCF-PN35	PN-35	9752 43379	6 3/8 161.9	5 3/8 136.5	1 5/8 41.3	7/16 11.1	1 9/16 39.7	2 3/16 55.6	2 23/32 69.1	7/8 22.2	5/8 15.9	4.500 114.30	7/16	7.5 3.40
-	55	CRFCF-PN211	PN-211		, i											
2 3/8	-	CRFCF-PN38	PN-38													
2 7/16	-	CRFCF-PN39	PN-39	11789 52440	7 1/8 181.0	6 152.4	1 13/16 46.0	1/2 12.7	1 11/16 42.9	2 9/16 65.1	2 63/64 75.8	1 25.4	7/8 22.2	5.000 127.00	5/8	10.5 4.76
-	60	CRFCF-PN212	PN-212													

^{*}Housing is Flouropolymer coated cast iron and housing design does not allow for snap on end cap.

For additional sizes and Skwezloc concentric locking collar availability contact customer service

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

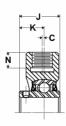
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

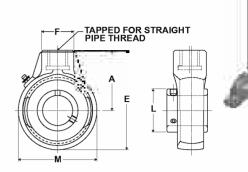
PN Gold Mounted Ball Bearings **SEALM**

Duty: Standard

Housing: Flouropolymer Coated Cast

Iron


Self-Alignment: +/- 2 Degrees


Lock: Setscrew

Seal: HPS

Temperature: -20° to 220°F

Grease: Sealmaster GoldPlex-FG

CREHBF-PN Series Hanger Bearing External Lube Setscrew Locking

lines. Damalari	1000000000	ESTABLISHED	Danie.					37000	ling Ex				100	J
Operation :	Patific	in or	P. Day	ie.	900	3530		230))	22	01	80	***	1112	TOTAL STATE
	FF F 11.66	= SAON A	4981	1966		= 243	9/3	114:	63	119836	3.16	288372477	18/10	86
7.5	CONT. TOTAL	L. Hout		are V		B.N.E	2.7	**1	900	40%	3.16 (9.6	****	20,4	300
1 1/4	CREHBF-PN20	PN-20	5782	2 3/4	=	4 9/16	1 9/16	1 11/16	1	1 55/64	3 5/8	3/4-14	3/4	3.1
1 3/8	CREHBF-PN22	PN-22	25720	69.9		115 9	39.7	42.9	25.4	47.2	92 1	3/4-14	19 1	1 41
**	con the lat	PERMIT	Media	110	/82	2.94	10.1	1160	9570 Mar	2100	9-514	301147	99	53
1.38	CHI THE KA	11/4/24	ne.	370	c.A.	120	40	100	Mix	Trigge.	100.27	354147	nic	200
1 15/16	CREHBF-PN31	PN-31	7889	3 1/4	3/16	5 7/16	1 7/8	2 1/32	1 9/32	2 15/32	4 3/8	4.44.470	13/16	4 5
2	CREHBF-PN32R	PN-32R	35092	82.6	48	138 1	47.6	51 6	32.5	62.7	111 1	1-11 1/2	20.6	2.04
5500	GBC 35362E	29.6°/M	STUAN.		12000	10.700.5	CHARLE	30709	-3430	EMS.CI	9520	3000000	2395	190
57.3	epr 5 - 629	Press	944	100	100	104	W.C.	-	Mex	619	99.0	E	200	34947

^{*}Housing is Flouropolymer coated cast iron and housing design does not allow for snap on end cap.

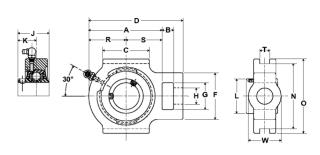
For additional sizes and Skwezloc concentric locking collar availability contact customer service

^{**}Use Straight Pipe Thread.

ASTER• PN Gold Mounted Ball Bearings

Duty: Standard

Housing: Flouropolymer Coated Cast


Self-Alignment: +/- 2 Degrees

> Lock: Setscrew

HPS Seal:

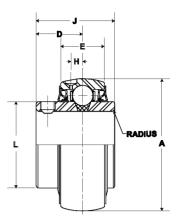
Temperature: -20° to 220°F

> Sealmaster GoldPlex-FG Grease:

CRSTF-PN Series Wide Slot Take Up Setscrew Locking

Вог	re			Basic	-	Ė					Dî	mensior	ns inch	/mm							Unit
Diam	eter	Part No.*	Brg. No.	Dynamic Rating Ib/N	A	В	C	Ď	É	G	H	. 14	Ř	W	N	0	R	S	10	W	Wt.
3/4	mm	CRSTF-PN12	PN-12		0.4440	510		0.44440			himious	4.7100	00,100			0.410	4.540	4.010		State of the last	0.4
_	20	CRSTF-PN204	PN-204	2611 11614	2 11/16 68.3	5/8 15.9	2 50.8	3 11/16 93.7	2 50.8	1 1/4 31.8	3/4 19.1	1 7/32 31.0	23/32 18.3	1 3/16 30.2	3 76.2	3 1/2 88.9	1 5/16 33.3	1 3/8 34.9	17/32	1 3/8 34.9	2.1 0.95
1	-	CRSTF-PN16	PN-16	2801	2 13/16	5/8	2	3 13/16	2	1 1/4	3/4	1 3/8	13/16	1 3/8	3	3 1/2	1 3/8	1 7/16		1 1/2	2.6
-	25	CRSTF-PN205	PN-205	12459	71.4	15.9	_	96.8	50.8	31.8	19.1	34.9	20.6	34.9	76.2	88.9	34.9	36.5	17/32	38.1	1.18
1 3/16	-	CRSTF-PN19	PN-19																		
1 1/4	-	CRSTF-PN20R	PN-20R	4381 19488	3 7/16 87.3	5/8	2 1/4 57.2		2 3/16 55.6	1 7/16 36.5	7/8 22.2	1 1/2 38.1	7/8 22.2	1 19/32 40.5		4 101.6	1 11/16 42.9	1 3/4 44.5	17/32	1 3/4 44.5	3.4 1.54
-	30	CRSTF-PN206	PN-206	10 100	07.0	10.0	07.2	112.7	00.0	00.0	ZZ.Z	00.1		10.0	00.0	101.0	12.0	11.0		11.0	1.01
1 1/4	-	CRSTF-PN20	PN-20																		
1 3/8	-	CRSTF-PN22	PN-22	5782	3 15/16	5/8	2 1/2	5 1/16	2 1/2	1 7/16	7/8	1 11/16	1	1 55/64	3 1/2	4	2	1 15/16	17/32	1 3/4	4.0
1 7/16	-	CRSTF-PN23	PN-23	25720	100.0	15.9	63.5	128.6	63.5	36.5	22.2	42.9	25.4	47.2	88.9	101.6	50.8	49.2	17/32	44.5	1.81
-	35	CRSTF-PN207	PN-207																		
1 1/2	-	CRSTF-PN24	PN-24	7340	4 5/16	3/4	3 1/4	5 11/16	3 1/4	1 15/16	1 1/8	1 15/16	1 3/16	2 1/16	4	4 1/2	2 3/16	2 1/8	11/16	2 1/8	6
-	40	CRSTF-PN208	PN-208	32650	109.5	19.1	82.6	144.5	82.6	49.2	28.6	49.2	30.2	52.4	101.6	114.3	55.6	54.0	11/10	54.0	2.7
1 11/16	-	CRSTF-PN27	PN-27																		
1 3/4	-	CRSTF-PN28	PN-28	7901 35145	4 5/16 109.5	3/4 19.1	3 1/4 82.6	l	3 1/4 82.6	1 15/16 49.2	1 1/8 28.6	1 15/16 49.2	1 3/16 30.2	2 19/64 58.3	4 101.6	4 5/8 117.5	2 1/4 57.2	2 1/16 52.4	11/16	2 3/16 55.6	6.0 2.72
-	45	CRSTF-PN209	PN-209																		
1 15/16	-	CRSTF-PN31	PN-31	7889	4 1/2	3/4	3 3/8	5 7/8	3 1/4	1 15/16	1 1/8	2 1/32		2 15/32	4	4 5/8	2 5/16	2 3/16	11/16	2 3/16	6.0
-	50	CRSTF-PN210	PN-210	35092	114.3	19.1	85.7	149.2	82.6	49.2	28.6	51.6	32.5	62.7	101.6	117.5	58.7	55.6		55.6	2.72
2	-	CRSTF-PN32	PN-32	9752	5	1	3 3/4	6 3/4	4	2 1/2	1 3/8	2 3/16		2 23/32		l	2 9/16	2 7/16	1 1/16	2 1/4	9.8
-	55	CRSTF-PN211	PN-211	43379	127.0	25.4	95.3	171.5	101.6	63.5	34.9	55.6	33.3	69.1	130.2	146.1	65.1	61.9		57.2	4.4
2 7/16	-	CRSTF-PN39	PN-39	11789	5 5/8	1 1/4		7 5/8	4	2 1/2	1 3/8	2 9/16					2 15/16		1 1/16	2 3/8	12.3
-	60	CRSTF-PN212	PN-212	52440	142.9	31.8	101.6	193.7	101.6	63.5	34.9	65.1	39.7	75.8	130.2	146.1	74.6	68.3		60.3	5.58

^{*}Housing is Flouropolymer coated cast iron and housing design does not allow for snap on end cap.


For additional sizes and Skwezloc concentric locking collar availability contact customer service

Duty: Standard Lock: Setscrew Seal: HPS

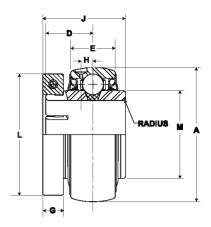
Temperature: -20° to 220°F

B.	ore		Basic				Dimension	s inch/mm				1017 20	
Dian	neter	Part No.	Dynamic Rating Ib/N	(A)	(0)	E	G	(H)	,	(Le	Max Rad. To Clear	Setscrew Tap	Unit WI. Ib/kg
inch	mm		115/14								NAMES OF TAXABLE PARTY.		
3/4	-	PN-12	2611	1.8504 47	23/32	5/8	3/16	9/64	1 7/32	1 3/16	.040	1/4-28	.5
-	20	PN-204	11614	47	18.3	15.9	4.8	3.6	31.0	30.2	1.02		.23
1	-	PN-16	2801	2.0472	13/16	11/16	7/32	11/64	1 3/8	1 3/8	.040	1/4-28	.6
-	25	PN-205	12459	52	20.6	17.5	5.6	4.4	34.9	34.9	1.02		.27
1 3/16	-	PN-19											
1 1/4	-	PN-20R	4381 19488	2.4409 62	7/8 22.2	7/8 22.2	7/32 5.6	7/32 5.6	1 1/2 38.1	1 19/32 40.5	.040 1.02	1/4-28	1.0 .45
-	30	PN-206											
1 1/4	-	PN-20											
1 3/8	-	PN-22	5782 25720	2.8346	1	15/16	1/4	1/4	1 11/16	1 55/64	.040	5/16-24	1.5
1 7/16	-	PN-23	-	72	25.4	23.8	6.4	6.4	42.9	47.2	1.02	5/16-24	.68
-	35	PN-207											
1 1/2	-	PN-24	7340	3.1496	1 3/16	1 3/32	5/16	19/64	1 15/16	2 1/16	.062	EMC 04	1.9
-	40	PN-208	32650	80	30.2	27.8	7.9	7.5	49.2	52.4	1.57	5/16-24	.86
1 11/16	-	PN-27											
1 3/4	-	PN-28	7889 35092	3.3465 85	1 3/16 30.2	1 3/32 27.8	5/16 7.9	19/64 7.5	1 15/16 49.2	2 19/64 58.3	.062 1.57	5/16-24	2.2 1.00
-	45	PN-209											
1 15/16	-	PN-31											
2	-	PN-32R	7091 31542	3.5433 90	1 9/32 32.5	1 1/8 28.6	3/8 9.5	17/64 6.7	2 1/32 51.6	2 15/32 62.7	.062 1.57	3/8-24	2.4 1.09
-	50	PN-210											
2	-	PN-32											
2 3/16	-	PN-35	9752 43379	3.937 100	1 5/16 33.3	1 3/16 30.2	3/8 9.5	19/64 7.5	2 3/16 55.6	2 23/32 69.1	.080 2.03	3/8-24	2.8 1.27
-	55	PN-211		. 33	23.0				23.0				,
2 3/8	-	PN-38											
2 7/16	-	PN-39	11789 52440	4.3307 110	1 9/16 39.7	1 1/4 31.8	7/16 11.1	21/64 8.3	2 9/16 65.1	2 63/64 75.8	.080 2.03	3/8-24	3.7 1.68
-	60	PN-212											

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

SEALMASTER• PN Gold Mounted Ball Bearings


Duty: Standard

Lock: Skwezloc Locking Collar

Seal: HPS

Temperature: -20° to 220°F

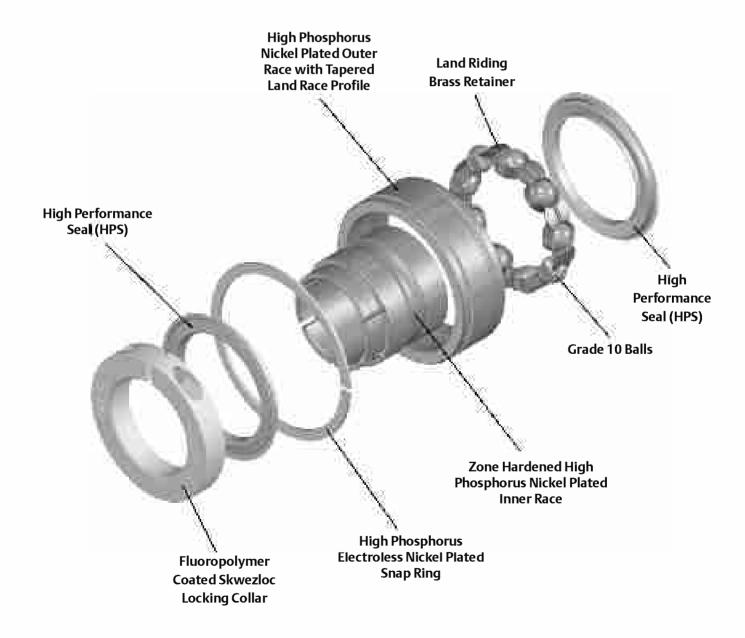
Grease: Sealmaster GoldPlex-FG

PN-T Series Insert Skwezloc Locking Collar

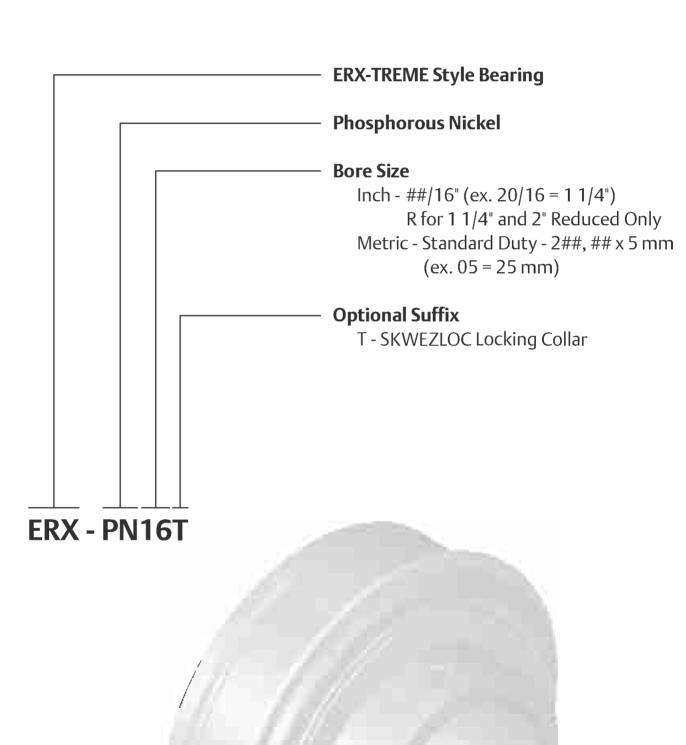
4			Basic		e Citii		Dime	nsions inc	h/mm						£1
Bo Diam		Part No.	Dynamic										Year (Cap)	aren wet.	Replacement
inch	mm		Rating lb/N	X	D.	E	F	G	VHS	9	/6: /	Max Rau. ว Clear	Same	65kg	Collar Part No.
3/4	-	PN-12T	2611	1.8504	23/32	5/8	1 3/16	3/8	9/64	1 9/32	1 3/4	.040		.60	2-012B XYLAN
-	20	PN-204T	11614	47	18.3	15.9	30.2	9.5	3.6	32.5	44.5	1.02	8-32 X 5/8	.27	LOCK COLLAR
1	-	PN-16T	2801	2.0472	13/16	11/16	1 3/8	3/8	11/64	1 7/16	1 15/16	.040	2.00 // 5/0	.80	2-015A XYLAN
-	25	PN-205T	12459	52	20.6	17.5	34.9	9.5	4.4	36.5	49.2	1.02	8-32 X 5/8	.36	LOCK COLLAR
1 3/16	-	PN-19T													
1 1/4	-	PN-20RT	4381 19488	2.4409 62	7/8 22.2	7/8 22.2	1 19/32 40.5	3/8 9.5	7/32 5.6	1 9/16 39.7	2 3/16 55.6	.040 1.02	8-32 X 5/8	1.2 .54	2-13B XYLAN LOCK COLLAR
-	30	PN-206T													
1 1/4	-	PN-20T	5782 25720	2.8346 72	1 25.4	15/16 23.8	1 55/64 47.2	7/16 11.1	1/4 6.4	1 3/4 44.5	2 7/16 61.9	.040 1.02	10-24 X 3/4	1.8 .82	2-17A XYLAN LOCK COLLAR
1 3/8	-	PN-22T													
1 7/16	-	PN-23T	5782 25720	2.8346 72	1 25.4	15/16 23.8	1 55/64 47.2	7/16 11.1	1/4 6.4	1 3/4 44.5	2 9/16 65.1	.040 1.02	10-24 X 3/4	1.8 .82	2-17B XYLAN LOCK COLLAR
_	35	PN-207T													
1 1/2	-	PN-24T	7340	3.1496	1 3/16	1 3/32	2 1/16	7/16	19/64	2	2 11/16	.062	10-24 X 3/4	2.2	2-19A XYLAN
-	40	PN-208T	32650	80	30.2	27.8	52.4	11.1	7.5	50.8	68.3	1.57	10-24 X 3/4	1.00	LOCK COLLAR
1 11/16	-	PN-27T													
1 3/4	-	PN-28T	7901 35145	3.3465 85	1 3/16 30.2	1 3/32 27.8	2 19/64 58.3	7/16 11.1	19/64 7.5	2 50.8	2 15/16 74.6	.062 1.57	10-24 X 3/4	2.5 1.13	2-111B XYLAN LOCK COLLAR
-	45	PN-209T			55										
1 15/16	-	PN-31T													
2	-	PN-31RT	7889 35092	3.5433 90	1 9/32 32.5	1 1/8 28.6	2 15/32 62.7	9/16 14.3	17/64 6.7	2 3/32 53.2	3 3/8 85.7	.062 1.57	1/4-20 X 1	3.0 1.36	2-115B XYLAN LOCK COLLAR
-	50	PN-210T													
2	-	PN-32T	9752 43379	3.937 100	1 5/16 33.3	1 3/16 30.2	2 23/32 69.1	9/16 14.3	19/64 7.5	2 1/4 57.2	3 1/2 88.9	.080 2.03	1/4-20 X 1	3.4 1.54	2-23A XYLAN LOCK COLLAR
2 3/16	-	PN-35T	9752	3.937	1 5/16	1 3/16	2 23/32	9/16	19/64	2 1/4	3 5/8	.080	4/4.00 3/4	3.4	2-23B XYLAN
-	55	PN-211T	43379	100	33.3	30.2	69.1	14.3	7.5	57.2	92.1	2.03	1/4-20 X 1	1.54	LOCK COLLAR
2 3/8	-	PN-38T													
2 7/16	-	PN-39T	11789 52440	4.3307 110	1 9/16 39.7	1 1/4 31.8	2 63/64 75.8	11/16 17.5	21/64 8.3	2 5/8 66.7	4 1/8 104.8	.080 2.03	5/16 -18 X 1	4.9 2.22	2-27B XYLAN LOCK COLLAR
-	60	PN-212T		,,,,											

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.


 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

orrosion Resistant Engineering see page K-75.


Sealmaster ERX-TREME PN Gold Style Ball **Bearings**

Sealmaster ERX-TREME PN Gold bearings feature high phosphorus, electroless nickel coated steel with patented seal technology and tapered land outer race profile available in either setscrew or SKWEZLOC™ concentric locking collar, with a cylindrical OD and snap ring for easy installation in a housing. The high performance triple lip seal is the latest innovation of over 10 patents on sealing technology. The combination of stainless flingers and FKM lip materials provide a strong contaminant resistance and, GoldPlex-FG (USDA H1) food grade grease loss. Specially engineered for industries with corrosive wash down environments such as food and beverage, pharmaceuticals and chemical processing, the ERX-TREME PN Gold mounted ball bearings provide outstanding performance in demanding corrosive environments.

Sealmaster ERX-TREME PN Nomenclature

Features and Benefits

Bearing Races

The inner and outer ring of the Sealmaster ERX-Treme PN Gold bearing are high phosphorous, electroless nickel plated 52100 steel for exceptional corrosion resistance and the outer race profile features the Tapered Lands geometry.

The outer land surface in a conventional bearing is parallel to the axis of the inner ring. The Tapered Lands surface is tapered in a radial direction toward the bearing race. This subtle yet crucial design change ensures that lubricant will be easily redirected back to the raceway. With improved bearing lubricant circulation comes significantly longer bearing service life. This improved circulation and service life comes without any reductions in bearing radial or thrust capacities.

* For bearings that are maintained and relubricated on a regular basis, there is no significant difference in expected service life.

High Performance Seal (HPS)

The triple lip contact seal design provides multi-directional sealing to minimize contamination ingress and retain lubrication – standard on all units. The 304 stainless steel shell and flingers protect from incoming contaminants and provide wear resistant contact surface to all three seal lips. The grease cavities in seal assembly are factory-filled with lubricant prior to shipment for additional contaminant resistance.

For more information on seal performance see page K-32.

Cylindrical OD PN Gold Bearings **SEALMAS**

Features and Benefits continued

Multiple Locking Methods

Setscrew Locking

300 series stainless steel 120° spaced, balanced three point contact minimizes inner ring distortion vibration, reduces noise, and improves reliability.

Skwezloc® Concentric Locking Collar

SKWEZLOC is a concentric collar clamp design that results in near-perfect concentricity of the shaft to bearing bore and maintains near perfect ball path roundness, while reducing fretting corrosion. This design eliminates the shaft damage of setscrew locking, and minimizes bearing induced vibration for smoother quieter operation. The collar is fluoropolymer coated with an Endurion* coated TORX head cap screw that outlasts stripping 12 times longer than hex head cap screws.

Specialized Food Grade Lubrication

The Sealmaster PN Gold bearings are factory filled with Sealmaster GoldPlex-FG (Food Grade) grease (USDA H1 approved) which is suitable for mounted bearing lubrication where incidental contact with food products may occur in any application where clean, routine lubrication is required. For more information on Sealmaster GoldPlex-FG see page L-6.

Zone Hardening Inner Race

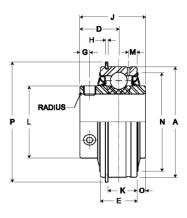
Sealmaster incorporates a unique heat treat process that hardens the inner race only where it is needed...under the ball path. The high phosphorous electroless nickel plated 52100 steel, zone hardened inner race results improved lock reliability as a result of less distortion at setscrew location and improved thread conformity resulting in improved clamping and resistance to setscrew back-out.

Land Riding Retainer

The Sealmaster unique land riding metal retainer design provides superior pocket clearance that allows for 360° grease circulation around the rolling elements resulting in better retained and utilized lubrication. The land riding design of the retainer minimizes wear on both Ball and retainer, while maximizing stability, which is especially important in applications involving vibration, shock loading or high operating speeds.

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Endurion; OMNOVA Solutions Inc. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

SEALMASTER *ERX-TREME Cylindrical OD PN Gold Bearings*


Duty: StandardLock: Setscrew

Seal: HPS

Temperature: -20° to 220° F

Grease: Sealmaster GoldPlex-FG

Relube: Relube Through Lube Groove

ERX-PN Series Cylindrical O.D. Setscrew Locking

Bor	·0	,	Banic						Di	mensior	ns inch/m	m						
Diame		Part No.	Dynamic Rating	220	- 100	11960	20017							20000	******		Max Rad	Umit ser.
inch	mm		Ib/N	(A)	9		ø	×		×	Ľ:	EM/A	z	0	1900	Ψ.	Kad To ⊜lear	7
1/2	-	ERX-PN8																
5/8	-	ERX-PN10	2611	1.8504	13/16	5/8	3/16	3/64	1 7/32	31/64	1 3/16	11/64	1 5/8	.094	2 1/16	11/64	.040	.56
3/4	-	ERX-PN12	11614	47	20.6	15.9	4.8	1.2	31.0	12.3	30.2	4.4	41.3	2.39	52.4	4.4	1.02	.25
-	20	ERX-PN204																
1	-	ERX-PN16	2801	2.0472	55/64	3/4	7/32	3/64	1 3/8	39/64	1 3/8	13/64	1 55/64	.135	2 17/64	13/64	.040	.68
-	25	ERX-PN205	12459	52	21.8	19.1	5.6	1.2	34.9	15.5	34.9	5.2	47.2	3.43	57.5	5.2	1.02	.31
1 1/8	-	ERX-PN18																
1 3/16	-	ERX-PN19	4381	2.4409	7/8	7/8	7/32	1/16	1 1/2	11/16	1 19/32	7/32	2 5/32	.188	2 21/32	7/32	.040	.93
1 1/4	-	ERX-PN20R	19488	62	22.2	22.2	5.6	1.6	38.1	17.5	40.5	5.6	54.8	4.75	67.5	5.6	1.02	0.42
-	30	ERX-PN206																
1 1/4	-	ERX-PN20																
1 3/8	-	ERX-PN22	5782	2.8364	1	15/16	1/4	1/16	1 11/16	3/4	1 55/64	7/32	2 17/32	.219	3 5/64	7/32	.040	1.37
1 7/16	-	ERX-PN23	25720	72	25.4	23.8	6.4	1.6	42.9	19.1	47.2	5.6	64.3	5.56	78.2	5.6	1.02	.62
-	35	ERX-PN207																
1 1/2	-	ERX-PN24	7340	3.1496	1 3/16	1 3/32	5/16	1/16	1 15/16	29/32	2 1/16	1/4	2 53/64	.188	3 13/32	1/4	.062	2
-	40	ERX-PN208	32650	80	30.2	27.8	7.9	1.6	49.2	23.0	52.4	6.4	71.8	4.76	86.5	6.4	1.57	.91
1 11/16	-	ERX-PN27																
1 3/4	-	ERX-PN28	7901 35145	3.3465 85	1 3/16 30.2	1 3/32 27.8	5/16 7.9	1/16 1.6	1 15/16 49.2	29/32 23.0	2 19/64 58.3	1/4 6.4	3 1/16 77.8	.188 4.76	3 19/32 91.3	1/4 6.4	.062 1.57	2.31 1.05
-	45	ERX-PN209																
1 15/16	-	ERX-PN31																
2	-	ERX-PN32R	7889 35092	3.5433 90	1 9/32 32.5	1 1/8 28.6	3/8 9.5	3/32 2.4	2 1/32 51.6	29/32 23.0	2 15/32 62.7	19/64 7.5	3 7/32 81.8	.188 4.76	3 25/32 96.0	19/64 7.5	.062 1.57	2.43 1.10
-	50	ERX-PN210																
2	-	ERX-PN32	9752	3.9370	1 5/16	1 3/16	3/8	3/32	2 3/16	31/32	2 23/32	19/64	3 9/16	.281	4 3/16	19/64	.080	3
2 3/16	-	ERX-PN35	43379	100	33.3	30.2	9.5	2.4	55.6	24.6	69.1	7.5	90.5	7.14	106.4	7.5	2.03	1.36
2 7/16	-	ERX-PN39	7889 35092	4.3307 110	1 9/16 39.7	1 1/4 31.8	7/16 11.1	3/32 2.4	2 9/16 65.1	1 1/32 26.2	2 63/64 75.8	19/64 7.5	3 29/32 99.2	.375 9.53	4 37/64 116.3	19/64 7.5	.080 2.03	4 1.81
2 1/2	-	ERX-PN40	13971 62146	4.9213 125	1 11/16 42.9	1 3/8 34.9	7/16 11.1	7/64 2.8	2 3/4 69.9	1 7/64 28.2	3 7/16 87.3	5/16 7.9	4 7/16 112.7	.375 9.53	5 9/32 134.1	5/16 7.9	.080 2.03	5.56 2.52

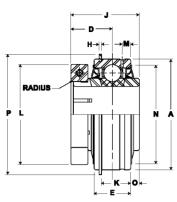
Metric dimensions for reference only.

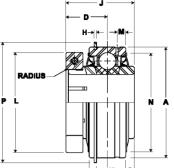
 $Not all \ parts \ are \ available \ from \ stock. \ Please \ contact \ customer \ service \ for \ availability \ (800) \ 626-2120.$

 $For more information on bearing \ capabilities \ outside \ of our \ standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Cylindrical OD PN Gold Bearings **SEAL**

Duty: Standard


Lock: Skwezloc Locking Collar


Seal:

Temperature: -20° to 220° F

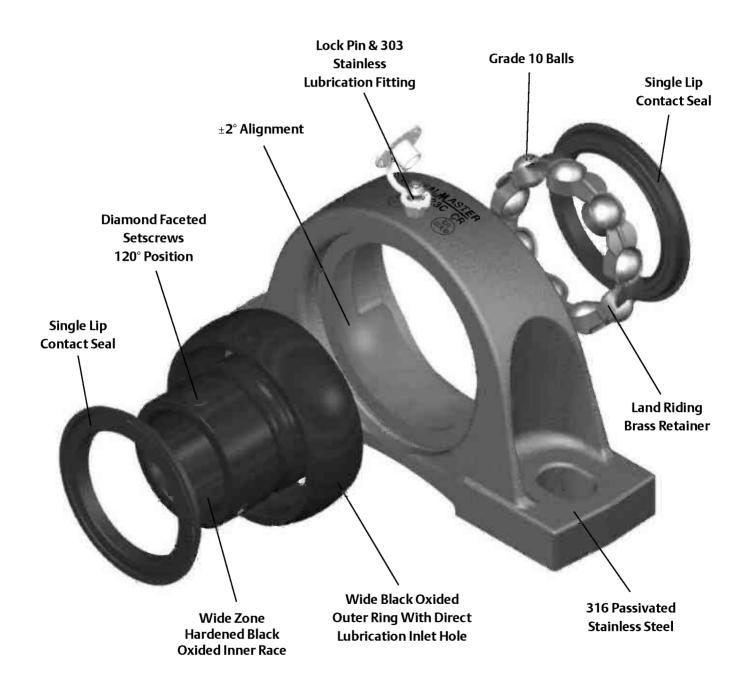
> Grease: Sealmaster GoldPlex-FG

Relube: Relube Through Lube Groove

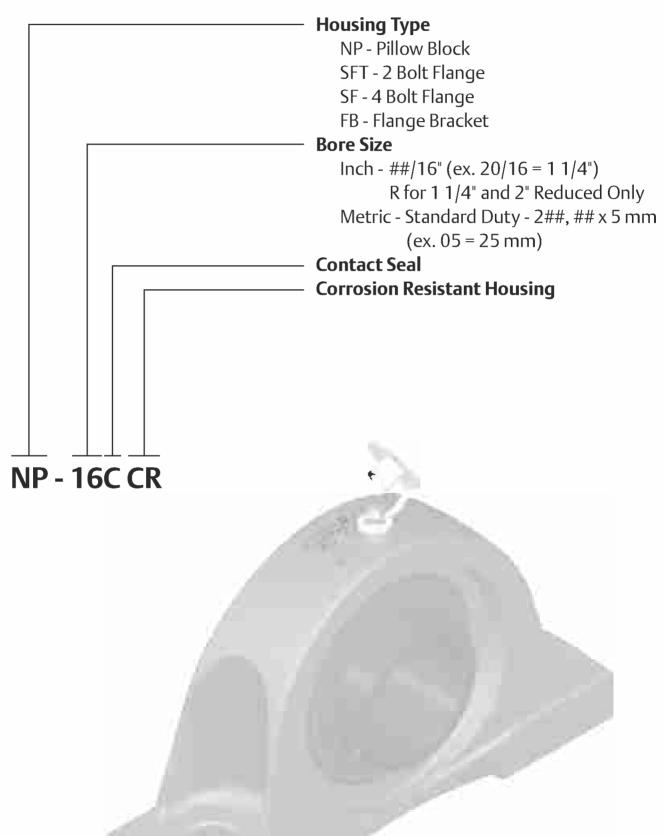
ERX-PN-T Series Cylindrical O.D. Skwezloc Locking Collar

Вог	e.	Bas Dynai Part No. Ratii									in Inche					EGCKIII	-1
Diame		Part No.	Dynamic Rating Ib/N	(A)	ō	ш	1987	19	ж	(E	(M)	N	0	(P .)(*	Was Mad To Clinar	lb/k
3/4	-	ERX-PN12T	2611	1.8504	7/8	5/8	3/64	1 9/32	31/64	1 3/4	11/64	1 5/8	.094	2 1/16	1/8	.040	.56
-	20	ERX-PN204T	11614	47	22.2	15.9	1.2	32.5	12.3	44.5	4.4	41.3	2.39	52.4	3.2	1.02	.25
1	-	ERX-PN16T	2801	2.0472	59/64	3/4	3/64	1 7/16	39/64	1 15/16	13/64	1 7/32	.135	2 17/64	13/64	.040	.68
-	25	ERX-PN205T	12459	52	23.4	19.1	1.2	36.5	15.5	49.2	5.2	46.8	3.43	57.5	5.2	1.02	.31
1 1/8	1	ERX-PN18T															
1 3/16	-	ERX-PN19T	4381	2.4409	15/16	7/8	1/16	1 9/16	11/16	2 3/16	7/32	2 5/32	.188	2 21/32	7/32	.040	.93
1 1/4	-	ERX-PN20RT	19488	62	23.8	22.2	1.6	39.7	17.5	55.6	5.6	54.8	4.76	67.5	5.6	1.02	.42
-	30	ERX-PN206T															
1 1/4	-	ERX-PN20T															
1 3/8	-	ERX-PN22T	5782 25720	2.8346 72	1 1/16 27.0	15/16 23.8	1/16 1.6	1 3/4 44.5	3/4 19.1	2 7/16 61.9	7/32 5.6	2 17/32 64.3	.219 5.56	3 5/64 78.2	7/32 5.6	.040 1.02	1.37 .62
-	35	ERX-PN207T															
1 7/16	-	ERX-PN23T	5782 25720	2.8346 72	1 1/16 27.0	15/16 23.8	1/16 1.6	1 3/4 44.5	3/4 19.1	2 7/16 61.9	7/32 5.6	2 17/32 64.3	.219 5.56	3 5/64 78.2	7/32 5.6	.040 1.02	1.37 .62
1 1/2	-	ERX-PN24T	7340	3.1496	1 1/4	1 3/32	1/16	2	29/32	2 11/16	1/4	2 53/64	.188	3 13/32	1/4	.062	2.00
-	40	ERX-PN208T	32650	80	31.8	27.8	1.6	50.8	23.0	68.3	6.4	71.8	4.76	86.5	6.4	1.57	.91
1 11/16	-	ERX-PN27T															ĺ
1 3/4	-	ERX-PN28T	7901 35145	3.3465 85	1 1/4 31.8	1 3/32 27.8	1/16 1.6	2 50.8	29/32 23.0	2 15/16 74.6	1/4 6.4	3 1/32 77.0	.188 4.76	3 19/32 91.3	1/4 6.4	.062 1.57	2.31 1.05
-	45	ERX-PN209T			0110	2.1.0		00.0	20.0					0.10	5		55
1 15/16	-	ERX-PN31T	7889	3.5433	1 11/32	1 1/8	3/32	2 3/32	29/32	3 3/8	19/64	3 7/32	.188	3 25/32	19/64	.062	2.43
-	50	ERX-PN210T	35092	90	34.1	28.6	2.4	53.2	23.0	85.7	7.5	81.8	4.76	96.0	7.5	1.57	1.10
2	-	ERX-PN32T	9752 43379	3.9370 100	1 3/8 34.9	1 3/16 30.2	3/32 2.4	2 1/4 57.2	31/32 24.6	3 1/2 88.9	19/64 7.5	3 9/16 90.5	.281 4.78	4 3/16 106.4	19/64 7.5	.080 2.03	3.00 1.36
2 3/16	-	ERX-PN35T	9752 43379	3.9370 100	1 3/8 34.9	1 3/16 30.2	3/32 2.4	2 1/4 57.2	31/32 24.6	3 5/8 92.1	2 23/32 69.1	3 9/16 90.5	.281 7.14	4 3/16 106.4	19/64 7.5	.080 2.03	3.00 1.36
2 7/16	-	ERX-PN39T	13971 62146	4.3307 110	1 5/8 41.3	1 1/4 31.8	3/32 2.4	2 5/8 66.7	1 1/32 26.2	4 1/8 104.8	19/64 7.5	3 29/32 99.2	.375 9.35	4 37/64 116.3	19/64 7.5	.080 2.03	4.00 1.81

Metric dimensions for reference only.


Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.


Sealmaster CR Gold Mounted Ball Bearings

Sealmaster CR Gold mounted bearings feature a black oxide treated setscrew locking single row ball bearing utilizing 316 passivated stainless steel housing. The bearing features a Sealmaster nitrile rubber single lip contact seal with stainless steel flinger to help prevent contaminates from entering and help contain the factory fill of Sealmaster Goldplex-FGTM food grade grease. Depending on your preference, these bearings are available in pillow block, two bolt flange, four bolt flange, and three bolt flange bracket configurations as illustrated on the pages to follow.

Sealmaster CR Gold Nomenclature

SEALMASTER_{® CR Gold Mounted Ball Bearings</sup>}

Features and Benefits

Stainless Steel Housing

High quality solid base designed investment cast passivated 316 stainless steel casting providing the highest amount corrosion resistance currently available for stainless steel housings. The investment cast process yields a smooth, easy to clean surface. The solid construction with machined base was designed for minimal gaps with no fillings.

Wide Outer Race

Sealmaster has the industry's widest outer race. The black oxided outer race is 20 to 30% wider than industry standard outer races. This feature provides increased grease capacity, improved sealing options, and more insert stability.

Lock Pin and Dimple

The Sealmaster exclusive locking pin and dimple system provides direct lubricant into the bearing cavity & ball path instead of around a lubrication groove, prevents outer ring rotation (sometimes referred to as "creep"), and allows ± 2 ° static misalignment of the bearing insert

Single Lip Contact Seal

Single Lip Contact Seal consists of a nitrile rubber washer in metal shroud to shield the lip from large contaminants. The seal is designed to balance drag and protection in wet and dry environments.

Features and Benefits continued

Setscrew Locking

120° spaced, balanced three point contact minimizes inner ring distortion vibration, reduces noise, and improves reliability. Precision manufactured diamond faceted setscrews contribute to improved clamping and resistance to back out.

Zone Hardening Inner Race

Sealmaster incorporates a unique heat treat process that hardens the inner race only where it is needed...under the ball path. The black oxided zone hardened inner race results improved lock reliability as a result of less distortion at setscrew location and improved thread conformity resulting in improved clamping and resistance to setscrew back-out

Land Riding Retainer

The Sealmaster unique land riding metal retainer design provides superior pocket clearance allows for 360° oil circulation around the rolling elements resulting in better retained and utilized lubrication.

Specialized Food Grade Lubrication

The Sealmaster PN Gold bearings are factory filled with Sealmaster GoldPlex-FG (Food Grade) grease (USDA H1 approved) which is suitable for mounted bearing lubrication where incidental contact with food products may occur in any application where clean, routine lubrication is required. For more information on Sealmaster GoldPlex-FG see page L-6.

Product Identification

Specialized laser identification for permanent brand and nomenclature identification.

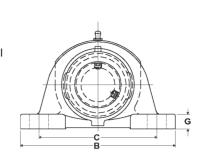
SEALMASTER® CR Gold Mounted Ball Bearings

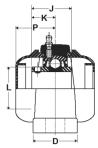
Rolling Elements: 52100 Steel Balls

Housing: 316 Passivated Stainless Steel

Pillow Block

Self-Alignment: +/- 2 Degrees


Lock: Setscrew


Seal: Single Lip Rubber Contact

Seal

Temperature: -20° to 220° F

Grease: Sealmaster GoldPlex-HP

NP-C CR Series Pillow Block Setscrew Locking

			1	Basic					Dir	nensior	s inch/n	nm							
Bor Diam		Part No.	Bearing Insert	Dynamic			i	3		Helioloi						Date	Unit Wt	Open Cap	Closed
inch	mh	HE-SULP.	No.	Rating lb/N	A	В	Min.	Max.	0	G	H	J	×	L	P	Bolt Size	lb/kg	indression	Cap
3/4	-	NP-12C CR	2-012C	2611	1 5/16	5	3 3/8	4 1/8	1 1/2	1/2	2 9/16	1 7/32	47/64	1 3/16	1 41/64	2/0	1.80	ECO-12	ECC-12
-	20	NP-204C CR	5204C	11614	33.3	127.0	85.7	104.8	38.1	12.7	65.1	31.0	18.7	30.2	41.7	3/8	.82	ECO-12	ECC-12
1	-	NP-16C CR	2-1C	2801	1 7/16	5 1/2	3 3/4	4 1/2	1 1/2	1/2	2 13/16	1 3/8	13/16	1 3/8	1 47/64	3/8	2.10	ECO-16	ECC-16
-	25	NP-205C CR	5205C	12459	36.5	139.7	95.3	114.3	38.1	12.7	71.4	34.9	20.6	34.9	44.1	3/0	.95	200-10	
1 3/16	-	NP-19C CR	2-13C															ECO-19	
1 1/4	-	NP-20RC CR	1-14C	4381 19488	1 11/16 42.9	6 1/2 165.1	4 7/16 112.7	5 1/16 128.6	1 7/8 47.6	9/16 14.3	3 3/8 85.7	1 1/2 38.1	7/8 22.2	1 19/32 40.5	1 51/64 45.6	1/2	3.65 1.66	ECO-20R	ECC-19
-	30	NP-206C CR	5206C															ECO-19	
1 1/4	-	NP-20C CR	2-14C	5700	4.710	0.014.0			4.710	F 10					. 50/04			ECO-20	
1 7/16	-	NP-23C CR	2-17C	5782 25720	1 7/8 47.6	166.7	4 11/16 119.1	134.9	1 7/8 47.6	5/8 15.9	3 3/4 95.3	1 11/16 42.9	1 25.4	1 55/64 47.2	1 59/64 48.8	1/2	4.45 2.02	ECO-23	ECC-23
-	35	NP-207C CR	5207C															ECO-23	
1 1/2	-	NP-24C CR	2-18C	7240	1 15/16		4 7/8	5 7/8	2 1/8		3 15/16			2 1/16	2 7/64	1/2	5.75	ECO-24	ECC-24
-	40	NP-208C CR	5208C	32205	49.2	184.2	123.8	149.2	54.0	17.5	100.0	49.2	30.2	52.4	53.6		2.61		
1 11/16	-	NP-27C CR	2-111	7901	2 1/8	7 1/2	5 7/16	6 1/16	2 1/8	11/16	4 1/4	1 15/16		2 19/64	2 1/8	1/2	6.65	ECO-27	ECC-27
-	45	NP-209C CR	5209C	35145	54.0	190.5	138.1	154.0	54.0	17.5	108.0	49.2	30.2	58.3	54.0		3.02		
1 15/16	-	NP-31C CR	2-115C	7889	2 1/4	8 1/8	6	6 1/2	2 3/8	3/4	4 9/16	2 1/32			2 13/64	5/8	8.10	ECO-31	ECC-31
-	50	NP-210C CR	5210C	35092	57.2	206.4	152.4	165.1	60.3	19.1	115.9	51.6	32.5	62.7	56.0		3.67		
2	-	NP-32C CR	1-2C	0750	0.416	0.515	0.115	_	0.015	0.14	_	00115		00/02	0.0416.		0.70	ECO-32	
2 3/16	-	NP-35C CR	2-23C	9752 43379	2 1/2 63.5	8 5/8 219.1	6 1/2 165.1	7 177.8	2 3/8 60.3	3/4 19.1	5 127.0	2 3/16 55.6	1 5/16 33.3	2 23/32 69.1	2 21/64 59.1	5/8	9.70 4.40	ECO-35	ECC-35
-	55	NP-211C CR	5211C																
2 7/16	-	NP-39C CR	2-27C	11789	2 3/4	9 1/2	6 7/8	7 5/8	2 3/4	7/8	5 9/16	2 9/16		2 63/64		5/8	13.70	ECO-39	ECC-39
-	60	NP-212C CR	5212C	52440	69.9	241.3	174.6	193.7	69.9	22.2	141.3	65.1	39.7	75.8	65.5		6.21		

Skwezloc concentric locking available upon request

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, \ please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

CR Gold Mounted Ball Bearings

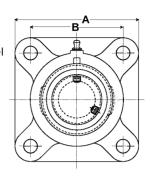
Duty: Standard

Rolling Elements: 52100 Steel Balls

Housing: 316 Passivated Stainless Steel

Four Bolt Flange

Self-Alignment: +/- 2 Degrees


Lock: Setscrew


Seal: Single Lip Rubber Contact

Seal

Temperature: -20° to 220° F

Grease: Sealmaster GoldPlex-HP

SF-C CR Series 4 Bolt Flange Setscrew Locking

Во	re		Bearing	Basic					Dïm	ensions	inch/m	m					Unit	- yv;=	ew s	VERNING NO.
Diam inch	eter	Part No.	Insert No.	Dynamic Rating Ib/N	Ä	8	D	G	R	J	1	M	N	р	1	Эс Size	Wt. Ib/kg	Open Cap	Closed Cap	Backs de Shield
3/4	-	SF-12C CR	2-012C		0.070	0.470	04/00	740	4.000	4.7/00	4.040	0.4/0	4/0	0.40/04	0		4.50			
-	20	SF-204C CR	5204C	2611 11614	3 3/8 85.7	2 1/2 63.5	31/32 24.6	7/16 11.1	1 9/32 32.5	1 7/32 31.0	1 3/16 30.2	2 1/2 63.5	1/2 12.7	2 19/64 58.3	2 50.8	3/8	1.50 .68	ECO-12	ECC-12	4BSS-12
1	-	SF-16C CR	2-1C	2801	3 3/4	23/4	1 5/64	17/32	1 7/16	1 3/8	1 3/8	2 23/32	9/16	27/16	23/8		2.00			
-	25	SF-205C CR	5205C	12459	95.3	69.9	27.4	13.5	36.5	34.9	34.9	69.1	14.3	61.9	60.3	7/16	.91	ECO-16	ECC-16	4BSS-16
1 3/16	-	SF-19C CR	2-13C															ECO-19		4BSS-19
1 1/4	-	SF-20RC CR	1-14C	4381 19488	4 1/4 108.0	3 1/4 82.6	1 7/32 31.0	17/32 13.5	1 9/16 39.7	1 1/2 38.1	1 19/32 40.5	3 7/32 81.8	5/8 15.9	2 37/64 65.5	2 7/8 73.0	7/16	2.75 1.25	ECO-20R	ECC-19	4BSS-20R
-	30	SF-206C CR	5206C	10.00	100.0	32.3	0110	10.0	55.1	55.1	10.0	31.0	10.0	00.0	10.0		,,,20	ECO-19		4BSS-19
1 1/4	-	SF-20C CR	2-14C															ECO-20		4BSS-20
1 7/16	-	SF-23C CR	2-17C	5782 25720	4 5/8 117.5	3 5/8 92.1	1 11/32 34.1	9/16 14.3	1 3/4 44.5	1 11/16 42.9	1 55/64 47.2	3 3/4 95.3	11/16 17.5	2 3/4 69.9	3 5/16 84.1	1/2	3.90 1.77	500.00	ECC-23	4BSS-23
-	35	SF-207C CR	5207C															ECO-23		N/A
1 1/2	-	SF-24C CR	2-18C	7340	5 1/8	4	1 1/2	9/16	21/64	1 15/16	21/16	4 5/64	3/4	3 1/64	3 1/2	4.0	5.15	FCO 24	F66.04	4BSS-24
-	40	SF-208C CR	5208C	32650	130.2	101.6	38.1	14.3	51.2	49.2	52.4	103.6	19.1	76.6	88.9	1/2	2.34	ECO-24	ECC-24	N/A
1 11/16	1	SF-27C CR	2-111	7901	5 3/8	4 1/8	1 9/16	9/16	23/64	1 15/16	2 19/64	4 21/64	3/4	3 3/64	3 7/8	9/16	5.70	ECO-27	ECC-27	4BSS-27
-	45	SF-209C CR	5209C	35145	136.5	104.8	39.7	14.3	52.0	49.2	58.3	109.9	19.1	77.4	98.4	9/10	2.59	ECO-21	ECC-27	N/A
1 15/16	1	SF-31C CR	2-115C	7889	5 5/8	4 3/8	1 9/16	9/16	25/32	2 1/32	2 15/32	3 5/64	3/4	3 3/64	4	9/16	6.40	ECO-31	ECC-31	4BSS-31
-	50	SF-210C CR	5210C	35092	142.9	111.1	39.7	14.3	54.8	51.6	62.7	115.5	19.1	77.4	101.6	3/10	2.90	200-31	200-31	N/A
2	-	SF-32C CR	1-2C																	4BSS-32
2 3/16	-	SF-35C CR	2-23C	9752 43379	63/8 161.9	5 1/8 130.2	1 3/4 44.5	13/16 20.6	2 5/16 58.7	2 3/16 55.6	2 23/32 69.1	5 3/16 131.8	7/8 22.2	3 13/32 86.4	4 1/4 108.0	5/8	10.45 4.74	ECO-35	ECC-35	4BSS-35
-	55	SF-211C CR	5211C																	7033-33
2 7/16	-	SF-39C CR	2-27C	11789	67/8	5 5/8	1 15/16	13/16	2 11/16	29/16	2 63/64	5 7/16	1	3 51/64	5	5/8	11.80	ECO-39	ECC-39	4BSS-39
-	60	SF-212C CR	5212C	52440	174.6	142.9	49.2	20.6	68.3	65.1	75.8	138.1	25.4	96.4	127.0	3/3	5.35	200-39	200-39	4BSS-38

Skwezloc concentric locking available upon request

Metric dimensions for reference only.

 $Not all \ parts \ are \ available \ from \ stock. \ Please \ contact \ customer \ service \ for \ availability \ (800) \ 626-2120.$

 $For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) \, 626-2093.$

MASTER © CR Gold Mounted Ball Bearings

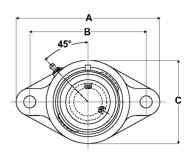
Duty: Standard

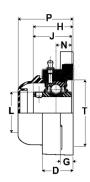
Rolling Elements: 52100 Steel Balls

> Housing: 316 Passivated Stainless Steel

Two Bolt Flange

Self-Alignment: +/- 2 Degrees


> Lock: Setscrew


Seal: Single Lip Rubber Contact

Seal

Temperature: -20° to 220° F

> Sealmaster GoldPlex-HP Grease:

SFT-C CR Series 2 Bolt Flange Setscrew Locking

Во			Bearing	Basic					Dïm	ensions	inch/n	nm					Unit	23	288 88	-
Diam	1000	Part No.	Insert No.	Dynamic Rating Ib/N	A		С	٥	G	1980	235	F	N	P	Ħ	Boli Size	Wt. lb/kg	Open Cap	Closed	Doctoring Spring
3/4	mm -	SFT-12C CR	2-012C		413/32	317/32	2 3/8	31/32	7/16	1 9/32	1 7/32	1 3/16	1/2	219/64	2	3126	1.10			
-	20	SFT-204C CR	5204C	11614	111.9	89.7	60.3	24.6	11.1	32.5	31.0	30.2	12.7	58.3	50.8	3/8	.50	ECO-12	ECC-12	2BSS-12
1	-	SFT-16C CR	2-1C	2801	4 7/8	3 57/64	2 3/4	1 5/64	17/32	1 7/16	1 3/8	1 3/8	9/16	2 7/16	2 3/8	7/16	1.50	ECO-16	ECC-16	2BSS-16
-	25	SFT-205C CR	5205C	12459	123.8	98.8	69.9	27.4	13.5	36.5	34.9	34.9	14.3	61.9	60.3	7/10	.68	ECO-16	ECC-16	2033-10
1 3/16	-	SFT-19C CR	2-13C															ECO-19		2BSS-19
1 1/4	-	SFT-20RC CR	1-14C	4381 19488	5 9/16 141.3	4 19/32 116.7	3 1/4 82.6	17/32 31.0	17/32 13.5	1 9/16 39.7	1 1/2 38.1	1 19/32 40.5	5/8 15.9	2 9/16 65.1	2 7/8 73.0	7/16	2.20 1.00	ECO-20R	ECC-19	2BSS-20R
-	30	SFT-206C CR	5206C															200 201		2BSS-19
1 1/4	-	SFT-20C CR	2-14C															ECO-20		2BSS-20
1 7/16	-	SFT-23C CR	2-17C	5782 25720	6 1/8 155.6	5 1/8 130.2	3 3/4 95.3	1 11/32 34.1	9/16 14.3	1 3/4 44.5	1 11/16 42.9	1 55/64 47.2	11/16 17.5	2 3/4 69.9	3 5/16 84.1	1/2	3.25 1.47	ECO-23	ECC-23	2BSS-23
-	35	SFT-207C CR	5207C															200 20		2BSS-22
1 1/2	-	SFT-24C CR	2-18C	7340		5 21/32	4 1/8	1 1/2	9/16	2 1/64	1 15/16	2 1/16	3/4	3 1/64	3 1/2	1/2	4.35	ECO-24	ECC-24	2BSS-24
-	40	SFT-208C CR	5208C	32650	171.5	143.7	104.8	38.1	14.3	51.2	49.2	52.4	19.1	76.6	88.9		1.97			2BSS-208
1 11/16	-	SFT-27C CR	2-111	7901		5 27/32	4 3/8	1 9/16	9/16		l	2 19/64	3/4	3 3/64	3 7/8	9/16	5.00	ECO-27	ECC-27	2BSS-27
-	45	SFT-209C CR	5209C	35145	179.4	148.4	111.1	39.7	14.3	52.0	49.2	58.3	19.1	77.4	98.4		2.27			N/A
1 15/16	-	SFT-31C CR	2-115C	7889	7 7/16	6 3/16	4 9/16	1 9/16	9/16	2 5/32		2 15/32		3 1/16	4	9/16	5.15	ECO-31	ECC-31	2BSS-31
-	50	SFT-210C CR	5210C	35092	188.9	157.2	115.9	39.7	14.3	54.8	51.6	62.7	19.1	77.8	101.6	50	2.34			N/A
2	-	SFT-32C CR	1-2C																	2BSS-32
2 3/16	-	SFT-32C CR	2-23C	9752 43379	8 1/2 215.9	7 1/4 184.2	5 1/4 133.4	1 3/4 44.5	13/16 20.6	2 5/16 58.7	2 3/16 55.6	2 23/32 69.1	7/8 22.2	3 13/32 86.4	4 1/4 108.0	5/8	8.40 3.81	ECO-35	ECC-35	2BSS-35
-	55	SFT-32C CR	5211C																	

Skwezloc concentric locking available upon request

CR Gold Mounted Ball Bearings **SEALM**

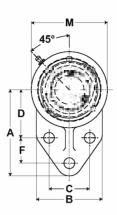
Duty: Standard

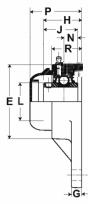
Rolling Elements: 52100 Steel Balls

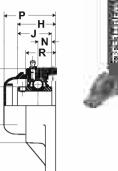
> Housing: 316 Passivated Stainless Steel

Flange Block

Self-Alignment: +/- 2 Degrees


> Lock: Setscrew


Seal: Single Lip Rubber Contact


Seal

Temperature: -20° to 220° F

> Grease: Sealmaster GoldPlex-HP

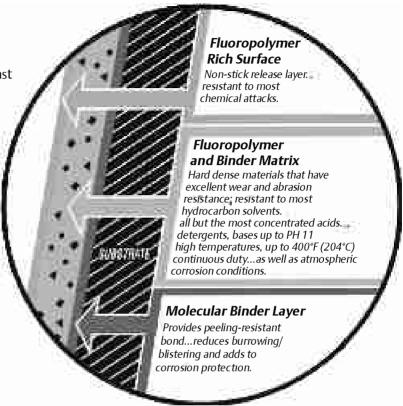
FB-C CR Series Flange Bracket Setscrew Locking

	111										100	aly, orde	100									
ETT.	nini Omi			Copia ini Pagasa Pag	E	725	***	100	-	500		937215			00	X	:Œ.	350	707	Here wer Long	Upin our	limed
21(07.03 33.70.00	550F 10745	8138 7254	22 ' 1 2 4		zen Haci	102 PC	100 s 424	4. N 24.	77 202	, e	1 34 34	123 123	22.5 22.5	216	200	2-144 37-2	Å.	13	#	COD-1	-co-is
1	FB-16	SC CR		2801 12459		3 2 1/2 63.5		1 13/16 46.0	4 3/4 120.7			1 1/2 38.1	1 3/8 34.9		2 3/4 69.9		25/32 54.8	1 3/32 27.8	3/8	1 80 82	ECO-16	ECC-16
21.6	, 77-3 6-00 4-00	arie	* 137 1 19 1 1	BCC TE-FOL	50 SA	i èsir Hel) W	677 6 181	n der	1.111 20.3	744. 100	e e	100 100 100 100 100 100 100 100 100 100	1 0000 1673	hi tau hach	idi Nati	1-80	2 ++ 6p 30 +	GGI.	*#	FSZ-4	-a.m
1 1/4 1 7/16		C CR	2-14C 2-17C 5207C	5782 25720		4 3 1/4 0 82.6		2 3/8 60.3	6 1/8 155.6				1 11/16 42.9					1 15/32 37.3	1/2	3.80 1 72	ECO-20	ECC-23

Skwezloc concentric locking available upon request

Table of Contents

Flouropolymer Coating	K-76
Load and Speed Charts	K-77
Installation	K-79
Lubrication	K- 84
Speed Limits	K-84


Corrosion Resistant Engineering Section

Fluoropolymer Coating

Used On:

- RPB-CR Units
- PN Gold Units with Fluoropolymer Cast Iron. As listed on pages K-53 to K-57.

The chart below demonstrates the effectiveness of this corrosion-resistant polymer coating for a variety of atmospheric conditions and other physical qualities, against other popular materials. It is also important to note that **SEALMASTER RPB-CR Duty Bearings** have the housing bores coated

CORROSION CHARACTERISTICS	SEALMASTER CORRESPON THEORY	PAINT	ELECTRO- LESS NICKEL	CU/NI/CR	NYLON	TEFLON
ACID	4440	*	VVV	44	404	VVVV
BASE	4440	W.	10	JV	4114	VVVV
WASHDOWN	4440	W	44	VV.	411	V**
ATMOSPHERIC EXPOSURE	0000	VV	7.0		VV	VVV
NON-STICK	1000	37	1		V	VVVV
ADHESION TO CASTING	UVV	///	VVV	VVV	VVV	V
HARDNESS	444	VV	VVVV	VVVV	VVV	V
COLOR	1001	V	VV	VVVV	VV	VV

HIGH PRESSURE SPRAYWASH

Load Ratings for Sealmaster PN Gold & CR Gold

This chart displays load capacity in pounds for a given L10 life, speed and shaft size. The shaded areas indicate the maximum speed ratings for CR Gold only. The values in the table represent loads at ideal conditions with press fit mounting to the shaft. ABMA recommends applying life adjustments factors for slip fit mounted ball bearings and when using alternative race materials. To obtain de-rated load, divide load in the table by 1.29. The values in the table represent equivalent radial loads only. For combined radial and thrust load, the equivalent radial load must be calculated before applying the load in the table. Refer to Mounted Ball Engineering Section G for more information on calculating L10.

	Oynaminc Rating Ib/N	L10 Hrs														
1/2			50	150	250	500	750	1000	1250	1500	1750	2000	3000	4000	5000	6000
1 1/2		5000	653	653	619	491	429	390	362	341	324	310	270	246	228	215
1/2	2611	10000	653	583	491	390	341	310	287	270	257	246	215	195	181	170
5/8	11614	30000	583	404	341	270	236	215	199	188	178	170	149	135	126	118
3/4		50000	491	341	287	228	199	181	168	158	150	144	126	114	106	100
		100000	390	270	228	181	158	144	133	126	119	114	100	91	84	79
		5000	700	700	664	527	461	418	388	366	347	332	290	264	245	230
1 1	2801	10000 30000	700 625	625 433	527 366	418 290	366 253	332 230	308 214	290 201	276 191	264 183	230 160	209 145	194 135	183 127
'	12459	50000	527	366	308	290 245	233	230 194	180	170	161	154	135	122	114	107
		100000	418	290	245	194	170	154	143	135	128	122	107	97	90	85
		5000	1095	1095	1039	825	720	654	608	572	543	519	454	412	383	00
		10000	1095	978	825	654	572	519	482	454	431	412	360	327	304	
1 3/16	4381	30000	978	678	572	454	396	360	334	315	299	286	250	227	211	
1 1/4R	19487	50000	825	572	482	383	334	304	282	265	252	241	211	191	178	
		100000	654	454	383	304	265	241	224	211	200	191	167	152	141	
		5000	1446	1446	1371	1088	951	864	802	755	717	686	599	544		
1 1/4		10000	1446	1290	1088	864	755	686	636	599	569	544	475	432		
1 3/8	5782 25718	30000	1290	895	755	599	523	475	441	415	394	377	330	299		
1 7/16	23/10	50000	1088	755	636	505	441	401	372	350	333	318	278	253		
		100000	864	599	505	401	350	318	295	278	264	253	221	200		
		5000	1835	1835	1741	1381	1207	1096	1018	958	910	870	760	691		
	70.40	10000	1835	1638	1381	1096	958	870	808	760	722	691	603	548		
1 1/2	7340 32648	30000	1638	1136	958	760	664	603	560	527	501	479	418	380		
	02010	50000	1381	958	808	641	560	509	472	445	422	404	353	321		
		100000	1096	760	641	509	445	404	375	353	335	321	280	254		
		5000	1975	1975	1874	1487	1299	1180	1096	1031	979	937	818			
1 5/8	7901	10000	1975	1763	1487	1180	1031	937	870	818	777	744	650			
1 11/16	35144	30000	1763	1222	1031	818	715	650	603	567	539	516	450			
1 3/4		50000	1487	1031	870	690	603	548	509	479	455	435	380			
		100000	1180	818	690	548	479	435	404	380	361	345	301			
		5000	1972	1972	1871	1485	1297	1178	1094	1029	978	935	817			
1 15/16	7889	10000	1972	1760	1485	1178	1029	935	868	817	776	742	649			
2R	35090	30000	1760	1221	1029	817	714	649	602	567	538	515	450			
		50000 10000	1485 1178	1029 817	868 689	689 547	602 478	547 434	508 403	478 379	454 360	434 345	379 301			
		5000	2438	2438	2312	1835	1603	1457	1352	1273	1209	1156	1010			
		10000	2438	2436	1835	1457	1273	1156	1073	1010	959	918	802			
2	9752	30000	2176	1509	1273	1010	882	802	744	700	665	636	556			
2 3/16	43377	50000	1835	1273	1073	852	744	676	628	591	561	537	469			
		100000	1457	1010	852	676	591	537	498	469	445	426	372			
		5000	2947	2947	2795	2219	1938	1761	1635	1538	1461	1398	012			
		10000	2947	2631	2219	1761	1538	1398	1298	1221	1160	1109				
2 1/4	11789	30000	2631	1824	1538	1221	1067	969	900	847	804	769				
2 7/16	52437	50000	2219	1538	1298	1030	900	817	759	714	678	649				
		100000	1761	1221	1030	817	714	649	602	567	538	515				

- Not all shaft sizes are available for each product line; refer to the product pages to determine availability.
- Typical operating temperature range of CR Gold and PN Gold bearings are -20° F to 220° F (0° F to 150° F for composite housings).
- For loads, speeds and temperature not listed, contact Application Engineering at 800-626-2093.

Load Ratings for Sealmaster RPB-CR

This chart displays load capacity in pounds for a given L10 life, speed and shaft size. The values in the table represent equivalent radial loads only. For combined radial and thrust load, the equivalent radial load must be calculated before applying the load in the table. Refer to Mounted Roller Engineering Section I for more information on calculating L10, and page I-56 for Single Row Basic Dynamic Rating.

_	Basic								RF	PM						
Bore Size	Dynaminc Rating Ib/N	L10 Hrs.	50	150	250	500	750	1000	1250	1500	1750	2000	2500	3000	3500	4000
		5000	2975	2975	2975	2552	2260	2073	1939	1836	1753	1684	1575	1491	1424	1368
1 3/16	2975	10000	2975	2975	2552	2073	1836	1684	1575	1491	1424	1368	1279	1211	1156	1111
1 1/4	13233	30000 50000	2975 2552	2140 1836	1836 1575	1491 1279	1320 1133	1211 1039	1133 972	1072 920	1024 878	984 844	920 789	871 747	832 714	799 685
		100000	2073	1491	1279	1039	920	844	789	920 747	714	685	641	607	580	557
		5000	4760	4760	4760	4084	3616	3317	3102	2937	2804	2694	2520	2386	2278	001
4 2/0	4700	10000	4760	4760	4084	3317	2937	2694	2520	2386	2278	2188	2047	1938	1850	
1 3/8 1 7/16	4760 21174	30000	4760	3424	2937	2386	2112	1938	1812	1716	1638	1574	1472	1394	1331	
1 7710	21174	50000	4084	2937	2520	2047	1812	1662	1555	1472	1406	1350	1263	1196	1142	
		100000	3317	2386	2047	1662	1472	1350	1263	1196	1142	1097	1026	971	927	
1 1/2		5000 10000	6140 6140	6140 6140	6140 5268	5268 4279	4664 3789	4279 3475	4002 3250	3789 3077	3617 2938	3475 2823	3250 2640	3077 2500		
1 5/8	6140	30000	6140	4416	3789	3077	2725	2500	2338	2213	2113	2030	1899	1798		
1 11/16	27312	50000	5268	3789	3250	2640	2338	2144	2006	1899	1813	1742	1629	1542		
		100000	4279	3077	2640	2144	1899	1742	1629	1542	1473	1415	1323	1253		
		5000	8070	8070	8070	6923	6130	5624	5259	4979	4754	4568	4272			
1 3/4	8070	10000	8070	8070	6923	5624	4979	4568	4272	4045	3862	3710	3470			
1 15/16	35897	30000	8070	5804	4979	4045	3581	3285	3072	2909	2777	3668	2496			
2		50000 100000	6923 5624	4979 4045	4272 3470	3470 2818	3072 2496	2818 2289	2636 2141	2496 2027	2383 1935	2289 1859	2141 1739			
		5000	8570	8570	8570	7352	6510	5972	5585	5288	5049	4851	4537			
		10000	8570	8570	7352	5972	5288	4851	4537	4295	4101	3940	3685			
2 3/16	8570	30000	8570	6164	5288	4295	3803	3489	3263	3089	2950	2834	2650			
	38121	50000	7352	5288	4537	3685	3263	2993	2799	2650	2530	2431	2274			
		100000	5972	4295	3685	2993	2650	2431	2274	2153	2055	1975	1847			
		5000	9030	9030	9030	7747	6860	6293	5885	5572	5320	5111				
2 1/4 2 7/16	9030	10000 30000	9030 9030	9030 6495	7747 5572	6293 4526	5572 4007	5111 3676	4780	4526 3255	4321 3108	4152 2986				
2 1/10	40167	50000	7747	5572	4780	3883	3438	3154	3438 2950	2793	2666	2562				
,_		100000	6293	4526	3883	3154	2793	2562	2396	2268	2166	2081				
0.44440		5000	9630	9630	9630	8262	7316	6711	6276	5942	5674					
2 11/16 2 3/4	9630	10000	9630	9630	8262	6711	5942	5451	5098	4826	4608					
2 15/16	42836	30000	9630	6926	5942	4826	4274	3920	3666	3471	3314					
3		50000	8262	5942	5098	4141	3666	3363	3145	2978	2843					
		100000 5000	6711 15320	4826 15320	4141 15320	3363 13143	2978 11638	2732 10676	2555 9984	2419 9453	2310					
3 3/16		10000	15320	15320	13143	10676	9453	8671	8110	7678						
3 7/16	15320	30000	15320	11018	9453	7678	6799	6237	5833	5522						
3 1/2	68147	50000	13143	9453	8110	6587	5833	5351	5004	4738						
		100000	10676	7678	6587	5351	4738	4346	4065	3848						
		5000	20980	20980	20980	17999	15938	14620	13673							
3 15/16	20980	10000 30000	20980 20980	20980 15089	17999 12945	14620 10515	12945 9311	11875 8541	11106 7988							
4	93324	50000	17999	12945	11106	9021	7988	7327	6853							
		100000	14620	10515	9021	7327	6488	5952	5566							
		5000	25750	25750	25750	22091	19561	17944	16782							
4 7/16	25750	10000	25750	25750	22091	17944	15889	14575	13631							
4 1/2	114542	30000	25750	18520	15889	12906	11427	10483	9804							
		50000	22091	15889	13631	11072	9804	8993	8411							
		100000 5000	17944 35520	12906 35520	11072 35520	8993 30473	7963 26983	7305 24752	6832							
		10000	35520	35520	34073	24752	21917	20105								
4 15/16	35520	30000	35520	25547	21917	17802	15763	14460								
5	158001	50000	30473	21917	18803	15273	13524	12405								
		100000	24752	17802	15273	12405	10985	10076								

- Typical operating temperature ranges for standard bearings are -20° F to 220° F.
- For loads, speeds outside the rating chart, contact Application Engineering at 800-626-2093.

Installation Instructions

• Sealmaster RPB-CR

Refer to page I-59

• Sealmaster PN Gold and CR Gold

Refer to page K-80

Water Street

Corrosion Resistant Engineering Section

PN Gold and CR Gold Bearing Installation

Mounting Housed Bearing Units:

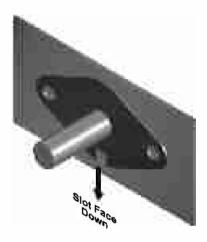
NOTICE

- These bearings are designed for maximum permissible static misalignment of \pm 2 degrees. Installation, handling or operation of the bearing in excess of the maximum of \pm 2 degrees can cause reduction in bearing performance and may lead to equipment failure.
- Do not strike or hammer on any component of the bearing and/or shaft. Impact can result in damage to the bearing that may cause reduction in bearing performance and may lead to equipment failure.

Step 1: Inspect Shaft and Bore

Shaft should be within tolerance range shown in Table 1, clean and free of nicks and burrs. Mount bearings on unused section of shafting or repair/replace shafting as required. Inspect both the shaft and bearing bore for debris or contaminants. Wipe clean as necessary.

PN/CR Gold Table 1


Recommended Sh	aft Tolerances
Nominal Bore Diameter	Tolerance (Inches)
2941Cade	000000-1400MB
2 - 3 3/16	+0.0000 / -0.0010
2 tot - = 1000	+0.000

Step 2: Check Support Surfaces

Make sure the base of the housing and the support surfaces are clean and free from burrs. If the housing elevation is adjusted with shims these must cover the entire contact area between the housing and the support surface.

Step 3: Install Back-side Shield

If a back-side shield is used (2, 3 and 4 bolt flange units), install the shield on the shaft. Verify that the drain slot is facing downward as shown.

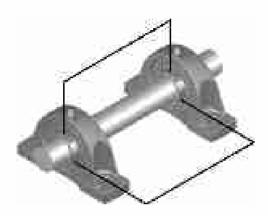
Step 4: Install Unit

To aid installation, keep weight off bearing during mounting. Slide unit onto shaft by pushing on the inner ring. If it is difficult to mount bearing on shaft, use a piece of emery cloth to reduce any high spots on the shaft.

Step 5: Fasten Unit in Place

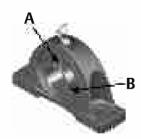
Install housing mounting bolts and check bearing alignment. Align the bearing units as closely as possible.

Tighten mounting bolts to recommended fastener torques. Check the shaft for freedom of rotation by rotating shaft with hand in both directions.


MASTER © Corrosion Resistant Engineering Section

PN Gold and CR Gold Bearing Installation continued

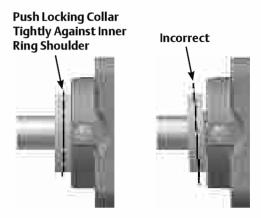
Step 6: Tighten Locking Mechanism


a. Setscrew Locking Inserts

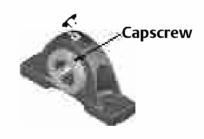
Setscrews in multiple bearing applications should be aligned as shown.

Tighten bearing units to the shaft as follows:

- i. Torque the first setscrew "A" to one half of the recommended torque in Table 2.
- ii. Torque the second setscrew "B" to the full recommended torque. Go back to the first setscrew "A" and tighten to the full recommended torque.


Check shaft again for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.

PN/CR Gold Table 2


	Setscre	w Torque						
Screw Size	Hex Size	Inch-Pounds						
Screw Size	nex Size	CR-Gold	PN-Gold					
144.28	1.8	65 - 50	35 - 40					
5/16-24	5/32	125 - 165	75 - 100					
270-37	300	Same and	126 E169					
7/16-20	7/32	350 - 450	130 - 160					
1/2-20	1/4	500 - 650	N/A					
5/8-18	5/16	1100 - 1440	N/A					

b. Skwezloc Locking Inserts

i. Be sure that the Skwezloc collar is fitted square and snuq against the shoulder on the inner ring

ii. Torque the Skwezloc collar cap screw to the full recommended torque in Table 3.

PN/CR Gold Table 3

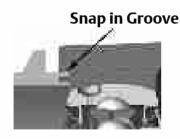
Skwezloc Co	ncentric Locki Screw Torque	ing Collar Cap						
Screw Size	Hex Size	Inch-Pounds						
40.00	200	0(44))						
# 10-24	T-27	100						
09,700	(36)	2000						
5/16-18	T-45	495						

Check shaft again for freedom of rotation and then tighten the second bearing unit in the same fashion. When all bearings are tightened, perform a final check to the shaft for freedom of rotation.

Corrosion Resistant Engineering Section

Optional End Cap Installation Instructions:

Polymer End Caps:


Step 1: Position End Cap

Verify that the drain hole is facing down when the cap is installed as shown. Position the end cap flush against the face of the housing.

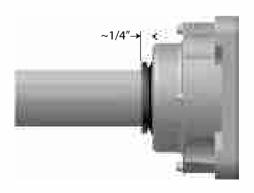
Step 2: Install End Cap

Press the cap until it snaps into the groove in the housing. Rotate the shaft by hand to verify there is no contact between the shaft and the end cap. If an open end cap is used, there should be no contact between the shaft and the bore of the end cap as shown.

Stainless Steel End Caps:

Step 1: Position End Cap

Apply silicone sealant evenly onto the housing face where the end cap will contact (optional). Verify that the end cap drain hole is facing down when the cap is installed (for caps with two drain holes, one should be facing down). Position the end cap flush against the face of the housing.



Step 2: Install End Cap

Tighten the cap screws to affix the end cap to the housing face. Rotate the shaft by hand to verify there is no contact between the shaft and the end cap. If an open end cap is used, there should be no contact between the shaft and the bore of the end cap.

Step 3: Install V-Seal (Open End Caps Only)

Place the V-seal over the shaft. Push the seal up against the outside face of the open end cap, such that the seal lip contacts the outside face of the open end cap as shown. The assembled width of the seal should be approximately ¼ inch.

ASTER® Corrosion Resistant Engineering Section

Mounting PN Gold Cylindrical O.D. (ER Style) Inserts

A STATE OF THE STA

Replacing Existing Sealmaster Inserts:

Note:

Replacement Sealmaster bearing inserts are intended for use in Sealmaster housings only.

Step 1: Loosen and Remove Housing Mounting Bolts

Step 2: Remove Bearing from Shaft

Loosen the locking mechanism and slide the bearing off the shaft.

Step 3: Remove the Bearing Insert from the Housing

Secure housing in a vise. Remove lubrication fitting and lock pin from the housing. Do not discard the lubrication fitting or lock pin. Using a bar placed in the insert bore as a lever, swing the insert to line up the outer ring with the load slots and remove insert from load slots.

Step 4: Inspect and Prepare Housing

Housings should be inspected for damage prior to installation. Wipe housing bore clean as necessary and check that the lubrication hole is clean and free of debris. Wetting of the housing bore with oil or grease may be done to ease installation of bearing insert.

Step 5: Load New Insert

With the bearing housing still in the vise, load the insert in the following fashion:

a. Place the bearing insert into the housing load slots, positioning the insert outer ring dimple and lubrication hole in line with the housing lubrication hole.

b. Using a bar placed in the insert bore as a lever, swing the insert into place within the housing. Insert should have a snug fit in the housing. If insert can be made to swivel by hand in the housing bore, fit is too lose and entire unit should be replaced. If heavy force is required, fit is too tight and entire unit should be replaced.

c. Ensure alignment of the outer ring dimple and lubrication hole and housing lubrication hole.

Step 6: Install Lock Pin and Lubrication Fitting

Place the lock pin in the housing lubrication hole, ensuring that it seats in the outer ring dimple. Tighten the lubrication fitting into the housing lubrication hole until snug, then loosen ¼ turn.

NOTICE: Over tightening or under tightening of the lubrication fitting may lead to reduction in bearing performance.

Step 7: Refer to Steps 1 - 6 from the "Mounting Housed Bearing Units" Section and the "Optional End Cap Installation Instructions" if applicable

Mounted PN Gold Cylindrical O.D. (ER Style) Inserts See page G-248

SESTIMEN.

Corrosion Resistant Engineering Section

<u>SEALMASTER</u>

Lubrication:

All Sealmaster PN Gold and CR Gold Ball Bearings are delivered with a high quality food grade grease with an EP additive. The bearing is ready for use with no initial lubrication required. The grease consists of a calcium sulfonate thickener, mineral oil, and NLGI grade 2 consistency.

Compatibility of grease is critical; therefore consult with Application Engineering and your grease supplier to insure greases are compatible. For best performance it is recommended to relubricate with calcium sulfonate thickened grease with a comparable NLGI consistency and base oil properties.

Relubricatable Sealmaster bearings are supplied with grease fittings or zerks for ease of lubrication with hand or automatic grease guns. Always wipe the fitting and grease nozzle clean.

CAUTION: If possible, it is recommended to lubricate the bearing while rotating, until grease purge is seen from the seals. If this is not an option due to safety reasons, follow the alternate lubrication procedure below.

Alternate Lubrication Procedure:

Stop rotating equipment. Add one half of the recommended amount shown in Table 4. Start the bearing and run for a few minutes. Stop the bearing and add the second half of the recommended amount. A temperature rise after lubrication, sometimes 30°F (17°C), is normal. Bearing should operate at temperatures less than 200°F (94°C) and should not exceed 250° (121°C) for intermittent operation. For lubrication quidelines, see Tables 4 and 5.

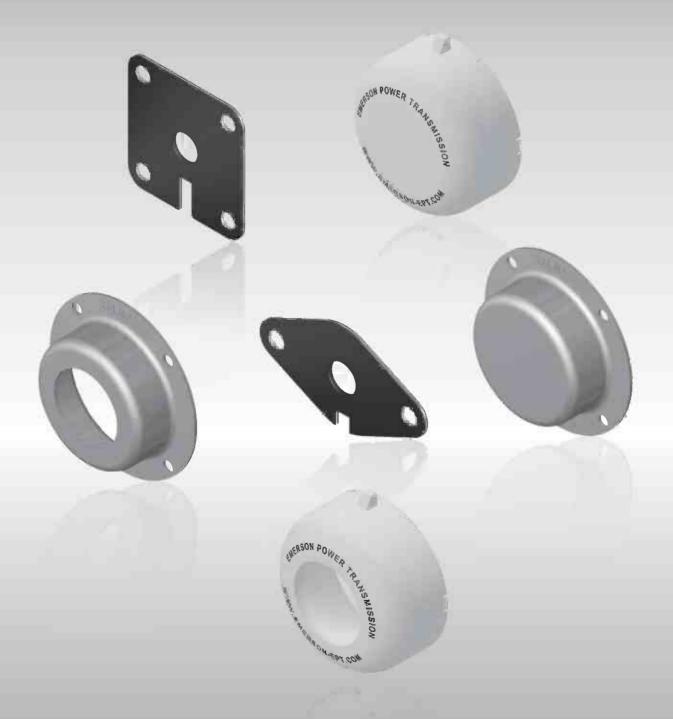
Note: Table 5 is a general recommendation. Experience and testing may be required for specific applications.

Note: Grease charges in Table 4 are based on the use of calcium sulfonate thickened grease with a NLGI grade 2 consistency.

Speed Limits:

Note: The Maximum Operational Speeds listed in Table 6 are based on the use of a single lock setscrew insert, with single lip contact seals (1C) for CR Gold, and with HPS seals for PN Gold.

PN/CR Gold Table 4


	Grease Charge for	or Relubrication	
Ci	Bore	Size	Grease Charge
Series	Standard Duty	Medium Duty	(Mass - Ounces)
2011	Will SEV		110
2-015	13/16 - 1		04
11/13	1009(3.049)	1976-1	90
2-17	1 1/4 - 1 7/16	1 3/16	13
- 354	1/2 1/4/H	there:	116
2-111	1 5/8 - 1 3/4	1 1/2	20
2-115	1 13/16 - 2R	1 11/16 - 1 3/4	22
2-23	2 - 2 3/16	1 15/16	30
11.2	-2.174 - 2.3210	Vista 6	34
2-211	2 1/2 - 2 11/16	2 7/16 - 2 1/2	53
建建筑	F-3000 3 (65)	2.066	53
2-33	3 - 3 3/16	2 15/16	88
1.95	E 1/4-1770	8.976	179
2-38	3 1/2	3 7/16	1.37
11.3%	0.0836 4.940	(1) Sept. (4)	2.56

PN/CR Gold Table 5

	Relutions ettem 31	ourre endature.	
Environment	For operature (Fr	Врекі 17. Кан из Мар	Exquercy
Dirty	-20 to 250	0 - 100%	Daily to 1 Week
		0 - 25%	4 to 10 Months
	-20 to 125	26 - 50%	1 to 4 Months
	-20 10 123	51 - 75%	1 Week to 1 Month
		76 - 100%	Daily to 1 Week
Clean		0 - 25%	2 to 6 Weeks
	125 to 175	26 - 50%	1 Week to 1 Month
	123 10 173	51 - 75%	Daily to 1 Week
		76 - 100%	- Daily to 1 Week
	175 to 250	0 - 100%	Daily to 1 Week

PN/CR Gold Table 6

100000000	Max mars Cour	MEN OF STANK	and and				
Bore 50	e dnort	Speed (RPM)					
Banderd Dog	Week, in Cate	GR: GcHJ	PNOW				
1/2 - 3/4	x	6450	3100				
13/161	х	6350	2700				
1 1/16 - 1 1/4R	15/16 - 1	5450	2300				
1 1/4 - 1 7/16	1 3/16	4650	2000				
1 1/2 - 1 9/16	1 7/16	4150	1750				
1 5/8 - 1 3/4	1 1/2	3800	1600				
1 13/16 - 2R	1 11/16 - 1 3/4	3550	1500				
2 - 2 3/16	1 15/16	3250	1350				
2 1/4 - 2 7/16	2 3/16	2550	1250				

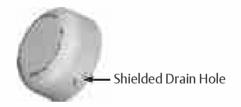
Accessories

The bearing products in this catalog may require accessories to further enhance their value. These accessories range from end caps to lubrication. These accessories can be used on several bearing platforms and are available for customization with support from our Application Engineering group.

End Caps and Backside Shields

End Caps and Backside Seals

Additional sealing accessories are available for enhanced bearing and personal protection. End caps provide a guard from rotating shafts and conform to OHSA requirements for personal protection. In addition, these accessories together can better protect against high-pressure wash down and help reduce bearing moisture contact. Backside shield gaskets are mounted between the bearing and the equipment frame to reduce moisture runoff. Depending on your preference, these accessories are illustrated on the following pages.


End Caps

End caps offer better protection against high-pressure wash down and can be used to reduce bearing moisture contact and provide personal protection to conform with OSHA and other regulatory guidelines.

Polymer Snap On Cap

Polypropylene material for resistant to corrosion, hand snap into housing for easy installation, and incorporate a shielded drain hole to reduce moisture buildup against the bearing.

Stainless Bolt On End Cap

Durable 304 stainless steel for resistance to corrosion and chemical attack, bolts onto housing with four cap screws for excellent holding power, drain hole to be positioned towards the bottom to reduce moisture buildup against the bearing.

Cap Availability

Product Line	Mayor Print To	Milliant Enf 7s
Shelman in Fill Unit Shakes	*	
Sealmaster PN Gold Stainless	Υ	Υ
bar rape FHRs. Comparts) E(OF:
Sealmaster Material Handling	Υ	Y

^{*}Bolt on caps for mounted ball bearings are for flange housing designs only.

Caps fit on housings that have been modified with the appropriate bolt pattern as defined by the prefix "B" in the part number.

Example: Sealmaster PN Gold CRBFTS-PN24, Sealmaster Gold BSFT-24

*Note: Additional end cap designs exist for non-standard parts or industry specific designs. Consult Application Engineering for more information.

End Cap Part Identification

Mounted Ball Bearing Caps

Bore Size		Unit Size	Polymer Snap On		Bolt On (2-bolt, 3-bolt, 4-bolt flange)	
inch	mm	Unit Size	Closed	Open	Closed	Open
3/4	-	12	ECC-12	ECO-12	N/A	N/A
-	20	204				
7/8	-	14	ECC-16	ECO-14	BEC-16	BEO-16
1	-	16		ECO-16		
-	25	2 0 5				
1 1/8	-	18		ECO-19	BEC-19	N/A
1 3/16	-	19	ECC-19	ECO-19		BEO-19
1 1/4R	-	2 0 R		ECO-20R		BEO-2 0 R
-	30	206		ECO-19		BEO-19
1 1/4	-	20	ECC-23	ECO-20	BEC-23	BEO-20
1 3/8	-	22		ECO-23		BEO-22
1 7/16	-	23		ECO-23		BEO-23
-	35	207		ECO-23		BEO-22
1 1/2	-	24	ECC-24	ECO-24	BEC-24	BEO-24
-	40	2 0 8	EUU-24			
1 11/16	-	27	ECC-27	ECO-27	BEC-27	BEO-27
1 3/4	-	28		N/A		BEO-28
-	45	2 0 9		N/A		BEO-28
1 15/16	-	31	ECC-31	ECO-31	BEC-31	BEO-31
2	-	32R		N/A		
-	5 0	210		ECO-31		
2	-	32		ECO-35	BEC-35	BEO-32
2 3/16	-	211	ECC-35			BEO-35
-	55	35				BEO-35
2 3/8	-	38		ECO-39	BEC-39	BEO-39
2 7/16	-	39	ECC-39			
-	60	212				

Notes: 1. Bolt on caps for mounted ball bearings are for flange housing designs only. Caps fit on housings that have been modified with the appropriate bolt pattern as defined by the prefix "B" in the part number. Example: Sealmaster PN Gold CRBFTS-PN24, Sealmaster Gold BSFT-24

2. Ends caps may reduce bearing misalignment capability.

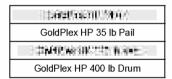
Backside Shield

Backside shield gaskets are mounted between the bearing and the equipment frame to reduce moisture runoff. Backside shields are available for two and four bolt flange mounted

Backside shields are made of nitrile rubber gaskets to reduce bearing moisture contact mated to a 304 stainless steel plate for improved assembly strength, with drain slots to reduce moisture buildup against the back of the bearing housing.

Bore Size		11-3-03-	0 D II Flames	4.D. It Floren	
inch	mm	Unit Size	ze 2 Bolt Flange 4 Bolt Flange		
3/4	-	12	ADCC 10	4BSS-12	
-	20	204	2BSS-12		
1	-	16	2BSS-16	4BSS-16	
-	25	205	2833-16	4000-16	
1 3/16	-	19	2BSS-19	4BSS-19	
-	-	20R	2BSS-20R	4BSS-20R	
-	30	206	2BSS-19	4BSS-19	
1 1/4	-	20	2BSS-20	4BSS-20	
1 3/8	-	22	2BSS-22	4BSS-22	
-	35	207	2BSS-22	4BSS-22	
1 7/16	-	23	2BSS-23	4BSS-23	
1 1/2	-	24	2BSS-24	4BSS-24	
-	40	-	2BSS-208	4BSS-208	
1 11/16	-	27	2BSS-27	4BSS-27	
-	45	-	N/A	N/A	
1 15/16	-	31	2BSS-31 4BSS-31		
-	50	210	2633-31	4D00-01	
2	-	32	N/A	4BSS-32	
2 3/16	-	35	2BSS-35	4BSS-35	
<u>-</u>	55	211	2BSS-35	4BSS-35	
2 3/8	-	38	2BSS-38	4BSS-38	
2 7/16	-	39	N/A	4BSS-39	
	60	212	2BSS-38	4BSS-38	

Sealmaster GoldPlex®-HP Grease

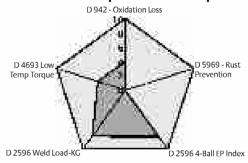

Formulated by Sealmaster engineers in conjunction with leading lubrication experts, GoldPlex-HP high performance mounted bearing grease is specifically designed to help maximize the operating performance of Sealmaster brand ball and roller bearings. This superior lubricant is formulated with a highly compatible lithium complex thickener and specially processed base oil. A finely tuned additive package further improves performance by providing high film strength, extreme pressure (EP), and anti-wear properties.

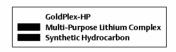
Sealmaster GoldPlex-HP provides effective lubrication over a wide range of temperatures with a low temperature performance of -40°F (-40°C). Test results show that GoldPlex-HP outperforms standard bearing greases in oxidation prevention and load carrying capabilities, which contribute to longer bearing life.

This lubricant's performance advantages include:

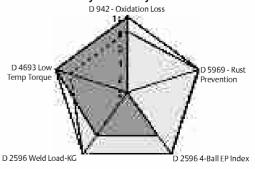
- Superior corrosion resistance
- Wide operating temperature range (-40°F to 350°F)
- Significantly lowers bearing running temperature
- Increased EP protection
- Lengthens lubrication cycles in most applications
- Excellent consistency

Availability




GoldPlex-HP sets a new standard for extreme pressure protection, long life and dependable performance.

Product Specifications


Тв таким Туры	This in Comme	
Texture	Smooth	
Steller	-24 U	
60-Stroke Penetration ASTM D 217 _77F	280-300	
Empreson Palati ASI SI DOMA, Estaj	2500,000	
Oxidation Stability, ASTM D 942, Psi Drop/100	5	
lum st.s. Colonial, Pulscon, 4546-97463	1160	
Modified with 5% Synthetic Seawater	Pass	
Contractor (ASTADIST TELEFORE	N.	
Timken* OK Load ASTM D 2509	50	
4-bil EP 283/40 (1980 Noble Chip	350	
4-Ball Wear, ASTM D 2266, Scar Dia. Mm, 40 kg	0.60	
THE THE PROPERTY CONTROL OF THE PARTY SE	3.56	
Base Oil Viscosity SUS @ 100F	575-675	
Bust Dr. Veccety attrict 1995	12.2	
Base Oil Viscosity cSt @ 40C	115	
tion:	¥.	
Operating Temperature Range	-40°F to 350°F	

GoldPlex-HP vs. Multi-Purpose Lithium Complex Grease**

GoldPlex-HP vs. Synthetic Hydrocarbon Grease **

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation for comparison purposes only, are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: The Timken Company, Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

Sealmaster GoldPlex®-FG Food Grade Grease

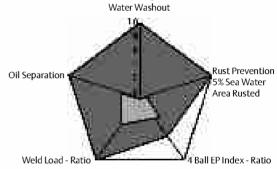
GoldPlex-FG food grade, mounted bearing grease is suitable for mounted bearing lubrication where incidental contact with food products may occur or any applications where clean, routine lubrication is required.

This lubricant's performance advantages include:

- Superior corrosion resistance
- Excellent water washout properties
- Compatible with major thickeners
 - Aluminum Complex
 - Calcium Complex
 - Polyurea
- USDA H1 category approved
- Superior dropping point 572°F (300°C)
- Nonstaining and nontoxic

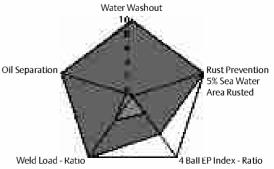
All Sealmaster PN Gold and RPB-CR bearings are factory filled with GoldPlex-FG lubricant.

Availability


2000219 (00000)
GoldPlex FG 35 lb Pail
Table New ASSTRUMENT

GoldPlex-FG: Indicates food grade mounted bearing grease for use in a wide variety of bearing applications in the food and beverage industries.

Product Specifications


In thing Tipe	Cattium Surenace
Texture	Smooth
Sure	Rette
60-Stroke Penetration ASTM D 217 _77F	265-295
Frob. ho Politi ASTAID 2001 FACE	9F2 (\$10)
Oxidation Stability, ASTM D 942, Psi Drop/100	1
hits and Counts on Parketing #4016/1000/06	11166
Modified with 5% Synthetic Seawater	Pass
Many Madeut, ASTAID 1284 1775 %	±70
Timken* OK Load ASTM D 2509	65
THE THE WITCHNESS WHILE THE	300
4-Ball Wear, ASTM D 2266, Scar Dia. Mm, 40 kg	0.45
O Report ANNO FIE Mose 5	33
Base Oil Viscosity SUS @ 100F	523
Base 28 (Westerly ESTA) 2016	B) (6
Base Oil Viscosity cSt @ 40C	100
MEHE:	2.1
Operating Temperature Range	40°F to 350°F

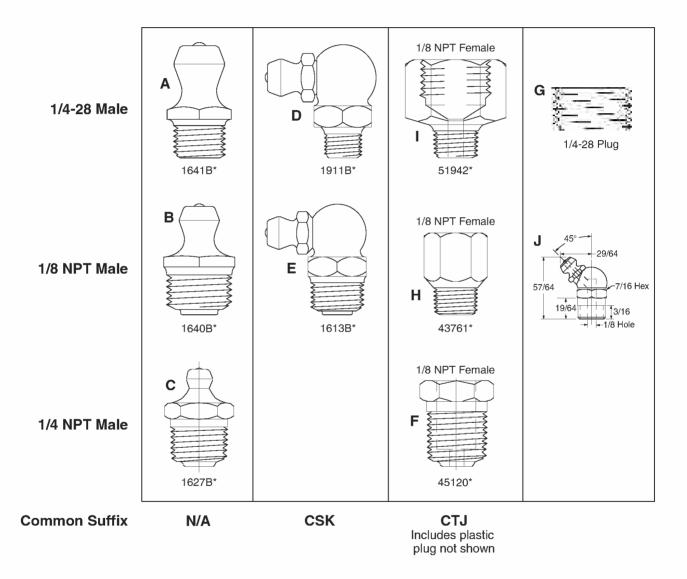
GoldPlex-FG vs. Al Complex Mineral Oil $^{*\,*}$

GoldPlex-FG vs. Al Complex Synthetic **

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation for comparison purposes only, are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: The Timken Company, Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

Sealmaster GoldPlex-HP Grease continued

Protective Grease Fitting Caps


Cap Color		Description	Part No.
A STATE OF THE PARTY OF THE PAR	Gold	incura es thur the bearing is be any filled with Scalenaster GoldPick HP Grease	93 6 874
	White	Indicates that the bearing is factory filled with Sealmaster GoldPlex-FG Grease	759646
	Red	increases that the pening a factory filled with High Temperature stream	72.9947
R	Black	Insticates that the bearing is factory filled with a floor-standard Grease	(599-4));

Note: The top of the grease fitting cap provides space to mark installation date.

Lubrication Fittings

Lubrication fittings provide a means quickly connecting a hose or grease gun to a bearing for relubrication. They should be permanently installed onto the bearing and can be threaded or driven into a lubrication or oil hole. It is important to select the correct lubrication fitting for the bearing and application. On Sealmaster ball bearings the lubrication fitting also functions as a stop for the lock pin. Caution should be taken when replacing the fitting on these bearings.

^{*}Part Numbers listed below picture drawings are Alemite part numbers. Alemite is a registered trademark of Alemite LLC. This trade name, trademark and/or registered trademark is property of their respective owner and is not owned or controlled by Power Transmission Solutions

Lubrication Fittings continued

Lubrication Fitting Chart Mounted Ball Bearings

					В	ore Size in Inch	es			1
Brand	Bearing Unit Description	112 - 1 1/8	13/16- 11/4H or 5	1 5-9	1 11/18 -	17/18- 21/8	2316	2 4 - 2 7 9	215/16	+
	FB, FBMH	Α	Α	Α	-	В	-	-	-	-
	MFC	Α	A	Α	В	В	В	В	С	С
	MFP	-	-	-	-	В	В	В	С	С
	MP, EMP, MPD	Α	А	А	В	В	В	В	С	С
	MSC	Α	A	Α	Α	Α	В	В	В	В
	MSF, EMSF	Α	A	Α	В	В	В	В	С	С
	MSFPD	1	-	1	-	В	В	В	С	С
	MSFT	Α	A	Α	В	В	-	-	-	-
	MSPD	-	-	-	В	В	В	В	С	С
	MST	D	D	D	E	E	E	E	E+F	E+F
	NP , ENP, NPMH	Α	А	Α	Α	В	В	В	-	-
	NPD	Α	A	Α	Α	В	В	В	-	-
Sealmaster	NPL	Α	Α	Α	Α	В	В	В	-	-
	SC	Α	А	Α	Α	Α	Α	В	В	-
	SCHB	G	G	G	Н	Н	Н	Н	Н	F
	SEHB	Α	А	А	В	В	В	В	В	С
	SF. ESF, SFMH	А	Α	А	А	В	В	В	В	-
	SFC	А	Α	А	А	В	В	В	В	С
	SFT, ESFT, SFTMH	Α	А	А	А	В	В	-	-	-
	SP	А	А	A	А	В	В	В	В	С
	SPD	А	A	А	Α	В	В	В	В	С
	SPM	-	А	А	В	В	В	В	-	-
	ST, STMH	D	D	D	D	Е	Е	Е	E	Е
	TB, TBMH	А	А	Α	А	В	-	-	-	-
	TFT	А	A	Α	-	-	-	-	-	-
	VF2B-200	A	A	В	В	В	В	-	-	-
	VF2B-300	A	В	В	В	В	-	-	_	_
	VF2E-100, 200	A	A	В	В	В	В	В	В	-
	VF2E-100M	A	A	A	-	-	-	-	-	_
	VF2S -100, 200	A	A	В	В	В	В	В	В	_
	VF2S -100M	A	A	A	-	-	-	-	-	-
	VF2S -300	A	В	В	В	В	_	_	_	_
	VF3E-100M	A	A	A	-	-	_	-	-	-
	VF3S -100M	A	A	A	-		_	_	_	-
	VF4B-200	A	A	В	В	В	В	В	-	-
	VF4B-300	A	В	В	В	В	В	-	_	_
	VF4E-100, 200	A	A	В	В	В	В	В	В	_
	VF4S -100, 200	A	A	В	В	В	В	В	В	-
	VFBS-200	A	A	В	-	В	-	-	-	_
	VFBB-200	A	A	В	-	В	-	-	-	-
	VF4S -300	A	В	В	В	В	В	В	В	В
	VF4S -300 VFCB-200	A	A	A	A	A	A	В	- B	-
	VFCB-200 VFCB-300	A	A	A	A	A	В	-	_	-
Browning	VFCS-200	A	A	A	A	A	A	В	-	-
	VFCS -200 VFCS -300	A	A	A	A	A	В	В	В	В
	VPB-200	A	A	В	В	В	В	В	- B	-
	VPB-200 VPB-300	A	В	В	В	В	В	-	-	-
	VPE-100, 200	A	A	В	В	В	В	В	В	-
	VPE-100, 200 VPE-100M	A	A	A	- B	- B	- B	-	- B	-
							В		-	-
	VPLB-200	Α	A	B B	B B	В	В	B B		-
	VPLS-100, 200 VPLS -100, 200	Α	A	В	В	B B	В	В	B B	
		A	A						В	-
	VPS -100, 200	A	A	В	В	В	В	В		-
	VPS -100M	A	A	A	- D	- D	- D	- D	- D	- D
	VPS -300	A	В	В	В	В	В	В	В	В
1	VTBE-100	A	A	В	В	В	-	-	-	-
	VTBE-200	A	A	В	В	В	В	В	-	-
	VTBS -100, 200	A	A	В	В	В		-	-	-
	VTWE-100, 200	D	D	E	E	E	E	E	-	-
	VTWS -100, 200	D	D	E	E	E	E	E	-	-
	VTWS -300	D	E	Е	E	E	E	Е	E	Е

Lubrication Fittings continued

Lubrication Fitting Chart Mounted Roller Bearings

- Black	200	-1111/mm Shows
0200/01 0	1 th cap 4 a mag	E
E-Jah /g	1 0-1661	(F)
	DRPB	В
	RPB	В
	RPBXT	В
	RFB	В
	RFP	В
Sealmaster	SPB	В
	USBF	J
	USFB_USFBE_USF3B	В
	USFC	А
	USFCE USRB USRBE	В
	USTU	Е

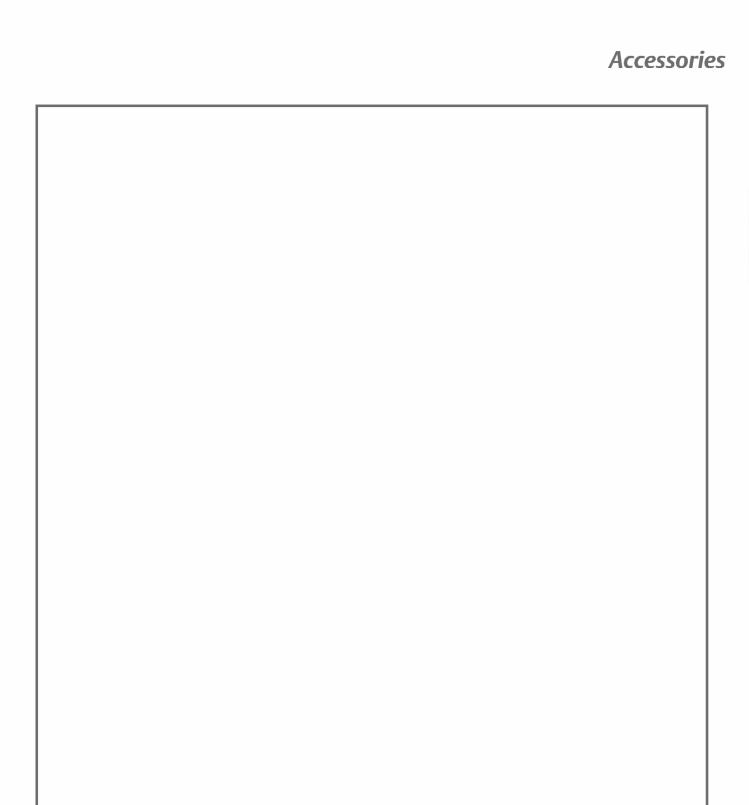
Lubrication Fitting Chart Cam Followers

CS TPP nin Comp				
STATE N	100	E-1011	-19170	
192	200	of these	nene	
3/4"	2 3/4"	3/16" Drive	1728B*	
00	-11	1900000	5756	
5	10	1/4" NPT	1627B*	

Lubrication Fitting Chart Sealmaster Rod Ends

Donth	Hitting to come	med to	Hiralina
the state	Adrid-settlettimat	- 45 July 44	li=
1/2 1	#3016 (no ball check)	#10-32 UNF-2A	1/4

^{*}Part Numbers listed below picture drawings are Alemite part numbers. Alemite is a registered trademark of Alemite LLC. This trade name, trademark and/or registered trademark is property of their respective owner and is not owned or controlled by Power Transmission Solutions


Oil Hole Plugs

Oil Hole Plugs

Oil hole plugs are used to block lubrication holes when the port is not required for relubrication the bearing. These plugs help retain the grease or oil, and also help prevent contamination from entering the bearing. All McGill Cam Followers are supplied with oil hole plugs for the number of lubrication holes present.

ŧ.	No. 1000		ALIEN PROPERTY.			
175	De unten	Futtio)	Fart du	Franks Transfer	Diversi in	T/18
胆	CF-1/2 Brass Plug	9712160050	100 pc	131	095	Solid
	00-40 Tate Na	884274704	20000		105	325000
	CF-3 Steel Plug	9712160300	100 pc	255	25 to .31	Hollow

Aerospace, Specialty and Industry Specific Bearings

Aerospace and specialty bearings are designed to meet unique aerospace and specialty industrial requirements. With over 75 years of bearing manufacturing experience and over 60 years of aerospace bearing experience, McGill bearings continue to set standards in the bearing world. Today, McGill is a key supplier to many major aerospace OEM's. Likewise, Rollway Bearings have been utilized in various industrial applications for the past century. Rollway has produced specialized bearings for demanding applications in a wide variety of industries.

M^cGILL_® Aerospace and Specialty Bearings

World Class Quality

We can manufacture to meet a variety of specialty process and quality requirements. Our manufacturing facility has achieved Nadcap accreditation for our heat treating, chemical processing and nondestructive testing as well as AS9100 certification. To improve lead time and control quality, the majority of our heat treatment is done in our facility.

Integrated Engineering and Design Support from Start to Finish.

Our engineers and creative teams will work closely with you during every stage of the process to apply, design, engineer, and manufacture your highly customized bearings. McGill engineers run a comprehensive testing laboratory. Here our engineering teams perform virtual and physical testing. We are able to simulate a variety of aerospace applications, such as oil-out transmission conditions, de-icing chemical exposure and accelerated-life testing. McGill engineers also test and analyze the interaction of lubrication, surface finishes and contamination. We will help save you time and money if you involve our highly qualified engineers as early as possible in the design formation stage.

- Cylindrical Roller
- Needle Roller
- Spherical Roller
- Precision Rollers
- Angular Contact, Gothic Arch & Radial Ball
- Aircraft Cam Followers & Track Rollers

Size and Precision

- Size Offering
 - 12 300 mm O.D.
 - 6 250 mm I.D.
- Roller Bearing Precision
 - RBEC 1,3,5
- Ball Precision
 - ABEC 1,3,5

Variety of Capabilities

- Flange Outer
- Gothic Arch
- Notches / Slots
- Riveted Retainers
- Multiple External Tabs
- Straight or Tappered Bore
- Geared Outer

Materials

- Standard Bearing Quality
- Specialty Steels High Temperature Corrosion Resistant

M^cGILL® Aerospace and Specialty Bearings

Applications

Helicopter

Main gearboxes Intermediate and tail-rotor gearboxes Main rotors and tail-rotor

Fixed-wing aircraft
 Flaps and slats
 Door mechanisms

• Other aerospace and military

Starters
Hydraulic systems
Control mechanisms
Weapons
Aircraft Carriers
Ground Vechicles

• Industrial

Rolling Mill equipment
Plastics and rubber extrusion equipment
Mining and construction equipment
Petrochemical processing equipment
Oil Field Equipment
Pumps and compressors
Material Handling
Can-making equipment
Medium to high speed gear boxes
Turbo machinery
Printing equipment
Paper converting equipment
Precision positioning equipment

Specifically for the commercial-passenger-jet industry, McGill has developed custom bearing solutions that include ball and roller bearings used for aircraft auxiliary pumps; thin-section, corrosion-resistant ball bearings in aircraft-control applications; and track rollers for flap and slat applications.

Within the helicopter industry, McGill has worked with customers to optimize load capability and weight for their specific applications. For instance, McGill has developed spherical roller planetary bearings for helicopter transmissions, and ball and roller bearings with different integral antirotation devices, such as flanges, slots and tabs.

McGill has produced a variety of specialty bearings for industrial applications as well as aerospace. Products range from modifications of standard industrial parts to completely new designs to fit specific applications. Common special features include extra precision, unique geometries and/or specialty materials.

Rollway Bearings for the Oil Field

Rollway Bearings has been a reliable component in the oil field industry for the past few decades. We have the unique capability to provide a wide variety of bearings ranging from large bore cylindrical radial bearings, tapered thrust bearings, complimented by McGill precision bearings for your replacement and re-build needs.

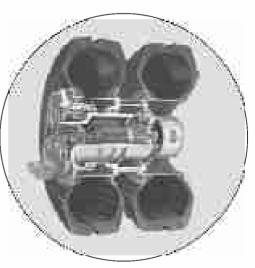
We manufacture a variety of styles of bearings for the following oil field applications:

- Mud pumps
- Top drives
- Crane hooks
- Swivels

- Draw works
- Frac pumps
- Cranes
- Winches

These are only a portion of the Oilfield applications we regularly provide bearings for.

ROLLWAY Motorized Wheel Bearings


Rollway Wheel Bearings for Off-Highway Vehicle Electric Wheels

GE* MotorizedWheels used In

- Unit Rig Trucks
- Liebherr* / Wiseda* Trucks
- Euclid* / Hitachi* Trucks
- Komatsu* Trucks

Rollway is committed to providing value to the mining industry by manufacturing the best value cylindrical roller bearings available. Whether you're looking to replace an armature bearing as a result of an inspection or all the motor bearings for a rebuild, Rollway is there providing high quality bearings, when you need them. The combination of reliable performance and availability will help your trucks maintain more "Uptime" which translates to more loads per day.

Par ever Minn	98 // _ 1 like /id=	里 8201147825	Lincoln.
U-2934-LP-033	1.00 K	8864951P180	Planetar Gear
E-5019-U-103	779	8864951P114	Plan ry Pinion
E-5019-U-105	772	8864950P111	Planetar Pinion
MUC-224-014	772 791	8864951P139	Pinion End Armature
E-5220-U-112	772 🐺 791	8864951P118	Planetary Pinion
E-5220-U-118	77 791	8864951P297	Planetar Pinion
E-5040-U-103	78 . 88	8864951P200	Planetary Pinion
1.11.5	787, 788	8864951P206	Property Visits
NU 1030 M1C3	787 788 GDY85	8864951P163	Pinion End Armature

In recognition of proven performance, Rollway is an approved supplier of GE* motorized wheel bearings.

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Euclid: Euclid-Hitachi Heavy Equipment, Inc.; GE: General Electric Company; Hitachi: Kabushiki Kaisha Hitachi Seisakusho dba Hitachi, Ltd.; Komatsu: Kabushiki Kaisha Komatsu Seisakusho aka Komatsu Ltd.; Liebherr: Liebherr International AG; Wiseda: Liebherr Mining Truck, Inc. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

Legacy Product Substitution Guide

Browning Large Bore to Sealmaster Large Bore Mounted Ball Bea	ırings N-2
Browning SPB1000 to Sealmaster USRB Mounted Spherical Roller Bearings Substitution Guide	N-3
Sealmaster Sleevloc™ to Sealmaster USRB Mounted Spherical Roller Bearings Substitution Guide	N-7

Over time various products may be phased out, discontinued or obsoleted creating legacy products. This guide is for reference only to help find substitute options for a legacy product.

The substitute product listed should be reviewed prior to installation by reviewing the product data sheet, installation instructions, and relubrication guidelines.

For more information visit Smart Interchange at: www.emerson-ept.com or contact Application Engineering 800-626-2093

Browning Large Bore to Sealmaster Large Bore Mounted Ball Bearings

	Primary Substitute*	Alternate Substitute*
Browning Part Description*	Sealmaster Part Description	Sealmaster Part Description
VE-243	Insert - No Substitute	
VE-247	Insert - No Substitute	
VER-243	ER-43	ER-43C
VER-247	ER-47	ER-47C
VER-248	ER-48	ER-48C
VER-251	ER-51	ER-51C
VF2E-243 (eccentric lock)	No Direct	Substitute
VF2E-247 (eccentric lock)	No Direct	Substitute
VF2S-243	No Direct	Substitute
VF2S-247	No Direct	Substitute
VF4E-243 (eccentric lock)	No Direct Substitute	SF-43 (setscrew lock)
VF4E-247 (eccentric lock)	No Direct Substitute	SF-47 (setscrew lock)
VF4S-243	SF-43	SF-43C
VF4S-247	SF-47	SF-47C
VF4S-339	MSF-39	MSF-39C
VF4S-340	MSF-40	MSF-40C
VF4S-343	MSF-43	MSF-43C
VF4S-347	MSF-47	MSF-47C
VF4S-348	MSF-48	MSF-48C
VF4S-355	MSF-55	MSF-55C
VF4S-356	MSF-56	MSF-56C
VF4S-363	MSF-63	MSF-63C
VFCS-240	SFC-40	SFC-40C
VFCS-243	SFC-43	SFC-43C
VFCS-339	MFC-39	MFC-39C
VFCS-340	MFC-40	MFC-40C
VFCS-343	MFC-43	MFC-43C
VFCS-347	MFC-47	MFC-47C
VFCS-348	MFC-48	MFC-48C
VFCS-355	MFC-55	MFC-55C
VFCS-356	MFC-56	MFC-56C
VFCS-363	MFC-63	MFC-63C

	Primary Substitute*	Alternate Substitute*
Browning Part Description*	Sealmaster Parl Description	Sealmaster Parl Description
VPE-247 (eccentric lock)	No Direct Substitute	NP-47 (setscrew lock)
VPLE-243 (eccentric lock)	No Direct Substitute	NPL-43 (setscrew lock)
VPLE-247 (eccentric lock)	No Direct S	ubstitute
VPLS-243	NPL-43	N/A
VPLS-247	No Direct S	ubstitute
VPS-247	NPL-47	NPL-47C
VPS-339	MP-39	MP-39C
VPS-340	MP-40	MP-40C
VPS-343	MP-43	MP-43C
VPS-347	MP-47	MP-47C
VPS-348	MP-48	MP-48C
VPS-355	MP-55	MP-55C
VPS-356	MP-56	MP-56C
VPS-363	MP-63	MP-63C
VS-243	Insert - No S	Substitute
VS-247	Insert - No S	Substitute
VS-256	Insert - No S	Substitute
VS-339	Insert - No S	Substitute
VS-340	Insert - No S	Substitute
VS-343	Insert - No S	Substitute
VS-347	Insert - No S	Substitute
VS-348	Insert - No S	Substitute
VS-355	Insert - No S	Substitute
VS-356	Insert - No S	Substitute
VS-363	Insert -No Substitute	
VTWS-339	MST-39	MST-39C
VTWS-340	MST-40	MST-40C
VTWS-343	MST-43	MST-43C
VTWS-347	MST-47	MST-47C
VTWS-348	MST-48	MST-48C

^{*}Notes:

^{1.} Browning product shown uses a single lip contact seal and flinger. Primary Substitute is the Sealmaster Gold felt seal. Alternate Substitute is contact seal.

^{2.} In some cases, locking design changes and is noted with Substitute part.

Browning SPB1000 to Sealmaster USRB Mounted Spherical Roller Bearings Substitution Guide

Browning SPB1000 Part Description	Sealmaster USRB Part Description
SBF1000E3X 1 15/16	USBF5000E-115
SBF1000E3X 1 7/16	USBF5000E-107
SBF1000E4X 27/16	USBFF5000E-207
SBF1000EC3X 1 15/16	USBF5000E-115-C
SBF1000EC3X 1 7/16	USBF5000E-107-C
SBF1000EC4X 2 7/16	USBFF5000E-207-C
SBF1000NE3X 1 15/16	USBF5000-115
SBF1000NE3X 1 7/16	USBF5000-107
SBF1000NE4X 2 7/16	USBFF5000-207
SBF1000NEC3X 1 7/16	USBF5000-107-C
SBF1000NEC3X1 15/16	USBF5000-115-C
SBF1000NEC4X 2 7/16	USBFF5000-207-C
SFB1000E3X 1 1/2	USF3B5000E-108
SFB1000E3X 1 1/8	USF3B5000E-102
SFB1000E3X 1 3/16	USF3B5000E-103
SFB1000E3X 1 7/16	USF3B5000E-107
SFB1000ECX 1 1/2	USFB5000E-108-C
SFB1000ECX 1 11/16	USFB5000E-111-C
SFB1000ECX 1 15/16	USFB5000E-115-C
SFB1000ECX 1 3/4	USFB5000E-112-C
SFB1000ECX 1 7/16	USFB5000E-107-C
SFB1000ECX 2 1/2	USFB5000E-208-C
SFB1000ECX 2 11/16	USFB5000E-211-C
SFB1000ECX 2 15/16	USFB5000E-215-C
SFB1000ECX 2 3/16	USFB5000E-203-C
SFB1000ECX 2 3/4	USFB5000E-212-C
SFB1000ECX 27/16	USFB5000E-207-C
SFB1000ECX 3 1/2	USFB5000E-308-C
SFB1000ECX 3 11/16	USFB5000E-311-C
SFB1000ECX 3 15/16	USFB5000E-315-C
SFB1000ECX 3 3/16	USFB5000E-303-C
SFB1000ECX 3 7/16	USFB5000E-307-C
SFB1000ECX2	USFB5000E-200-C
SFB1000ECX3	USFB5000E-300-C
SFB1000ECX4	USFB5000E-400-C
SFB1000EX 1 1/2	USFB5000E-108
SFB1000EX 1 11/16	USFB5000E-111
SFB1000EX 1 15/16	USFB5000E-115
SFB1000EX 1 3/4	USFB5000E-112
SFB1000EX 1 7/16	USFB5000E-107
SFB1000EX 2 1/2	USFB5000E-208
SFB1000EX 2 11/16	USFB5000E-211
SFB1000EX 2 15/16	USFB5000E-215
3FD1000EX 2 13/10	USI DUUUL-ZIU

Browning SPB1000 Part Description	Sealmaster USRB Part Description
SFB1000EX 2 3/4	USFB5000E-212
SFB1000EX 2 7/16	USFB5000E-207
SFB1000EX 3 1/2	USFB5000E-308
SFB1000EX 3 11/16	USFB5000E-311
SFB1000EX 3 15/16	USFB5000E-315
SFB1000EX 3 3/16	USFB5000E-303
SFB1000EX 3 7/16	USFB5000E-307
SFB1000EX2	USFB5000E-200
SFB1000EX3	USFB5000E-300
SFB1000EX4	USFB5000E-400
SFB1000NE3X 1 1/2	USF3B5000-108
SFB1000NE3X 1 1/4	USF3B5000-104
SFB1000NE3X 1 1/8	USF3B5000-102
SFB1000NE3X 1 3/16	USF3B5000-103
SFB1000NE3X 1 7/16	USF3B5000-107
SFB1000NECX 1 1/2	USFB5000-108-C
SFB1000NECX 1 11/16	USFB5000-111-C
SFB1000NECX 1 15/16	USFB5000-115-C
SFB1000NECX 1 3/4	USFB5000-111
SFB1000NECX 1 3/4	USFB5000-112-C
SFB1000NECX 1 7/16	USFB5000-107-C
SFB1000NECX 2 1/2	USFB5000-208-C
SFB1000NECX 2 11/16	USFB5000-211-C
SFB1000NECX 2 15/16	USFB5000-215-C
SFB1000NECX 2 3/16	USFB5000-203-C
SFB1000NECX 2 3/4	USFB5000-212
SFB1000NECX 27/16	USFB5000-207-C
SFB1000NECX 3 1/2	USFB5000-308-C
SFB1000NECX 3 11/16	USFB5000-311-C
SFB1000NECX 3 15/16	USFB5000-315-C
SFB1000NECX 3 3/16	USFB5000-303-C
SFB1000NECX 3 7/16	USFB5000-307-C
SFB1000NECX2	USFB5000-200-C
SFB1000NECX3	USFB5000-300-C
SFB1000NECX4	USFB5000-400-C
SFB1000NEX 1 1/2	USFB5000-108
SFB1000NEX 1 15/16	USFB5000-115
SFB1000NEX 1 3/4	USFB5000-112
SFB1000NEX 1 7/16	USFB5000-107
SFB1000NEX 2 1/2	USFB5000-208
SFB1000NEX 2 11/16	USFB5000-211
SFB1000NEX 2 15/16	USFB5000-215
SFB1000NEX 2 3/16	USFB5000-203
SFB1000NEX 2 3/4	USFB5000-212-C
he product data sheet, installation instru	stions and relubrication guidelines

Browning SPB1000 Part Description	Sealmaster USRB Part Description
SFB1000NEX 27/16	USFB5000-207
SFB1000NEX 3 1/2	USFB5000-308
SFB1000NEX 3 11/16	USFB5000-311
SFB1000NEX 3 15/16	USFB5000-315
SFB1000NEX 3 3/16	USFB5000-303
SFB1000NEX 3 7/16	USFB5000-307
SFB1000NEX2	USFB5000-200
SFB1000NEX3	USFB5000-300
SFB1000NEX4	USFB5000-400
SFB1100EX 1 15/16	USFBE5000E-115
SFB1100EX 2 1/2	USFBE5000E-208
SFB1100EX 2 11/16	USFBE5000E-211
SFB1100EX 2 15/16	USFBE5000E-215
SFB1100EX 2 3/16	USFBE5000E-203
SFB1100EX 2 3/4	USFBE5000E-212
SFB1100EX 2 7/16	USFBE5000E-207
SFB1100EX 3 1/2	USFBE5000E-308
SFB1100EX 3 11/16	USFBE5000E-311
SFB1100EX 3 15/16	USFBE5000E-315
SFB1100EX 3 3/16	USFBE5000E-303
SFB1100EX 3 7/16	USFBE5000E-307
SFB1100EX2	USFBE5000E-200
SFB1100EX3	USFBE5000E-300
SFB1100EX4	USFBE5000E-400
SFB1100NECX 2 11/16	USFBE5000-211-C
SFB1100NECX 2 15/16	USFBE5000-215-C
SFB1100NECX 2 3/4	USFBE5000-212-C
SFB1100NECX 3 1/2	USFBE5000-308-C
SFB1100NECX 3 3/16	USFBE5000-303-C
SFB1100NECX 3 7/16	USFBE5000-307-C
SFB1100NECX3	USFBE5000-300-C
SFB1100NEX 1 15/16	USFBE5000-115
SFB1100NEX 2 1/2	USFBE5000-208
SFB1100NEX 2 11/16	USFBE5000-211
SFB1100NEX 2 15/16	USFBE5000-215
SFB1100NEX 2 3/16	USFBE5000-203
SFB1100NEX 2 3/4	USFBE5000-212
SFB1100NEX 27/16	USFBE5000-207
SFB1100NEX 3 11/16	USFBE5000-311
SFB1100NEX 3 3/16	USFBE5000-303
SFB1100NEX 3 7/16	USFBE5000-307
SFB1100NEX4	USFBE5000-400
SFC1000ECX 1 1/2	USFC5000E-108-C
SFC1000ECX 1 11/16	USFC5000E-111-C

Browning SPB1000 to Sealmaster USRB Mounted Spherical Roller Bearings Substitution Guide Continued

Browning SPB1000 Part Description	Sealmaster USRB Part Description
SFC1000ECX 1 15/16	USFC5000E-115-C
SFC1000ECX 1 3/4	USFC5000E-112-C
SFC1000ECX 1 7/16	USFC5000E-107-C
SFC1000ECX 2 1/2	USFC5000E-208-C
SFC1000ECX 2 11/16	USFC5000E-211-C
SFC1000ECX 2 15/16	USFC5000E-215-C
SFC1000ECX 2 3/16	USFC5000E-203-C
SFC1000ECX 2 3/4	USFC5000E-212-C
SFC1000ECX 27/16	USFC5000E-207-C
SFC1000ECX 3 1/2	USFC5000E-308-C
SFC1000ECX 3 11/16	USFC5000E-311-C
SFC1000ECX 3 15/16	USFC5000E-315-C
SFC1000ECX 3 3/16	USFC5000E-303-C
SFC1000ECX 3 7/16	USFC5000E-307-C
SFC1000ECX2	USFC5000E-200-C
SFC1000ECX3	USFC5000E-300-C
SFC1000ECX4	USFC5000E-400-C
SFC1000EX 1 1/2	USFC5000E-108
SFC1000EX 1 11/16	USFC5000E-111
SFC1000EX 1 15/16	USFC5000E-115
SFC1000EX 1 3/4	USFC5000E-112
SFC1000EX 1 7/16	USFC5000E-107
SFC1000EX 2 1/2	USFC5000E-208
SFC1000EX 2 11/16	USFC5000E-211
SFC1000EX 2 15/16	USFC5000E-215
SFC1000EX 2 3/16	USFC5000E-203
SFC1000EX 2 3/4	USFC5000E-212
SFC1000EX 27/16	USFC5000E-207
SFC1000EX 3 1/2	USFC5000E-308
SFC1000EX 3 11/16	USFC5000E-311
SFC1000EX 3 15/16	USFC5000E-315
SFC1000EX 3 3/16	USFC5000E-303
SFC1000EX 3 7/16	USFC5000E-307
SFC1000EX2	USFC5000E-200
SFC1000EX3	USFC5000E-300
SFC1000EX4	USFC5000E-400
SFC1000NECX 1 1/2	USFC5000-108-C
SFC1000NECX 1 11/16	USFC5000-111-C
SFC1000NECX 1 15/16	USFC5000-115-C
SFC1000NECX 1 3/4	USFC5000-112-C
SFC1000NECX 1 7/16	USFC5000-107-C
SFC1000NECX 2 1/2	USFC5000-208-C
SFC1000NECX 2 11/16	USFC5000-211-C
SFC1000NECX 2 15/16	USFC5000-215-C

B : 0DD4000	0 1 4 11000
Browning SPB1000 Part Description	Sealmaster USRB Part Description
SFC1000NECX 2 3/16	USFC5000-203-C
SFC1000NECX 2 3/4	USFC5000-212-C
SFC1000NECX 2 7/16	USFC5000-207-C
SFC1000NECX 3 1/2	USFC5000-308-C
SFC1000NECX 3 11/16	USFC5000-311-C
SFC1000NECX 3 15/16	USFC5000-315-C
SFC1000NECX 3 3/16	USFC5000-303-C
SFC1000NECX 3 7/16	USFC5000-307-C
SFC1000NECX2	USFC5000-200-C
SFC1000NECX3	USFC5000-300-C
SFC1000NECX4	USFC5000-400-C
SFC1000NEX 1 1/2	USFC5000-108
SFC1000NEX 1 11/16	USFC5000-111
SFC1000NEX 1 15/16	USFC5000-115
SFC1000NEX 1 3/4	USFC5000-112
SFC1000NEX 1 7/16	USFC5000-107
SFC1000NEX 2 1/2	USFC5000-208
SFC1000NEX 2 11/16	USFC5000-211
SFC1000NEX 2 15/16	USFC5000-215
SFC1000NEX 2 3/16	USFC5000-203
SFC1000NEX 2 3/4	USFC5000-212
SFC1000NEX 2 7/16	USFC5000-207
SFC1000NEX 3 1/2	USFC5000-308
SFC1000NEX 3 11/16	USFC5000-311
SFC1000NEX 3 15/16	USFC5000-315
SFC1000NEX 3 3/16	USFC5000-303
SFC1000NEX 3 7/16	USFC5000-307
SFC1000NEX2	USFC5000-200
SFC1000NEX3	USFC5000-300
SFC1000NEX4	USFC5000-400
SFC1100ECX 1 15/16	USFCE5000E-115-C
SFC1100ECX 2 1/2	USFCE5000E-208-C
SFC1100ECX 2 11/16	USFCE5000E-211-C
SFC1100ECX 2 15/16	USFCE5000E-215-C
SFC1100ECX 2 3/16	USFCE5000E-203-C
SFC1100ECX 2 3/4	USFCE5000E-212-C
SFC1100ECX 2 7/16	USFCE5000E-207-C
SFC1100ECX 3 1/2	USFCE5000E-308-C
SFC1100ECX 3 11/16	USFCE5000E-311-C
SFC1100ECX 3 15/16	USFCE5000E-315-C
SFC1100ECX 3 3/16	USFCE5000E-303-C
SFC1100ECX 3 7/16	USFCE5000E-307-C
SFC1100ECX2	USFCE5000E-200-C
SFC1100ECX3	USFCE5000E-300-C

Browning SPB1000	Sealmaster USRB
Part Description SFC1100ECX4	Part Description USFCE5000E-400-C
SFC1100EX 1 15/16	USFCE5000E-115
SFC1100EX 2 11/16	USFCE5000E-211
SFC1100EX 2 15/16	USFCE5000E-215
SFC1100EX 2 3/4	USFCE5000E-212
SFC1100EX 3 1/2	USFCE5000E-308
SFC1100EX 3 11/16	USFCE5000E-311
SFC1100EX 3 15/16	USFCE5000E-315
SFC1100EX 3 3/16	USFCE5000E-303
SFC1100EX 3 7/16	USFCE5000E-307
SFC1100EX3	USFCE5000E-300
SFC1100EX4	USFCE5000E-400
SFC1100NECX 1 15/16	USFCE5000-115-C
SFC1100NECX 2 1/2	USFCE5000-208-C
SFC1100NECX 2 11/16	USFCE5000-211-C
SFC1100NECX 2 15/16	USFCE5000-215-C
SFC1100NECX 2 3/16	USFCE5000-203-C
SFC1100NECX 2 3/4	USFCE5000-212-C
SFC1100NECX 2 7/16	USFCE5000-207-C
SFC1100NECX 3 1/2	USFCE5000-308-C
SFC1100NECX 3 11/16	USFCE5000-311-C
SFC1100NECX 3 15/16	USFCE5000-315-C
SFC1100NECX 3 3/16	USFCE5000-303-C
SFC1100NECX 3 7/16	USFCE5000-307-C
SFC1100NECX2	USFCE5000-200-C
SFC1100NECX3	USFCE5000-300-C
SFC1100NECX4	USFCE5000-400-C
SFC1100NEX 1 15/16	USFCE5000-115
SFC1100NEX 2 1/2	USFCE5000-208
SFC1100NEX 2 11/16	USFCE5000-211
SFC1100NEX 2 15/16	USFCE5000-215
SFC1100NEX 2 3/16	USFCE5000-203
SFC1100NEX 2 3/4	USFCE5000-212
SFC1100NEX 27/16	USFCE5000-207
SFC1100NEX 3 1/2	USFCE5000-308
SFC1100NEX 3 11/16	USFCE5000-311
SFC1100NEX 3 15/16	USFCE5000-315
SFC1100NEX 3 3/16	USFCE5000-303
SFC1100NEX 3 7/16	USFCE5000-307
SFC1100NEX2	USFCE5000-200
SFC1100NEX4	USFCE5000-400
SFC2107-C	USFC5000A-107-C
SFC2108-C	USFC5000A-108-C
SFC2111-C	USFC5000A-111-C
5, 52111-0	00, 00000/111-0

Browning SPB1000 Part Description	Sealmaster USRB Part Description
SFC2112-C	USFC5000A-112-C
SFC2115-C	USFC5000A-115-C
SFC2200-C	USFC5000A-200-C
SFC2203-C	USFC5000A-203-C
SFC2207-C	USFC5000A-207-C
SFC2208-C	USFC5000A-208-C
SFC2211-C	USFC5000A-211-C
SFC2212-C	USFC5000A-212-C
SFC2215-C	USFC5000A-215-C
SFC2300-C	USFC5000A-300-C
SFC2307-C	USFC5000A-307-C
SFC2308-C	USFC5000A-308-C
SFC2315-C	USFC5000A-315-C
SFC2400-C	USFC5000A-400-C
SFC3115-C	USFCE5000A-115-C
SFC3200-C	USFCE5000A-719-C
SFC3203-C	USFCE5000A-203-C
SFC3207-C	USFCE5000A-207-C
SFC3208-C	USFCE5000A-208-C
SFC3211-C	USFCE5000A-211-C
SFC3212-C	USFCE5000A-212-C
SFC3215-C	USFCE5000A-215-C
SFC3307-C	USFCE5000A-307-C
SFC3308-C	USFCE5000A-308-C
SFC3315-C	USFCE5000A-315-C
SFC3400-C	USFCE5000A-400-C
SPB1000ECX 1 1/2	USRB5000E-108-C
SPB1000ECX 1 1/8	USRB5000E-102-C
SPB1000ECX 1 11/16	USRB5000E-111-C
SPB1000ECX 1 15/16	USRB5000E-115-C
SPB1000ECX 1 3/16	USRB5000E-103-C
SPB1000ECX 1 3/4	USRB5000E-112-C
SPB1000ECX 1 7/16	USRB5000E-112-C
SPB1000ECX 1 1/10	USRB5000E-107-C
SPB1000ECX 2 11/16	USRB5000E-211-C
SPB1000ECX 2 11/16	
	USRB5000E-215-C USRB5000E-203-C
SPB1000ECX 2 3/16	
SPB1000ECX 2 3/4	USRB5000E-212-C
SPB1000ECX 2 7/16	USRB5000E-207-C
SPB1000ECX 3 1/2	USRB5000E-308-C
SPB1000ECX 3 1/2	USRBF5000E-308
SPB1000ECX 3 11/16	USRB5000E-311-C
SPB1000ECX 3 15/16	USRB5000E-315-C
SPB1000ECX 3 3/16	USRB5000E-303-C
SPB1000ECX 3 7/16	USRB5000E-307-C
SPB1000ECX2	USRB5000E-200-C
SPB1000ECX3	USRB5000E-300-C

D	Carlos and HCDD
Browning SPB1000 Part Description	Sealmaster USRB Part Description
SPB1000ECX4	USRB5000E-400-C
SPB1000EX 1 1/2	USRB5000E-108
SPB1000EX 1 1/4	USRB5000E-104
SPB1000EX 1 1/8	USRB5000E-102
SPB1000EX 1 11/16	USRB5000E-111
SPB1000EX 1 15/16	USRB5000E-115
SPB1000EX 1 3/16	USRB5000E-103
SPB1000EX 1 3/4	USRB5000E-112
SPB1000EX 1 7/16	USRB5000E-107
SPB1000EX 2 1/2	USRB5000E-208
SPB1000EX 2 11/16	USRB5000E-211
SPB1000EX 2 15/16	USRB5000E-215
SPB1000EX 2 3/16	USRB5000E-203
SPB1000EX 2 3/4	USRB5000E-212
SPB1000EX 2 7/16	USRB5000E-207
SPB1000EX 3 1/2	USRB5000E-308
SPB1000EX 3 11/16	USRB5000E-311
SPB1000EX 3 15/16	USRB5000E-315
SPB1000EX 3 3/16	USRB5000E-303
SPB1000EX 3 7/16	USRB5000E-307
SPB1000EX2	USRB5000E-200
SPB1000EX3	USRB5000E-300
SPB1000EX4	USRB5000E-400
SPB1000FECX 2 1/2	USRBF5000E-208-C
SPB1000FECX 2 11/16	USRBF5000E-211-C
SPB1000FECX 2 15/16	USRBF5000E-215-C
SPB1000FECX 2 3/4	USRBF5000E-212-C
SPB1000FECX 2 7/16	USRBF5000E-207-C
SPB1000FECX 3 1/2	USRBF5000E-308-C
SPB1000FECX 3 11/16	USRBF5000E-311-C
SPB1000FECX 3 15/16	USRBF5000E-315-C
SPB1000FECX 3 3/16	USRBF5000E-303-C
SPB1000FECX 3 7/16	USRBF5000E-307-C
SPB1000FECX 4 1/2	USRB5000E-408-C
SPB1000FECX 4 15/16	USRB5000E-415-C
SPB1000FECX 4 7/16	USRB5000E-407-C
SPB1000FECX3	USRBF5000E-300-C
SPB1000FECX4	USRBF5000E-400-C
SPB1000FEX 2 1/2	USRBF5000E-208
SPB1000FEX 2 11/16	USRBF5000E-211
SPB1000FEX 2 15/16	USRBF5000E-215
SPB1000FEX 2 3/4	USRBF5000E-212
SPB1000FEX 2 7/16	USRBF5000E-207
SPB1000FEX 3 11/16	USRBF5000E-311
SPB1000FEX 3 15/16	USRBF5000-315
SPB1000FEX 3 3/16	USRBF5000E-303
SPB1000FEX 3 7/16	USRBF5000E-307

Browning SPB1000 Part Description	Sealmaster USRB Part Description
SPB1000FEX3	USRBF5000E-300
SPB1000FEX4	USRBF5000E-400
SPB1000FNECX 2 1/2	USRBF5000-208-C
SPB1000FNECX 2 3/4	USRBF5000-212-C
SPB1000FNECX 27/16	USRBF5000-207-C
SPB1000FNECX 3 1/2	USRBF5000-308-C
SPB1000FNECX 3 3/16	USRBF5000-303-C
SPB1000FNECX 3 7/16	USRBF5000-307-C
SPB1000FNECX 4 1/2	USRB5000-408-C
SPB1000FNECX 4 15/16	USRB5000-415-C
SPB1000FNECX 4 7/16	USRB5000-407-C
SPB1000FNECX2 11/16	USRBF5000-211-C
SPB1000FNECX2 15/16	USRBF5000-215-C
SPB1000FNECX3	USRBF5000-300-C
SPB1000FNECX3 11/16	USRBF5000-311-C
SPB1000FNECX3 15/16	USRBF5000-315-C
SPB1000FNECX4	USRBF5000-400-C
SPB1000FNEX 2 1/2	USRBF5000-208
SPB1000FNEX 2 11/16	USRBF5000-211
SPB1000FNEX 2 15/16	USRBF5000-215
SPB1000FNEX 2 3/4	USRBF5000-212
SPB1000FNEX 2 7/16	USRBF5000-207
SPB1000FNEX 3 1/2	USRBF5000-308
SPB1000FNEX 3 11/16	USRBF5000-311
SPB1000FNEX 3 3/16	USRBF5000-303
SPB1000FNEX 3 7/16	USRBF5000-307
SPB1000FNEX3	USRBF5000-300
SPB1000FNEX4	USRBF5000-400
SPB1000NECX 1 1/2	USRB5000-108-C
SPB1000NECX 1 1/4	USRB5000-104-C
SPB1000NECX 1 11/16	USRB5000-111-C
SPB1000NECX 1 15/16	USRB5000-115-C
SPB1000NECX 1 3/16	USRB5000-103-C
SPB1000NECX 1 3/4	USRB5000-112-C
SPB1000NECX 1 7/16	USRB5000-107-C
SPB1000NECX 2 1/2	USRB5000-208-C
SPB1000NECX 2 11/16	USRB5000-211-C
SPB1000NECX 2 15/16	USRB5000-215-C
SPB1000NECX 2 3/16	USRB5000-203-C
SPB1000NECX 2 3/4	USRB5000-212-C
SPB1000NECX 2 7/16	USRB5000-207-C
SPB1000NECX 3 1/2	USRB5000-308-C
SPB1000NECX 3 11/16	USRB5000-311-C
SPB1000NECX 3 15/16	USRB5000-315-C
SPB1000NECX 3 3/16	USRB5000-303-C
SPB1000NECX 3 7/16	USRB5000-307-C
SPB1000NECX2	USRB5000-200-C

Browning SPB1000 to Sealmaster USRB Mounted Spherical Roller Bearings Substitution Guide Continued

Browning SPB1000 Part Description	Sealmaster USRB Part Description
SPB1000NECX3	USRB5000-300-C
SPB1000NECX4	USRB5000-400-C
SPB1000NEX 1 1/2	USRB5000-108
SPB1000NEX 1 1/4	USRB5000-104
SPB1000NEX 1 11/16	USRB5000-111
SPB1000NEX 1 15/16	USRB5000-115
SPB1000NEX 1 3/16	USRB5000-103
SPB1000NEX 1 3/4	USRB5000-112
SPB1000NEX 1 7/16	USRB5000-107
SPB1000NEX 2 1/2	USRB5000-208
SPB1000NEX 2 11/16	USRB5000-211
SPB1000NEX 2 15/16	USRB5000-215
SPB1000NEX 2 3/16	USRB5000-203
SPB1000NEX 2 3/4	USRB5000-212
SPB1000NEX 27/16	USRB5000-207
SPB1000NEX 3 1/2	USRB5000-308
SPB1000NEX 3 11/16	USRB5000-311
SPB1000NEX 3 15/16	USRB5000-315
SPB1000NEX 3 3/16	USRB5000-303
SPB1000NEX 3 7/16	USRB5000-307
SPB1000NEX2	USRB5000-200
SPB1000NEX3	USRB5000-300
SPB1000NEX4	USRB5000-400
SPB1100ECX 1 15/16	USRBE5000E-115-C
SPB1100ECX 2 1/2	USRBE5000E-208-C
SPB1100ECX 2 11/16	USRBE5000E-211-C
SPB1100ECX 2 15/16	USRBE5000E-215-C
SPB1100ECX 2 3/16	USRBE5000E-203-C
SPB1100ECX 2 3/4	USRBE5000E-212-C
SPB1100ECX 2 7/16	USRBE5000E-207-C
SPB1100ECX 3 1/2	USRBE5000E-308-C
SPB1100ECX 3 11/16	USRBE5000E-311-C
SPB1100ECX 3 15/16	USRBE5000E-315-C
SPB1100ECX 3 3/16	USRBE5000E-303-C
SPB1100ECX 3 7/16	USRBE5000E-307-C
SPB1100ECX2	USRBE5000E-200-C
SPB1100ECX3	USRBE5000E-300-C
SPB1100ECX4	USRBE5000E-400-C
SPB1100EX 2 1/2	USRBE5000E-208
SPB1100EX 2 11/16	USRBE5000E-211
SPB1100EX 2 15/16	USRBE5000E-215
SPB1100EX 2 3/16	USRBE5000E-203
SPB1100EX 2 3/4	USRBE5000E-212
SPB1100EX 2 7/16	USRBE5000E-207
The substitute products listed should be	reviewed prior to installation by reviewing

D : 000/000	0 1 4 11000
Browning SPB1000 Part Description	Sealmaster USRB Part Description
SPB1100EX 3 1/2	USRBE5000E-308
SPB1100EX 3 11/16	USRBE5000E-311
SPB1100EX 3 15/16	USRBE5000E-315
SPB1100EX 3 3/16	USRBE5000E-303
SPB1100EX 3 7/16	USRBE5000E-307
SPB1100EX2	USRBE5000E-200
SPB1100EX3	USRBE5000E-300
SPB1100EX4	USRBE5000E-400
SPB1100NECX 1 15/16	USRBE5000-115-C
SPB1100NECX 2 1/2	USRBE5000-208-C
SPB1100NECX 2 11/16	USRBE5000-211-C
SPB1100NECX 2 15/16	USRBE5000-215-C
SPB1100NECX 2 3/16	USRBE5000-203-C
SPB1100NECX 2 3/4	USRBE5000-212-C
SPB1100NECX 2 7/16	USRBE5000-207-C
SPB1100NECX 3 1/2	USRBE5000-308-C
SPB1100NECX 3 11/16	USRBE5000-311-C
SPB1100NECX 3 15/16	USRBE5000-315-C
SPB1100NECX 3 3/16	USRBE5000-303-C
SPB1100NECX 3 7/16	USRBE5000-307-C
SPB1100NECX2	USRBE5000-200-C
SPB1100NECX3	USRBE5000-300-C
SPB1100NECX4	USRBE5000-400-C
SPB1100NEX 1 15/16	USRBE5000-115
SPB1100NEX 2 1/2	USRBE5000-208
SPB1100NEX 2 11/16	USRBE5000-211
SPB1100NEX 2 15/16	USRBE5000-215
SPB1100NEX 2 3/16	USRBE5000-203
SPB1100NEX 2 3/4	USRBE5000-212
SPB1100NEX 2 7/16	USRBE5000-207
SPB1100NEX 3 1/2	USRBE5000-308
SPB1100NEX 3 11/16	USRBE5000-311
SPB1100NEX 3 15/16	USRBE5000-315
SPB1100NEX 3 3/16	USRBE5000-303
SPB1100NEX 3 7/16	USRBE5000-307
SPB1100NEX2	USRBE5000-200
SPB1100NEX3	USRBE5000-300
SPB1100NEX4	USRBE5000-400
SPBF22515X 2 7/16	USRBF5515A-207
SPBF22517X 2 15/16	USRBF5517A-215
SPBF22520X 3 7/16	USRBF5520A-307
SPBF22522X 3 15/16	USRB5522A-315
SPBF22526X 4 7/16	USRB5526A-407
SPBF22528X 4 15/16	USRB5528A-415

Brazzein z CDD4000	Sealmaster USRB
Browning SPB1000 Part Description	Part Description
SPBF22532X 5 7/16	USRB5532A-507
SPBF22534X 5 15/16	USRB5534A-515
SPBF22536X 6 1/2	USRB5536A-608
SPBF22536X 6 7/16	USRB5536A-607
SPBF22538X 6 15/16	USRB5538A-615
SPBF22538X7	USRB5538A-700
SPBF22544x 7 1/2	USRB5544A-708
SPBF22544X 7 15/16	USRB5544A-715
SPBF22544x8	USRB5544A-800
SPBT22515X 2 7/16	USRB5515A-207
SPBT22517X 2 15/16	USRB5517A-215
SPBT22520X 3 7/16	USRB5520A-307
STU1000NECX 1 15/16	USTU5000-115-C
STU1000NECX 2 1/2	USTU5000-208-C
STU1000NECX 2 11/16	USTU5000-211-C
STU1000NECX 2 15/16	USTU5000-215-C
STU1000NECX 2 3/16	USTU5000-203-C
STU1000NECX 2 3/4	USTU5000-212-C
STU1000NECX 2 7/16	USTU5000-207-C
STU1000NECX 3 1/2	USTU5000-308-C
STU1000NECX 3 11/16	USTU5000-311-C
STU1000NECX 3 15/16	USTU5000-315-C
STU1000NECX 3 3/16	USTU5000-303-C
STU1000NECX 3 7/16	USTU5000-307-C
STU1000NECX2	USTU5000-200-C
STU1000NECX3	USTU5000-300-C
STU1000NECX4	USTU5000-400-C
STU1000NEX 1 15/16	USTU5000-115
STU1000NEX 2 1/2	USTU5000-208
STU1000NEX 2 11/16	USTU5000-211
STU1000NEX 2 15/16	USTU5000-215
STU1000NEX 2 3/16	USTU5000-203
STU1000NEX 2 3/4	USTU5000-212
STU1000NEX 2 7/16	USTU5000-207
STU1000NEX 3 1/2	USTU5000-308
STU1000NEX 3 11/16	USTU5000-311
STU1000NEX 3 15/16	USTU5000-315
STU1000NEX 3 3/16	USTU5000-303
STU1000NEX 3 7/16	USTU5000-307
STU1000NEX2	USTU5000-200
STU1000NEX3	USTU5000-300
STU1000NEX4	USTU5000-400

Sealmaster Sleevloc™ to Sealmaster USRB Mounted Spherical Roller Bearings Substitution Guide

	Primary Substitute	Alternate Substitute
Sealmaster Sleevloc™ Part Description	Sealmaster USRB Part Description	Sealmaster USRB Part Description
ESBF2107-C	USBF5000AE-107-C	USBF5000AE-107
ESBF2115-C	USBF5000AE-115-C	USBF5000AE-115
ESBF2207-C	USBFF5000AE-207-C	USBFF5000AE-207
ESFB2107-C	USFB5000AE-107-C	USFB5000AE-107
ESFB2108-C	USFB5000AE-108-C	USFB5000AE-108
ESFB2111-C	USFB5000AE-111-C	USFB5000AE-111
ESFB2112-C	USFB5000AE-112-C	USFB5000AE-112
ESFB2115-C	USFB5000AE-115-C	USFB5000AE-115
ESFB2200-C	USFB5000AE-200-C	USFB5000AE-200
ESFB2203-C	USFB5000AE-203-C	USFB5000AE-203
ESFB2207-C	USFB5000AE-207-C	USFB5000AE-207
ESFB2208-C	USFB5000AE-208-C	USFB5000AE-208
ESFB2211-C	USFB5000AE-211-C	USFB5000AE-211
ESFB2212-C	USFB5000AE-212-C	USFB5000AE-212
ESFB2215-C	USFB5000AE-215-C	USFB5000AE-215
ESFB2300-C	USFB5000AE-300-C	USFB5000AE-300
ESFB2307-C	USFB5000AE-307-C	USFB5000AE-307
ESFB2308-C	USFB5000AE-308-C	USFB5000AE-308
ESFB2315-C	USFB5000AE-315-C	USFB5000AE-315
ESFB2400-C	USFB5000AE-400-C	USFB5000AE-400
ESFB3115-C	USFBE5000AE-115-C	USFBE5000AE-115
ESFB3200-C	USFBE5000AE-200-C	USFBE5000AE-200
ESFB3203-C	USFBE5000AE-203-C	USFBE5000AE-203
ESFB3207-C	USFBE5000AE-207-C	USFBE5000AE-207
ESFB3208-C	USFBE5000AE-208-C	USFBE5000AE-208
ESFB3211-C	USFBE5000AE-211-C	USFBE5000AE-211
ESFB3212-C	USFBE5000AE-212-C	USFBE5000AE-212
ESFB3215-C	USFBE5000AE-215-C	USFBE5000AE-215
ESFB3300-C	USFBE5000AE-300-C	USFBE5000AE-300
ESFB3307-C	USFBE5000AE-307-C	USFBE5000AE-307
ESFB3308-C	USFBE5000AE-308-C	USFBE5000AE-308
ESFB3315-C	USFBE5000AE-315-C	USFBE5000AE-315
ESFB3400-C	USFBE5000AE-400-C	USFBE5000AE-400
ESFC2107-C	USFC5000AE-107-C	USFC5000AE-107
ESFC2108-C	USFC5000AE-108-C	USFC5000AE-108
ESFC2111-C	USFC5000AE-111-C	USFC5000AE-111
ESFC2112-C	USFC5000AE-112-C	USFC5000AE-112
ESFC2115-C	USFC5000AE-115-C	USFC5000AE-115
ESFC2200-C	USFC5000AE-200-C	USFC5000AE-200
ESFC2203-C	USFC5000AE-203-C	USFC5000AE-203
ESFC2207-C	USFC5000AE-207-C	USFC5000AE-207
ESFC2208-C	USFC5000AE-208-C	USFC5000AE-208
ESFC2211-C	USFC5000AE-211-C	USFC5000AE-211
ESFC2212-C	USFC5000AE-212-C	USFC5000AE-212
ESFC2215-C	USFC5000AE-215-C	USFC5000AE-215
ESFC2300-C	USFC5000AE-300-C	USFC5000AE-300
ESFC2307-C	USFC5000AE-307-C	USFC5000AE-307

	Primary Substitute	Alternate Substitute
Sealmaster Sleevloc™	Sealmaster USRB	Sealmaster USRP
Part Description	Part Description	Part Description
ESFC2308-C	USFC5000AE-308-C	USFC5000AE-308
ESFC2315-C	USFC5000AE-315-C	USFC5000AE-315
ESFC2400-C	USFC5000AE-400-C	USFC5000AE-400
ESFC3200-C	USFCE5000AE-200-C	USFCE5000AE-200
ESFC3203-C	USFCE5000AE-203-C	USFCE5000AE-203
ESFC3207-C	USFCE5000AE-207-C	USFCE5000AE-207
ESFC3208-C	USFCE5000AE-208-C	USFCE5000AE-208
ESFC3211-C	USFCE5000AE-211-C	USFCE5000AE-211
ESFC3215-C	USFCE5000AE-215-C	USFCE5000AE-215
ESFC3300-C	USFCE5000AE-300-C	USFCE5000AE-300
ESFC3307-C	USFCE5000AE-307-C	USFCE5000AE-307
ESFC3308-C	USFCE5000AE-308-C	USFCE5000AE-308
ESPB2107-C2	USRB5000AE-107-C	USRB5000AE-107
ESPB2108-C2	USRB5000AE-108-C	USRB5000AE-108
ESPB2111-C2	USRB5000AE-111-C	USRB5000AE-111
ESPB2112-C2	USRB5000AE-112-C	USRB5000AE-112
ESPB2115-C2	USRB5000AE-115-C	USRB5000AE-115
ESPB2200-C2	USRB5000AE-200-C	USRB5000AE-200
ESPB2203-C2	USRB5000AE-203-C	USRB5000AE-203
ESPB2207-C2	USRB5000AE-207-C	USRB5000AE-207
ESPB2207-C4	USRBF5000AE-207-C	USRBF5000AE-207
ESPB2208-C2	USRB5000AE-208-C	USRB5000AE-208
ESPB2208-C4	USRBF5000AE-208-C	USRBF5000AE-208
ESPB2211-C2	USRB5000AE-211-C	USRB5000AE-211
ESPB2211-C4	USRBF5000AE-211-C	USRBF5000AE-211
ESPB2212-C2	USRB5000AE-212-C	USRB5000AE-212
ESPB2212-C4	USRBF5000AE-212-C	USRBF5000AE-212
ESPB2215-C2	USRB5000AE-215-C	USRB5000AE-215
ESPB2215-C4	USRBF5000AE-215-C	USRBF5000AE-215
ESPB2300-C2	USRB5000AE-300-C	USRB5000AE-300
ESPB2300-C4	USRBF5000AE-300-C	USRBF5000AE-300
ESPB2307-C2	USRB5000AE-307-C	USRB5000AE-307
ESPB2307-C4	USRBF5000AE-307-C	USRBF5000AE-307
ESPB2308-C2	USRB5000AE-308-C	USRB5000AE-308
ESPB2308-C4	USRBF5000AE-308-C	USRBF5000AE-308
ESPB2315-C2	USRB5000AE-315-C	USRB5000AE-315
ESPB2315-C4	USRBF5000AE-315-C	USRBF5000AE-315
ESPB2400-C2	USRB5000AE-400-C	USRB5000AE-400
ESPB2400-C4	USRBF5000AE-400-C	USRBF5000AE-400
ESPB3115-C2	USRBE5000AE-115-C	USRBE5000AE-115
ESPB3200-C2	USRBE5000AE-200-C	USRBE5000AE-200
ESPB3203-C2	USRBE5000AE-203-C	USRBE5000AE-203
ESPB3207-C2	USRBE5000AE-207-C	USRBE5000AE-207
ESPB3208-C2	USRBE5000AE-208-C	USRBE5000AE-208
ESPB3211-C2	USRBE5000AE-211-C	USRBE5000AE-211
ESPB3212-C2	USRBE5000AE-212-C	USRBE5000AE-212
ESPB3215-C2	USRBE5000AE-215-C	USRBE5000AE-215

Sealmaster Sleevloc™ to Sealmaster USRB Mounted **Spherical Roller Bearings Substitution Guide**

	Primary Substitute	Alternate Substitute
Sealmaster Sleevloc™ Part Description	Sealmaster USRB Part Description	Sealmaster USRB Part Description
ESPB3300-C2	USRBE5000AE-300-C	USRBE5000AE-300
ESPB3307-C2	USRBE5000AE-307-C	USRBE5000AE-307
ESPB3308-C2	USRBE5000AE-308-C	USRBE5000AE-308
ESPB3315-C2	USRBE5000AE-315-C	USRBE5000AE-315
ESPB3400-C2	USRBE5000AE-400-C	USRBE5000AE-400
SBF2107-C	USBF5000A-107-C	USBF5000A-107
SBF2115-C	USBF5000A-115-C	USBF5000A-115
SBF2207-C	USBFF5000A-207-C	USBFF5000A-207
SFB2107-C	USFB5000A-107-C	USFB5000A-107
SFB2108-C	USFB5000A-108-C	USFB5000A-108
SFB2111-C	USFB5000A-111-C	USFB5000A-111
SFB2112-C	USFB5000A-112-C	USFB5000A-112
SFB2115-C	USFB5000A-115-C	USFB5000A-115
SFB2200-C	USFB5000A-200-C	USFB5000A-200
SFB2203-C	USFB5000A-203-C	USFB5000A-203
SFB2207-C	USFB5000A-207-C	USFB5000A-207
SFB2208-C	USFB5000A-208-C	USFB5000A-208
SFB2211-C	USFB5000A-211-C	USFB5000A-211
SFB2212-C	USFB5000A-212-C	USFB5000A-212
SFB2215-C	USFB5000A-215-C	USFB5000A-215
SFB2300-C	USFB5000A-300-C	USFB5000A-300
SFB2307-C	USFB5000A-307-C	USFB5000A-307
SFB2308-C	USFB5000A-308-C	USFB5000A-308
SFB2315-C	USFB5000A-315-C	USFB5000A-315
SFB2400-C	USFB5000A-400-C	USFB5000A-400
SFB3115-C	USFBE5000A-115-C	USFBE5000A-115
SFB3200-C	USFBE5000A-200-C	USFBE5000A-200
SFB3203-C	USFBE5000A-203-C	USFBE5000A-203
SFB3207-C	USFBE5000A-207-C	USFBE5000A-207
SFB3208-C	USFBE5000A-208-C	USFBE5000A-208
SFB3211-C	USFBE5000A-211-C	USFBE5000A-211
SFB3212-C	USFBE5000A-212-C	USFBE5000A-212
SFB3215-C	USFBE5000A-215-C	USFBE5000A-215
SFB3300-C	USFBE5000A-300-C	USFBE5000A-300
SFB3307-C	USFBE5000A-307-C	USFBE5000A-307
SFB3308-C	USFBE5000A-308-C	USFBE5000A-308
SFB3315-C	USFBE5000A-315-C	USFBE5000A-315
SFB3400-C	USFBE5000A-400-C	USFBE5000A-400
SPB2107-C2	USRB5000A-107-C	USRB5000A-107
SPB2108-C2	USRB5000A-108-C	USRB5000A-108
SPB2111-C2	USRB5000A-111-C	USRB5000A-111
SPB2112-C2	USRB5000A-112-C	USRB5000A-112
SPB2115-C2	USRB5000A-115-C	USRB5000A-115
SPB2200-C2	USRB5000A-200-C	USRB5000A-200
SPB2203-C2	USRB5000A-203-C	USRB5000A-203
SPB2207-C2	USRB5000A-207-C	USRB5000A-207
SPB2207-C4	USRBF5000A-207-C	USRBF5000A-207
5. 52207 51	33.12. 3330, 120, 3	33.12. 3300, (20)

	Primary Substitute	Alternate Substitute
Sealmaster Sleevloc™ Part Description	Sealmaster USRB Part Description	Sealmaster USRB Part Description
SPB2208-C2	USRB5000A-208-C	USRB5000A-208
SPB2208-C4	USRBF5000A-208-C	USRBF5000A-208
SPB2211-C2	USRB5000A-211-C	USRB5000A-211
SPB2211-C4	USRBF5000A-211-C	USRBF5000A-211
SPB2212-C2	USRB5000A-212-C	USRB5000A-212
SPB2212-C4	USRBF5000A-212-C	USRBF5000A-212
SPB2215-C2	USRB5000A-215-C	USRB5000A-215
SPB2215-C4	USRBF5000A-215-C	USRBF5000A-215
SPB2300-C2	USRB5000A-300-C	USRB5000A-300
SPB2300-C4	USRBF5000A-300-C	USRBF5000A-300
SPB2307-C2	USRB5000A-307-C	USRB5000A-307
SPB2307-C4	USRBF5000A-307-C	USRBF5000A-307
SPB2308-C2	USRB5000A-308-C	USRB5000A-308
SPB2308-C4	USRBF5000A-308-C	USRBF5000A-308
SPB2315-C2	USRB5000A-315-C	USRB5000A-315
SPB2315-C4	USRBF5000A-315-C	USRBF5000A-315
SPB2400-C2	USRB5000A-400-C	USRB5000A-400
SPB2400-C4	USRBF5000A-400-C	USRBF5000A-400
SPB3115-C2	USRBE5000A-115-C	USRBE5000A-115
SPB3200-C2	USRBE5000A-200-C	USRBE5000A-200
SPB3203-C2	USRBE5000A-203-C	USRBE5000A-203
SPB3207-C2	USRBE5000A-207-C	USRBE5000A-207
SPB3208-C2	USRBE5000A-208-C	USRBE5000A-208
SPB3211-C2	USRBE5000A-211-C	USRBE5000A-211
SPB3212-C2	USRBE5000A-212-C	USRBE5000A-212
SPB3215-C2	USRBE5000A-215-C	USRBE5000A-215
SPB3300-C2	USRBE5000A-300-C	USRBE5000A-300
SPB3307-C2	USRBE5000A-307-C	USRBE5000A-307
SPB3308-C2	USRBE5000A-308-C	USRBE5000A-308
SPB3315-C2	USRBE5000A-315-C	USRBE5000A-315
SPB3400-C2	USRBE5000A-400-C	USRBE5000A-400
STU2115-C	USTU5000A-115-C	USTU5000A-115
STU2200-C	USTU5000A-200-C	USTU5000A-200
STU2203-C	USTU5000A-203-C	USTU5000A-203
STU2207-C	USTU5000A-207-C	USTU5000A-207
STU2208-C	USTU5000A-208-C	USTU5000A-208
STU2211-C	USTU5000A-211-C	USTU5000A-211
STU2212-C	USTU5000A-212-C	USTU5000A-212
STU2215-C	USTU5000A-215-C	USTU5000A-215
STU2300-C	USTU5000A-300-C	USTU5000A-300
STU2307-C	USTU5000A-307-C	USTU5000A-307
STU2308-C	USTU5000A-308-C	USTU5000A-308
STU2315-C	USTU5000A-315-C	USTU5000A-315
STU2400-C	USTU5000A-400-C	USTU5000A-400

Keyword Index

Keyword	Subset	Bearing Basics A	Cam Follower B	Needle/ Journal C	Sphere-Rol D	Radial Bearings E	Thrust F	Mounted Ball G	Mtd Spherical Roller H	Mtd Tapered Roller I	Rod Ends & Spherical Plain J	Corrosion Resistant Eng. Solutions K	Accessories L
Air Handling	1	7, 25						24, 144	1	11		1	
Anti Rotation	Lock Pin		ļ					21		10		19, 34, 69	
	Rivet							112, 143	·····				
Bearing Type		7											
Cage													
			1									<u> </u>	
Cam Design													
Clevis									!				
Coating	Fluoropolymer												
	Phosphorus Nickel		1									1 '	
								1					
Configuration .	Bearing												
Contact Seal		37	1					21, 24, 101, 105, 111, 129, 143,217	8	10	I	21, 32, 63, 69	
Crowned	OD		11 66 97					,,,					
Crowned													
	Kollers		12,66,			12							
Eccentric								143, 244				11	
End Caps				<u> </u>				111, 129	1			34, 82	3
•	1												
							1	29, 104					·
Features and													
Benefits			119, 129	/, 19, 36.	/	11	9, 25, 32.	129, 143, 217	/	9	9,29	9, 21, 31, 63, 69	
Grease		18						30, 254, 258	I-68,73	62,64	41	10, 22, 34,64, 70, 84	5
Hex Hole			12, 66, 98.										
High Temperature		20, 23						. 24, 30, 104, 129		12			
Housing Fit		25, 31					53	222, 144, 258.		12	43		
Installation	Bearing		152	50, 51, 52 .	28,29,30,31.		56	246	1-65,70	59,63	41	79	
	Back Side Shield											80	
	End Cap							252				82	
Internal Clearance	Diametral				24								
	End Play	32								12			
	Radial	32			25	43, 46			1				
L10		11		45	19	35	41	221	I-48	48		77	
Life Calculation		12	143	45	19	35	41	221	' I-48,54	48,54			
	Axial			1									
Load	(see also Thrust)	4	148			48		221		49	39		
	Combined	4			20			222	I-50	49			
	Computation	16		48				224	I-53	53			
	Direction	4					<u> </u>						
	Dynamic	12						221	48,50	48,53,56		77	
	High Load												
	Applications	24					ļ	246			ļ		
	Magnitude	4							I-53	53			
	Minimum	15	145	47	22	38	43, 56	223	I-53	53		<u>.</u>	
	Oscillating	14	145	47	21	37	43	223	I-51	51			
	Radial	5	147					221	I-48	48,54	39		
	Shock	7	144, 148	46	20	36, 38	42	221	I-48	48		<u> </u>	
	Static	15	145	47	22, 23	38	43	223	I-52	50,52	. 4,6,10,30,39,41		
	*												
Load & Sneed													
•												77	
Load Ratings			y 147						1-30	49,90			
-		11	143	45	19	35	41	221	I-48	48			
]											

Keyword Index

Control Cont	Keyword	Subset	Bearing Basics A	Cam Follower B	Needle/ Journal C	Sphere-Rol D	Radial Bearings E	Thrust F	Mounted Ball G	Mtd Spherical Roller H	Mtd Tapered Roller I	Rod Ends & Spherical Plain J	Corrosion Resistant Eng. Solutions K	Accessories L
Martin M	Locking	Adapter Mount		ļ						4,8				
Section Means														
1, 100														
Control Cont	Locking (cont.) .	Collar Mount												
Tenesity Setterwood 11,64,78 11,64,7		Concentric		ļ					111, 143, 244				31, 64	
Straterior Str														
Marcel 143,712,743		Eccentric							143, 244					
Sewelsk*		Setscrew								8	10		31, 64, 70	
Marie Mari		Clauszlas®					i i		143, 212, 243					
Division									21, 102, 111, 244.				31, 64	
Fitting Caps	Lubrication													
Filting Caple		Dry Film	23											
Food Grade 20 See CRES 10,22,34,64,70. 6 Frequency 22 51 27 254,258 149,74 64 44 10,22,34,64,70. 6 Frequency 23 51 27 30 168,73 264 41 10,22,34,64,70. 5 Crosse Crosse 10 7,19 7 101,105 42 11 11 11 Hole 10 7,19 7 101,105 42 11 11 11 Hole 10,64 36 71 10 42 11 11 11 Holes 10,64 36 77,103 169,74 62,64 44 10,22,34,64,70. 5 Grove 10 7,19 7 101,105 649,74 62,64 44 10,22,34,64,70 LuckPR & Romple 21 34,89 10,24 34,89 LuckPR & Romple 71 34,89 11 11 11 11 11 11 11		Fitting		151					28			41		8
Frequency 23 51 27 254,258 169,74 664 84 10,22,34,64,70 5 6768e 150 7,19 8,27 30 168,73 6,64 41 10,22,34,64,70 5 6768e 6769e 100 7,19 7 101,105 42 11 11 11 11 11 11 11		Fitting Caps		J										7
Gresse 18		Food Grade	20	ļ							See CRES		10, 22, 34, 64, 70	6
Gresse Gomparibility		Frequency	23		51	27			254, 258	I-69, 74	64		84	
Compatibility		Grease	18	150	7, 19	8, 27			30	I-68, 73	62, 64	41	10, 22, 34, 64, 70	5
Groone		Grease												
Hole Plug		Compatibility	21	150					254, 258	I-68,73	62,64		<u> </u>	
Holes														
Cock/Pin & Dimple		Hole Plug		10									¦11	
Lubrication Guidelines Oil 21		Holes		10, 64	36						10	42		
Cuidelines		'		!					21	i			34, 69	
Oil							40	E.C	254.250	1.60.74	62.64		. 04	
Relubrication 151 101,105 169,74 62,64 41 84 84 86 86 86 86 86 86				'										
Matched Sets 8, 20,49 10,24											1			
Matched Sets													1	
Material Bearing 34 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	Matched Sets													
Housing 36 4,7 4,6,9,11 3 3 33 3						· ·				1	1			
PIFE	waterial	, ,												
Delrin		•												
Meterial Handling 109 109 109 109 109 109 109 109 109 109														
Mean Speed Formula 14 222 1.51 51 Minimum Load 15 223 1.53 53 Misalignment Bearing Selection 5 3 Dynamic 5 1.65,70 9,59 12,38,40 3 Lock Pin & Dimple 21 24 1.65,70 59 3 9,59 12,38,40 3 12,38,40 3 3 12,38,40 3 3 3 12,38,40 3 3 3 3 3 3 4 3														
Formula 14 222 151 51	•								109				<u> </u>	
Minimum Load. 15 223 153 53 Misalignment. Bearing Selection 5 1-65, 70 9.59 12, 38, 40 20 Static .5 .5 .9,59 12, 38, 40			14						222	I-51	51			
Dynamic														
Static 5 9,59 12,38,40 Lock Pin & Dimple 21 Mounting Alignment 26 246 1-65,70 59 Housing Fit 16,70, Cam Follower 26 104, 124, 132 12 12,36 Housing Fit Mounted Bearings 25 12,36 Housing Fit Unmounted Bearings 25,31 9, 21, 37 54 43 Precision and Quiet Running Applications 26 5haft Fit Mounted Bearings 24 246, 251, 255 59 Shaft Fit Unmounted Bearings 25, 29 155 10, 22, 37 53 59,63	Misalignment.	Bearing Selection.	5											
Lock Pin & Dimple	•													
Mounting Alignment 26 1-65, 70 59 Housing Fit - (Cam Follower) 26 104, 124, 132 12,36 Housing Fit - (Mounted Bearings) 25 12,36 12,36 Housing Fit - (Unmounted Bearings) 25, 31 9, 21, 37 54 43 43 Precision and Quiet Running Applications 26 26 5haft Fit Mounted Bearings 24 246, 251, 255 59 Shaft Fit - (Unmounted Bearings) 25, 29 155 10, 22, 37 53 1-65,67,70 59,63 Mounting (cont.) Squareness 26 1-65,67,70 59,63 59,63		Static	5								9,59	12, 38, 40		
Housing Fit - 16,70, Cam Follower		Lock Pin & Dimple							21					
Cam Follower	Mounting	Alignment	26						246	I-65, 70	59			
Housing Fit - Mounted Bearings 25			26											
Housing Fit- Unmounted Bearings25, 31		Housing Fit -												
Precision and Quiet Running Applications 26 Shaft Fit- Mounted Bearings 24		Housing Fit-												
Shaft Fit - Mounted Bearings		Precision and Quiet												
Mounted Bearings24			26						<u> </u>					
Unmounted Bearings25, 2915510, 22, 3753			24	1					246, 251, 255		59			
Mounting (cont.) Squareness26			25 29	155	10 22 37			53						
	Mounting (cont.)	-												
NULLE I ALL ALL	anding (cont.)										1			

Keyword Index

Keyword	Subset	Bearing Basics A	Cam Follower B	Needle/ Journal C	Sphere-Rol D	Radial Bearings E	Thrust F	Mounted Ball G	Mtd Spherical Roller H	Mtd Tapered Roller I	Rod Ends & Spherical Plain J	Corrosion Resistant Eng. Solutions K	Accessorie L
Mounting (also see installation)								246	I-65	59	40		
•	. Bearing Selection.	7						1				ı	
	Test							24, 144					
								1					
Nomenclature			8, 62, 96,	6, 18, 38.	6	8, 9, 10	8, 24	18, 100, 110,	6	8	8	8, 20, 30, 62, 68	
Options				8, 20	8	13	10			4,6,8	12,31	ļ11	
Oscillating													
Applications	ļ	14	ļ					223	I-51	51		ļ	
							9, 25,	22, 101,					
Plates								112, 144, 217		9			
Retainer		20	6E 110	7	7	11	9, 25,	22 102				34, 64, 70	
												9	
Seal	Contact	37	97						7	10	31	21, 69	
	Felt	37						21, 24, 101, 105, .111, 129, 143,217	7	9		1	
	Flinger							21, 101, 111,	/	9			
	High Contamination .												
	High Performance							24, 104				32, 63	
	High Speed							25, 223					
	High Temperature							. 24, 30, 104, 129		12			
	Labyrinth	37							7	9		<u> </u>	
	Lambda		ļ		9								
	Low Drag							27, 103					
	LUBRI-DISC®		11, 66, 119.									9	
	Nylaplate				8								
	Selection	37		8, 20	8, 9			24					
Sealed for Life								111					
Selection Guide		10	3	3	3	3, 5	3,5	3	3	3	3	ļ3	
Shields								129					4
Shock		7						221	I-48	48,54	4, 6	, ,	
Speed	.Bearing Speed Limit .		16, 70, 124.			47		235	I-58	58			
	High Speed Applications	24	ļ					223, 246					
	Load & Speed Chart.		ļ					230	I-57	56		77	
	Mean Speed Formula.	14	144	46	21	37	42	222	I-51	51			
	Seal Speed Limit							235	I-58	58			
Split Housings								1	7	9			
Stiffness	Bearing	33						1					
Storage	1	42						1				·	
			12,66,										
Stud												∤11	
-	,											21.62	
-									'			31, 63	
iolerances													
Total												80	1
ігаск													
\ab "	_												
	1											<u>.</u>	
												1	
											12,58		
Zone Hardened			9, 63,					22, 102,				10, 34, 64, 70	

Prefix	Product Type	Brand	Section	Page	Prefix	Product Type	Brand	Section	Page
# SF##	Mounted Ball Bearing Take Up Frame	Browning	G	190	CFD	Cam Follower	McGill	B	103
# TF##	Mounted Ball Bearing Take Up Frame	Browning	G	191	CFE	Cam Follower	McGill	B	15
2 - ##	Mounted Ball Bearing	Sealmaster	G	92	CFE ## CR	CRES Cam Follower	McGill	K	13
2 ## D	Mounted Ball Bearing	Sealmaster	G	94	CFF	Rod End	Sealmaster]	22
2 ## T	Mounted Ball Bearing	Sealmaster	G	93	CFF ## N	Rod End	Sealmaster	J	22
2BSS	Mounted Ball Bearing Back Side Shield	Sealmaster	L	4	CFF ## T	Rod End	Sealmaster]	18
3 - ##	Mounted Ball Bearing	Sealmaster	G	95	CFH	Cam Follower	McGill	B	15
3 ## D	Mounted Ball Bearing	Sealmaster	G	97	CFM	Rod End	Sealmaster]	23
3 ## T	Mounted Ball Bearing	Sealmaster	G	96	CFM ## N	Rod End	Sealmaster		23
	Mounted Ball Bearing Back Side Shield				CFM ## T	Rod End	Sealmaster		19
						Spherical Plain Bearing			
	Rod End		•			Spherical Plain Bearing			
	Mounted Ball Bearing					T CRES Mounted Ball Bearing			
	Mounted Ball Bearing					T CRES Mounted Ball Bearing			
	Mounted Ball Bearing					CRES Mounted Ball Bearing			
	Mounted Ball Bearing					CRES Mounted Ball Bearing			
	,					J			
	Mounted Ball Bearings					CRES Mounted Ball Bearing			
	Rod End					CRES Mounted Ball Bearing			
	Rod End					CRES Mounted Ball Bearing			
	Rod End					CRES Mounted Ball Bearing			
	Rod End		•			CRES Mounted Ball Bearing			
	Aligning Cylindrical Thrust Bearing	1				CRES Mounted Ball Bearing			
B - ### - ##	Journal Roller Bearing Component	Rollway	C	37	CRFTC-PN	CRES Mounted Ball Bearing	Sealmaster	K	51
	Cam Follower					CRES Mounted Ball Bearing			
BCCFE	Cam Follower	McGill	В	45	CRFTS-PN	CRES Mounted Ball Bearing	Sealmaster	K	39
BCCYR	Cam Follower	McGill	В	57	CRFTS-PN## T	CRES Mounted Ball Bearing	Sealmaster	K	40
BCF	Cam Follower	McGill	В	45	CRPC-PN	CRES Mounted Ball Bearing	Sealmaster	K	45
BCFE	Cam Follower	McGill	В	45	CRPC-PN## T	CRES Mounted Ball Bearing	Sealmaster	K	46
BCYR	Cam Follower	McGill	В	57	CRPLF-PN	CRES Mounted Ball Bearing	Sealmaster	K	53
BEC	Mounted Ball Bearing End Cap	Sealmaster	L	4	CRPS-PN	CRES Mounted Ball Bearing	Sealmaster	K	35
BEO	Mounted Ball Bearing End Cap	Sealmaster	L	4	CRPS-PN## T	CRES Mounted Ball Bearing	Sealmaster	K	36
BH - ## LS	Spherical Plain Bearing	Sealmaster	J	37	CRSTF-PN	CRES Mounted Ball Bearing	Sealmaster	K	57
BTS - ## LS	Spherical Plain Bearing	Sealmaster	J	36	CRTBG-PN	CRES Mounted Ball Bearing	Sealmaster	K	47
CCF	Cam Follower	McGill	В	15	CRTBC-PN## T	CRES Mounted Ball Bearing	Sealmaster	K	48
CCFD	Cam Follower	McGill	В	103	CRTBF-PN	CRES Mounted Ball Bearing	Sealmaster	K	54
CCFE	Cam Follower	McGill	B	15	CT - ##	Crane Hook Thrust Bearings	Rollway	F	21
CCFH	Cam Follower	McGill	В	15	CTFD	Rod End	Sealmaster	J	24
CCYRD	Cam Follower	McGill	В	107	CTMD	Rod End	Sealmaster]	25
CF	Cam Follower	McGill	В	15	CYR	Cam Follower	McGill	В	39
CF ## CR	CRES Cam Follower	McGill	К.	13	CYR-CR	CRES Cam Follower	McGill	k	17

Prefix	Product Type	Brand	Section	Page
CYRD	Cam Follower	McGill	В	107
D - ###	Journal Roller Bearing	Rollway	C	37
DRPB ### - 2	Mounted Tapered Roller Bearing	Sealmaster	1	21
DRPB ### - 4	Mounted Tapered Roller Bearing	Sealmaster	1	22
DRPBA ### - 2	Mounted Tapered Roller Bearing	Sealmaster	1	23
DRPBA ### - 4	Mounted Tapered Roller Bearing	Sealmaster	1	24
DRPBA-##MM-2	Mounted Tapered Roller Bearings	Sealmaster	1	21
E - ###	Journal Roller Bearing Component	Rollway	C	37
E - #### - B	Cylindrical Roller Bearing	Rollway	Е	15
E - #### - U	Cylindrical Roller Bearing	Rollway	E	15
ECC	Mounted Ball Bearing End Cap	Sealmaster	L	4
ECO	Mounted Ball Bearing Endcap	Sealmaster	L	4
EDPBA ### - 2	Mounted Tapered Roller Bearing	Sealmaster	1	25
EDPBA ### - 4	Mounted Tapered Roller Bearing	Sealmaster	1	26
EDPBA-##MM-2	Mounted Tapered Roller Bearings	Sealmaster	1	25
ER	Cylindrical O.D. Ball Bearing	Sealmaster	G	107
ER ## T	Cylindrical O.D. Ball Bearing	Sealmaster	G	108
ER ### TMC	Mounted Ball Bearings	Sealmaster	G	108
ERCI	Mounted Tapered Roller Bearing Insert	Sealmaster	1	35
ERCI-##MM	Mounted Tapered Roller Bearings	Sealmaster	1	35
ERPB ### - 2	Mounted Tapered Roller Bearing	Sealmaster	1	17
ERPB ### - 4	Mounted Tapered Roller Bearing	Sealmaster	1	18
ERPB-##MM-2	Mounted Tapered Roller Bearings	Sealmaster	I	17
ERPBA ### - 2	Mounted Tapered Roller Bearing	Sealmaster	I	19
ERPBA ### - 4	Mounted Tapered Roller Bearing	Sealmaster	1	20
ERPBA-##MM-2	Mounted Tapered Roller Bearings	Sealmaster	1	19
ERPBXT	Mounted Tapered Roller Bearing	Sealmaster	1	28
ERPBXT-##MM-4	Mounted Tapered Roller Bearings	Sealmaster	1	27
ERX-PN	CRES Cylindrical O.D. Ball Bearing	Sealmaster	K	65
ERX-PN## T	CRES Cylindrical O.D. Ball Bearing	Sealmaster	K	66
FB	Mounted Ball Bearing	Sealmaster	G	57
FB ## C CR	CRES Mounted Ball Bearing	Sealmaster	K	74
FB ## T	Mounted Ball Bearing	Sealmaster	G	58
FB ### TMC	Mounted Ball Bearings	Sealmaster	G	58
FBE920	Mounted Tapered Roller Bearing	Browning	1	43
FBMH	Mounted Ball Bearing	Sealmaster	G	121
FBMH ## T	Mounted Ball Bearing	Sealmaster	G	122
FCF	Cam Follower	McGill	В	135
FCFE	Cam Follower	McGill	В	139
FCYR	Cam Follower	McGill	В	137

Prefix	Product Type	Brand	Section	Page
FLBG	Spherical Plain Bearing	Sealmaster]	35
GR	Needle Roller Bearing Component	McGill	C	21
L - #### - U	Cylindrical Roller Bearing	Rollway	E	15
LP - #### - U	Cylindrical Roller Bearing	Rollway	E	15
LP - #### - U	Cylindrical Roller Bearing	Rollway	E	15
LRS 1##	Mounted Ball Bearing	Browning	G	205
LS 1##	Mounted Ball Bearing	Browning	G	204
MCF	Cam Follower	McGill	В	69
MCFD	Cam Follower	McGill	B	111
MCFDE	Cam Follower	McGill	В	111
MCFE	Cam Follower	McGill	В	69
MCFR	Cam Follower	McGill	B	69
MCFRE	Cam Follower	McGill	В	69
MCYR	Cam Follower	McGill	B	91
MCYRD	Cam Follower	McGill	В	115
MCYRR	Cam Follower	McGill	В	91
MFC	Mounted Ball Bearing	Sealmaster	G	61
MFC ## T	Mounted Ball Bearing	Sealmaster	G	62
MFCD	Mounted Ball Bearing	Sealmaster	G	63
	Mounted Ball Bearing			
MFPD	Mounted Ball Bearing	Sealmaster	G	43
MH	Mounted Ball Bearing	Sealmaster	G	125
	Mounted Ball Bearing			
MI	Needle Roller Bearing Component	McGill	C	29
ML - ###	Cylindrical Roller Bearing	Rollway	; E	15
	Mounted Ball Bearing			
MP## T	Mounted Ball Bearing	Sealmaster		
MPD	Mounted Ball Bearing			
MR	Needle Roller Bearing Component	McGill	C	9
	Mounted Ball Bearing			
	Mounted Ball Bearing			
	Mounted Ball Bearing			
	Mounted Ball Bearing			
	Mounted Ball Bearing			
	Mounted Ball Bearing			
	Mounted Ball Bearing			
	Mounted Ball Bearing			
	Mounted Ball Bearing			
	Mounted Ball Bearing			
	Mounted Ball Bearing			
1412 H 1		ocannayter	O	1 3

Prefix	Product Type	Brand	Section	Page	Prefix		Product Type	Brand	Section	Page
MUC - ####	Cylindrical Roller Bearing	Rollway	E	15	RFBA-##N	M	Mounted Tapered Roller Bearings	Sealmaster	I	32
N - ### - E	Cylindrical Roller Bearing	Rollway	E	15	RFBA-##MI	И-С CR	CRES Mounted Tapered Roller Bearing	Sealmaster	K	28
NJ - #### - E	Cylindrical Roller Bearing	Rollway	E	15	RFP		Mounted Tapered Roller Bearing	Sealmaster	1	33
NJ - #### - E	Cylindrical Roller Bearing	Rollway	E	15	RFP-##MN	1	Mounted Tapered Roller Bearings	Sealmaster	1	33
NP	Mounted Ball Bearing	Sealmaster	G	31	RFPA		Mounted Tapered Roller Bearing	Sealmaster	1	34
NP ## C CR	CRES Mounted Ball Bearings	Sealmaster	K	71	RFPA-##M	M	Mounted Tapered Roller Bearings	Sealmaster	1	34
NP ### TMC	Mounted Ball Bearing	Sealmaster	G	32	RPB - ### -	C2 - CR	CRES Mounted Tapered Roller Bearing	Sealmaster	K	23
NP## T	Mounted Ball Bearing	Sealmaster	G	32	RPB - ### -	C4-CR	CRES Mounted Tapered Roller Bearing	Sealmaster	K	25
NPD	Mounted Ball Bearing	Sealmaster	G	33	RPB ### - :	2	Mounted Tapered Roller Bearing	Sealmaster	ļl	13
NPG	Mounted Ball Bearing	Sealmaster	G	80	RPB ### -	4	Mounted Tapered Roller Bearing	Sealmaster	I	14
NPL	Mounted Ball Bearing	Sealmaster	G	35	RPB-##MM	Л-2	Mounted Tapered Roller Bearings	Sealmaster	. 	13
NPL## T	Mounted Ball Bearing	Sealmaster	G	35	RPB-##MM	-C2 CR	CRES Mounted Tapered Roller Bearing	Sealmaster	K	25
NPMH	Mounted Ball Bearing	Sealmaster	G	113	RPBA - ### -	C2 - CR	CRES Mounted Tapered Roller Bearing	Sealmaster	K	24
NPMH ## T	Mounted Ball Bearing	Sealmaster	G	114	RPBA - ### -	C4-CR	CRES Mounted Tapered Roller Bearing	Sealmaster	K	26
NUP - ### - E	Cylindrical Roller Bearing	Rollway	E	15	RPBA ###	- 2	Mounted Tapered Roller Bearing	Sealmaster	1	15
PBE	Mounted Tapered Roller Bearing	Browning	1	42	RPBA###	- 4	Mounted Tapered Roller Bearing	Sealmaster		16
PBE920	Mounted Tapered Roller Bearing	Browning	1	42	RPBA-##N	IM-2	Mounted Tapered Roller Bearings	Sealmaster	1	15
PCF	Cam Follower	McGill	В	131	RPBA-##MN	1-C2 CR	CRES Mounted Tapered Roller Bearing	Sealmaster	K	26
PCFE	Cam Follower	McGill	В	131	RPBXT-##	#-4	Mounted Tapered Roller Bearings	Sealmaster	1	27
PCYR	Cam Follower	McGill	В	133	RPBXT-##	MM-4	Mounted Tapered Roller Bearings	Sealmaster	ļl	27
PN	CRES Mounted Ball Bearing	Sealmaster	K	58	RS		Needle Roller Bearing	McGill	c	33
PN-## T	CRES Mounted Ball Bearing	Sealmaster	K	59	RUBRB 1#	#	Mounted Ball Bearing	Browning	G	202
PVR - #1##	Mounted Ball Bearing	Sealmaster	G	134	RUBRE 1#	#	Mounted Ball Bearings	Browning	G	202
PVR - #2##	Mounted Ball Bearing	Sealmaster	G	135	RUBRS 1#	#	Mounted Ball Bearing	Browning	G	201
PVR - #3##	Mounted Ball Bearing	Sealmaster	G	130	SB - ### - :	##	Journal Roller Bearing Component	Rollway	.¦ C	37
PVR - #4##	Mounted Ball Bearing	Sealmaster	G	131	SB - 222#	t	Spherical Roller Bearing	McGill	D	11
PVR - #5##	Mounted Ball Bearing	Sealmaster	G	132	SB - 223##	·	Spherical Roller Bearing	McGill	D	15
PVR - #6##	Mounted Ball Bearing	Sealmaster	G	133	SBG		Spherical Plain Bearing	Sealmaster]	32
PVR - #7##	Mounted Ball Bearing	Sealmaster	G	136	SBG - ## S		Spherical Plain Bearing	Sealmaster]	32
RB	Mounted Ball Bearing	Sealmaster	G	87	SBG - ## S	Α	Spherical Plain Bearing	Sealmaster	J	32
RCI	Mounted Tapered Roller Bearing Insert	Sealmaster		37	SBG - ## S	S	Spherical Plain Bearing	Sealmaster	J	32
RCIA	Mounted Tapered Roller Bearing Insert	Sealmaster		37	SC		Mounted Ball Bearing	Sealmaster	G	68
RCI-##MM	Mounted Tapered Roller Bearings	Sealmaster		38	SC ## T		Mounted Ball Bearing	Sealmaster	G	69
RD	Multi-Rol Needle Roller Bearings	McGill	C	34	SC ### TN	IC	Mounted Ball Bearings	Sealmaster	G	69
RFB	Mounted Tapered Roller Bearing	Sealmaster		31	SCHB		Mounted Ball Bearing	Sealmaster	G	67
RFB - ### - CR	CRES Mounted Tapered Roller Bearing	Sealmaster	K	27	SDCF		Cam Follower	McGill	B	123
RFB-##MM	Mounted Tapered Roller Bearings	Sealmaster		31	SDMCF		Cam Follower	McGill	B	125
RFB-##MM-C CR	CRES Mounted Tapered Roller Bearing	Sealmaster	K	27	SDMCFE		Cam Follower	McGill	B	125
RFBA	Mounted Tapered Roller Bearing	Sealmaster	1	32	SE - ### - 3	#	Journal Roller Bearing	Rollway	C	7
RFBA-CR	CRES Mounted Tapered Roller Bearing	Sealmaster	K	28	SEHB		Mounted Ball Bearing	Sealmaster	G	64

Prefix	Product Type	Brand	Section	Page	Prefix	Product Type	Brand	Section	Page
SEHB ## T	Mounted Ball Bearing	Sealmaster	G	65	SWS - ###	Journal Roller Bearing Component	Rollway	C	37
SEHBD	Mounted Ball Bearing	Sealmaster	G	66	Т	Cylindrical Thrust Bearing	Rollway	F	13
SF	Mounted Ball Bearing	Sealmaster	G	49	T - ####	Tapered Thrust Bearing	Rollway	F	27
SF-## C CR	CRES Mounted Ball Bearing	Sealmaster	K	72	T - #### - F	T-Flat Thrust Bearing	Rollway	F	29
SF ## T	Mounted Ball Bearing	Sealmaster	G	50	T - ###### - FS	T-Flat Aligning Thrust Bearing	Rollway	F	30
SF ### TMC	Mounted Ball Bearings	Sealmaster	G	50	T1000	Mounted Tapered Roller Bearing Take Up Frame	Browning		45
SFC	Mounted Ball Bearing	Sealmaster	G	59	TAB - #####	Tandem Thrust Bearing	Rollway	F	35
SFC ## T	Mounted Ball Bearing	Sealmaster	G	60	TAC - ##### - ##	# Tandem Thrust Bearing	Rollway	F	36
SFC ### TMC	Mounted Ball Bearings	Sealmaster	G	60	TAD - #####	Tandem Thrust Bearing	Rollway	F	37
SFMH	Mounted Ball Bearing	Sealmaster	G	117	TAF - #####	Tandem Thrust Bearing	Rollway	F	38
SFMH ## T	Mounted Ball Bearing	Sealmaster	G	118	TB	Mounted Ball Bearing	Sealmaster	G	47
	Mounted Ball Bearing					Mounted Ball Bearing			
	CRES Mounted Ball Bearing				TBMH	Mounted Ball Bearing	Sealmaster	G	115
	Mounted Ball Bearing					Mounted Ball Bearing			
	Mounted Ball Bearings					Rod End			
	Mounted Ball Bearing					Rod End		,	
	Mounted Ball Bearing					Mounted Ball Bearing			
	Mounted Ball Bearing					Rod End			
	Mounted Ball Bearing					Rod End		,	
	Mounted Ball Bearing					Tandem Thrust Bearing			
	Mounted Tapered Roller Bearing					Tandem Thrust Bearing			
	Mounted Tapered Roller Bearing					# Tandem Thrust Bearing			
	Mounted Tapered Roller Bearings Mounted Ball Bearing					Rod End			
	J					Rod End			
	Mounted Ball Bearing							•	17
	Mounted Ball Bearing			46		Rod End		J	17
SRC		Sealmaster		86	TUE920	Mounted Tapered Roller Bearing	ii ii		44
	Mounted Ball Bearing					Cylindrical Roller Bearing			
	Mounted Ball Bearing					Cylindrical Roller Bearing			
	Mounted Ball Bearing	_				Cylindrical Roller Bearing		1	
	Mounted Ball Bearing	-				Mounted Spherical Roller Bearing			
	Mounted Ball Bearing	i i				Mounted Spherical Roller Bearing			
	Mounted Ball Bearing					Mounted Spherical Roller Bearing		i i	
	Mounted Ball Bearing				USFB5000	Mounted Spherical Roller Bearing	Sealmaster	H	15
	Mounted Ball Bearing				USFB5000A	Mounted Spherical Roller Bearing	Sealmaster	H	16
ST	Mounted Ball Bearing	Sealmaster	G	72	USFBE5000	Mounted Spherical Roller Bearing	Sealmaster	H	23
ST ## T	Mounted Ball Bearing	Sealmaster	G	73	USFBE5000A	Mounted Spherical Roller Bearing	Sealmaster	H	24
STH	Mounted Ball Bearing	Sealmaster	G	76	USFC5000	Mounted Spherical Roller Bearing	Sealmaster	H	17
STMH	Mounted Ball Bearing	Sealmaster	G	123	USFC5000A	Mounted Spherical Roller Bearing	Sealmaster	H	18
STMH ## T	Mounted Ball Bearing	Sealmaster	G	124	USFCE5000	Mounted Spherical Roller Bearing	Sealmaster	H	25

Prefix	Product Type	Brand	Section Page
USFCE5000A	Mounted Spherical Roller Bearing	Sealmaster	H 26
USI5000	Mounted Spherical Roller Bearing	Sealmaster	H 31
USI5000A	Mounted Spherical Roller Bearing	Sealmaster	H 32
USRB5000	Mounted Spherical Roller Bearing	Sealmaster	9
USRB5000A	Mounted Spherical Roller Bearing	Sealmaster	H 10
USRB5500	Mounted Spherical Roller Bearing	Sealmaster	H 13
USRB5500A	Mounted Spherical Roller Bearing	Sealmaster	H 14
USRBE5000	Mounted Spherical Roller Bearing	Sealmaster	21
USRBE5000A	Mounted Spherical Roller Bearing	Sealmaster	H22
USRBF5000	Mounted Spherical Roller Bearing	Sealmaster	H 11
USRBF5000A	Mounted Spherical Roller Bearing	Sealmaster	H 12
USTA5000	Mounted Spherical Roller Bearing	Sealmaster	H 29
USTU5000	Mounted Spherical Roller Bearing	Sealmaster	H 27
USTU5000A	Mounted Spherical Roller Bearing	Sealmaster	H 28
VB 2##	Mounted Ball Bearing	Browning	G210
VB 3##	Mounted Ball Bearing	Browning	G213
VCF	Cam Follower	McGill	B139
VCFE	Cam Follower	McGill	B 139
VCYR	Cam Follower	McGill	B141
VE 1##	Mounted Ball Bearing Insert	Browning	G 207
VE 2##	Mounted Ball Bearing Insert	Browning	G211
VER 2##	Cylindrical O.D. Mounted Ball Bearing	Browning	G218
VF2B 2##	Mounted Ball Bearing	Browning	G 175
VF2B 3##	Mounted Ball Bearing	Browning	G 178
VF2E 1##	Mounted Ball Bearing	Browning	G 172
VF2E 2##	Mounted Ball Bearing	Browning	G 176
VF2S - ##MM	Mounted Ball Bearing	Browning	G 174
VF2S 1##	Mounted Ball Bearing	Browning	G 171
VF2S 1## M	Mounted Ball Bearing	Browning	G ₁₉₃
VF2S 2##	Mounted Ball Bearing	Browning	G 174
VF2S 3##	Mounted Ball Bearing	Browning	G 177
VF3S 1## M	Mounted Ball Bearing	Browning	G 194
VF4B 2##	Mounted Ball Bearing	Browning	G 167
VF4B 3##	Mounted Ball Bearing	Browning	G 170
VF4E 1##	Mounted Ball Bearing	Browning	G 164
VF4E 2##	Mounted Ball Bearing	Browning	G 168
	Mounted Ball Bearing		
	Mounted Ball Bearing	-	
	Mounted Ball Bearing		
	Mounted Ball Bearing	-	

Prefix	Product Type	Brand	Section	Page
VFBB 2##	. Mounted Ball Bearing	Browning	G	180
VFBS 2##	. Mounted Ball Bearing	Browning	۰ G	179
VFCB 2##	. Mounted Ball Bearing	Browning	G	182
VFCB 3##	. Mounted Ball Bearing	Browning	G	184
VFCS 2##	. Mounted Ball Bearing	Browning	G	181
VFCS 3##	. Mounted Ball Bearing	Browning	G	183
VPB 2##	. Mounted Ball Bearing	Browning	л G	149
VPB 3##	. Mounted Ball Bearing	Browning	G	152
VPDS 2##	. Mounted Ball Bearing	Browning	G	158
VPE 1##	. Mounted Ball Bearing	Browning	G	146
VPE 2##	. Mounted Ball Bearing	Browning	_î G	150
VPLB 2##	. Mounted Ball Bearing	Browning	G	156
VPLE 1##	. Mounted Ball Bearing	Browning	G	154
VPLE 2##	. Mounted Ball Bearing	Browning	G	157
VPLS 1##	. Mounted Ball Bearing	Browning	G	153
VPLS 2##	. Mounted Ball Bearing	Browning	G	155
VPS - ##MM	. Mounted Ball Bearing	Browning	G	148
VPS 1##	. Mounted Ball Bearing	Browning	G	145
VPS 1## M	. Mounted Ball Bearing	Browning	G	192
VPS 2##	. Mounted Ball Bearing	Browning	G	147
VPS 3##	. Mounted Ball Bearing	Browning	G	151
VS 1##	. Mounted Ball Bearing Insert	Browning	G	206
VS 2##	. Mounted Ball Bearing Insert	Browning	G	208
VS 3##	. Mounted Ball Bearing Insert	Browning	ļ G	212
VS-## MM	. Mounted Ball Bearings	Browning	G	209
VTBB 2##	. Mounted Ball Bearing	Browning	G	162
VTBE 1##	. Mounted Ball Bearing	Browning	G	159
VTBS - ##MM	. Mounted Ball Bearing	Browning	G	161
VTBS 2##	. Mounted Ball Bearing	Browning	G	160
VTWE 1##	. Mounted Ball Bearing	Browning	G	186
VTWE 2##	. Mounted Ball Bearing	Browning	G	188
VTWS 1##	. Mounted Ball Bearing	Browning	G	185
VTWS 2##	. Mounted Ball Bearing	Browning	, G,	187
VTWS 3##	. Mounted Ball Bearing	Browning	G	189
WCT - ##	. Crane Hook Thrust Bearings	Rollway	,F	21
WS-###	. Journal Roller Bearing Component	Rollway	C	37

STANDARD TERMS AND CONDITIONS OF SALE (September 2, 2009)

These Terms and Conditions, the attendant quotation or acknowledgment and all documents incorporated by specific reference therein, will be the complete and exclusive statement of the terms of the agreement governing the sale of goods ("Goods") by Emerson Power Transmission Corporation and its divisions and subsidiance ("Setler") to Customer ("Buyer"). Buyer's acceptance of the Goods will manifest Buyer's assent to these Terms and Conditions. If these Terms and Conditions differ in any way from the terms and conditions of Buyer's order, or other documentation, this document will be construed as a counteroffer and will not be deemed an acceptance of Buyer's terms and conditions which conflict herewith.

- 1. PRICES: Unless otherwise specified in writing by Seller, Seller's price for the goods shall remain in effect for thirty (30) days after the date of Seller's quotation or acknowledgment of Buyer's order for the Goods, whichever occurs first, provided an unconditional, complete authorization for the immediate shipment of the Goods is received and accepted by Seller within such birne period. If such authorization is not received by Seller within such thirty (30) day period, Seller shall have the right to change the price for the Good to Seller's price for the Goods at the time of shipment.
- 2. <u>TAXES</u> Any tax or governmental charge or increase in same hereafter becoming effective increasing the cost to Seller of producing, selling or delivering the Goods or of procuring material used therein, and any tax now in effect or increase in same payable by the Seller because of the manufacture, sale or delivery of the Goods, may at Seller's option, be added to the poco.
- 3. TERMS OF PAYMENT: Subject to the approval of Seller's Credit Department, terms are not thirty (30) days from date of SeSer's involce in U.S. Currency, if any payment owed to SeBer is not paid when due, it shall bear interest, at a rate to be determined by Seller, which shall not exceed the maximum rate permitted by law, from the date on which it is due until it is paid. Seller shall have the right, among other remedies, either to terminate the Agreement or to suspend further performance under this and/or other agreements with Buyer in the event Buyer fails to make any payment when due. Buyer shall be liable for all expenses, including attorneys' fees, relating to the collection of past due amounts.
- 4. SHIPMENT AND DELIVERY: Shipments are made F.O.B. Seller's shipping point. Any claims for shortages or damages suffered in transit shall be submitted by the Buyer directly to the carrier. White Seller will use all reasonable commercial efforts to maintain the delivery date acknowledged or quoted by Seller, all shipping dates are approximate. Seller reserves the right to make partial shipments and to segregate "specials" and made-to-order Goods from normal stock Goods. Seller shall not be bound to tender delivery of any Goods for which Buyer has not provided shipping instructions.
- QUANTITY Buyer agrees to accept overruns of up to ten percent (10%) of the order on "made-to-order" Goods, including parts. Any such additional items shall be priced at the price per Item charged for the specific quantity ordered.
- 6. LIMITED WARRANTY. Subject to the limitations of Section 7, Setter warrants that the Goods will be free from defects in material and workmanship under normal use, service and maintenance for a period of one year (unless otherwise specified by Seller in writing) from the date of stypment of the Goods by Seller, THIS IS THE SOLE AND EXCLUSIVE WAR-RANTY GIVEN BY SELLER WITH RESPECT TO THE GOODS AND IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, ARISING BY OPERA-TION OF LAW OR OTHERWISE, INCLUDING WITHOUT LIMITATION, MERCHANTABIL-ITY OR FITNESS FOR A PARTICULAR PURPOS WHETHER OR NOT THE PURPOSE OR USE HAS BEEN DISCLOSED TO SELLER IN SPECIFICATIONS, DRAWINGS OR OTHERWISE, AND WHETHER OR NOT SELLER'S PRODUCTS ARE SPECIFICALLY DESIGNED AND/OR MANUFACTURED BY SELLER FOR BUYER'S USE OR PURPOSE This warranty does not extend to any iosses or damages due to misuse, accident, abuse, neglect, normal wear and tear, unauthorized modification or alteration, use beyond rated capacity, or improper installation, maintenance or application. To the extent that Buyer or its agents has supplied specifications, information, representation of operating conditions of other data to Seller in the selection or design of the Goods and the preparation of Seller's quotation, and in the event that actual operating conditions or other conditions differ from those represented by Buyer, any warranties or other provisions contained herein which are affected by such conditions shall be null and yold. If within thirty (30) days after Buyer's discovery of any warranty defects within the warranty period, Buyer notifies Seller thereof in writing. Seller shall, at its option, repair or replace F.O.B. point of manufacture, or refund the purchase price for. that portion of the goods found by Seller to be defective. Fallure by Buyer to give such writlen notice within the applicable time period shall be deemed an absolute and unconditional waiver of Buyer's claim for such defects. Goods repaired or replaced during the warranty period shall be covered by the foregoing warranty for the remainder of the officinal warranty period or ninety (90) days, whichever is longer. Buyer assumes all other responsibility for any loss, damage, or injury to persons or property arising out of, connected with, or resulting from the use of Goods, either alone or in combination with other products/components

SECTIONS 6 AND 7 APPLY TO ANY ENTITY OR PERSON WHO MAY BUY, ACQUIRE OR USE SELLER'S GOODS, INCLUDING ANY ENTITY OR PERSON WHO BUYS THE GOODS FROM SELLER'S DISTRIBUTOR AND SUCH ENTITY OR PERSON SHALL BE BOUND BY THE LIMITATIONS THEREIN.

7. LIMITATION OF REMEDY AND LABILITY THE SOLE AND EXCLUSIVE REMEDY FOR BREACH OF ANY WARRANTY HEREUNDER (OTHER THAN THE WARRANTY PROVIDED UNDER SECTION 13) SHALL BE LIMITED TO REPAIR. REPLACEMENT OR REFUND OF THE PURCHASE PRICE UNDER SECTION 6. SELLER SHALL NOT BE LIBBLE FOR DAMAGES CAUSED BY DELAY IN PERFORMANCE AND IN NO EVENT, REGARDLESS OF THE FORM OF THE CLAIM OR CAUSE OF ACTION (WHETHER BASED IN CONTRACT, INFRINGEMENT, NEGLIGENCE, STRICT LIABILITY, OTHER TORT OR OTHERWISE), SHALL SELLER'S LIABILITY TO BUYER ANDIOR ITS CUSTOMERS EXCEED THE PRICE TO BUYER OF THE SPECIFIC GOODS PROVIDED BY SELLER GIVING RISE TO THE CLAIM OR CAUSE OF ACTION. BUYER AGREES THAT IN NO EVENT SHALL SELLER'S LIABILITY TO BUYER ANDIOR ITS CUSTOMERS EXTEND TO INCLUDE INCIDENTAL. CONSEQUENTIAL OR PUNITIVE DAMAGES. THE TERM "CONSEQUENTIAL DAMAGES" SHALL INCLUDE. BUT NOT BE LIMITED TO, LOSS OF ANTICIPATED PROFITS, LOSS OF USE, LOSS OF REVENUE, COST OF CAPITAL AND DAMAGE OR LOSS OF OTHER PROPERTY OR EQUIPMENT.

It is expressly understood that any technical advice furnished by Selter with respect to the use of the Goods is given without charge, and Selfer assumes no obligation or liability for the

advice given, or results obtained, all such advice being given and accepted at Buyer's risk, GOODS AND/OR SERVICES SOLD HEREUNDER ARE NOT FOR USE IN ANY NUCLEAR AND RELATED APPLICATIONS. Buyer accepts goods ant/for services with the foregoing understanding, agrees to communicate the same in writing to any subsequent purchaser or users and to defend, indemnify and hold harmless Seller from any claims, losses, suits, judgments and damages, including incidental and consequential damages, arising from such use, whether the cause of action be based in tort, contract or otherwise, including allegations that the Seller's liability is based on negligence or strict liability.

- 8. EXCUSE OF PERFORMANCE: Seller shall not be tiable for detays in performance or for non-performance due to acts of God, acts of Buyer, war, riol. fire, flood, other severe weather; sabotage, or epidemics; strikes or tabor disturbances; governmental requests, restrictions, laws, regulations, orders or actions; unavailability of or detays in transportation; default of suppliers; or unforeseen difformatances or any events or causes beyond Seller's reasonable control. Delivenes may be suspended for an appropriate period of time as a result of the foregoing. If Seller determines that its ability to supply the total demand for the Goods, or to obtain material used directly or indirectly in the manufacture of the Goods, is indered, imited or made impracticable due to causes addressed in this Section 8, Selter may allocate its available supply of the Goods or such material (without obligation to acquire other supplies of any such Goods or material) among itself and its purchasers on such basis as Selter determines to be equilable without tability for any failure of performance which may result therefrom. Delivenes suspended or not made by reason of this section may be canceled by Selter upon notice to Buyer without liability, but the balance of the agreement shall otherwise remain unaffected.
- 9. CANCELLATIONS AND DELAYS: The Buyer may cancel orders only upon written notice and upon payment to Seller of cancellation charges which include, among other things, all costs and expenses incurred and commitments made by the Seller and a reasonable profit thereon. Any request by Buyer to extend the delivery schedule must be agreed to in writing by the Seller. If agreement cannot be reached. Seller may deliver product to the last known ship to address and invoice the Buyer upon completion of the product or prior delivery date, whichever is later.
- 10. <u>CHANGES</u>: Buyer may request changes or additions to the Goods consistent with Selfer's specifications and criteria. In the event such changes or additions are accepted by Selfer. Selfer may revise the price and delivery schedule. Selfer reserves the right to change designs and specifications for the Goods without prior notice to Buyer, except with respect to Goods being made-to-order for Buyer.
- 11, <u>TOOLING</u>: Tool, die, and pattern charges, if any, are in addition to the price of the Goods and are due and payable upon completion of the tooling. All such tools, dies and patterns shall be and remain the property of Seller Charges for tools, dies, and patterns do not convey to Buyer, bite, ownership interests in, or rights to possession or removal, nor prevent their use by Seller for other purchasers, except as otherwise expressly provided by Seller and Buyer in writing with reference to this provision.
- 12 ASSIGNMENT: Buyer shall not assign its rights or delegate its duties hereunder or any interest therein or any rights hereunder without the prior written consent of the Seker, and any such assignment, without such consent, shall be void.
- 13. PATENTS AND COPYRIGHTS Subject to Section 7, Seller warrants that the Goods sold, except as are made specifically for Buyer according to Buyer's specifications, do not infringe any valid U.S. patent or copyright in existence as of the date of delivery. This warranty is given upon the condition that Buyer promptly notify Seller of any claim or suit involving Buyer in which such infringement is alleged, and, that Buyer cooperate fully with Seller and permit Seller to control completely the defense or compromise of any such allegation of infringement Seller's warranty as to use only applies to infringements arising solely out of the inherent operation (t) of such Goods, or (it) of any combination of Goods in a system designed by Seller. In the event such Goods, singularly or in combination, are held to infringe a U.S. patent or copyright in such suit, and the use of such Goods is enjoined, or in the case of a compromise by Seller, Seller shall have the right, at its option and expense, to procure for Buyer the right to continue using such Goods, or replace them with non-infringing Goods, or modify same to become non-infringing; or grant Buyer a credit for the depreciated value of such Goods and accept return of them.
- 14. MISCELLANEOUS: These terms and conditions set forth the entire understanding and agreement between Seller and Buyer, and supersede all other communications, negotiations and prior oral or written statements regarding the subject matter of these terms and conditions. No change, modification, rescission, discharge, abandonment, or waiver of these terms and conditions of Sale shall be binding upon the Seller unless made in writing and signed on its behalf by an officer of the Seller, No conditions, usage or trade, course of dealing or performance, Understanding or agreement purporting to modify, vary, explain, or supplement these Terms and Conditions shall be binding unless hereafter made in writing and signed by the party to be bound, and no modification shall be affected by the acceptance of purchase orders or shipping Instruction forms containing terms at variance with or in addition to those set forth herein. Any such modifications or additional terms are specifically rejected by Seller. No warver by Seller with respect to any breach or default or any right or remedy and no course of dealing, shall be deemed to constitute a continuing waiver of any other breach or default or of any other right or remedy, unless such waiver be expressed in writing and signed by the party to be bound. Seller is not responsible for typographical or clencal errors made in any quotation, orders or publications. As such errors are subject to correction. The validity, performance, and all other matters relating to the interpretation and effect of this contract shall be governed by the law of the state of New York. The United Nations Convention on the International Sale of Goods shall not apply to any transaction hereunder.

PLAST Conveying Chain

Emerson Industrial Automation Power Transmission Solutions

Corporate Headquarters 7120 New Buffington Road Florence, KY 41042

Customer Service 800 626 2120 800 262 3292 Fax Application Engineering 800 626 2093

www.emerson-ept.com

Bearings Catalog MCC12004E • Form 9391E

APPLICATION CONSIDERATIONS

wasterninger tricked as commerce as the actual terroric approximation and 1900-626-2320.

Another Emercent Emercent Emercent Spired in Emercent Industrial Automotion, McCRL Scaleractor and Rollway are Trademarks of Emercent Feet to Conc. or only of its afficiacy companies.

62011, 2012 Equipment Prover Transmission Copp., All Rights Reserved.

62017, 2012 Equipment Prover Transmission Copp., All Rights Reserved.